0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD12801MUF-ME2

BD12801MUF-ME2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    VFQFN48_EP

  • 描述:

    LED 驱动器 IC 16 输出 线性 恒定电流 PWM,SPI 调光 130mA VQFN48FAV070

  • 数据手册
  • 价格&库存
BD12801MUF-ME2 数据手册
Datasheet Automotive LED Driver Series 16-channel Constant Current Driver Embedded Automotive Backlight LED Driver BD12801MUF-M General Description Key Specifications BD12801MUF-M is 16-channel constant current driver with 13 bit PWM dimming and 8 bit local DC dimming individual channels. Communication with µController via SPI is feasible. ◼Power Supply Voltage Range: ◼LED Output Current Range: ◼Operating Temperature Range: Package Features VQFN48FAV070 ◼AEC-Q100 Qualified(Note 1) ◼Integrated 16-channel 20 V LED Constant Current Driver ◼SPI Interface ◼Independent 13 bit PWM Dimming Function ◼Independent 8 bit Local DC Dimming Function ◼Independent 8 bit Phase Shift Function ◼LSI Protection Function (UVLO, TSD, ISETSCP) ◼LED Abnormality Detection Function (Open/Short) ◼Integrated Abnormality Output FAIL Pin ◼Cascade Connection Feasible 3.0 V to 5.5 V 20 mA to 130 mA -40 °C to +125 °C W (Typ) x D (Typ) x H (Max) 7.0 mm x 7.0 mm x 1.0 mm (Note 1) Grade 1 Applications ◼Cluster, Center Infotainment Display ◼Other Automotive Backlights Typical Application Circuit Buck Buck-Boost DC/DC Converter ・・・ VCC LED1 LED2 LED3 EN LED4 VREG33 LED5 LED6 LED7 SDI LED8 SCLK SCSB SDO LED9 BD12801MUF-M VREG33 LED10 LED11 LED12 LED13 LED14 LED15 FAIL LED16 VSYNC EXTCLK GND 〇Product structure : Silicon integrated circuit www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 14 • 001 LGND ISET TEST1 TEST2 〇This product has no designed protection against radioactive rays. 1/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Contents General Description ........................................................................................................................................................................ 1 Features.......................................................................................................................................................................................... 1 Applications .................................................................................................................................................................................... 1 Key Specifications .......................................................................................................................................................................... 1 Package .......................................................................................................................................................................................... 1 Typical Application Circuit ............................................................................................................................................................... 1 Contents ......................................................................................................................................................................................... 2 Pin Configuration ............................................................................................................................................................................ 3 Pin Descriptions .............................................................................................................................................................................. 3 Block Diagram ................................................................................................................................................................................ 5 Description of Blocks ...................................................................................................................................................................... 6 Absolute Maximum Ratings ............................................................................................................................................................ 9 Thermal Resistance ........................................................................................................................................................................ 9 Recommended Operating Conditions ........................................................................................................................................... 10 Electrical Characteristics............................................................................................................................................................... 10 Typical Performance Curves ......................................................................................................................................................... 12 Functions of Logic Blocks ............................................................................................................................................................. 14 Timing Chart ................................................................................................................................................................................. 40 Application Examples ................................................................................................................................................................... 59 I/O Equivalence Circuit ................................................................................................................................................................. 60 Operational Notes ......................................................................................................................................................................... 61 Ordering Information ..................................................................................................................................................................... 63 Marking Diagram .......................................................................................................................................................................... 63 Physical Dimension and Packing Information ............................................................................................................................... 64 Revision History ............................................................................................................................................................................ 65 www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 2/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Pin Configuration 25 LED11 26 LED12 27 N.C. 28 LGND 29 N.C. 30 LED13 31 LED14 32 LED15 33 LED16 34 N.C. 35 N.C. EXP-PAD (Note 1) 36 N.C. (TOP VIEW) EXP-PAD (Note 1) N.C. 37 24 LED10 N.C. 38 23 LED9 N.C. 39 22 N.C. ISET 40 21 LGND VREG33 41 20 N.C. VCC 42 19 TEST2 EN 43 18 TEST1 GND 44 17 SDO FAIL 45 16 LGND SCSB 46 15 N.C. SDI 47 14 LED8 LED6 12 LED5 11 N.C. 10 9 LGND 8 13 LED7 N.C. 7 LED4 LED3 5 LED2 4 LED1 3 N.C. 2 VSYNC EXP-PAD (Note 1) EXTCLK 1 SCLK 48 6 EXP-PAD EXP-PAD (Note 1) (Note 1) EXP-PAD on the corner is comprised of three electrodes and is short-circuited inside. Pin Descriptions Pin No. Pin Name Function 1 EXTCLK EXTCLK signal pin. Input the frequency 8,192 times of VSYNC (PWMFREQ[1:0] = 0). 2 VSYNC VSYNC signal pin 3 N.C. - 4 LED1 Constant current output pin. Connect to LED cathode. 5 LED2 Constant current output pin. Connect to LED cathode. 6 LED3 Constant current output pin. Connect to LED cathode. 7 LED4 Constant current output pin. Connect to LED cathode. 8 N.C. - 9 LGND 10 N.C. - 11 LED5 Constant current output pin. Connect to LED cathode. 12 LED6 Constant current output pin. Connect to LED cathode. 13 LED7 Constant current output pin. Connect to LED cathode. 14 LED8 Constant current output pin. Connect to LED cathode. 15 N.C. - 16 LGND Analog GND for constant current driver block Analog GND for constant current driver block www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 3/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Pin Descriptions - continued Pin No. Pin Name Function 17 SDO 18 TEST1 TEST mode output pin. Set this pin open. 19 TEST2 TEST mode input pin. Connect to GND. 20 N.C. 21 LGND 22 N.C. - 23 LED9 Constant current output pin. Connect to LED cathode. 24 LED10 Constant current output pin. Connect to LED cathode. 25 LED11 Constant current output pin. Connect to LED cathode. 26 LED12 Constant current output pin. Connect to LED cathode. 27 N.C. 28 LGND 29 N.C. 30 LED13 Constant current output pin. Connect to LED cathode. 31 LED14 Constant current output pin. Connect to LED cathode. 32 LED15 Constant current output pin. Connect to LED cathode. 33 LED16 Constant current output pin. Connect to LED cathode. 34 N.C. - 35 N.C. - 36 N.C. - 37 N.C. - 38 N.C. - 39 N.C. - 40 ISET LED current setting pin. LED current is set by resistor connected to GND. 41 VREG33 42 VCC 43 EN 44 GND Small signal GND 45 FAIL Abnormal detection output pin 46 SCSB 47 SDI Data input pin 48 SCLK CLK input pin - EXP-PAD Data output pin. Analog GND for constant current driver block Analog GND for constant current driver block - Output 3.3 V constant voltage Power supply pin Engage Standby-mode with VEN = Low. Operation mode with VEN = High. Chip select setting pin Exposed Pad. Connect center EXP-PAD to the internal PCB ground plane using multiple via, it will provide excellent heat dissipation characteristics. (Note) LED1 to LED16 are defined as LEDn (n = 1 to 16) from this page. If there is no use LEDn channel, set open for the pin. If LEDn pin connects to GND, standby current isn’t 0 µA (Typ) because there is a current path. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 4/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Block Diagram VCC EN VCCUVLO Band Gap Voltage - 3.3 V REG VREG33UVLO TSD VREG33 + ISET SHORT DET VCC ISET Constant Current Driver DTY01[12:0] 13 LCDAC1[7:0] SDI 8 ERLOP[0] ERLSH[0] SCSB DTY13[12:0] 13 LCDAC13[7:0] Level Shifter 8 ERLOP[12] ERLSH[12] LED1 LED SHORT DET Thermal Warning WARTSD[0] SCLK SDO LED OPEN DET ・ ・ ・ LED OPEN DET ・ ・ ・ LED13 LED SHORT DET Thermal Warning WARTSD[12] DTY14[12:0] LOGIC Control VSYNC 13 LCDAC14[7:0] 8 ERLOP[13] ERLSH[13] LED OPEN DET LED SHORT DET Thermal Warning WARTSD[13] EXTCLK DTY15[12:0] 13 LCDAC15[7:0] FAIL 8 ERLOP[14] PROTECT LOGIC ERLSH[14] LED OPEN DET Thermal Warning WARTSD[14] 13 TEST2 LCDAC16[7:0] TEST MODE LOGIC 8 ERLOP[15] ERLSH[15] LED OPEN DET LED16 LED SHORT DET Thermal Warning WARTSD[15] LGND GND www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 LED15 LED SHORT DET DTY16[12:0] TEST1 LED14 5/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Description of Blocks If there is no description, the mentioned values are typical value. 1. Reference Voltage (3.3V REG) 3.3V REG Block generates 3.3 V at EN = High, and outputs to the VREG33 pin. This voltage (V VREG33) is used as I/O interface power supply for internal circuit. The VREG33 pin has UVLO function, and it starts operation at VCC ≥ 2.8 V and VVREG33 ≥ 2.7 V and stops when at VCC ≤ 2.7 V or VVREG33 ≤ 2.6 V. About the condition to release/detect VVREG33 voltage, refer to Table 1. Protection Table. Connect a ceramic capacitor (CVREG33) to the VREG33 pin for phase margin. CVREG33 range is 1.0 µF to 4.7 µF and recommended value is 2.2 µF. If the CVREG33 is not connected, it might occur unstable operation e.g. oscillation. In addition, VREG33 pin has the over current protection function. If the load current of VREG33 pin exceeds 15 mA, the voltage drops. The following diagram shows the power supply system of MCU and LED Driver. Select the suitable connection in accord with application structure. Case 1: A power supply of MCU and LED Driver are different. 3.3 V Case 2: A power supply of MCU and LED Driver are same. 3.3 V 5.0 V 5.0 V VCC VCC SPI MCU SPI VREG33 BD12801MUF-M VCC MCU SPI BD12801MUF-M VREG33 MCU BD12801MUF-M VREG33 OCP in VREG33 is not activated. Figure 1. VCC Pin and VREG33 Pin Connection 2. Constant Current Driver This device integrates 16-channel constant current driver. Constant current drivers capability is defined by supply voltage thus with VCC ≥ 4.2 V will be 130 mA/ch and with 3.0 V ≤ VCC < 4.2 V will be 100 mA/ch. Also 13 bit PWM dimming function, 8 bit DC dimming function, 8 bit phase shift function are built in for independent channel. (1) Maximum LED Output Current Setting (RISET) ILEDMAX [mA] 1000 100 LED Driver 10 1 10 100 RISET [kΩ] LEDn (n=1 to 16) ISET RISET Figure 2. ILEDMAX vs RISET Figure 3. ISET Block Diagram The Maximum LED Output Current ILEDMAX can be obtained by the following equation. 