System LED Drivers for Mobile Phones
7x17(Max.) Dot Matrix
LED Display Driver
BD26503GUL
●Description
BD26503GUL is “Matrix LED Driver” that is the most suitable for the cellular phone.
It can control 7x17(119 dot) LED Matrix by internal 7-channel PMOS SWs and 17-channel LED drivers.
It can control the luminance and firefly lighting of the LED matrix by the setting of the internal register.
It supports SPI and I2C interface.
VCSP50L3 (3.6mm□0.55mm height max), small and thin type chip size package.
It adopts the very thin CSP package that is the most suitable for the slim phone.
●Features
1) LED Matrix driver (7x17)
・It has 7-channel PMOS SWs and 17-channel current drivers with 1/7 timing driven sequentially.
・Put ON/OFF(for every dot).
・The current drivers can drive 0-20.00mA current with 16 step(for every dot).
・64 steps of the luminance control by PWM (common setting for all dots)
・Continuous (TDMA off ) lighting function for LED14-LED17
・Easy register setting by A/B 2-side map for each dot.
2) Automatic Slope function
・Cycle time, Slope time can be set for each dot.
3) 8-direction automatic scroll function.
4) Interface
2
・SPI and I C BUS FS mode(max 400kHz)Compatibility
2
2
・For I C mode, I C Device address is selectable (74h or 75h)
5) Thermal shutdown
6) Small and thin CSP package
・48pin VCSP50L3 (3.6mm□ 0.55mm height max) 0.5mm ball pitch
*This chip is not designed to protect itself against radioactive rays.
*This material may be changed on its way to designing.
*This material is not the official specification.
o
●Absolute Maximum Ratings (Ta=25 C)
Parameter
Symbol
Ratings
Unit
Maximum voltage (note2)
VMAX
7
V
Maximum voltage (note1)
VIOMAX
4.5
V
Power Dissipation (note3)
Pd
1550
mW
Operating Temperature Range
Topr
-40 ~ +85
℃
Storage Temperature Range
Tstg
-55 ~ +150
℃
note1)
note2)
note3)
VIO,RESETB,CE,SDA,SCL,IFMODE,SYNC,CLKIN,CLKOUT,TEST1,TEST2,TEST3,TESTO, DO terminal
Except the above
Power dissipation deleting is 12.4mW/ oC , when it’s used in over 25 oC. (ROHM’s standard board has been mounted.)
The power dissipation of the IC has to be less than the one of the package.
●Operating Conditions (VBAT≥VIO, VINSW≥VBAT, Ta=-40~85 oC)
Parameter
Symbol
VBAT input voltage
VINSW input voltage
VIO pin voltage
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
Limits
Unit
VBAT
2.7 ~ 5.5
V
VINSW
2.7 ~ 5.5
V
VIO
1.65 ~ 5.5
V
1/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VINSW=3.6V, VIO=1.8V)
Limit
Parameter
Symbol
Unit
Condition
Min.
Typ.
Max.
[ Circuit Current ]
VBAT Circuit current 1
IBAT1
-
0
3.0
μA
RESETB=0V, VIO=0V
VBAT Circuit current 2
IBAT2
-
0.8
5.0
μA
RESETB=0V, VIO=1.8V
VBAT Circuit current 3
IBAT3
-
2.0
3.5
mA
When LED1-17 are active
with default settings.
UVLO Threshold
VUVLO
-
2.1
2.5
V
UVLO Hysteresis
VHYUVLO
50
-
-
mV
ILEDMax1
-
20.00
-
mA
ILEDMax2
-
30.00
-
mA
[ UVLO ]
VBAT falling
[ LED Driver ] (LED1-17)
LED1-17 ,ISET=100kΩ
Maximum output current
Output current
LED current Matching
LED1-17 ,ISET=68kΩ
I=10.67mA setting, VLED=1V,
ISET = 100k Ω
ILEDMT=
(ILEDMax-ILEDMin)/(ILEDMax+ILEDMin)
I=10.67mA setting, VLED=1V
ISET = 100k Ω
ILED
-7.0%
10.67
+7.0%
mA
ILEDMT
-
-
5
%
VLED1
0.2
-
VBAT-1.4
V
LED1-17 ,ISET=100kΩ
VLED2
0.3
-
VBAT-1.4
V
LED1-17 ,ISET=68kΩ
ILKLED
-
-
1.0
μA
ILEAKP
-
-
1.0
μA
RonP
-
1.0
-
Ω
fosc
0.96
1.2
1.44
MHz
Driver pin voltage range
LED OFF Leak current
[ PMOS switch ]
Leak current at OFF
Resistor at ON
Isw=170mA, VINSW=4.5V
[ OSC ]
OSC frequency
[ CE, SYNC, CLKIN, IFMODE ]
L level input voltage
VIL1
-0.3
-
0.25 x VIO
V
H level input voltage
VIH1
0.75 x VIO
-
VIO +0.3
V
L level input current
Iin1
-
0
1
μA
L level input voltage
VIL2
-0.3
-
0.25 x VIO
V
H level input voltage
VIH2
0.75 x VIO
-
VIO +0.3
V
Input hysteresis
Vhys
0.05 x VIO
-
-
V
L level output voltage
(for SDA pin)
VOL2
0
-
0.3
V
At 3mA sink current
Iin2
-3
-
3
μA
Input voltage = from (0.1 x VIO) to (0.9 x VIO)
L level input voltage
VIL3
-0.3
-
0.25 x VIO
V
H level input voltage
VIH3
0.75 x VIO
-
VIO +0.3
V
Input current
Iin3
-
0
1
μA
Input voltage = from (0.1 x VIO) to (0.9 x VIO)
L level output voltage
VOL1
-
-
0.4
V
IOL=2mA
H level output voltage
VOH1
0.75 x VIO
-
-
V
IOH=-2mA
Input voltage = from (0.1 x VIO) to (0.9 x VIO)
[ SDA, SCL ]
Input current
[ RESETB ]
[ CLKOUT ]
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
2/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Power Dissipation (on the ROHM’s Standard Board)
1.8
1550mW
1.6
Power Dissipation Pd (W)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
25
50
75
100
125
150
Ta(℃)
Fig.1
Information of the ROHM’s standard board
Material: glass-epoxy
th
Size : 50mm×58mm×1.75mm(8 layer)
Wiring pattern figure Refer to after page.
,
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
3/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Block Diagram / Application Circuit Example 1
VBAT
VINSW
VBAT1
VBAT2
10μF
VBAT3
VINSW1
VINSW2
10µF
VINSW3
SW7
T06
VREF
SW6
T05
OSC
SW5
T04
ISET
Logic
TDMA
IREF
SW4
T03
100kΩ
SW3
T02
SW2
T01
SW1
T00
20.00mA/ch
1.33mA step
TDMA
VIO
Enable
LED17
LED16
TDMA
1µF
TDMA
RESETB
LED15
LED14
TDMA
CE
I2C or SPI
selectable
SDA
I/O
SCL
Level
SPI / I2C
interface
TDMA
Shift
Digital Control
TDMA
LED13
LED12
IFMODE
TDMA
SYNC
TDMA
LED11
LED10
LED9
CLKIN
TDMA
CLKOUT
LED8
TDMA
LED7
TDMA
LED6
TDMA
LED5
GND1
TDMA
GND2
LED4
GND3
TDMA
GND4
LED3
GND5
TDMA
GND6
LED2
GND7
TDMA
GND8
LED1
GND9
TDMA
GND10
GND11
7×17
Dot Matrix Unit
LEDGND4
LEDGND3
LEDGND2
LEDGND1
DO
TESTO
TEST5
TEST4
TEST3
TEST2
TEST1
PWM
Fig.2 Block Diagram / Application Circuit example 1
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
4/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Block Diagram / Application Circuit Example 2
VBAT
VINSW
VBAT1
VBAT2
10μF
VBAT3
VINSW1
VINSW2
10µF
VINSW3
SW7
T06
VREF
SW6
T05
OSC
SW5
T04
ISET
Logic
TDMA
IREF
SW4
T03
100kΩ
SW3
T02
SW2
T01
SW1
T00
20.00mA/ch
1.33mA step
TDMA
VIO
Enable
LED16
TDMA
1µF
TDMA
TDMA
CE
SDA
LED15
LED14
RESETB
I2C or SPI
selectable
LED17
I/O
SCL
Level
SPI / I2C
interface
TDMA
Shift
Digital Control
TDMA
LED13
LED12
IFMODE
TDMA
SYNC
TDMA
LED11
LED10
LED9
CLKIN
TDMA
CLKOUT
LED8
TDMA
LED7
TDMA
LED6
TDMA
LED5
GND1
TDMA
GND2
LED4
GND3
TDMA
GND4
LED3
GND5
TDMA
GND6
LED2
GND7
TDMA
GND8
LED1
GND9
TDMA
GND10
GND11
7×13
Dot Matrix Unit
LEDGND4
LEDGND3
LEDGND2
LEDGND1
DO
TESTO
TEST5
TEST4
TEST3
TEST2
TEST1
PWM
Fig.3 Block Diagram / Application Circuit example 2
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
5/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Pin Arrangement [Bottom View]
TEST4
VBAT1
LED11
ISET
GND1
LED10
LED8
LED9
LED6
LED7
LED4
LED3
LED2
LED1
TEST5
SW1
LED13
LED15
LED17
TEST1
LED12
LED16
CLKOUT
TESTO
LEDGND2
TEST2
LED14
SDA
CE
LED5
LEDGND1
RESETB
SCL
VIO
SW4
SYNC
IFMODE
CLKIN
SW2
VINSW1
SW6
DO
VBAT2
SW3
VINSW2
SW5
SW7
TEST3
6
7
G
F
E
D
C
B
A
1
2
3
4
5
Index
Total 48Balls
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
6/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Package
48Pin VCSP50L3 CSP small package
SIZE : 3.60mm□
A ball pitch : 0.5mm
Height : 0.55mm max
*INDEX POST has No Solder Ball
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
7/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Pin Functions
No
1
Ball No.
A7
Pin Name
TEST3
I/O
I
Pull
down
Unused
processing
setting
For Power
For Ground
94kohm
GND
VIO
GND
Test input pin 3
I
K
ESD Diode
Functions
Equivalent
Circuit
E
2
A1
TEST5
O
-
GND
VINSW
GND
Test input pin 5
3
B1
LED2
O
-
GND
-
GND
LED2 driver output
4
B2
LED1
O
-
GND
-
GND
LED1 driver output
K
5
B5
SW6
O
-
VINSW
VINSW
GND
P-MOS SW6 output
C
6
A6
SW7
O
-
VINSW
VINSW
GND
P-MOS SW7 output
C
GND
LED3 driver output
K
Ground
B
7
C2
LED3
O
-
GND
-
8
D4
LEDGND1
-
-
-
VBAT
-
9
E4
TEST2
I
94kohm
GND
VIO
GND
Test input pin 2
E
10
A5
SW5
O
-
VINSW
VINSW
GND
P-MOS SW5 output
C
11
C4
SW4
O
-
VINSW
VINSW
GND
P-MOS SW4 output
C
12
D3
LED5
O
-
GND
-
GND
LED5 driver output
K
K
13
D1
LED6
O
-
GND
-
GND
LED6 driver output
14
C1
LED4
O
-
GND
-
GND
LED4 driver output
K
15
A3
GND
P-MOS SW3 output
C
C
C
SW3
O
-
VINSW
VINSW
16
B3
SW2
O
-
VINSW
VINSW
GND
P-MOS SW2 output
17
A2
SW1
O
-
VINSW
VINSW
GND
P-MOS SW1output
Power supply for SW1-7
A
Ground
B
LED7 driver output
K
18
B4
VINSW1
-
-
-
-
GND
19
E3
LEDGND2
-
-
-
VBAT
-
20
D2
LED7
O
-
GND
-
GND
21
G2
VBAT1
-
-
-
-
GND
22
D5
RESETB
I
-
Battery is connected
A
GND
Reset input pin (L: reset, H: reset cancel)
VIO
GND
External CLK input pin
D
VIO
GND
External synchronous input pin
D
OPEN
VIO
GND
Test output pin2
G
GND
-
GND
LED8 driver output
K
J
A
GND
23
C7
CLKIN
I
-
GND
24
C5
SYNC
I
-
GND
25
B6
DO
O
-
26
E1
LED8
O
-
VIO
D
27
F1
ISET
I
-
-
VBAT
GND
LED Constant Current Driver Current setting pin
28
A4
VINSW2
-
-
-
-
GND
Power supply for SW1-7
29
G7
TEST1
I
94kohm
GND
VIO
GND
Test input pin 1
30
C6
IFMODE
I
-
GND
VIO
GND
I C/SPI select pin (L: I C, H: SPI)
31
D6
SCL
I
-
-
VIO
GND
SPI, I C CLK input pin
A
E
2
2
D
2
D
32
D7
VIO
-
-
-
-
GND
I/O Power supply is connected
33
E2
LED9
O
-
GND
-
GND
LED9 driver output
K
34
F3
LED10
O
-
GND
-
GND
LED10 driver output
K
35
G4
LED13
O
-
GND
-
GND
LED13 driver output
K
K
36
E5
LED14
O
-
GND
-
GND
LED14 driver output
37
F6
CLKOUT
O
-
OPEN
VIO
GND
Reference CLK output pin
G
38
E7
CE
I
-
GND
VIO
GND
SPI enable pin(H;Enable), or
2
I C slave address selection (L: 74h, H: 75h)
D
2
39
E6
SDA
I/O
-
-
VIO
GND
SPI DATA input / I C DATA input-output pin
F
40
G1
TEST4
O
-
GND
VBAT
GND
Test input pin 4
H
41
G3
LED11
O
-
GND
-
GND
LED11 driver output
K
42
F4
LED12
O
-
GND
-
GND
LED12 driver output
K
43
F2
GND1