𝐼𝐿𝐸𝐷𝑀𝐴𝑋 = 757/𝑅𝐼𝑆𝐸𝑇 [A] The operating range of the RISET value is from 6.3 kΩ to 30 kΩ. Additionally, the RISET value could not be changed during operation. In this IC, ISET SHORT protection is built-in to protect an LED element from excess current when the ISET pin and GND are shorted. If the RISETSCP is 2.2 kΩ (Typ) or less, the IC detects ISET SHORT protection and LED current is turned off. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 6/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 2. Constant Current Driver - continued (2) Local DC Dimming Control Integrates 8 bit DC dimming function LCDACn[7:0], which controls LED current of each channel by SPI input from the defined LED current by RISET. LED current under DC dimming can be calculated in below equation. 𝐼𝐿𝐸𝐷𝑛 = 𝐼𝐿𝐸𝐷𝑀𝐴𝑋 × {(𝐿𝐶𝐷𝐴𝐶𝑛[7: 0] + 1)/256} > 0.02 [A] (𝑛 = 1 𝑡𝑜 16) In instance when RISET = 6.3 kΩ and LCDACn[7:0] = 0xFF, LED current will be 120 mA. As minimum LED current of the device is minimum 20 mA, LCDACn[7:0] should be set from 0x2A to 0xFF. Note that LCDACn[7:0] minimum bit cannot be set due to minimum current 20 mA. Step width will be 0.47 mA ( = 120 mA / 256 ). On the other hand RISET = 19 kΩ and LCDACn[7:0] = 0xFF will set LED current as 40 mA, LCDACn[7:0] should be set from 0x80 to 0xFF. Step width will be 0.156 mA ( = 40 mA / 256). LCDACn[7:0] setting range will differ by RISET. (3) Local PWM Dimming Control PWM dimming frequency, pulse width, and phase shift can be controlled by SPI input. Constant current driver can be controlled synchronized to PWM for independent channel set by SPI. However constant current driver’s minimum pulse width depends on LED current value. When LED current value is 80 mA or more, set the minimum pulse width to more than 0.6 µs. If LED current value is less than 80 mA, set the minimum pulse width to more than 2 µs. For example with PWM frequency 200 Hz at LED current of 100 mA setting, it’s possible to set with 13 bit full range of PWM duty. Average LED current under PWM dimming can be calculated in below equation. 𝐼𝐿𝐸𝐷𝑛_𝐴𝑉𝐸 = 𝐼𝐿𝐸𝐷𝑛 × {(𝐷𝑇𝑌𝑛[12: 0] + 1)/ 8,192} (4) [A] (𝑛 = 1 𝑡𝑜 16) Local Phase Shift Control This device integrates 8 bit Phase Shift function. Control by independent channel based on set PWM cycle is feasible. In case PWM frequency is 200 Hz, shift rate per channel can be set by about 20 µs steps. Refer to Figure 4. To summarize (1) to (3), the LED current setting, PWM dimming, DC dimming are schematically shown as Figure 5. LED Current 1 ms/div ILED1 (50 mA/div) Maximum setting 130 mA (A) ILEDMAX ILED2(50 mA/div) ILEDn (B) ILED3 (50 mA/div) Minimum Setting 20 mA t (C) Figure 4. Local Phase Shift Control Figure 5. Setting Range by Dimming Method (A) ILEDMAX is set to the maximum LED current value from 20 mA to 130 mA by RISET. (B) When ILEDMAX is set to 80 mA by RISET, DC dimming range is limited from 64 to 256 because of minimum LED current setting 20 mA. (C) PWM dimming can be controlled by 13 bit range. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 7/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Description of Blocks - continued 3. Protection Feature Protection Name LED OPEN LED SHORT (Note 4) LEDn LEDn (Note 3) (Note 3) Release Condition Error Enable SSMASK ERRMASK ERRLAT Error Register DTYENn = 1 and LEDOPEN = 1 and [ PWMn = High and (Note 3) ≤ 0.2 V ]  VLEDn DTYENn = 0 or LEDOPEN = 0 or [ PWMn = High and (Note 3) VLEDn > 0.2 V ] LEDOPEN O O O ERLOP[15:0] Low Protection released (ERRLAT = 0) or ERRCLR (ERRLAT = 1) DTYENn = 1 and LEDSHEN = 1 and [ PWMn = High and DTYENn = 0 or LEDSHEN = 0 or [ PWMn = High and LEDSHEN O O O ERLSH[15:0] Low Protection released (ERRLAT = 0) or ERRCLR (ERRLAT = 1) (Note 3) ≥ register setting ] LEDn (Note 3) Error Flag Error Setting Detection Condition Pin VLEDn LED SCP(Note 1) Table 1. Protection Table Protection DTYENn = 0 and LEDOPEN = 1 and VLEDn(Note 3) ≤ 0.2 V during SCP setting time (after detecting LED Open Error) VLEDn (Note 3) < register setting ] Recommend Operation target LEDn (Note 3) OFF (DTYENn (Note 3) = 0) target LEDn (Note 3) OFF (DTYENn (Note 3) = 0) LEDOPEN O - - WARSCP VSYNC WARISET Low Protection released (ERRLAT = 0) or ERRCLR (ERRLAT = 1) LED1 to 16 OFF (automaticaly) (Note 2) Low Protection released (ERRLAT = 0) or ERRCLR (ERRLAT = 1) target LEDn OFF (DTYENn (Note 3) = 0) Low Protection released ISET RSETSCP ≤ 2.2 kΩ RSETSCP > 2.2 kΩ - O - O Thermal Warning - Tj ≥ 135 °C Tj ≤ 125 °C TSDWEN O - O - Tj ≥ 175 °C Tj ≤ 150 °C - - - - - (Note 5) Clear Condition TSD detect or EN detect or VCCUVLO detect or VREG33UVLO detect ISET SHORT TSD (Note 6) FAIL WARTSD[15:0] VCCUVLO(Note 5) VCC VCC ≤ 2.7 V VCC ≥ 2.8 V - - - - - VREG33UVLO(Note 5) VREG33 VVREG33 ≤ 2.6 V VVREG33 ≥ 2.7 V - - - - - High (Hi-z) High (Hi-z) TSD detect or EN detect or All LEDn (Note 3) OFF VCCUVLO detect or VREG33UVLO detect - All block initialized (automaticaly) All block initialized (automaticaly) All block initialized (automaticaly) (Note 1) It can’t detect “SCP error” if LEDn (n = 1 to 16) pin shorts GND before setting DTYEN = 1 and detecting “LED open error”. This function is available after detecting “LED open error”. (Note 2) WARTSD[n-1]: monitor LEDn (Note 3) n = 1 to 16 (Note 4) O: It has this function. -: It doesn’t have this function. (Note 5) When it detects “VREG33UVLO” or “VCCUVLO” or “TSD” or “EN”, it can’t detect other protection. (Note 6) The FAIL pin is recommended to pull up to VVREG33. Recommended value for pull up resistance is 20 kΩ to 100 kΩ. When above failure is detected, the FAIL pin voltage becomes Low. If the FAIL pin is not used pin, it shall be kept open or short to GND. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 8/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Absolute Maximum Ratings (Ta = 25 °C) Parameter Symbol Rating Unit Power Supply Voltage VCC -0.3 to +7.0 V EN Pin Voltage VEN -0.2 to +7.0 V VLED1 to VLED16 -0.2 to +20.0 V VFAIL LED1 to LED16 Pin Voltage FAIL Pin Voltage -0.3 to +7.0 V VREG33, SCSB, SCLK, SDI, SDO, VVREG33, VSCSB, VSCLK, VSDI, VSDO, VVSYNC, VEXTCLK, VSYNC, EXTCLK, TEST1, TEST2, VTEST1, VTEST2, VISET ISET Pin Voltage -0.2 to +7.0 V Storage Temperature Range Tstg -55 to +150 °C Tjmax 150 °C Maximum Junction Temperature Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating. Thermal Resistance(Note 1) Parameter Symbol Thermal Resistance (Typ) Unit 1s(Note 3) 2s2p(Note 4) θJA 71.4 24.2 °C/W ΨJT 6.0 3.0 °C/W VQFN48FAV070 Junction to Ambient Junction to Top Characterization Parameter(Note 2) (Note 1) Based on JESD51-2A (Still-Air). (Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. (Note 3) Using a PCB board based on JESD51-3. (Note 4) Using a PCB board based on JESD51-5, 7. Layer Number of Measurement Board Single Material Board Size FR-4 114.3 mm x 76.2 mm x 1.57 mmt Top Copper Pattern Thickness Footprints and Traces 70 μm Layer Number of Measurement Board 4 Layers Material Board Size FR-4 114.3 mm x 76.2 mm x 1.6 mmt Top 2 Internal Layers Thermal Via(Note 5) Pitch Diameter 1.20 mm Φ0.30 mm Bottom Copper Pattern Thickness Copper Pattern Thickness Copper Pattern Thickness Footprints and Traces 70 μm 74.2 mm x 74.2 mm 35 μm 74.2 mm x 74.2 mm 70 μm (Note 5) This thermal via connects with the copper pattern of all layers. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 9/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Recommended Operating Conditions Parameter Symbol Min Typ Max Unit VCC 3.0 5.0 5.5 V CVREG33 1.0 2.2 4.7 µF ISET Pin Connection Resistance RISET 6.3 - 30.0 kΩ FAIL Pin Connection Resistance RFAIL 20 - 100 kΩ EXTCLK Frequency fEXTCLK 409.6 - 5,000.0 kHz EXTCLK Duty DEXTCLK 40 - 60 % VSYNC Frequency fVSYNCCLK 50 - 600 Hz VSYNC Minimum Pulse Width tVSYNCMIN 50 - - µs LEDn Output Current 1 ILEDMAX1 20 - 100 mA 3.0 V ≤ VCC < 4.2 V LEDn Output Current 2 ILEDMAX2 20 - 130 mA VCC ≥ 4.2 V Operating Temperature Topr -40 +25 +125 °C Power Supply Voltage VREG33 Pin Connect Capacitance Condition (Note) Above operation range is referring to IC independently. Thorough verification of the coefficient setting in actual application shall be practiced. Electrical Characteristics (Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 3.0 V to 5.5 V) Parameter Symbol Min Typ Max Unit Condition Circuit Current ICC - 5.5 15.0 mA VEN = High, All Current drivers are OFF Standby Current ISTB - 0 300 µA VEN = Low VVREG33 3.1 3.3 3.5 V ΔVVREG33 - 30 80 mV IVREG33OCP 10 - - mA VCCUVLO Detection Voltage VVCCUVLO 2.55 2.70 2.85 V VCCUVLO Hysteresis Voltage VVCCUHYS - 100 - mV VREG33UVLO Detection Voltage VVREG33UVLO 2.40 2.60 2.80 V VREG33UVLO Hysteresis Voltage VVREG33UHYS - 100 - mV LED OPEN Detection Voltage VOPDET 0.1 0.2 0.3 V VLEDn: SWEEP UP LED SHORT Detection Voltage VSHDET 4.5 4.8 5.1 V LEDSH = 0xF RSETSCP 0.7 2.2 4.3 kΩ tMON - 135 - °C tMONHYS - 10 - °C [Device Overview] [VREG33 Block] VREG33 Pin Output Voltage VREG33 Pin Load Regulation Voltage VREG33 Pin Over Current Protection VCC = 3.5 V to 5.5 V, IVREG33 = 0 mA VCC = 3.5 V to 5.5 V, IVREG33 = -5 mA VCC = 5.0 V [PROTECT LOGIC Block] ISET GND Short Detection Resistance Thermal Warning Monitor Detection Temperature Thermal Warning Monitor Hysteresis Width www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 10/65 VCC: SWEEP DOWN VVREG33: SWEEP DOWN TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Electrical Characteristics - continued (Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 3.0 V to 5.5 V) Parameter Symbol Min Typ Max Unit Condition ISET Pin Reference Voltage VISET - 0.606 - V LEDn Pin ON Resistance RLED1 - - 6.5 Ω LEDn Pin Output Current1(Note 1) IOUT1 94 100 106 mA -4 - +4 % -6 - +6 % -4 - +4 % -6 - +6 % 45 50 55 mA -6 - +6 % -7.5 - +7.5 % -6 - +6 % -7.5 - +7.5 % IEN 18 30 50 µA EN Pin Input High Voltage VENH 0.8 x VVREG33 - EN Pin Input Low Voltage VENL -0.2 - IIN -1 0 LOGIC Pin Input High Voltage VINH 0.8 x VVREG33 - LOGIC Pin Input Low Voltage VINL -0.2 - SDO Pin Output High Voltage VSDOH VVREG33 -0.2 - VVREG33 +0.2 V ISDO = -1 mA SDO Pin Output Low Voltage VSDOL - - 0.2 V ISDO = +1 mA RFAIL 0.5 1.0 2.0 kΩ IFAIL = +1 mA ILEAKFAIL - - 0.1 µA VFAIL = 5.0 V [Constant Current Driver Block] LEDn Pin Output Current Absolute Error1(Note 1) ΔIOUTA1 LEDn Pin Output Current Relative Error1(Note 1) ΔIOUTR1 LEDn Pin Output Current2(Note 2) IOUT2 LEDn Pin Output Current Absolute Error2(Note 2) ΔIOUTA2 LEDn Pin Output Current Relative Error2(Note 3) ΔIOUTR2 Ta = 25 °C, VCC = 5 V Ta = 25 °C, VCC = 5 V Ta = 25 °C, VCC = 5 V Ta = 25 °C, VCC = 5 V [EN Input Pin] EN Pin Input Current VVREG33 + 0.2 +0.2 x VVREG33 VEN = 3.0 V V V [LOGIC Input (SCSB, SCLK, SDI, EXTCLK, VSYNC)] LOGIC Pin Input Current +1 VVREG33 + 0.2 +0.2 x VVREG33 µA VIN = VCC V V [LOGIC Output Block (SDO)] [FAIL Output Block] FAIL Pin ON Resistance FAIL Pin Leak Current (Note 1) RISET = 7.5 kΩ, VLEDn = 0.65 V, SDI = w(0x18,0xFF), w(0x19,0x3F) (Note 2) RISET = 15 kΩ, VLEDn = 0.65 V, SDI = w(0x18,0xFF), w(0x19,0x3F) (Note 3) VLEDn describes either pin of LED1 to LED16 voltage. ILEDn describes either pin of LED1 to LED16 current. ΔIOUTA1 = (ILEDn/0.1 - 1) x 100 ΔIOUTR1 = (ILEDn/ILED_AVE - 1) x 100 ILED_AVE describes the average current of LED1 to LED16. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 11/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Typical Performance Curves 200 175 150 125 100 75 50 25 0 1 2 3 4 5 Power Supply Voltage: VCC [V] Figure 6. Standby Current vs Power Supply Voltage 6 4 2 0 1 2 3 4 Power Supply Voltage: VCC [V] 5 Figure 7. Circuit Current vs Power Supply Voltage (VEN = High) 0.30 VREG33 Pin Output Voltage: VVREG33 [V] VCC = 3.3 V VCC = 5.0 V VCC = 5.5 V 3.45 3.40 3.35 3.30 3.25 3.20 3.15 -40 -20 +0 LED OPEN Detection Voltage: VOPDET [V] 3.50 3.10 8 0 0 Ta = -40 °C Ta = +25 °C Ta = +125 °C 10 Circuit Current: ICC [mA] Standby Current: ISTB [µA] 12 Ta = -40 °C Ta = +25 °C Ta = +125 °C +20 +40 +60 +80 +100 +120 Temperature [°C] 0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 -40 -20 +0 +20 +40 +60 +80 +100 +120 Temperature [°C] Figure 8. VREG33 Pin Output Voltage vs Temperature www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 VCC = 3.3 V VCC = 5.0 V VCC = 5.5 V 0.28 Figure 9. LED OPEN Detection Voltage vs Temperature 12/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Typical Performance Curves - continued 105 VCC = 3.3 V VCC = 5.0 V VCC = 5.5 V 5.0 4.9 4.8 4.7 4.6 4.5 -40 -20 +0 +20 +40 +60 +80 +100 +120 103 102 101 100 99 98 96 95 -40 100 LEDn Pin Output Current1: IOUT1 [mA] 100 LEDn Pin Output Current1: IOUT1 [mA] 120 80 Ta = -40 °C Ta = +25 °C Ta = +125 °C 40 RISET = 7.5 kΩ VLED1 = 0.65 V SDI = w(0x18,0xFF) w(0x19,0x3F) 0 0.1 0.2 0.3 0.4 0.5 0.6 LEDn Pin Voltage [V] 0.7 0.8 Figure 12. LEDn Pin Output Current1 vs LED Pin Voltage (VCC = 3.3 V) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 +0 +20 +40 +60 +80 +100 +120 Figure 11. LEDn Pin Output Current1 vs Temperature 120 0 -20 Temperature [°C] Figure 10. LED SHORT Detection Voltage vs Temperature 20 RISET = 7.5 kΩ VLED1 = 0.65 V SDI = w(0x18,0xFF) w(0x19,0x3F) 97 Temperature [°C] 60 VCC = 3.3 V VCC = 5.0 V VCC = 5.5 V 104 LEDn Pin Output Current1: IOUT1 [mA] LED SHORT Detection Voltage: VSHDET [V] 5.1 80 Ta = -40 °C Ta = +25 °C Ta = +125 °C 60 40 RISET = 7.5 kΩ VLED1 = 0.65 V SDI = w(0x18,0xFF) w(0x19,0x3F) 20 0 0 0.1 0.2 0.3 0.4 0.5 0.6 LED Pin Voltage [V] 0.7 0.8 Figure 13. LEDn Pin Output Current1 vs LED Pin Voltage (VCC = 5.0 V) 13/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Functions of Logic Blocks 1. Serial Interface and AC Electrical Characteristics Serial Peripheral Interface (SPI) controls the IC with SCSB, SCLK, SDI, and SDO signals. Start the SPI communication with the initial value of SCSB is ‘High’, and that of SCLK and SDI is ‘Low’. When using several devices, connect the SDO pin to the SDI pin of the next device to make cascade connection. SDO signal is output after SDI input from 8 datas. Example of the n byte Write is shown in the following. SDO is in the state of output the signals. (initial value is ‘Low’) SCSB ・・・・・・・・・・ 1st 2nd 3rd 4th 5th 6th 7th 8th SCLK SDI ・・・・・・・・・・ B S DA DA DA DA DA [5] [4] [3] [2] [1] DevAddr[5:0] 8 bits Low SDO RA RA RA RA RA RA RA DT DT DT DT DT DT DT DT DA ND ND ND ND ND ND ND ND [0] [7] [6] [5] [4] [3] [2] [1] [0] RW [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] B S ・・・・・・・・・・ Data1[7:0] 8 bits RegAddr[6:0] 8 bits NumOfData[6:0] 8 bits RA RA RA RA RA RA RA DT DA DA DA DA DA DA ND ND ND ND ND ND ND ND [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] RW [6] [5] [4] [3] [2] [1] [0] [7] ・・・・・・・・・・ ・・・・・・・・・・ ・・・・・・・・・・ DT DT DT DT DT DT DT DT DT DT DT [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] Data[7:0] DT DT DT DT DT DT DT DT [6] [5] [4] [3] [2] [1] [0] [7] ・・・・・・・・・・ Broadcast Single Read / Write Device Address Number Of Data Register Address Data B: S: RW: DA[5:0]: ND[7:0]: RA[6:0]: DT[7:0]: ・・・・・・・・・・ Low Figure 14. SPI Protocol (Write) SCSB ・・・・・・・・・・ 1st 2nd 3rd 4th 5th 6th 7th 8th SCLK SDI ・・・・・・・・・・ B S DA DA DA DA DA [5] [4] [3] [2] [1] DevAddr[5:0] 8 bits SDO Low DA ND ND ND ND ND ND ND ND RA RA RA RA RA RA RA [0] [7] [6] [5] [4] [3] [2] [1] [0] RW [6] [5] [4] [3] [2] [1] [0] NumOfData[6:0] 8 bits B S 0 ・・・・・・・・・・ RegAddr[6:0] 8 bits DA DA DA DA DA DA ND ND ND ND ND ND ND ND RA RA RA RA RA RA RA RD [5] [4] [3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0] RW [6] [5] [4] [3] [2] [1] [0] [7] ・・・・・・・・・・ ・・・・・・・・・・ ・・・・・・・・・・ ・・・・・・・・・・ 0 8 bits ・・・・・・・・・・ RD RD RD RD RD RD RD RD RD RD [6] [5] [4] [3] [2] [1] [0] [7] [6] [5] RD [0] B: S: RW: DA[5:0]: ND[6:0]: RA[6:0]: DT[7:0]: RD[7:0]: Broadcast Single Read / Write Device Address Number Of Data Register Address Data Read Data Figure 15. SPI Protocol (Read) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 14/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Functions of Logic Blocks - continued 2. SPI AC Timing VSYNC tSCSBVS tSCSBHP tSCSBVH high Vth low Vth SCSB fSCLK tSCSBS tSCLKH tSCSBH SCLK tSCLKL tSDIH tSDIS tSDIH tSDIS SDI tSDOD tSDOD SDO High Vth Low Vth Figure 16. SPI AC Timing Table 2. SPI AC Timing Recommended Operation Condition (Unless otherwise specified, Ta = -40 °C to +125 °C, VCC = 3.0 V to 5.5 V) Parameter Symbol Min Rating Typ Max Unit SCLK Frequency fSCLK 0.1 - 5 MHz SCLK Duty DSCLK 40 - 60 % SCLK High Level Range tSCLKH 70 - - ns SCLK Low Level Range tSCLKL 70 - - ns SDI Input Setup Time tSDIS 40 - - ns SDI Input Hold Time Comments tSDIH 25 - - ns SCSB Input Setup Time tSCSBS 100 - - ns SCSB Input Hold Time tSCSBH 100 - - ns 25 - 140 ns VCC = VVREG33: 3.0 V to 3.6 V SDO Output Delay Time tSDOD 15 - 100 ns VCC = VVREG33: 4.5 V to 5.5 V 15 - 140 ns VCC = VVREG33: 3.0 V to 5.5 V SCSB High Pulse Width tSCSBHP 1000 - - ns SCSB Setup Time for VSYNC tSCSBVS 10 - - µs SCSB Hold Time for VSYNC tSCSBVH 10 - - µs (Output load capacitance: 15 pF) (Note) It is not available to input VSYNC during SCSB = L. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 15/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Functions of Logic Blocks - continued 3. Cascade Connection Each device can be controlled by connecting the SCLK and SCSB pins to all devices in parallel, and by connecting each SDO to the SDI of the next device in series. The maximum number of devices that can be cascaded is 16. MCU Device #1 DO SDO SDI Device #2 SDI Device #n SDO SDI SCSB SCSB SCSB SCLK SCLK SCLK CS SDO *n = Max 16 CLK DI Figure 17. Image of Cascade Connection 4. SPI Data Flow MCU Write and Read as following flow. This IC has 3 timing for update analog control data. Type A (immediately): Type B (VSYNC): Type C (PWM): It updates data after SPI access. It updates data after SPI access and VSYNC rising edge. It updates data after SPI access and VSYNC and PWM rising edge. (PWM is internal signal set by SPI) So, there is mismatch between “Read data” and “Control data”. register SPI Write A (update timing "Immediately") VSYNC rising edge B MCU Control Data Analog Circuit (update timing "VSYNC") SPI Read PWM rising C buffer Control Data (update timing "PWM") Figure 18. SPI Data Flow www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 16/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Functions of Logic Blocks - continued 5. SPI Protocol (1) Device Address Bit bit7 bit6 B S Parameter B Broadcast S Single byte Device Address DevAddr [5:0] bit5 bit4 bit3 bit2 bit1 bit0 DevAddr [5:0] Function B = 1: All chips receive the data (Write only/No Read) B = 0: Write/Read to the chip that assigned by DevAddr [5:0] S = 1: 1 byte Write/Read mode S = 0: block Write/Read mode 0x00: Write the same data to the same RegAddr of all devices (Provided, B = 1) 0x01 to 0x3E: Each Device Address 0x3F: Write the different data to the same RegAddr of all devices (Provided, B = 1) DevAddr of each device will be calculated by counting the number of byte of 0x00 data after the fall-edge of SCSB. When matching the received DevAddr and calculated DevAddr of the device, Write/Read function will occur. When unmatching the received DevAddr and calculated DevAddr of the chip, not taking in the data and output to SDO. Refer to the each protocol for the details. (2) Number of transferred byte when block Write/Read bit7 bit6 bit5 bit4 bit3 bit2 0 Bit NumOfData [6:0] bit1 bit0 NumOfData [6:0] Parameter Number of transferred byte for one device Function 0x02 to 0x48 When S = 0 (Block Write/Read) of DevAddr, set the number of transferred byte (NumOfData) after DevAddr. When S = 1, it skip this packet. (“Device Address” ->“Register Address” ->….) Transferred byte number = NumOfData SPI setting B S 0 0 1 0 1 1 DevAddr 0x00 0x01 to 0x3E 0x3F 0x00 0x01 to 0x3E 0x3F 0x00 0x01 to 0x3E 0x3F 0x00 0x01 to 0x3E 0x3F Table 3. Access Table for Write (RW = 0) Access to devices For All device For single NumOfData Same Different device data data 0x02 to 0x48 O Not sending O this data O 0x02 to 0x48 O O Not sending this data O (Note 1) X: This setting isn’t acceptable. Don’t set this condition. SPI setting B S 0 0 1 1 0/1 DevAddr 0x00 0x01 to 0x3E 0x3F 0x00 0x01 to 0x3E 0x3F 0x00 0x01 to 0x3E 0x3F Table 4. Access Table for Read (RW = 1) Access to devices For All device For single NumOfData Same Different device data data 0x02 to 0x48 O Not sending O this data 0x02 to 0x48 - (Note 1) X: This setting isn’t acceptable. Don’t set this condition. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 17/65 Acceptable(Note 1) X O X X O X O X O O X O Acceptable(Note 1) X O X X O X X X X TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (3) Register Address bit7 bit6 bit5 bit4 bit3 bit2 RW Bit Function RW = 0: Write the registers RW = 1: Read the registers 0x00 to 0x4F Read/Write RegAddr [6:0] bit0 RegAddr [6:0] Parameter RW bit1 Register Address (4) Data bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 Data [7:0] Bit Data [7:0] Parameter Data Value 0x00 to 0xFF (5) Single device, 1 byte Write (Write to Device #1) B: 0 Target Device receives the data S: 1 Single byte DevAddr[5:0]: 0x01 Target Device Address NumOfData[6:0]: 1 byte Write mode RW: 0 Write RegAddr[6:0]: 0x02 Address SDI SDO : Transfer in the order of DevAddr, RegAddr, and Data. : The data input to SDI is output with a 1 byte shift. SCSB SCSB = H stop the output of this data. SCLK B S DevAddr[5:0] RW RegAddr[6:0] SDI 01 0x01 0 0x02 Data1 [7:0] 1 byte shift SDO 0x01 01 0x01 0 0x02 Ex) Detail of Timing Chart SCSB SCLK B S DevAddr[5:0] RW RegAddr[6:0] Data1[7:0] SDI 8 bit shift every Device SDO Device #1 Register 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 Data1 Figure 19. SPI Protocol of the 1 Byte Write to Device #1 www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 18/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (6) Single device, 1 byte Write (Write to Device #3) B: 0 Target Device receives the data S: 1 Single byte DevAddr[5:0]: 0x03 Target Device Address NumOfData[6:0]: 1 byte Write mode RW: 0 Write RegAddr[6:0]: 0x02 Address SDI SDO : Transfer in the order of DevAddr, RegAddr, and Data. : Output the transferred data to the next device after SDI input by 1 byte. DevAddr of each device will be calculated by counting the number of byte of 0x00 data after the fall-edge of SCSB. DevAddr = (Number of byte of 0x00 data) + 1 SCSB SCLK B S DevAddr[5:0] RW RegAddr[6:0] Device #1 SDI 01 0x03 0 0x02 01 0x03 Device #1 SDO (Device #2 SDI) 0x00 Device #2 SDO (Device #3 SDI) 0x00 0x00 Device #3 SDO 0x00 0x00 Data1 [7:0] 0 0x02 01 0x03 0x00 2 byte 00h after SCSB↓ ⇒DevAddr of Device#3 = 2 + 1 = 0x03 0x00 0x00 Data1 [7:0] 0x00 0 01 0x02 0x03 Data1 [7:0] 0 0x02 Match to the DevAddr of Device#3 This data will be written to RegAddr02h, Device#3 Device #1 Device #2 Device #3 Register Register Register 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 Data1 Figure 20. SPI Protocol of the 1 Byte Write to Device #3 www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 19/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (7) Single device, “n byte” Write (Write to the consecutive register of Device #1) B: 0 Target Device receives the data S: 0 Single byte DevAddr[5:0]: 0x01 Target Device Address NumOfData[6:0]: 0x03 3 byte Write mode RW: 0 Write RegAddr[6:0]: 0x02 Address SDI SDO : Transfer in the order of DevAddr, NumOfData, RegAddr, and Data. : Output the transferred data to the next device after SDI input by 1 byte. SCSB SCLK B S DevAddr[5:0] NumOfData[6:0] RW RegAddr[6:0] Device #1 SDI 01 0x01 0 0x03 0 0x02 00 0x01 0 0x03 Device #1 SDO (Device #2 SDI) 0x00 Device #2 SDO (Device #3 SDI) 0x00 0x00 Device #3 SDO 0x00 0x00 00 0x01 0x00 Data1 [7:0] 0 0x02 0 00 2byte 00h after SCSB↓ ⇒DevAddr of Device#3=2+1=0x03 0x03 0x01 Data2 [7:0] Data1 [7:0] Data2 [7:0] 0 0x02 Data1 [7:0] 0 0x03 Match to the DevAddr of Device#3 Device #1 Device #2 Device #3 Register Register Register 0x07 0x07 0x07 0x06 0x06 0x06 0x05 0x05 0x05 0x04 Data3 0x04 0x04 0x03 Data2 0x03 0x03 0x02 Data1 0x02 0x02 0x01 0x01 0x01 0x00 0x00 0x00 Data3 [7:0] 0 0x02 This data will be written to RegAddr02h, Device#3 Figure 21. SPI Protocol of the n Byte Write to Device #1 www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 20/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (8) All device, different “1 byte” Write (Write the same 1 byte data to the same RegAddr of