-
-
-
VBAT
-
Ground
B
GND
LED15 driver output
K
GND
LED16 driver output
K
K
G
44
G5
LED15
O
-
GND
-
45
F5
LED16
O
-
GND
-
46
G6
LED17
O
-
GND
-
GND
LED17 driver output
47
F7
TESTO
O
-
OPEN
VIO
GND
Test output pin1
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
8/40
2013.02 - Rev.A
Technical Note
BD26503GUL
48
VBAT2
B7
-
-
-
-
GND
Battery is connected
A
* Please connect the unused LED pins to the ground.
* It is prohibition to set the registers for unused LED.
Total 48 pins
●Equivalent Circuit
A
E
I
B
VIO
VIO
F
VIO
VINSW
J
VBAT
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
VBAT
C
VIO
G
VINSW
VIO
VINSW
VIO
D
H
VIO
VIO
VBAT
K
9/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Serial Interface
1. SPI format
・When IFMODE is set to “H”, it can interface with SPI format.
・The serial interface is four terminals (serial clock terminal (SCL), serial data input terminal (SDA), and chip
selection input terminal (CE)).
(1)Write operation
・Data is taken into an internal shift register with rising edge of CLK. (Max of the frequency is 13MHz.)
・The receive data becomes enable in the “H” section of CE. (Active “H”.)
・The transmit data is forwarded (with MSB-First) in the order of write command “0”(1bit), the control register address
(7bit) and data (8bit).
CE
SCL
W
SDA
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
Fig.4 Writing format
(2)Timing diagram
tcgh
CE
tcss
tscyc
tcsw
SCL
twhc
twlc
SDA
tss
tsh
Fig.5 Timing diagram (SPI format)
(3) Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VINSW=3.6V, VIO=1.8V)
Condition
Limit
Sym
Parameter
Unit
bol
Min
Typ
Max
SCL cycle time
tscyc
76
-
-
ns
H period of SCL cycle
L period of SCL cycle
SDA setup time
SDA hold time
Twhc
Twlc
Tss
Tsh
35
35
38
38
-
-
ns
ns
ns
ns
38
-
-
ns
Tcsw
2.1
ECLK x 2
55
48
-
-
μs
s
ns
ns
Write interval
Write interval
(after A or B RAM accsess)
CE setup time
Tcss
CE hold time
Tcgh
*1 When it used internal clock.
*2 When it used external clock. (ECLK means the cycle of external clock.)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
10/40
*1
*2
2013.02 - Rev.A
Technical Note
BD26503GUL
2. I2C BUS format
2
When IFMODE is set to “L”, it can interface with I C BUS format.
(1) Slave address
CE
A7
A6
A5
A4
A3
A2
A1
L
1
1
1
0
1
0
0
H
1
1
1
0
1
0
1
R/W
0
(2) Bit Transfer
SCL transfers 1-bit data during H. During H of SCL, SDA cannot be changed at the time of bit transfer. If SDA changes
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability:
SDA
It can change
Data are effective
Fig.6 Bit transfer (I2C format)
(3) START and STOP condition
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL
has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S
P
STOP condition
START condition
Fig.7 START/STOP condition (I2C format)
(4) Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data,
and a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT
BY TRANSMITTER
not acknowledge
DATA OUTPUT
BY RECEIVER
acknowledge
SCL
1
2
8
9
S
clock pulse for
acknowledgement
START condition
Fig.8 Acknowledge (I2C format)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
11/40
2013.02 - Rev.A
Technical Note
BD26503GUL
(5) Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The
3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register
address is carried out automatically. However, when a register address turns into the last address (77h), it is set to 00h
by the next transmission. After the transmission end, the increment of the address is carried out.
*1
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
register address
*1
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
R/W=0(write)
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
*1: Write Timing
from master to slave
from slave to master
(6) Timing diagram
SDA
t BUF
t SU;DAT
t LOW
t HD;STA
SCL
t HD;STA
S
t SU;STO
t SU;STA
t HD;DAT
Sr
t HIGH
P
S
Fig.9 Timing diagram (I2C format)
o
(7) Electrical Characteristics(Unless otherwise specified, Ta=25 C, VBAT=3.6V, VINSW=3.6V, VIO=1.8V)
Standard-mode
Fast-mode
Parameter
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
【I2C BUS format】
SCL clock frequency
fSCL
0
100
0
400
LOW period of the SCL clock
tLOW
4.7
1.3
HIGH period of the SCL clock
tHIGH
4.0
0.6
Hold time (repeated) START condition
After this period, the first clock is generated
Set-up time for a repeated START
condition
Data hold time
Data set-up time
Set-up time for STOP condition
Bus free time between a STOP
and START condition
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
Unit
kHz
μs
μs
tHD;STA
4.0
-
-
0.6
-
-
μs
tSU;STA
4.7
-
-
0.6
-
-
μs
tHD;DAT
tSU;DAT
tSU;STO
0
250
4.0
-
3.45
-
0
100
0.6
-
0.9
-
μs
ns
μs
tBUF
4.7
-
-
1.3
-
-
μs
12/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Register List
* Please be sure to write “0” in the register which is not assigned.
* It is prohibition to write data to the address which is not assigned.
Control register
Address Default
D7
D6
D5
D4
D3
D2
D1
D0
Block
R/W
Remark
00h
00h
-
-
-
-
-
-
-
SFTRST
RESET
W
Software Reset
01h
00h
-
-
-
-
OSCEN
-
-
-
OSC
W
OSC ON/OFF control
11h
00h
-
-
LED6ON LED5ON LED4ON LED3ON LED2ON LED1ON
W
LED1-6 Enable
12h
00h
-
-
LED12ON LED11ON LED10ON LED9ON LED8ON LED7ON
W
LED7-12 Enable
13h
00h
-
-
-
W
LED13-17 Enable
17h
0Fh
-
-
-
W
LED14-17 TDMA Enable
20h
00h
-
-
PWM
W
LED1-17PWM DutySetting
21h
00h
-
-
-
-
CLK
W
CLK selection, SYNC operation control
2Dh
00h
-
-
-
-
-
PWMEN
SLPEN
SCLEN
W
PWM,SLOPE,SCROLL ON/OFF setting
2Eh
00h
-
-
-
-
-
-
-
SCLRST
W
Reset SCROLL
2Fh
00h
-
UP
DOWN
RIGHT
LEFT
W
SCROLL Setting
30h
00h
-
-
-
-
-
-
-
START
W
LED matrix control
31h
00h
-
-
-
-
-
-
CLRB
CLRA
W
Matrix data clear
7Fh
00h
-
-
-
-
-
IAB
OAB
RMCG
W
Resister map change
LED17ON LED16ON LED15ON LED14ON LED13ON
-
LED17
LED16
LED15
LED14
TDMAON TDMAON TDMAON TDMAON
PWMSET[5:0]
SCLSPEED[2:0]
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
LED
driver
SYNCACT SYNCON CLKOUT
13/40
CLKIN
MATRIX
RMAP
2013.02 - Rev.A
Technical Note
BD26503GUL
A-pattern register
Address default D7
D6
D5
D4
D3
D2
D1
D0
Block
R/W
Remark
01h
08h
SCYCA00[1:0] SDLYA00[1:0]
ILEDA00SET[3:0]
W
Data for Matrix 00(DA00)
02h
08h
SCYCA01[1:0] SDLYA01[1:0]
ILEDA01SET[3:0]
W
Data for Matrix 01(DA01)
03h
08h
SCYCA02[1:0] SDLYA02[1:0]
ILEDA02SET[3:0]
W
Data for Matrix 02(DA02)
04h
08h
SCYCA03[1:0] SDLYA03[1:0]
ILEDA03SET[3:0]
W
Data for Matrix 03(DA03)
05h
08h
SCYCA04[1:0] SDLYA04[1:0]
ILEDA04SET[3:0]
W
Data for Matrix 04(DA04)
06h
08h
SCYCA05[1:0] SDLYA05[1:0]
ILEDA05SET[3:0]
W
Data for Matrix 05(DA05)
07h
08h
SCYCA06[1:0] SDLYA06[1:0]
ILEDA06SET[3:0]
W
Data for Matrix 06(DA06)
08h
08h
SCYCA10[1:0] SDLYA10[1:0]
ILEDA10SET[3:0]
W
Data for Matrix 10(DA10)
09h
08h
SCYCA11[1:0] SDLYA11[1:0]
ILEDA11SET[3:0]
W
Data for Matrix 11(DA11)
0Ah
08h
SCYCA12[1:0] SDLYA12[1:0]
ILEDA12SET[3:0]
W
Data for Matrix 12(DA12)
0Bh
08h
SCYCA13[1:0] SDLYA13[1:0]
ILEDA13SET[3:0]
W
Data for Matrix 13(DA13)
0Ch
08h
SCYCA14[1:0] SDLYA14[1:0]
ILEDA14SET[3:0]
W
Data for Matrix 14(DA14)
0Dh
08h
SCYCA15[1:0] SDLYA15[1:0]
ILEDA15SET[3:0]
W
Data for Matrix 15(DA15)
0Eh
08h
SCYCA16[1:0] SDLYA16[1:0]
ILEDA16SET[3:0]
W
Data for Matrix 16(DA16)
0Fh
08h
SCYCA20[1:0] SDLYA20[1:0]
ILEDA20SET[3:0]
W
Data for Matrix 20(DA20)
10h
08h
SCYCA21[1:0] SDLYA21[1:0]
ILEDA21SET[3:0]
W
Data for Matrix 21(DA21)
11h
08h
SCYCA22[1:0] SDLYA22[1:0]
ILEDA22SET[3:0]
W
Data for Matrix 22(DA22)
12h
08h
SCYCA23[1:0] SDLYA23[1:0]
ILEDA23SET[3:0]
W
Data for Matrix 23(DA23)
13h
08h
SCYCA24[1:0] SDLYA24[1:0]
ILEDA24SET[3:0]
W
Data for Matrix 24(DA24)
14h
08h
SCYCA25[1:0] SDLYA25[1:0]
ILEDA25SET[3:0]
W
Data for Matrix 25(DA25)
15h
08h
SCYCA26[1:0] SDLYA26[1:0]
ILEDA26SET[3:0]
W
Data for Matrix 26(DA26)
16h
08h
SCYCA30[1:0] SDLYA30[1:0]
ILEDA30SET[3:0]
W
Data for Matrix 30(DA30)
17h
08h
SCYCA31[1:0] SDLYA31[1:0]
ILEDA31SET[3:0]
W
Data for Matrix 31(DA31)
18h
08h
SCYCA32[1:0] SDLYA32[1:0]
ILEDA32SET[3:0]
Data for Matrix 32(DA32)
19h
08h
SCYCA33[1:0] SDLYA33[1:0]
ILEDA33SET[3:0]
MATRIX W
Data