all Devices) B: 1 All device receive data S: 1 Single byte DevAddr[5:0]: 0x3F All device different data NumOfData[6:0]: 1 byte Write mode RW: 0 Write RegAddr[6:0]: 0x02 Address SDI SDO : Transfer in the order of DevAddr, RegAddr, and Data. : Output the transferred data to the next device after SDI input by 1 byte. SCSB SCLK B S DevAddr[5:0] RW RegAddr[6:0] Device #1 SDI 11 0x3F 0 0x02 11 0x3F Device #1 SDO (Device #2 SDI) 0x00 Device #2 SDO (Device #3 SDI) 0x00 0x00 Device #3 SDO 0x00 0x00 Data1 [7:0] Data2 [7:0] Data3 [7:0] 0x02 Data1 [7:0] Data2 [7:0] Data3 [7:0] 0x00 Data1 [7:0] Data2 [7:0] Data3 [7:0] Data1 [7:0] Data2 [7:0] 0 11 0x3F 0x00 0 0x02 11 0x3F 0 0x00 0x02 Device #1 Device #2 Device #3 Register Register Register 0x07 0x07 0x07 0x06 0x06 0x06 0x05 0x05 0x05 0x04 0x04 0x04 0x03 0x03 0x02 Data1 0x02 0x00 0x03 Data2 0x02 0x01 0x01 0x01 0x00 0x00 0x00 Data3 Figure 22. SPI Protocol of the 1 Byte Distinct Data Write to All Devices www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 21/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (9) All device, same “1 byte” Write (Write the same 1 byte data to the same RegAddr of all Devices) B: 1 All device receive data S: 1 Single byte DevAddr[5:0]: 0x00 All device same data NumOfData[6:0]: 1 byte Write mode RW: 0 Write RegAddr[6:0]: 0x02 Address SDI SDO : Transfer in the order of DevAddr, RegAddr, and Data. : Output the transferred data to the next device after SDI input by 1 byte. SCSB SCLK B S DevAddr[5:0] RW RegAddr[6:0] Device #1 SDI 01 0x00 0 0x02 11 0x00 Device #1 SDO (Device #2 SDI) 0x00 Device #2 SDO (Device #3 SDI) 0x00 0x00 Device #3 SDO 0x00 0x00 Data1 [7:0] 0 11 0x00 0x02 0x00 Data1 [7:0] 0x00 0 0x00 11 0x02 0x00 Data1 [7:0] 0x00 0 0x02 Device #1 Device #2 Device #3 Register Register Register 0x07 0x07 0x07 0x06 0x06 0x06 0x05 0x05 0x05 0x04 0x04 0x04 0x03 0x03 0x02 Data1 0x02 0x03 Data1 0x02 0x01 0x01 0x01 0x00 0x00 0x00 Data1 Figure 23. SPI Protocol of the 1 Byte Distinct Data Write to All Devices www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 22/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (10) All device, different “n byte” Write (Write the different n byte data to the same RegAddr of all Devices) B: 1 All device receive data S: 0 multi byte DevAddr[5:0]: 0x3F All device different data NumOfData[6:0]: 0x02 2 byte Write mode RW: 0 Write RegAddr[6:0]: 0x02 Address SDI SDO : Transfer in the order of DevAddr, NumOfData, RegAddr, and Data. : Output the transferred data to the next device after SDI input by 1 byte. SCSB SCLK B S DevAddr[5:0] Device #1 SDI 11 0x3F NumOfData[6:0] RW RegAddr[6:0] 0 0x02 0 10 0x3F 0 Device #1 SDO (Device #2 SDI) 0x00 Device #2 SDO (Device #3 SDI) 0x00 0x00 Device #3 SDO 0x00 0x00 0x02 0x02 10 0x3F 0x00 Data1 [7:0] 0 0x02 0 0x02 10 0x3F Data2 [7:0] Data3 [7:0] Data1 [7:0] 0 0x02 0 0x02 Data4 [7:0] Data5 [7:0] Data6 [7:0] 0x00 0x00 Data2 [7:0] Data3 [7:0] Data4 [7:0] Data5 [7:0] Data6 [7:0] 0x00 Data1 [7:0] Data2 [7:0] Data3 [7:0] Data4 [7:0] Data5 [7:0] Data6 [7:0] Data1 [7:0] Data2 [7:0] Data3 [7:0] Data4 [7:0] Data5 [7:0] 0 0x02 Device #1 Device #2 Device #3 Register Register Register 0x07 0x07 0x07 0x06 0x06 0x06 0x05 0x05 0x05 0x04 0x04 0x04 0x03 Data2 0x03 Data4 0x03 Data6 0x02 Data1 0x02 Data3 0x02 Data5 0x01 0x01 0x01 0x00 0x00 0x00 Figure 24. SPI Protocol of the n Byte Distinct Data Write to All Devices www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 23/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (11) All device, same “n byte” Write (Write the same n byte data to the same RegAddr of all Devices) B: 1 All device receive data S: 0 multi byte DevAddr[5:0]: 0x00 All device same data NumOfData[6:0]: 0x03 3 byte Write mode RW: 0 Write RegAddr[6:0]: 0x02 Address SDI SDO : Transfer in the order of DevAddr, NumOfData, RegAddr, and Data. : Output the transferred data to the next device after SDI input by 1 byte. SCSB SCLK B S DevAddr[5:0] NumOfData[6:0] RW RegAddr[6:0] Device #1 SDI 10 0x00 0 0x03 10 0x00 Device #1 SDO (Device #2 SDI) 0x00 Device #2 SDO (Device #3 SDI) 0x00 0x00 Device #3 SDO 0x00 0x00 0 0 10 0x02 0x03 0x00 0x00 Data1 [7:0] 0 0x02 0 0x03 10 Data2 [7:0] Data3 [7:0] Data1 [7:0] 0x00 0 0x02 0 0x03 0x00 0x00 Data2 [7:0] Data3 [7:0] 0x00 Data1 [7:0] Data2 [7:0] Data3 [7:0] Data1 [7:0] Data2 [7:0] 0 0x02 Device #1 Device #2 Device #3 Register Register Register 0x07 0x07 0x07 0x06 0x06 0x06 0x05 0x05 0x05 0x04 Data3 0x04 Data3 0x04 Data3 0x03 Data2 0x03 Data2 0x03 Data2 0x02 Data1 0x02 Data1 0x02 Data1 0x01 0x01 0x01 0x00 0x00 0x00 Figure 25. SPI Protocol of the n Byte Same Data Write to All Devices www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 24/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (12) Single device, “1 byte” Read (Read the 1 byte data from Device #2) B: 0 Target device receive each data S: 1 single byte DevAddr[5:0]: 0x02 Target Device Address NumOfData[6:0]: 1 byte Read mode RW: 1 Read RegAddr[6:0]: 0x03 Address SDI SDO : Transfer in the order of DevAddr and RegAddr. : Output the transferred data to the next device after SDI input by 1 byte. SCSB SCLK B S DevAddr[5:0] RW RegAddr[6:0] Device #1 SDI 01 0x02 1 0x03 01 0x02 Device #1 SDO (Device #2 SDI) 0x00 Device #2 SDO (Device #3 SDI) 0x00 0x00 Device #3 SDO 0x00 0x00 0x00 1 0x00 0x03 0x00 0x00 0x00 0x00 0x00 Read Data[7:0] 01 0x02 0x00 1 01 Data1 [7:0] 0x03 0x02 1 0x03 Device #1 Device #2 Device #3 Register Register Register 0x07 0x07 0x07 0x06 0x06 0x06 0x05 0x05 0x05 0x04 0x04 0x04 0x03 0x03 0x02 0x02 0x02 0x01 0x01 0x01 0x00 0x00 0x00 Data1 0x00 Data1 [7:0] 0x03 Figure 26. SPI Protocol of the 1 Byte Read from Device #2 www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 25/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (13) Single device, “n byte” Read (Read the n byte data from Device #2) B: 0 Target device receive each data S: 0 multi byte DevAddr[5:0]: 0x02 Target Device Address NumOfData: 0x02 1 byte Read mode RW: 1 Read RegAddr[6:0]: 0x03 Address SDI SDO : Transfer in the order of DevAddr, NumOfData, and RegAddr. : Output the transferred data to the next device after SDI input by 1 byte. SCSB SCLK Device #1 SDI B S DevAddr[5:0] NumOfData[6:0] RW RegAddr[6:0] 00 1 0x02 0 0x02 00 0x02 Device #1 SDO (Device #2 SDI) 0x00 Device #2 SDO (Device #3 SDI) 0x00 0x00 Device #3 SDO 0x00 0x00 0 00 0x03 0x02 0x02 0x00 0x00 1 0x03 0 0x02 00 0x00 0x00 0x00 0x02 1 0x03 0 0x02 0x00 0x00 0x00 0x00 0x00 Data1 [7:0] Data2 [7:0] 0x00 Data1 [7:0] Data2 [7:0] 1 0x03 Device #1 Device #2 Device #3 Register Register Register 0x07 0x07 0x07 0x06 0x06 0x06 0x05 0x05 0x05 0x04 0x04 Data2 0x04 0x03 0x03 Data1 0x03 0x02 0x02 0x02 0x01 0x01 0x01 0x00 0x00 0x00 SCSB = H stop the output of this data Figure 27. SPI Protocol of the n Byte Read from Device #2 www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 26/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. SPI Protocol - continued (14) Example of n byte Write (Write the n byte data to Device #1 and #2) Example of the transfer of 2 device Cascade Connection. Transfer setting Data DevAddr Number of transferred byte RegAddr Data for the duty setting of Duty Dummy clock for multi device transfer SUM 1 byte 1 byte 1 byte 2 byte x 16 channel x 2 device = 64 byte 1 byte 68 byte DevAddr[5:0] NumOfData[6:0] RegAddr[6:0] 10 0x3F 0 0x20 0 0x18 Number of transferred byte for each device device #1 DTYCNT01L RegAddr of DTYCNT01L device #1 device #2 DTYCNT01U device #1 DTYCNT01U Date[7:0] x 2 x 16 ch device #2 DTYCNT01L Date[7:0] x 2 x 16 ch device #2 DTYCNT16L DTYCNT16L device #1 DTYCNT16U Dummy byte device #2 DTYCNT16U 0x00 Dummy Clocks Figure 28. Transfer Byte Number for Multi Access www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 27/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Functions of Logic Blocks - continued 6. Register Map Each registers is updated at the 3 timings. Provided for Type B and Type C, the registers are not updated when the update timing and SCSB = ‘Low’ are the same, and wait for the next update timing when SCSB = ‘High’. Reset Condition: “UVLO” condition = VREG33UVLO or VCCUVLO or TSD or EN is detected. Register Update timing for control data Type A : Updated to the newest data immediately when the data is written. Type B : Updated to the newest data when the next VSYNC timing. (rise-edge trigger) after the data is written.) Type C : Updated to the newest data when the next VSYNC and PWM (PWM is internal signal) timing. (rise-edge trigger of VSYNC, then rise-edge trigger of PWM (first PWM pulse when PWMFREQ[1:0] = 01h to 11h) after the data is written. Note: Don’t access (Write) register except for following register and write ‘0’ in ‘-’. register A SPI Write (update timing "Immediately") VSYNC rising edge Control Data B MCU Analog Circuit (update timing "VSYNC") SPI Read PWM rising buffer C Control Data (update timing "PWM") Figure 29. SPI Data Flow Address 0x01 to 0x16 (1/3) Address Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] Register Access Initial Reset Condition Update Timing - 0x00 - - - - - - - - R/W 0x00 UVLO Type A Blank PWMFREQ 0x01 - - - - - - R/W 0x00 UVLO Type A PWM output frequency setting ERRSET1 0x02 - - R/W 0x0F UVLO Type A LED short voltage setting SSMASK 0x03 SSMASK[7:0] R/W 0x3C UVLO Type B SS mask time ERRMASK 0x04 ERRMASK[7:0] R/W 0x29 UVLO Type B error mask time ERREN 0x05 - - - - - TSDWEN LEDSHEN R/W 0x07 UVLO Type B error enable setting ERRSET2 0x06 FAILTEST FAILCNT - ERRCLR - - - R/W 0x00 UVLO Type A Error controlling Register Name SCPTIME[1:0] PWMFREQ[1:0] LEDSH[3:0] LEDOPEN ERRLAT (Note 1) Comments DLYCNT01 0x07 DLY01[7:0] R/W 0x00 UVLO Type B LED1 PWM Delay setting upper 8bit DLYCNT02 0x08 DLY02[7:0] R/W 0x00 UVLO Type B LED2 PWM Delay setting upper 8bit DLYCNT03 0x09 DLY03[7:0] R/W 0x00 UVLO Type B LED3 PWM Delay setting upper 8bit DLYCNT04 0x0A DLY04[7:0] R/W 0x00 UVLO Type B LED4 PWM Delay setting upper 8bit DLYCNT05 0x0B DLY05[7:0] R/W 0x00 UVLO Type B LED5 PWM Delay setting upper 8bit DLYCNT06 0x0C DLY06[7:0] R/W 0x00 UVLO Type B LED6 PWM Delay setting upper 8bit DLYCNT07 0x0D DLY07[7:0] R/W 0x00 UVLO Type B LED7 PWM Delay setting upper 8bit DLYCNT08 0x0E DLY08[7:0] R/W 0x00 UVLO Type B LED8 PWM Delay setting upper 8bit DLYCNT09 0x0F DLY09[7:0] R/W 0x00 UVLO Type B LED9 PWM Delay setting upper 8bit DLYCNT10 0x10 DLY10[7:0] R/W 0x00 UVLO Type B LED10 PWM Delay setting upper 8bit DLYCNT11 0x11 DLY11[7:0] R/W 0x00 UVLO Type B LED11 PWM Delay setting upper 8bit DLYCNT12 0x12 DLY12[7:0] R/W 0x00 UVLO Type B LED12 PWM Delay setting upper 8bit DLYCNT13 0x13 DLY13[7:0] R/W 0x00 UVLO Type B LED13 PWM Delay setting upper 8bit DLYCNT14 0x14 DLY14[7:0] R/W 0x00 UVLO Type B LED14 PWM Delay setting upper 8bit DLYCNT15 0x15 DLY15[7:0] R/W 0x00 UVLO Type B LED15 PWM Delay setting upper 8bit DLYCNT16 0x16 DLY16[7:0] R/W 0x00 UVLO Type B LED16 PWM Delay setting upper 8bit (Note) WO: Write Only, RO: Read Only, R/W: Read and Write (Note 1) Update timing of ERRLAT is Type B. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 28/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 6. Register Map – continued Address 0x17 to 0x47 (2/3) Register Access Initial Reset Condition Update Timing Comments R/W 0x00 UVLO Type C PWM pulse number setting R/W 0x00 UVLO Type C LED1 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED1 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED2 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED2 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED3 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED3 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED4 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED4 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED5 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED5 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED6 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED6 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED7 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED7 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED8 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED8 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED9 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED9 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED10 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED10 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED11 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED11 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED12 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED12 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED13 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED13 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED14 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED14 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED15 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED15 PWM ON duty Upper 5bit R/W 0x00 UVLO Type C LED16 PWM ON duty Lower 8bit R/W 0x00 UVLO Type C LED16 PWM ON duty Upper 5bit LCDAC1[7:0] R/W 0xFF UVLO Type C LED1 local DAC setting 0x39 LCDAC2[7:0] R/W 0xFF UVLO Type C LED2 local DAC setting 0x3A LCDAC3[7:0] R/W 0xFF UVLO Type C LED3 local DAC setting 0x3B LCDAC4[7:0] R/W 0xFF UVLO Type C LED4 local DAC setting LCDAC5 0x3C LCDAC5[7:0] R/W 0xFF UVLO Type C LED5 local DAC setting LCDAC6 0x3D LCDAC6[7:0] R/W 0xFF UVLO Type C LED6 local DAC setting LCDAC7 0x3E LCDAC7[7:0] R/W 0xFF UVLO Type C LED7 local DAC setting LCDAC8 0x3F LCDAC8[7:0] R/W 0xFF UVLO Type C LED8 local DAC setting LCDAC9 0x40 LCDAC9[7:0] R/W 0xFF UVLO Type C LED9 local DAC setting LCDAC10 0x41 LCDAC10[7:0] R/W 0xFF UVLO Type C LED10 local DAC setting LCDAC11 0x42 LCDAC11[7:0] R/W 0xFF UVLO Type C LED11 local DAC setting LCDAC12 0x43 LCDAC12[7:0] R/W 0xFF UVLO Type C LED12 local DAC setting LCDAC13 0x44 LCDAC13[7:0] R/W 0xFF UVLO Type C LED13 local DAC setting LCDAC14 0x45 LCDAC14[7:0] R/W 0xFF UVLO Type C LED14 local DAC setting LCDAC15 0x46 LCDAC15[7:0] R/W 0xFF UVLO Type C LED15 local DAC setting LCDAC16 0x47 LCDAC16[7:0] R/W 0xFF UVLO Type C LED16 local DAC setting Register Name Address Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] PWMPLS 0x17 - - - PLSSET - - DTYCNT01L 0x18 DTYCNT01U 0x19 - - DTYEN01 DTYCNT02L 0x1A DTYCNT02U 0x1B DTYCNT03L 0x1C DTYCNT03U 0x1D DTYCNT04L 0x1E DTYCNT04U 0x1F DTYCNT05L 0x20 DTYCNT05U 0x21 DTYCNT06L 0x22 DTYCNT06U 0x23 DTYCNT07L 0x24 DTYCNT07U 0x25 DTYCNT08L 0x26 DTYCNT08U 0x27 DTYCNT09L 0x28 DTYCNT09U 0x29 DTYCNT10L 0x2A DTYCNT10U 0x2B DTYCNT11L 0x2C DTYCNT11U 0x2D DTYCNT12L 0x2E DTYCNT12U 0x2F DTYCNT13L 0x30 DTYCNT13U 0x31 DTYCNT14L 0x32 DTYCNT14U 0x33 DTYCNT15L 0x34 DTYCNT15U 0x35 DTYCNT16L 0x36 DTYCNT16U 0x37 LCDAC1 0x38 LCDAC2 LCDAC3 LCDAC4 DTY01[7:0] DTY01[12:8] DTY02[7:0] - - DTYEN02 DTY02[12:8] DTY03[7:0] - - DTYEN03 DTY03[12:8] DTY04[7:0] - - DTYEN04 DTY04[12:8] DTY05[7:0] - - DTYEN05 DTY05[12:8] DTY06[7:0] - - DTYEN06 DTY06[12:8] DTY07[7:0] - - DTYEN07 DTY07[12:8] DTY08[7:0] - - DTYEN08 DTY08[12:8] DTY09[7:0] - - DTYEN09 DTY09[12:8] DTY10[7:0] - - DTYEN10 DTY10[12:8] DTY11[7:0] - - DTYEN11 DTY11[12:8] DTY12[7:0] - - DTYEN12 DTY12[12:8] DTY13[7:0] - - DTYEN13 DTY13[12:8] DTY14[7:0] - - DTYEN14 DTY14[12:8] DTY15[7:0] - - DTYEN15 DTY15[12:8] DTY16[7:0] - - DTYEN16 DTY16[12:8] Bit[1] Bit[0] PLSNUM[1:0] (Note) WO: Write Only, RO: Read Only, R/W: Read and Write www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 29/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 6. Register Map - continued Address 0x48 to 0x4F (3/3) Register Name - Address Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] Register Access Initial Reset Condition Update Timing 0x48 - - - - - - - - - - - - RO 0x00 UVLO Type A error flag LEDn open (n = 1 to 8) RO 0x00 UVLO Type A error flag LEDn open (n = 9 to 16) RO 0x00 UVLO Type A error flag LEDn short (n = 1 to 8) RO 0x00 UVLO Type A error flag LEDn short (n = 9 to 16) RO 0x00 UVLO Type A error flag ISET short and SCP RO 0x00 UVLO Type A error flag TSD warning (n = 1 to 8) RO 0x00 UVLO Type A error flag TSD warning (n = 9 to 16) ERRLEDOPA 0x49 ERRLEDOPB 0x4A ERRLEDSHA 0x4B ERRLEDSHB ERLOP[7:0] (Note 2) ERLOP[15:8] (Note 2) ERLSH[7:0] (Note 2) ERLSH[15:8] 0x4C ERRISETSCP 0x4D ERRTSDA 0x4E ERRTSDB 0x4F (Note 2) - - - - - - WARSCP (Note 3) WARISET (Note 2) WARTSD[7:0] (Note 2) WARTSD[15:8] (Note 2) Comments blank (Note) WO: Write Only, RO: Read Only, R/W: Read and Write (Note 2) Released condition is referred in description of register. (Note 3) Released condition is only reset. 7. Description of Registers Address 0x01: PWMFREQ Bit No Bit[7] Name Initial value 0 Output PWM frequency setting [Read/Write] Bit[6] Bit[5] Bit[4] Bit[3] 0 0 0 0 Bit[2] 0 Initial value 0x00 Bit[1] Bit[0] PWMFREQ[1:0] 0 0 Update: Immediately The data in register is updated to the newest data immediately when the new data is written. Regarding EXTCLK frequency, refer to the following list. If it is different from relation of PWMFREQ and EXTCLK frequency, it can’t control LED normally. Don’t change value during dimming. (only initial setting before PWM setting) PWMFREQ[1:0] 0 1 2 3 PWM Frequency VSYNC x 1 VSYNC x 2 VSYNC x 4 VSYNC x 8 EXTCLK Frequency VSYNC x 8,192 VSYNC x 16,384 VSYNC x 32,768 VSYNC x 65,536 Example of EXTCLK setting is referred. This IC can be acceptable to input EXTCLK under 5 MHz. (Refer to frequency range of electric characteristics) (Example) EXTCLK frequency and PWM frequency PWMFREQ[1:0] 0 1 2 3 60 491,520 60 983,040 120 1,966,080 240 3,932,160 480 VSYNC Frequency [Hz] 120 240 983,040 1,966,080 120 240 1,966,080 3,932,160 240 480 3,932,160 480 - Upper: EXTCLK frequency Lower: PWM frequency 480 3,932,160 480 [Hz] ‘-’ is not acceptable to set this value in PWMFREQ register. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 30/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers - continued PWMFREQ[1:0] = 0 VSYNC EXTCLK = VSYNC x 8,192(213)[Hz] EXTCLK PWM:VSYNCx1[Hz] PWMn resolution:213 PWMFREQ[1:0] = 1 VSYNC EXTCLK = VSYNC x 16,384(214)[Hz] EXTCLK PWM:VSYNCx2[Hz] PWMn resolution:213 PWMFREQ[1:0] = 2 VSYNC EXTCLK = VSYNC x 32,768(215)[Hz] EXTCLK PWM:VSYNCx4[Hz] PWMn resolution:213 PWMFREQ[1:0] = 3 VSYNC EXTCLK = VSYNC x 65,536(216)[Hz] EXTCLK PWM:VSYNCx8[Hz] PWMn resolution:213 Figure 30. PWMFREQ Setting Address 0x02: ERRSET1 Bit No Bit[7] Name Initial value 0 LED short detection voltage setting Bit[6] Bit[5] Bit[4] SCPTIME[1:0] 0 0 0 Bit[3] 1 [Read/Write] Initial value 0x0F Bit[2] Bit[1] Bit[0] LEDSH[3:0] 1 1 1 Update: Immediately The data in register is updated to the newest data immediately when the new data is written. Bit[5:4] SCPTIME This register controls MASK time for SCP detected. SCPTIME[1:0] MASK Time 0 1 VSYNC cycle 1 2 VSYNC cycle 2 4 VSYNC cycle 3 8 VSYNC cycle Bit[3:0] LEDSH[3:0] This register controls detection voltage LED short protection. LEDSH[3:0] 0x0 to 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Detection Voltage [V] Not available 3.00 3.30 3.60 3.90 4.20 4.50 4.80 31/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers – continued Address 0x03: SSMASK Soft start mask register Bit No Bit[7] Bit[6] Bit[5] Name Initial value 0 0 1 [Read/Write] Bit[4] Bit[3] SSMASK[7:0] 1 1 Bit[2] Initial value 0x3C Bit[1] 1 0 Update: Bit[0] 0 VSYNC The register data is updated to the newest data when the next VSYNC signal rises up after the data is written. Set value more than 0x02. It controls protect function (LED open protection, LED short protection, SCP, ISET short warning, TSD warning) after SSMASK time. So, it is not available to operate protection function during SSMASK time. The time of mask of ERROR detection is set by counting the number of VSYNC. Time of mask = SSMASK x VSYNC (except for waiting time until 1st VSYNC pulse) VSYNC [Hz] Max Mask time [ms] Address 0x04: ERRMASK Bit No Bit[7] Name Initial value 0 60 4,250 120 2,125 240 1,062.5 ERROR output mask time setting register Bit[6] Bit[5] Bit[4] Bit[3] ERRMASK[7:0] 0 1 0 1 480 531.3 [Read/Write] Bit[2] 0 Initial value 0x29 Bit[1] Bit[0] 0 Update: 1 VSYNC The register data is updated to the newest data when the next VSYNC signal rises up after the data is written. When 0 to 2 is written to this register, the register value becomes 3. When over 3 is written to this register, writing value becomes register value. This IC has mask function for “LED open protection” and “LED short protection”. It can’t detect these errors during this time. ERROR mask time is set by counting the number of EXTCLK. Mask time = ERRMASK x EXTCLK Example) ERRMASK = 3: mask 3 clock to 4 clock (PWM = H and error signal (after synchronizing)) ‘-’ column is not acceptable setting. VSYNC/EXTCLK condition vs “Maximum Mask time” (Default 0x29 (41)) VSYNC [Hz] PWMFREQ[1:0] 60 120 240 480 0 519 259 130 65 1 259 130 65 2 130 65 3 65 - www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 32/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers – continued Address 0x05: ERREN Error enable setting Bit No Bit[7] Bit[6] Bit[5] Name Initial value 0 0 0 [Read/Write] Bit[4] Bit[3] 0 0 Bit[2] TSDWEN 1 Initial value 0x07 Bit[1] Bit[0] LEDSHEN LEDOPEN 1 1 Update: VSYNC This register is updated to the newest data when the next VSYNC signal rises up after the data is written. Bit[2]: 0: 1: TSDWEN disable (error register and error output (FAIL) is initial condition if “TSD warning” is occurred enable (135 deg (Typ)) Bit[1] 0: 1: LEDSHEN disable (error register and error output (FAIL) is initial condition if “LED short protection” is occurred enable Bit[0] 0: 1: LEDOPEN disable (error register and error output (FAIL) is initial condition if “LED open protection” is occurred enable “LED open function” effects SCP detection. So, it is not available to change this enable during operation. Address 0x06: ERRSET2 Bit No Bit[7] Name FAILTEST Initial value 0 Error Latch mode setting [Read/Write] Initial value 0x00 Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] FAILCNT ERRCLR ERRLAT 0 0 0 0 0 0 0 Update: FAILTEST, FAILCNT, ERRCLR: Immediately, ERRLAT: VSYNC The data (ERRCLR) in register is updated to the newest data immediately when the new data is written. The register data (ERRLAT) is updated to the newest data when the next VSYNC signal rises up after the data is written. Bit[7] 0: 1: FAILTEST normal operation It available to control the FAIL pin output by FAILCNT register. Bit[4] 0: 1: FAILCNT It outputs Low from the FAIL pin when FAILTEST = 1 It outputs High from the FAIL pin when FAILTEST = 1 Bit[4] 0: 1: ERRCLR no operation clear error register and return Hi-Z in FAIL output when ERRLAT = 1 ERRCLR return ‘0’ automatically. So, it can’t read ‘1’. Bit[0] 0: 1: ERRLAT error register and FAIL output are returned to initial condition when error is released. error register and FAIL output are kept until writing ‘1’ in ERRCLR. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 33/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers - continued Address 0x07: DLYCNT01 (LED1 PWM Delay setting register) [Read/Write] Bit No Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Name DLY01[7:0] Initial value 0 0 0 0 0 Initial value 0x00 Bit[2] Bit[1] 0 0 Bit[0] 0 Update: VSYNC The register data is updated to the newest data when the next VSYNC signal rises up after the data is written. This register is used to make setting of delay width for PWM light modulation in a total of 8 bits, i.e., Bit[7:0] when Address = 0x07. DLY01[7:0] 0x00 0x01 0x02 0x03 … 0xXX … 0xFC 0xFD 0xFE 0xFF LED Delay Width (clock width@EXTCLK) PWMFREQ[1:0] PWMFREQ[1:0] PWMFREQ[1:0] PWMFREQ[1:0] =0 =1 =2 =3 4 clock to 5 clock width@EXTCLK from posedge of VSYNC (*) (*) + 0x01 x 25 (*) + 0x01 x 26 (*) + 0x01 x 27 (*) + 0x01 x 28 (*) + 0x02 x 25 (*) + 0x02 x 26 (*) + 0x02 x 27 (*) + 0x02 x 28 (*) + 0x03 x 25 (*) + 0x03 x 26 (*) + 0x03 x 27 (*) + 0x03 x 28 ... ... ... ... (*) + 0xXX x 25 (*) + 0xXX x 26 (*) + 0xXX x 27 (*) + 0xXX x 28 ... ... ... ... (*) + 0xFC x 25 (*) + 0xFC x 26 (*) + 0xFC x 27 (*) + 0xFC x 28 (*) + 0xFD x 25 (*) + 0xFD x 26 (*) + 0xFD x 27 (*) + 0xFD x 28 5 6 7 (*) + 0xFE x 2 (*) + 0xFE x 2 (*) + 0xFE x 2 (*) + 0xFE x 28 5 6 7 (*) + 0xFF x 2 (*) + 0xFF x 2 (*) + 0xFF x 2 (*) + 0xFF x 28 Decide “DLY01 setting” in VSYNC and EXTCLK jitter of MCU. Refer to “PWM behavior at close VSYNC interval”. Address 0x08 to 0x16: DLYCNTn (n = 2 to 16) This register is used to make PWM delay width setting for LED2 to LED16. The setting procedure is the same as that for LED1 with Address set to 0x07. The register data is updated to the newest data when the next VSYNC signal rises up after the data is written. Address 0x17: PWMPLS (PWM pulse number setting) Bit No Bit[7] Bit[6] Bit[5] Name Initial value 0 0 0 [Read/Write] Bit[4] Bit[3] PLSSET 0 0 Initial value 0x00 Bit[2] Bit[1] Bit[0] PLSNUM[1:0] 0 0 0 Update: PWM The register data is updated to the newest data when the next PWM signal rises up after the data is written. PWMFREQ[1:0] 0 1 2 3 www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 0 4 8 PLSNUM (PWM pulse number) 1 2 1 2 1 3 2 6 4 34/65 3 1 2 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers - continued It outputs PWM pulse in Head position When PLSSET = 0 Example) PWMFREQ[1:0] = 3, PLSSET = 0 PLSNUM[1:0] = 0 VSYNC PWMn PLSNUM[1:0] = 1 VSYNC OFF PWMn PLSNUM[1:0] = 2 VSYNC OFF PWMn PLSNUM[1:0] = 3 VSYNC OFF OFF PWMn Figure 31. PWM Pulse Number Setting (Tail OFF) It outputs PWM pulse in Tail position When PLSSET = 1. Example) PWMFREQ[1:0] = 3, PLSSET = 1 PLSNUM[1:0] = 0 VSYNC PWMn PLSNUM[1:0] = 1 VSYNC OFF OFF PWMn PLSNUM[1:0] = 2 VSYNC OFF OFF OFF OFF PWMn PLSNUM[1:0] = 3 VSYNC PWMn Figure 32. PWM Pulse Number Setting (Head OFF) DLY = 0x7F, PWMFREQ = 3, PLSNUM[1:0] = 2, PLSSET = 0 VSYNC EXTCLK = VSYNC x 65,536[Hz] EXTCLK SPI delay OFF PWMn update LCDAC setting analog signal(image) Figure 33. PWM Pulse Number Setting www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 35/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers - continued Address 0x18: DTYCNT01L (LED1 PWM duty setting register - lower 8 bits) Bit No Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Name DTY01[7:0] Initial value 0 0 0 0 0 [Read/Write] Bit[2] 0 Initial value 0x00 Bit[1] Bit[0] 0 0 Update: PWM The register data is updated to the newest data when the next PWM signal rises up after the data is written. Address 0x19: DTYCNT01U (LED1 PWM duty setting register - upper 5 bits) Bit No Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Name DTYEN01 Initial value 0 0 0 0 0 [Read/Write] Bit[2] DTY01[12:8] 0 Initial value 0x00 Bit[1] Bit[0] 0 0 Update: PWM The register data is updated to the newest data when the next PWM signal rises up after the data is written. This register is used to make setting of pulse duty for PWM light modulation in a total of 13 bits, i.e., Bit[7:0] when Address = 0x18 and Bit[4:0] when Address = 0x19. DTYEN01 0 1 1 1 1 1 1 1 1 1 DTY01[12:0] 0x000 to 0x1FFF 0x0000 0x0001 0x0002 0x0003 ... 0x1FFC 0x1FFD 0x1FFE 0x1FFF LED Pulse Width 0 clock width@EXTCLK 1 clock width@EXTCLK 2 clock width@EXTCLK 3 clock width@EXTCLK 4 clock width@EXTCLK ... 8189 clock width@EXTCLK 8190 clock width@EXTCLK 8191 clock width@EXTCLK Normally set to High (Duty 100 %) If DTYEN01 = 0 is set when it detects LED open/LED short in channel 1, Error register (ERLOP[0]/ERLSH[0]) and FAIL turn normal condition. Address 0x1A to 0x37: DTYCNTn (n = 2 to 16) This register is used to make setting of PWM pulse width for LED2 to LED16. The setting procedure is the same as that for LED1 with Address set to 0x1A and 0x37. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 36/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers - continued Address 0x38: LCDAC1 (Analog light modulation setting for LED1) [Read/Write] Bit No Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Name LCDAC1[7:0] Initial value 1 1 1 1 1 Bit[2] Initial value 0xFF Bit[1] 1 1 Bit[0] 1 Update: PWM The register data is updated to the newest data when the next PWM signal rises up after the data is written. Address 0x39 to 0x47: LCDACn (n = 2 to 16) This register is used to make setting of PWM pulse width for LED2 to LED16. The setting procedure is the same as that for LED1 with Address set to 0x38. This register can be written 0x00 to 0xFF value. The DAC setting is possible, but the guarantee levels become more than 20 mA. LCDACn[7:0] (Write value) 0x00 0x01 ... 0xXX ... 0xFF 𝐼𝐿𝐸𝐷𝑀𝐴𝑋 = 757/𝑅𝐼𝑆𝐸𝑇 ILEDn ILEDMAX x 1/256 ILEDMAX x 2/256 … ILEDMAX x (LCDACn +1)/256 … ILEDMAX x 256/256 (n = 1 to 16) [A] 𝐼𝐿𝐸𝐷𝑛 = 𝐼𝐿𝐸𝐷𝑀𝐴𝑋 × {(𝐿𝐶𝐷𝐴𝐶𝑛[7: 0] + 1)/256} > 0.02 𝐼𝐿𝐸𝐷𝑛_𝐴𝑉𝐸 = 𝐼𝐿𝐸𝐷𝑛 × {(𝐷𝑇𝑌𝑛[12: 0] + 1)/ 8,192} [A] [A] (𝑛 = 1 𝑡𝑜 16) (𝑛 = 1 𝑡𝑜 16) LED Current Maximum setting 130 mA ILEDMAX Variable Range ILEDn ILEDn_AVE Minimum Setting 20 mA PWM Duty t Figure 34. Current Setting Image www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 37/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers - continued Address 0x49: ERRLEDOPA (LED1 to LED8 pin open ERROR monitor) Bit No Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Name ERLOP[7:0] Initial value 0 0 0 0 0 [Read] Initial value 0x00 Bit[2] Bit[1] 0 0 Bit[0] 0 Update: Immediately The register data is updated to the newest data immediately when the data (“LED open protection”) is detected. Address 0x4A: ERRLEDOPB (LED8 to LED16 pin open ERROR monitor) Bit No Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Name ERLOP[15:8] Initial value 0 0 0 0 0 [Read] Initial value 0x00 Bit[2] Bit[1] 0 0 Bit[0] 0 Update: Immediately The register data is updated to the newest data immediately when the data (“LED open protection”) is detected. ERLOP[n-1] 0 1 Status Normal Detect protection(Note 1) (n = 1 to 16 channel) (Note 1) ERRLAT = 0: ERLOP[n-1] turns 0, if Error is released or “DTYENn = 0” is set or “LEDOPEN = 0” is set. ERRLAT = 1: ERLOP[n-1] turns 0, if “ERRCLR = 1” is set. Address 0x4B: ERRLEDSHA (LED1 to LED8 short ERROR monitor) Bit No Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Name ERLSH[7:0] Initial value 0 0 0 0 0 [Read] Bit[2] 0 Initial value 0x00 Bit[1] Bit[0] 0 0 Update: Immediately The register data is updated to the newest data immediately when the data (“LED short protection”) is detected. Address 0x4C: ERRLEDSHB (LED8 to LED16 short ERROR monitor) Bit No Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Name ERLSH[15:8] Initial value 0 0 0 0 0 [Read] Bit[2] 0 Initial value 0x00 Bit[1] Bit[0] 0 0 Update: Immediately The register data is updated to the newest data immediately when the data (“LED short protection”) is detected. ERLSH[n-1] 0 1 Status Normal Detect protection(Note 2) (n = 1 to 16 channel) (Note 2) ERRLAT = 0: ERLSH[n-1] turns 0, if Error is released or “DTYENn = 0” is set or “LEDSHEN = 0” is set. ERRLAT = 1: ERLSH[n-1] turns 0, if “ERRCLR = 1” is set. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 38/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. Description of Registers - continued Address 0x4D: ERRISETSCP (ISET short warning and SCP) Bit No Bit[7] Bit[6] Bit[5] Bit[4] Name Initial value 0 0 0 0 [Read] Bit[3] 0 Bit[2] 0 Initial value 0x00 Bit[1] Bit[0] WARSCP WARISET 0 0 Update: Immediately Bit[1] The register data is updated to the newest data immediately when the data (“SCP”) are detected. WARSCP 0 1 Status Normal Detect SCP(Note 1) (Note 1) WARSCP turns 0 by only reset. It operates SCP circuit using “LED open circuit”. Don’t change LEDOPEN = 0. Bit[0] The register data is updated to the newest data immediately when the data (“ISET short warning”) are detected. WARISET 0 1 Status Normal Detect ISET short (ISET resistor is under 2.5 kΩ)(Note 2) (Note 2) ERRLAT = 0: WARISET turns 0, if Error is released. ERRLAT = 1: WARISET turns 0, if “ERRCLR = 1” is set. Address 0x4E: ERRTSDA (TSD warning) Bit No Bit[7] Bit[6] Name Initial value 0 0 Bit[5] [Read] 0 Initial value 0x00 Bit[4] Bit[3] Bit[2] WARTSD[7:0] 0 0 0 Bit[1] 0 Bit[0] 0 Update: Immediately The register data is updated to the newest data immediately when the data (“TSD warning”) are detected. Address 0x4F: ERRTSDB (TSD warning) Bit No Bit[7] Bit[6] Name Initial value 0 0 Bit[5] 0 [Read] Initial value 0x00 Bit[4] Bit[3] Bit[2] WARTSD[15:8] 0 0 0 Bit[1] 0 Bit[0] 0 Update: Immediately The register data is updated to the newest data immediately when the data (“TSD warning”) are detected. WARTSD[n-1] 0 1 Status Normal Detect protection(Note 3) (n = 1 to 16 channel) (Note 3) ERRLAT = 0: WARTSD[n-1] turns 0, if Error is released or “TSDWEN = 0” is set. ERRLAT = 1: WARTSD[n-1] turns 0, if “ERRCLR = 1” is set. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 39/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Timing Chart 1. PWM Delay and ON Duty Setting Procedure Each Dimming Mode Available to access register for next frame SPI VSYNC register DLYn DTYn update at next VSYNC DLYCNTn DTYn_buf update at next PWM output DTYCNTn DLYCNTn DTYCNTn DLYCNTn PWMn Figure 35. Head Control(PWMFREQ[1:0] = 0) ex) DLY01[7:0] = 0x01,DTY01[12:0] = 0x05 VSYNC 1st 2nd 3rd 4th 5th EXTCLK r_vsync_ext_q (internal signal) r_vsync_ext_qq (internal signal) w_vsync_pls (internal signal) 0 x 020 dly counter (internal signal) 0 1 2 3 4 5 6 0 dly counter1 (internal signal) 0 1 2 3 4 5 6 1 2 3 7 dly complh (internal signal) dly comphl (internal signal) DLY01[7:0]x32 DTY01[11:0]+1 PWM1 L->H : 0 H->L : DTY01+1 (when max value : 0) PWM1 (internal signal) Figure 36. Setting for PWM Delay and ON Duty for Head Control By making register setting, PWM output delay and ON duty time counts of LED1 to LED16 can be controlled. The above timing chart shows an example for LED1. (Example) To make delay time count setting, write “delay time” in Address 0x07. To make ON duty time count setting, write “duty time” in Address 0x18 and 0x19. The delay counter starts counting after 4 to 5 EXTCLKs from the rise-edge of VSYNC signal due to internal signal’s timing. When the counter reaches the set delay value (0x07), the duty counter starts counting, also PWM1 signal is set to ‘High’. Subsequently, when the duty counter reaches the set duty value (0x18 and 0x19), PWM1 signal is set to ‘Low’. The sequence is continuously repeated. The procedure for LED2 to LED16 is the same as LED1. It can set delay of 256 resolution of VSYNC period. ntn frrame (n+1)th frame PWMFREQ[1:0] = 3 VSYNC EXTCLK = VSYNC × 65,536 (216) [Hz] EXTCLK setting for (n+1)th frame SPI delay 256 clock (28)/bit ntn frrame PWMn Figure 37. PWM Delay (PWMFREQ[1:0] = 3) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 40/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Timing Chart - continued 2. PWM Behavior at Close VSYNC Interval Basically, the frequency of EXTCLK pulse is 8,192(PWMFREQ[1:0] = 0) times of that of VSYNC. Close-interval VSYNC up to 8,192 can make the stick to ‘High’/‘Low’ of PWM signals. Example of PWM behavior for LED1 is shown as follows. (1) Stick to High of PWM Example: Delay = 0, Duty = 75 % VSYNC: 8,192 divided VSYNC: under 8,192 divided VSYNC EXTCLK main counter compdly Duty counter (each LED Channel) compdly PWMn PMW is stick to High Figure 38. Waveform Function when PWM is Fixed to High PWM is sets to ‘High’ at the trigger of compdly (internal signal that shows the arrival of Delay set value) = ‘High’, also is set to ‘Low’ at the trigger of compdty (internal signal that shows the arrival of Duty set value) = ‘Low’. “Main counter” is reset and starts counting up at the rise-edge of VSYNC. If it counts up until 8,191, it keeps 8,191 until VSYNC pulse. “duty counter” is reset and starts counting up at trigger of compdly. If trigger of compdty is generated, it keeps counter value until next trigger of compdly. For this example, compdly just after the rise-edge of VSYNC sets PWM = ‘High’ because Delay = 0 %. “Duty counter” is reset and starts counting up at the pulse of compdly. For this example, as long as VSYNC is divided by 8,192 EXTCLK, PWM is set to ‘Low’ at the trigger of compdty after the arrival of Duty set value. While, If VSYNC is less than 8,192 EXTCLK, PWM is stick to ‘High’. Because the counter is reset since VSYNC is input before the arrival of Duty set value, and the trigger compdty to set PWM to ‘Low’ is not provided. (2) Stick to Low of PWM Example: Delay = 75 %, Duty = 50 % VSYNC: 8,192 divided VSYNC: under 8,192 divided VSYNC EXTCLK main counter compdly no compdly pulse duty counter (each LED Channel) compdly PWMn PMW is stick to Low Figure 39. Waveform Function when PWM is Fixed to Low When the setting of Delay is not 0, PWM is also set to ‘High’ at the trigger of compdly and is set to L at the trigger of compdty. When VSYNC is divided by up to 8,192 EXTCLK, PWM is also set to L after the arrival of Duty set value. But when the interval of VSYNC is less than the setting of Delay, PWM is stick to ‘Low’. Because the counter is reset since VSYNC is input before the arrival of Delay set value, and the trigger compdly to set PWM to ‘High’ is not provided. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 41/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 2. PWM Behavior at Close VSYNC Interval - continued (3) Lower PWM duty Example: Delay = 0, Duty = 75 % VSYNC: 8,192 divided VSYNC: over 8,192 divided VSYNC EXTCLK main counter compdly duty counter (each LED channel) compdly PWMn lower PWM duty Figure 40. Waveform Function when PWM Duty is Low For this example, compdly just after the rise-edge of VSYNC sets PWM = ‘High’ because Delay = 0 %. “Duty counter” is reset and starts counting up at the pulse of compdly. For this example, If VSYNC is more than 8,192 EXTCLK, PWM is set to ‘Low’ at the trigger of compdty after the arrival of Duty set value. Counter keep 8,191 after count = 8,191 until next rise-edge of VSYNC. So PWM is lower than target duty in this case. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 42/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Timing Chart - continued 3. ERROR Control There are the following internal signals on timing chart: PWM_OH[n-1] (n = 1 to 16) PWM signal for LEDn (high: LED ON, low: LED OFF) LOPDET_ID[n-1] (n = 1 to 16) LED open error signal (low: error) LSPDET_ID[n-1] (n = 1 to 16) LED short error signal (low: error) WARTSD_ID[n-1] (n = 1 to 16) TSD warning signal (low: error) WARISET_IL ISET short warning (low: error) SSEND Soft start mask signal (low: mask) r_lopdet, r_lspdet, r_vsync retiming signal r_wartsd, r_wariset retiming signal err_mskcnt error mask counter Timing chart of each ERROR detection is as follows (1) LED Short Protection It operates as following when it detects (The LED pin voltage is over setting value) or released “LED short Error“. (Example) Register setting: DLY02[7:0] = 0x00, ERRMASK[7:0] = 0x03, ERRLAT = 0 Enlarged view B Enlarged view A VSYNC EXTCLK PWM_OH[1] LED2 VSHDET VSHDET LSPDET_ID[1] r_lspdet[1] SSEND err_mskcnt[7:0] 0 x 00 ERRMASK register 0 x 03 Error register All '0' 0 x 00 LED2 : 1 , other : 0 FAIL Figure 41. LED Short Protection (a) Enlarged chart (A) VSYNC EXTCLK PWM_OH[1] LED2 VSHDET LSPDET_ID[1] mask 2clock delay (synchronize) r_lspdet[1] SSEND err_mskcnt[7:0] 0 x 00 ERRMASK register 0 x 03 Error register All '0' 0 x 01 0 x 02 0 x 03 0 x 00 LED2 : '1' , other : '0' FAIL (b) Enlarged chart (B) Figure 42. LED Short Protection (Enlarged View A) VSYNC EXTCLK PWM_OH[1] High LED2 VSHDET LSPDET_ID[1] High r_lspdet[1] High mask SSEND err_mskcnt[7:0] 0 x 00 ERRMASK register 0 x 03 Error register 0 x 01 0 x 02 0 x 03 LED2 : '1' , other : '0' 0 x 00 All '0' FAIL Figure 43. LED Short Protection (Enlarged View B) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 43/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 3. ERROR Control – continued (2) LED Open Protection It operates as following when it detects (The LED pin voltage is under 0.2 V) or released “LED open Error“. (Example) Register setting: DLY02[7:0] = 0x00, ERRMASK[7:0] = 0x03, ERRLAT = 0 Enlarged view B Enlarged view A VSYNC EXTCLK PWM_OH[1] LED2 VOPDET VOPDET LOPDET_ID[1] r_lopdet[1] SSEND err_mskcnt[7:0] 0 x 00 ERRMASK register 0 x 03 Error register All '0' 0 x 00 LED2 : 1 , other : 0 FAIL Figure 44. LED Open Protection (a) Detail of Enlarged chart (A) VSYNC EXTCLK PWM_OH[1] LED2 VOPDET LOPDET_ID[1] mask 2 clock delay (synchronize) r_lopdet[1] SSEND err_mskcnt[7:0] 0 x 00 ERRMASK register 0 x 03 Error register All '0' 0 x 01 0 x 02 0 x 03 0 x 00 LED2 : '1' , other : '0' FAIL (b) Detail of Enlarged chart (B) Figure 45. LED Open Protection (Enlarged View A) VSYNC EXTCLK LED2 VOPDET PWM_OH[1] High LOPDET_ID[1] High r_lopdet[1] High mask SSEND err_mskcnt[7:0] 0 x 00 ERRMASK register 0 x 03 Error register 0 x 01 0 x 02 0 x 03 LED2 : '1' , other : '0' 0 x 00 All '0' FAIL Figure 46. LED Open Protection (Enlarged View B) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 44/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M (2) LED Open Protection – continued [Operation] When PWM_OH[1] = ‘High’ and LOPDET_ID[1] = ‘Low’ with SSEND = ‘High’ (Soft Start end), ERRMASK starts counting with EXTCLK (err_mskcnt_r) from the rise-edge of PWM_OH[1]. At the arriving to the set value (0x03), FAIL is set to ‘Low’, i.e. ERROR is started to be detected. When ERROR is detected and PWM_OH[1] = ‘High’ and LOPDET_ID[1] = High, ERRMASK starts counting with EXTCLK (err_mskcnt_r) from the rise-edge of PWM_OH[1]. At the arriving to the set value (0x03), FAIL is set to ‘High’, i.e. It released ERROR condition. (Example) low width error case, Register setting: DLY02[7:0] = 0x00, ERRMASK[7:0] = 0x03, ERRLAT = 0 Enlarged view B Enlarged view A VSYNC EXTCLK r_vsync PWM_OH[1] LED2 VOPDET VOPDET LOPDET_ID[1] r_lopdet[1] SSEND err_mskcnt[7:0] 0 x 00 0 x 00 ERRMASK register 0 x 03 Error register FAIL Figure 47. LED Open Protection Mask Function (a) Enlarged chart (A) VSYNC 1st 2nd 3rd EXTCLK r_vsync PWM_OH[1] LED2 VOPDET LOPDET_ID[1] 2clock delay (synchronize) mask(3 to 4 clock) r_lopdet[1] SSEND err_mskcnt[7:0] 0 x 00 ERRMASK register 0 x 03 Error register All '0' FAIL (b) Enlarged chart (B) 0 x 01 0 x 02 0 x 03 0 x 00 high Figure 48. LED Open Protection Masked (Enlarged View A) VSYNC 1st 2nd 3rd 4th 1st 2nd 3rd 4th EXTCLK r_vsync PWM_OH[1] LED2 VOPDET LOPDET_ID[1] High r_lopdet[1] High SSEND mask High err_mskcnt[7:0] 0 x 00 ERRMASK register 0 x 03 Error register All '0' 0 x 01 0 x 02 0 x 03 0 x 00 0 x 01 0 x 02 0 x 03 LED2 : '1' , other : '0' 0 x 00 All '0' FAIL Figure 49. “LED Open Protection” (Enlarged View B) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 45/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 3. ERROR Control – continued (3) TSD Warning If It heats over 135 deg, it detects “TSD warning” (WARTSD_ID[1] = Low). It update error register (WARTSD[1] = 1) and FAIL = Low after detection. If it releases error condition, it updates error register (WARTSD[1] = 0) and FAIL = High. This function has enabled (TSDWEN). If TSDWEN = 0, it doesn’t detect “TSD warning protection” PWM_OH[n-1] signal don’t effect “TSD warning protection”. Enlarged view A Enlarged view B VSYNC EXTCLK PWM_OH[1] Temp. tMON tMON - tMONHYS WARTSD_ID[1] r_wartsd[1] WARTSD[1] register FAIL Figure 50. “TSD Warning” (a) Enlarged chart (A) VSYNC High EXTCLK PWM_OH[1] High Temp. tMON WARTSD_ID[1] 2 clock delay (synchronize) r_wartsd[1] WARTSD[1] register FAIL Figure 51. “TSD Warning” Detected (Enlarged View A) (b) Enlarged chart (B) VSYNC Low EXTCLK PWM_OH[1] Low Temp. WARTSD_ID[1] tMON - tMONHYS 2 clock delay (synchronize) r_wartsd[1] WARTSD[1] register FAIL Figure 52. “TSD Warning” Released (Enlarged View B) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 46/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 3. ERROR Control – continued (4) ISET Short Warning If It set ISET resistor under 2.5 kΩ, it detect “ISET short warning” (WARISET_IL = Low). It update error register (WARISET = 1) and FAIL = Low after detection. If it release error condition, it update error register (WARISET = 0) and FAIL = High. ERRMASK doesn’t effect this protection. Enlarged view A Enlarged view B VSYNC EXTCLK PWM_OH[1] RSETSCP ISET resistor value WARISET_IL r_wariset WARISET[0] register FAIL Figure 53. “ISET Short Warning” (a) Enlarged chart (A) VSYNC High EXTCLK PWM_OH[1] High RSETSCP ISET resistor value WARISET_IL 2 clock delay (synchronize) r_wariset WARISET[0] register FAIL Figure 54. “ISET Short Warning” Detected (Enlarged View A) (b) Enlarged chart (B) VSYNC Low EXTCLK PWM_OH[1] Low RSETSCP ISET resistor value WARISET_IL 2 clock delay (synchronize) r_wariset WARISET[0] register FAIL Figure 55. “ISET Short Warning” Released (Enlarged View B) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 47/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 3. ERROR Control – continued (5) TSD If It heat over 175 deg, it detect “TSD” (TSD_IL = Low). It update FAIL = Low and initialized all circuit after detection. It update FAIL = High after released. ERRMASK and SSMASK don’t effect this protection. Enlarged view (A) Enlarged view (B) VSYNC EXTCLK TSD_IL PWM_OH[1] SSEND FAIL Figure 56. TSD (a) Enlarged chart (A) VSYNC High EXTCLK TSD_IL High asynchronous reset PWM_OH[1] SSEND FAIL Figure 57. “TSD” Detected (Enlarged View A) (b) Enlarged chart (B) VSYNC Low EXTCLK TSD_IL PWM_OH[1] Low SSEND Low reset released FAIL Figure 58. “TSD” Released (Enlarged View B) www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 48/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 3. ERROR Control – continued (6) Soft-Start Masking Function The time of mask of ERROR detection at starting of IC is set by counting the number of VSYNC. Time of mask = set value x VSYNC (Example) Address = 0x03(SSMASK), DATA = 0x3C: internal reset VSYNC EXTCLK PWM LOPDET_ID[0] SSMASK[7:0] 0x3C r_sscnt[7:0] 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x3A 0x3B 0x3C 0xFF 0x00 released "soft start mask" SSEND FAIL mask Figure 59. Setting for Soft Start Mask (7) LED SCP LED SCP is operated after detecting “LED open error” and writing DTYENn = 0. MASK time can be controlled by SCPTIME register. FAIL outputs VSYNC pulse after the MASK time. SPI VSYNC EXTCLK LED1 LOPDET_ID[0] DTYEN01 register ledscp_det (internal signal) SCPTIME register '1' PWM MASK time 2VSYNC cycle FAIL Figure 60. SCP Function (Note) It can’t detect “SCP error” if LEDn (n = 1 to 16) pin shorts GND before setting DTYEN = 1 and detecting LED open error”. This function is available after detecting “LED open error”. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 49/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Timing Chart - continued 4. Boot Sequence (1) Normal Boot (1) VCC (2) EN VREG33 UVLO VSYNC (3) (4) EXTCLK SPI PWM IC condition standby OFF dimming OFF Enlarged view #all device address #device 1 address #device N address SPI Register Enlarged view #device1 address #device N address SPI PWMFREQ ERRSET1 SSMASK ERRMASK ERREN ERRSET2 DLYCNTn PWMPLS DTYCNTn LCDACn (n = 1 to16) DLYCNTn PWMPLS DTYCNTn LCDACn (n = 1 to 16) Register DTYCTn LCDACn (n = 1 to 16) DTYCTn LCDACn (n = 1 to 16) Figure 61. Starting Sequence for Normal Operation When you light the LED by general SPI control, follow the sequence below. (1) Input the power supply of VCC. (2) Launch the EN from ‘Low’ to ‘High’. (3) Write the data to the register by SPI control, then set the LED driver. (4) Input the VSYNC, EXTCLK signal and set register for PWM dimming. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 50/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Timing Chart - continued 5. PWM Dimming Sequence It has “register”, “buffer” and “control data” for DTYCNTn and LCDACn. 1st “register” are updated by SPI. 2nd “buffer” are updated at VSYNC pulse, 3rd “control data” are updated at PWM timing as following for keeping data until finishing output. (1) PWM Duty (DTYCNTn)/Local DAC (LCDACn) Control VCC EN VREG33 Current VSYNC cycle VSYNC Next VSYNC cycle EXTCLK (1) SCSB SPI dimming (2) register Update data at VSYNC buffer (3) Update data at PWM timing control data output PWM Enlarged view #device 1 address …… SPI Register #device N address DTYCNTn LCDACn (n = 1 to 16) DTYCNTn LCDACn (n = 1 to 16) Figure 62. Dimming Sequence for Normal Operation When the LEDs are controlled by general SPI control, the sequence is the following. (1) “SPI write sequence” should be finished in “current VSYNC cycle” until next VSYNC pulse. (2) The buffer value is updated at VSYNC timing. (3) The control data (DTYCNTn, LCDACn) are updated and PWM is updated at the same time. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 51/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 5. PWM Dimming Sequence – continued (2) PWM Duty (DTYCNTn)/Local DAC (LCDACn) Control (Wrong SPI Access) If MCU access at VSYNC pulse, it don’t update buffer data for any register (update timing VSYNC, PWM) VCC EN VREG33 Current VSYNC cycle VSYNC Next VSYNC cycle EXTCLK (1) SCSB SPI dimming (2) register not update data at VSYNC Update data at VSYNC (3) buffer update data at PWM timing (same data) Update data at PWM timing control data output PWM Enlarged view #device 1 address #device N address …… SPI Register DTYCNTn LCDACn ( n =1 to 16) DTYCNTn LCDACn (n = 1 to 16) Figure 63. Dimming Sequence for Normal Operation (Wrong SPI Access) When the LEDs are controlled by general SPI control, the sequence is the following. (1) “SPI write sequence” is not finished in “current VSYNC cycle” until next VSYNC pulse. (2) The buffer value is not updated at VSYNC timing. (because it occurred SCSB = Low and VSYNC pulse condition) (3) The control data (DTYCNTn, LCDACn) are not updated, because buffer value is not updated. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 52/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Timing Chart - continued 6. Error Sequence (1) Error Sequence for “LED Open Protection” without ERRLAT Example) It detects “LED open error” in LED1 VSYNC (5) LED1 Error condition nomal LED1;LED open (4) (3) SPI ERRLAT(register) Low ERRCLR(register) Low LEDOPEN(register) High 0 SCPTIME(register) ERRLEDOPA(register) 0×00 ERRLEDOPB(register) 0×00 ERRLEDSHA(register) 0×00 ERRLEDSHB(register) 0×00 0×00 0×01 WARSCP(register) DTYEN01(register) DTYENn(other) High leden[0](LED1) (internal signal) (6) PWM OFF PWMn (1) (2) (7) FAIL Enlarged view SPI SPI Register Enlarged view Read: ERRLEDOPA,B ERRLEDSHA,B ERRISETSCP ERRTSD Register Write: DTYEN01 Figure 64. Error Sequence for “LED OPEN Error” without ERRLAT (1) (2) (3) (4) (5) (6) (7) If it detects “LED OPEN error”, it outputs Low from FAIL after ERRMASK time. If Error condition is released in this timing, it outputs high from FAIL after ERRMASK. MCU read “Error register” after MCU receiving FAIL = Low condition. MCU write “DTYEN01 = 0” of “Error Channel” for protection. It pulls up the LED1 pin after DTYEN01 = 0. So LED1 voltage is over 0.2 V for LED1 open. PWM output is OFF after next VSYNC and PWM timing. “Error register” and FAIL return normal condition after next VSYNC and PWM timing. MCU can’t detect Error condition if “error condition” is cleared before reading “error register”. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 53/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 6. Error Sequence – continued (2) Error Sequence for SCP without ERRLAT Example) It detects “SCP Error” in LED1. VSYNC (5) LED1 Error condition (2) nomal LED1;LED pin GND short (3) SPI ERRLAT(register) Low ERRCLR(register) Low LEDOPEN(register) High SCPTIME(register) (4) 0 ERRLEDOPA(register) 0×00 ERRLEDOPB(register) 0×00 ERRLEDSHA(register) 0×00 ERRLEDSHB(register) 0×00 0×01 0×00 WARSCP(register) DTYEN01(register) DTYENn(other) High leden[0](LED1) (internal signal) (6) PWM OFF (7) (8) PWMn (1) FAIL Enlarged view SPI Register Enlarged view SPI Read: ERRLEDOPA,B ERRLEDSHA,B ERRISETSCP ERRTSD Register Write: DTYEN01 Figure 65. Error Sequence for SCP without ERRLAT (1) (2) (3) (4) (5) (6) (7) (8) If it detecs “LED OPEN error” after ERRMASK time, it outputs Low from FAIL. If Error condition is released in this timing, it outputs high from FAIL after ERRMASK. MCU read “Error register” after MCU receiving FAIL = Low condition. MCU write “DTYEN01 = 0” of “Error Channel” for protection. It pulls up the LED1 pin after DTYEN01 = 0. But it can’t be over 0.3 V because LED1 shorts to GND. It doesn’t outputs PWM after next VSYNC and PWM timing. It releases “Error register” and FAIL after next VSYNC and PWM timing. It outputs VSYNC pulse from the FAIL pin after detecting SCP. MCU can’t detect Error condition if “error condition” is cleared before reading “error register”. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 54/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 6. Error Sequence – continued (3) Error Sequence for “LED Open Protection” with ERRLAT Example) It detects “LED open error” in LED1 VSYNC (2) LED1 Error Error condition nomal nomal (3) SPI ERRLAT(register) Low ERRCLR(register) Low LEDOPEN(register) High SCPTIME(register) 0 ERRLEDOPA(register) 0×00 ERRLEDOPB(register) 0×00 ERRLEDSHA(register) 0×00 ERRLEDSHB(register) 0×00 WARSCP(register) (5) (4) 0×00 0×01 Low DTYEN01(register) DTYENn(other) High leden[0](LED1) (internal signal) (7) PWMn (1) (6) FAIL Enlarged view SPI SPI Register Enlarged view Read: ERRLEDOPA,B ERRLEDSHA,B ERRISETSCP ERRTSD Register Write: DTYEN01 Write: ERRCLR Figure 66. Error Sequence for “LED Open Protection” with ERRLAT (1) (2) (3) (4) (5) (6) (7) If it detects “LED open error”, it outputs Low from FAIL after ERRMASK time. If Error condition is released in this timing, it keeps Low in FAIL and “Error register”. MCU read “Error register” after MCU receiving FAIL = Low condition. MCU write “DTYEN01 = 0” of “Error Channel” for protection condition released. MCU write “ERRCLR = 1” for releasing “Latch condition”. “Error register” and FAIL return normal condition after ERRCLR = 1. PWM is OFF after next VSYNC and PWM timing. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 55/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 6. Error Sequence – continued (4) Error Sequence SCP with ERRLAT Example) It detects “SCP Error” in LED1. VSYNC (7) LED1 Error condition nomal LED1:LED pin GND short (2) SPI ERRLAT(register) High ERRCLR(register) Low LEDOPEN(register) High SCPTIME(register) 0 ERRLEDOPA(register) 0×00 ERRLEDOPB(register) 0×00 ERRLEDSHA(register) 0×00 ERRLEDSHB(register) 0×00 WARSCP(register) (3) (4) 0×01 0×00 Low DTYEN01(register) DTYENn(other) High leden[0](LED1) (internal signal) (6) PWMn (5) (1) (8) FAIL Enlarged view SPI Register Enlarged view SPI Read: ERRLEDOPA,B ERRLEDSHA,B ERRISETSCP ERRTSD Register Write: DTYEN01 Write: ERRCLR Figure 67. Error Sequence for SCP with ERRLAT (1) (2) (3) (4) (5) (6) (7) (8) If it detects “LED open error”, it outputs Low from FAIL after ERRMASK time. MCU read “Error register” after MCU receiving FAIL = Low condition. MCU write “DTYEN01 = 0” of “Error Channel” for protection condition released. MCU write “ERRCLR = 1” for releasing “Latch condition”. “Error register” and FAIL return normal condition after ERRCLR = 1 PWM is OFF after next VSYNC and PWM timing. It pulls up LED1 pin. But it can’t be over 0.3 V because LED1 shorts to GND. It detects SCP. So output VSYNC input from the FAIL pin. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 56/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Timing Chart - continued 7. FAIL Control Sequence FAIL output can be controlled by register setting. (1) (2) (3) SPI FAILTEST(register) High FAILCNT(register) Low FAIL Enlarged view SPI Enlarged view SPI Register Write FAILTEST Enlarged view SPI Register Write FAILCNT Register Write FAILCNT Figure 68. FAIL Control Sequence (1) (2) (3) (1) It is available to control FAIL output by FAILTEST = 1 FAILCNT = High, so it outputs High from the FAIL pin. FAILCNT = Low, so it outputs Low from the FAIL pin. LED Open Protection When PWMn = high, If the LEDn pin becomes 0.1 V (Typ) or lower, FAIL = ‘Low’ is outputted and “LED open error” will be detected. (n = 1 to 16) VSYNC EXTCLK PWMn (internal) LEDn 0.2 V (1) (2) (3) (4) (5) (6) FAIL ERRMASK time Figure 69. LED Open Protection (1) (2) (3) (4) (5) (6) When PWMn = ‘High’, “LED open error” is detected. FAIL outputs ‘Low’ after ERRMASK time. If LEDn pin voltage is release condition, FAIL outputs ‘High’ after ERRMASK. If LEDn pin voltage is release condition when PWMn = ‘Low’, it keeps FAIL condition (High). When PWMn = ‘High’, “LED open error” is detected. FAIL outputs ‘Low’ after ERRMASK time. If LEDn pin voltage is release condition when PWMn = ‘Low’, it keeps FAIL condition (Low). If LEDn pin voltage is release condition, FAIL outputs ‘High’ after ERRMASK. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 57/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M 7. FAIL Control Sequence – continued (2) LED Short Protection If LEDn pin becomes LEDSH[3:0](Address 0x02) when PWMn = high, FAIL = ‘Low’ is outputted and “LED short error” will be detected. (n = 1 to 16) VSYNC EXTCLK PWMn (internal) 4.8 V (default) LEDn (1) (2) (3) (4) (5) (6) FAIL ERRMASK time Figure 70. LED Short Protection (1) (2) (3) (4) (5) (6) When PWMn = ‘High’, “LED short error” is detected. FAIL outputs ‘Low’ after ERRMASK time. If LEDn pin voltage is release condition, FAIL outputs ‘High’ after ERRMASK. If LEDn pin voltage is release condition when PWMn = ‘Low’, it keeps FAIL condition (High). When PWMn = ‘High’, “LED short error” is detected. FAIL outputs ‘Low’ after ERRMASK time. If LEDn pin voltage is release condition when PWMn = ‘Low’, it keeps FAIL condition (Low). If LEDn pin voltage is release condition, FAIL outputs ‘High’ after ERRMASK. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 58/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Application Examples 1. External Component Setting Example CVOUT DC/DC 10 μF CVCC VCC 5V 2.2 μF VCC LED1 VREG33 LED2 CVREG33 2.2 μF LED3 LED4 LED5 RFAIL 100 kΩ LED6 FAIL LED7 SCSB BD12801MUF- M SDI LED9 LED10 SCLK MCU LED8 LED11 SDO LED12 VSYNC LED13 EXTCLK LED14 EN LED15 LED16 TEST1 TEST2 GND ISET LGND RISET 7.5 kΩ Figure 71. External Component Setting Example 2. Cascade Connection Application DC/DC Backlight LED101 LED102 LED103 LED115 LED116 LED201 LED202 LED203 LED1 to LED24 LED215 LED216 LED1 to LED24 VCC EN VSYNC EXTCLK SCS B SCLK MOSI VCC EN VSYNC MCU EXTCLK VSYNC VREG33 EXTCLK (#1) SCSB SCLK SDI VREG3 3 BD12801MUF-M BD12801MUF-M SCSB VCC EN (#2) SCLK SDO SDI FAIL SDO FAIL FAIL MISO Figure 72. Cascade Connection Application www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 59/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M I/O Equivalence Circuit VCC EXTCLK, VSYNC, SCLK, SDI, SCSB FAIL VREG33 EXTCLK VSYNC SCLK SDI SCSB VCC FAIL GND GND GND LED1 to LED16 GND TEST1 SDO VCC LED1 to LED16 VREG33 TEST1 + GND GND SDO     - LGND GND LGND LGND EN GND GND TEST2 GND,LGND VCC VCC EN TEST2 30 kΩ 100 kΩ 70 kΩ 100 kΩ GND GND GND ISET GND 200 kΩ 100 kΩ GND GND LGND GND GND VREG33 VCC +     + -     - GND VREG33 GND GND ISET www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 GND 60/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Recommended Operating Conditions The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics. 6. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 7. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 8. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. 9. Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 61/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Operational Notes – continued 10. Regarding the Input Pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B C Pin A N P+ N P N P+ N Parasitic Elements N P+ GND E N P N P+ B N C E Parasitic Elements P Substrate P Substrate Parasitic Elements Pin B B Parasitic Elements GND Figure 73. Example of Monolithic IC Structure GND N Region close-by GND 11. Ceramic Capacitor When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. 12. Thermal Shutdown Circuit(TSD) This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage. 13. Over Current Protection Circuit (OCP) This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit. www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 62/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Ordering Information B D 1 2 8 0 1 M U F - Package MUF: VQFN48FAV070 ME2 Product Rank M: for Automotive Packaging and forming specification E2: Embossed tape and reel Marking Diagram VQFN48FAV070 (TOP VIEW) Part Number Marking D12801 LOT Number Pin 1 Mark www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 63/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 Datasheet BD12801MUF-M Physical Dimension and Packing Information Package Name www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 VQFN48FAV070 64/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 BD12801MUF-M Revision History Date Revision 10.May.2021 001 Changes New Release www.rohm.com ©2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 65/65 TSZ02201-0V1V0B200010-1-2 ***-1-1 10.May.2021 Rev.001 Notice Precaution on using ROHM Products 1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PAA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.004 Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl 2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PAA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.004 Datasheet General Precaution 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales representative. 3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccuracy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001
BD12801MUF-ME2 价格&库存

很抱歉,暂时无法提供与“BD12801MUF-ME2”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BD12801MUF-ME2
    •  国内价格 香港价格
    • 1+40.021491+4.83728

    库存:100