W
1Ah
08h
SCYCA34[1:0] SDLYA34[1:0]
ILEDA34SET[3:0]
W
Data for Matrix 34(DA34)
1Bh
08h
SCYCA35[1:0] SDLYA35[1:0]
ILEDA35SET[3:0]
W
Data for Matrix 35(DA35)
1Ch
08h
SCYCA36[1:0] SDLYA36[1:0]
ILEDA36SET[3:0]
W
Data for Matrix 36(DA36)
1Dh
08h
SCYCA40[1:0] SDLYA40[1:0]
ILEDA40SET[3:0]
W
Data for Matrix 40(DA40)
1Eh
08h
SCYCA41[1:0] SDLYA41[1:0]
ILEDA41SET[3:0]
W
Data for Matrix 41(DA41)
1Fh
08h
SCYCA42[1:0] SDLYA42[1:0]
ILEDA42SET[3:0]
W
Data for Matrix 42(DA42)
20h
08h
SCYCA43[1:0] SDLYA43[1:0]
ILEDA43SET[3:0]
W
Data for Matrix 43(DA43)
21h
08h
SCYCA44[1:0] SDLYA44[1:0]
ILEDA44SET[3:0]
W
Data for Matrix 44(DA44)
22h
08h
SCYCA45[1:0] SDLYA45[1:0]
ILEDA45SET[3:0]
W
Data for Matrix 45(DA45)
23h
08h
SCYCA46[1:0] SDLYA46[1:0]
ILEDA46SET[3:0]
W
Data for Matrix 46(DA46)
24h
08h
SCYCA50[1:0] SDLYA50[1:0]
ILEDA50SET[3:0]
W
Data for Matrix 50(DA50)
25h
08h
SCYCA51[1:0] SDLYA51[1:0]
ILEDA51SET[3:0]
W
Data for Matrix 51(DA51)
26h
08h
SCYCA52[1:0] SDLYA52[1:0]
ILEDA52SET[3:0]
W
Data for Matrix 52(DA52)
27h
08h
SCYCA53[1:0] SDLYA53[1:0]
ILEDA53SET[3:0]
W
Data for Matrix 53(DA53)
28h
08h
SCYCA54[1:0] SDLYA54[1:0]
ILEDA54SET[3:0]
W
Data for Matrix 54(DA54)
29h
08h
SCYCA55[1:0] SDLYA55[1:0]
ILEDA55SET[3:0]
W
Data for Matrix 55(DA55)
2Ah
08h
SCYCA56[1:0] SDLYA56[1:0]
ILEDA56SET[3:0]
W
Data for Matrix 56(DA56)
2Bh
08h
SCYCA60[1:0] SDLYA60[1:0]
ILEDA60SET[3:0]
W
Data for Matrix 60(DA60)
2Ch
08h
SCYCA61[1:0] SDLYA61[1:0]
ILEDA61SET[3:0]
W
Data for Matrix 61(DA61)
2Dh
08h
SCYCA62[1:0] SDLYA62[1:0]
ILEDA62SET[3:0]
W
Data for Matrix 62(DA62)
2Eh
08h
SCYCA63[1:0] SDLYA63[1:0]
ILEDA63SET[3:0]
W
Data for Matrix 63(DA63)
2Fh
08h
SCYCA64[1:0] SDLYA64[1:0]
ILEDA64SET[3:0]
W
Data for Matrix 64(DA64)
30h
08h
SCYCA65[1:0] SDLYA65[1:0]
ILEDA65SET[3:0]
W
Data for Matrix 65(DA65)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
14/40
Data for Matrix 33(DA33)
2013.02 - Rev.A
Technical Note
BD26503GUL
Address default
D7
D6
D5
D4
D3
D2
D1
D0
Block
R/W
Remark
31h
08h
SCYCA66[1:0] SDLYA66[1:0]
ILEDA66SET[3:0]
W
Data for Matrix 66(DA66)
32h
08h
SCYCA70[1:0] SDLYA70[1:0]
ILEDA70SET[3:0]
W
Data for Matrix 70(DA70)
33h
08h
SCYCA71[1:0] SDLYA71[1:0]
ILEDA71SET[3:0]
W
Data for Matrix 71(DA71)
34h
08h
SCYCA72[1:0] SDLYA72[1:0]
ILEDA72SET[3:0]
W
Data for Matrix 72(DA72)
35h
08h
SCYCA73[1:0] SDLYA73[1:0]
ILEDA73SET[3:0]
W
Data for Matrix 73(DA73)
36h
08h
SCYCA74[1:0] SDLYA74[1:0]
ILEDA74SET[3:0]
W
Data for Matrix 74(DA74)
37h
08h
SCYCA75[1:0] SDLYA75[1:0]
ILEDA75SET[3:0]
W
Data for Matrix 75(DA75)
38h
08h
SCYCA76[1:0] SDLYA76[1:0]
ILEDA76SET[3:0]
W
Data for Matrix 76(DA76)
39h
08h
SCYCA80[1:0] SDLYA80[1:0]
ILEDA80SET[3:0]
W
Data for Matrix 80(DA80)
3Ah
08h
SCYCA81[1:0] SDLYA81[1:0]
ILEDA81SET[3:0]
W
Data for Matrix 81(DA81)
3Bh
08h
SCYCA82[1:0] SDLYA82[1:0]
ILEDA82SET[3:0]
W
Data for Matrix 82(DA82)
3Ch
08h
SCYCA83[1:0] SDLYA83[1:0]
ILEDA83SET[3:0]
W
Data for Matrix 83(DA83)
3Dh
08h
SCYCA84[1:0] SDLYA84[1:0]
ILEDA84SET[3:0]
W
Data for Matrix 84(DA84)
3Eh
08h
SCYCA85[1:0] SDLYA85[1:0]
ILEDA85SET[3:0]
W
Data for Matrix 85(DA85)
3Fh
08h
SCYCA86[1:0] SDLYA86[1:0]
ILEDA86SET[3:0]
W
Data for Matrix 86(DA86)
40h
08h
SCYCA90[1:0] SDLYA90[1:0]
ILEDA90SET[3:0]
W
Data for Matrix 90(DA90)
41h
08h
SCYCA91[1:0] SDLYA91[1:0]
ILEDA91SET[3:0]
W
Data for Matrix 91(DA91)
42h
08h
SCYCA92[1:0] SDLYA92[1:0]
ILEDA92SET[3:0]
W
Data for Matrix 92(DA92)
43h
08h
SCYCA93[1:0] SDLYA93[1:0]
ILEDA93SET[3:0]
W
Data for Matrix 93(DA93)
44h
08h
SCYCA94[1:0] SDLYA94[1:0]
ILEDA94SET[3:0]
W
Data for Matrix 94(DA94)
45h
08h
SCYCA95[1:0] SDLYA95[1:0]
ILEDA95SET[3:0]
W
Data for Matrix 95(DA95)
46h
08h
SCYCA96[1:0] SDLYA96[1:0]
ILEDA96SET[3:0]
W
Data for Matrix 96(DA96)
47h
08h
SCYCAA0[1:0] SDLYAA0[1:0]
ILEDAA0SET[3:0]
W
Data for Matrix A0(DAA0)
48h
08h
SCYCAA1[1:0] SDLYAA1[1:0]
ILEDAA1SET[3:0]
08h
SCYCAA2[1:0] SDLYAA2[1:0]
ILEDAA2SET[3:0]
MATRIX W
Data
W
Data for Matrix A1(DAA1)
49h
4Ah
08h
SCYCAA3[1:0] SDLYAA3[1:0]
ILEDAA3SET[3:0]
W
Data for Matrix A3(DAA3)
4Bh
08h
SCYCAA4[1:0] SDLYAA4[1:0]
ILEDAA4SET[3:0]
W
Data for Matrix A4(DAA4)
4Ch
08h
SCYCAA5[1:0] SDLYAA5[1:0]
ILEDAA5SET[3:0]
W
Data for Matrix A5(DAA5)
Data for Matrix A2(DAA2)
4Dh
08h
SCYCAA6[1:0] SDLYAA6[1:0]
ILEDAA6SET[3:0]
W
Data for Matrix A6(DAA6)
4Eh
08h
SCYCAB0[1:0] SDLYAB0[1:0]
ILEDAB0SET[3:0]
W
Data for Matrix B0(DAB0)
4Fh
08h
SCYCAB1[1:0] SDLYAB1[1:0]
ILEDAB1SET[3:0]
W
Data for Matrix B1(DAB1)
50h
08h
SCYCAB2[1:0] SDLYAB2[1:0]
ILEDAB2SET[3:0]
W
Data for Matrix B2(DAB2)
51h
08h
SCYCAB3[1:0] SDLYAB3[1:0]
ILEDAB3SET[3:0]
W
Data for Matrix B3(DAB3)
52h
08h
SCYCAB4[1:0] SDLYAB4[1:0]
ILEDAB4SET[3:0]
W
Data for Matrix B4(DAB4)
53h
08h
SCYCAB5[1:0] SDLYAB5[1:0]
ILEDAB5SET[3:0]
W
Data for Matrix B5(DAB5)
54h
08h
SCYCAB6[1:0] SDLYAB6[1:0]
ILEDAB6SET[3:0]
W
Data for Matrix B6(DAB6)
55h
08h
SCYCAC0[1:0] SDLYAC0[1:0]
ILEDAC0SET[3:0]
W
Data for Matrix C0(DAC0)
56h
08h
SCYCAC1[1:0] SDLYAC1[1:0]
ILEDAC1SET[3:0]
W
Data for Matrix C1(DAC1)
57h
08h
SCYCAC2[1:0] SDLYAC2[1:0]
ILEDAC2SET[3:0]
W
Data for Matrix C2(DAC2)
58h
08h
SCYCAC3[1:0] SDLYAC3[1:0]
ILEDAC3SET[3:0]
W
Data for Matrix C3(DAC3)
59h
08h
SCYCAC4[1:0] SDLYAC4[1:0]
ILEDAC4SET[3:0]
W
Data for Matrix C4(DAC4)
5Ah
08h
SCYCAC5[1:0] SDLYAC5[1:0]
ILEDAC5SET[3:0]
W
Data for Matrix C5(DAC5)
5Bh
08h
SCYCAC6[1:0] SDLYAC6[1:0]
ILEDAC6SET[3:0]
W
Data for Matrix C6(DAC6)
5Ch
08h
SCYCAD0[1:0] SDLYAD0[1:0]
ILEDAD0SET[3:0]
W
Data for Matrix D0(DAD0)
5Dh
08h
SCYCAD1[1:0] SDLYAD1[1:0]
ILEDAD1SET[3:0]
W
Data for Matrix D1(DAD1)
5Eh
08h
SCYCAD2[1:0] SDLYAD2[1:0]
ILEDAD2SET[3:0]
W
Data for Matrix D2(DAD2)
5Fh
08h
SCYCAD3[1:0] SDLYAD3[1:0]
ILEDAD3SET[3:0]
W
Data for Matrix D3(DAD3)
60h
08h
SCYCAD4[1:0] SDLYAD4[1:0]
ILEDAD4SET[3:0]
W
Data for Matrix D4(DAD4)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
15/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address default
R/W
Remark
61h
08h
SCYCAD5[1:0] SDLYAD5[1:0]
D7
D6
D5
D4
D3
ILEDAD5SET[3:0]
D2
D1
D0
Block
W
Data for Matrix D5(DAD5)
62h
08h
SCYCAD6[1:0] SDLYAD6[1:0]
ILEDAD6SET[3:0]
W
Data for Matrix D6(DAD6)
63h
08h
SCYCAE0[1:0] SDLYAE0[1:0]
ILEDAE0SET[3:0]
W
Data for Matrix E0(DAE0)
64h
08h
SCYCAE1[1:0] SDLYAE1[1:0]
ILEDAE1SET[3:0]
W
Data for Matrix E1(DAE1)
65h
08h
SCYCAE2[1:0] SDLYAE2[1:0]
ILEDAE2SET[3:0]
W
Data for Matrix E2(DAE2)
66h
08h
SCYCAE3[1:0] SDLYAE3[1:0]
ILEDAE3SET[3:0]
W
Data for Matrix E3(DAE3)
67h
08h
SCYCAE4[1:0] SDLYAE4[1:0]
ILEDAE4SET[3:0]
W
Data for Matrix E4(DAE4)
68h
08h
SCYCAE5[1:0] SDLYAE5[1:0]
ILEDAE5SET[3:0]
W
Data for Matrix E5(DAE5)
69h
08h
SCYCAE6[1:0] SDLYAE6[1:0]
ILEDAE6SET[3:0]
W
Data for Matrix E6(DAE6)
6Ah
08h
SCYCAF0[1:0] SDLYAF0[1:0]
ILEDAF0SET[3:0]
W
Data for Matrix F0(DAF0)
6Bh
08h
SCYCAF1[1:0] SDLYAF1[1:0]
ILEDAF1SET[3:0]
W
Data for Matrix F1(DAF1)
6Dh
08h
SCYCAF3[1:0] SDLYAF3[1:0]
ILEDAF3SET[3:0]
MATRIX
W
Data
W
6Eh
08h
SCYCAF4[1:0] SDLYAF4[1:0]
ILEDAF4SET[3:0]
W
6Ch
08h
SCYCAF2[1:0] SDLYAF2[1:0]
ILEDAF2SET[3:0]
Data for Matrix F2(DAF2)
Data for Matrix F3(DAF3)
Data for Matrix F4(DAF4)
6Fh
08h
SCYCAF5[1:0] SDLYAF5[1:0]
ILEDAF5SET[3:0]
W
Data for Matrix F5(DAF5)
70h
08h
SCYCAF6[1:0] SDLYAF6[1:0]
ILEDAF6SET[3:0]
W
Data for Matrix F6(DAF6)
71h
08h
SCYCAG0[1:0] SDLYAG0[1:0]
ILEDAG0SET[3:0]
W
Data for Matrix G0(DAG0)
72h
08h
SCYCAG1[1:0] SDLYAG1[1:0]
ILEDAG1SET[3:0]
W
Data for Matrix G1(DAG1)
73h
08h
SCYCAG2[1:0] SDLYAG2[1:0]
ILEDAG2SET[3:0]
W
Data for Matrix G2(DAG2)
74h
08h
SCYCAG3[1:0] SDLYAG3[1:0]
ILEDAG3SET[3:0]
W
Data for Matrix G3(DAG3)
75h
08h
SCYCAG4[1:0] SDLYAG4[1:0]
ILEDAG4SET[3:0]
W
Data for Matrix G4(DAG4)
76h
08h
SCYCAG5[1:0] SDLYAG5[1:0]
ILEDAG5SET[3:0]
W
Data for Matrix G5(DAG5)
77h
08h
SCYCAG6[1:0] SDLYAG6[1:0]
ILEDAG6SET[3:0]
W
Data for Matrix G6(DAG6)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
16/40
2013.02 - Rev.A
Technical Note
BD26503GUL
B-pattern register
Address default D7
D6
D5
D4
D3
D2
D1
D0
Block
R/W
Remark
01h
08h
SCYCB00[1:0] SDLYB00[1:0]
ILEDB00SET[3:0]
W
Data for Matrix 00(DB00)
02h
08h
SCYCB01[1:0] SDLYB01[1:0]
ILEDB01SET[3:0]
W
Data for Matrix 01(DB01)
03h
08h
SCYCB02[1:0] SDLYB02[1:0]
ILEDB02SET[3:0]
W
Data for Matrix 02(DB02)
04h
08h
SCYCB03[1:0] SDLYB03[1:0]
ILEDB03SET[3:0]
W
Data for Matrix 03(DB03)
05h
08h
SCYCB04[1:0] SDLYB04[1:0]
ILEDB04SET[3:0]
W
Data for Matrix 04(DB04)
06h
08h
SCYCB05[1:0] SDLYB05[1:0]
ILEDB05SET[3:0]
W
Data for Matrix 05(DB05)
07h
08h
SCYCB06[1:0] SDLYB06[1:0]
ILEDB06SET[3:0]
W
Data for Matrix 06(DB06)
08h
08h
SCYCB10[1:0] SDLYB10[1:0]
ILEDB10SET[3:0]
W
Data for Matrix 10(DB10)
09h
08h
SCYCB11[1:0] SDLYB11[1:0]
ILEDB11SET[3:0]
W
Data for Matrix 11(DB11)
0Ah
08h
SCYCB12[1:0] SDLYB12[1:0]
ILEDB12SET[3:0]
W
Data for Matrix 12(DB12)
0Bh
08h
SCYCB13[1:0] SDLYB13[1:0]
ILEDB13SET[3:0]
W
Data for Matrix 13(DB13)
0Ch
08h
SCYCB14[1:0] SDLYB14[1:0]
ILEDB14SET[3:0]
W
Data for Matrix 14(DB14)
0Dh
08h
SCYCB15[1:0] SDLYB15[1:0]
ILEDB15SET[3:0]
W
Data for Matrix 15(DB15)
0Eh
08h
SCYCB16[1:0] SDLYB16[1:0]
ILEDB16SET[3:0]
W
Data for Matrix 16(DB16)
0Fh
08h
SCYCB20[1:0] SDLYB20[1:0]
ILEDB20SET[3:0]
W
Data for Matrix 20(DB20)
10h
08h
SCYCB21[1:0] SDLYB21[1:0]
ILEDB21SET[3:0]
W
Data for Matrix 21(DB21)
11h
08h
SCYCB22[1:0] SDLYB22[1:0]
ILEDB22SET[3:0]
W
Data for Matrix 22(DB22)
12h
08h
SCYCB23[1:0] SDLYB23[1:0]
ILEDB23SET[3:0]
W
Data for Matrix 23(DB23)
13h
08h
SCYCB24[1:0] SDLYB24[1:0]
ILEDB24SET[3:0]
W
Data for Matrix 24(DB24)
14h
08h
SCYCB25[1:0] SDLYB25[1:0]
ILEDB25SET[3:0]
W
Data for Matrix 25(DB25)
15h
08h
SCYCB26[1:0] SDLYB26[1:0]
ILEDB26SET[3:0]
W
Data for Matrix 26(DB26)
16h
08h
SCYCB30[1:0] SDLYB30[1:0]
ILEDB30SET[3:0]
W
Data for Matrix 30(DB30)
17h
08h
SCYCB31[1:0] SDLYB31[1:0]
ILEDB31SET[3:0]
W
Data for Matrix 31(DB31)
18h
08h
SCYCB32[1:0] SDLYB32[1:0]
ILEDB32SET[3:0]
Data for Matrix 32(DB32)
19h
08h
SCYCB33[1:0] SDLYB33[1:0]
ILEDB33SET[3:0]
MATRIX W
Data
W
1Ah
08h
SCYCB34[1:0] SDLYB34[1:0]
ILEDB34SET[3:0]
W
Data for Matrix 34(DB34)
1Bh
08h
SCYCB35[1:0] SDLYB35[1:0]
ILEDB35SET[3:0]
W
Data for Matrix 35(DB35)
1Ch
08h
SCYCB36[1:0] SDLYB36[1:0]
ILEDB36SET[3:0]
W
Data for Matrix 36(DB36)
1Dh
08h
SCYCB40[1:0] SDLYB40[1:0]
ILEDB40SET[3:0]
W
Data for Matrix 40(DB40)
1Eh
08h
SCYCB41[1:0] SDLYB41[1:0]
ILEDB41SET[3:0]
W
Data for Matrix 41(DB41)
1Fh
08h
SCYCB42[1:0] SDLYB42[1:0]
ILEDB42SET[3:0]
W
Data for Matrix 42(DB42)
20h
08h
SCYCB43[1:0] SDLYB43[1:0]
ILEDB43SET[3:0]
W
Data for Matrix 43(DB43)
21h
08h
SCYCB44[1:0] SDLYB44[1:0]
ILEDB44SET[3:0]
W
Data for Matrix 44(DB44)
22h
08h
SCYCB45[1:0] SDLYB45[1:0]
ILEDB45SET[3:0]
W
Data for Matrix 45(DB45)
23h
08h
SCYCB46[1:0] SDLYB46[1:0]
ILEDB46SET[3:0]
W
Data for Matrix 46(DB46)
24h
08h
SCYCB50[1:0] SDLYB50[1:0]
ILEDB50SET[3:0]
W
Data for Matrix 50(DB50)
25h
08h
SCYCB51[1:0] SDLYB51[1:0]
ILEDB51SET[3:0]
W
Data for Matrix 51(DB51)
26h
08h
SCYCB52[1:0] SDLYB52[1:0]
ILEDB52SET[3:0]
W
Data for Matrix 52(DB52)
27h
08h
SCYCB53[1:0] SDLYB53[1:0]
ILEDB53SET[3:0]
W
Data for Matrix 53(DB53)
28h
08h
SCYCB54[1:0] SDLYB54[1:0]
ILEDB54SET[3:0]
W
Data for Matrix 54(DB54)
29h
08h
SCYCB55[1:0] SDLYB55[1:0]
ILEDB55SET[3:0]
W
Data for Matrix 55(DB55)
2Ah
08h
SCYCB56[1:0] SDLYB56[1:0]
ILEDB56SET[3:0]
W
Data for Matrix 56(DB56)
2Bh
08h
SCYCB60[1:0] SDLYB60[1:0]
ILEDB60SET[3:0]
W
Data for Matrix 60(DB60)
2Ch
08h
SCYCB61[1:0] SDLYB61[1:0]
ILEDB61SET[3:0]
W
Data for Matrix 61(DB61)
Data for Matrix 33(DB33)
2Dh
08h
SCYCB62[1:0] SDLYB62[1:0]
ILEDB62SET[3:0]
W
Data for Matrix 62(DB62)
2Eh
08h
SCYCB63[1:0] SDLYB63[1:0]
ILEDB63SET[3:0]
W
Data for Matrix 63(DB63)
2Fh
08h
SCYCB64[1:0] SDLYB64[1:0]
ILEDB64SET[3:0]
W
Data for Matrix 64(DB64)
30h
08h
SCYCB65[1:0] SDLYB65[1:0]
ILEDB65SET[3:0]
W
Data for Matrix 65(DB65)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
17/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address default
D7
D6
D5
D4
D3
D2
D1
D0
Block
R/W
Remark
31h
08h
SCYCB66[1:0] SDLYB66[1:0]
ILEDB66SET[3:0]
W
Data for Matrix 66(DB66)
32h
08h
SCYCB70[1:0] SDLYB70[1:0]
ILEDB70SET[3:0]
W
Data for Matrix 70(DB70)
33h
08h
SCYCB71[1:0] SDLYB71[1:0]
ILEDB71SET[3:0]
W
Data for Matrix 71(DB71)
34h
08h
SCYCB72[1:0] SDLYB72[1:0]
ILEDB72SET[3:0]
W
Data for Matrix 72(DB72)
35h
08h
SCYCB73[1:0] SDLYB73[1:0]
ILEDB73SET[3:0]
W
Data for Matrix 73(DB73)
36h
08h
SCYCB74[1:0] SDLYB74[1:0]
ILEDB74SET[3:0]
W
Data for Matrix 74(DB74)
37h
08h
SCYCB75[1:0] SDLYB75[1:0]
ILEDB75SET[3:0]
W
Data for Matrix 75(DB75)
38h
08h
SCYCB76[1:0] SDLYB76[1:0]
ILEDB76SET[3:0]
W
Data for Matrix 76(DB76)
39h
08h
SCYCB80[1:0] SDLYB80[1:0]
ILEDB80SET[3:0]
W
Data for Matrix 80(DB80)
3Ah
08h
SCYCB81[1:0] SDLYB81[1:0]
ILEDB81SET[3:0]
W
Data for Matrix 81(DB81)
3Bh
08h
SCYCB82[1:0] SDLYB82[1:0]
ILEDB82SET[3:0]
W
Data for Matrix 82(DB82)
3Ch
08h
SCYCB83[1:0] SDLYB83[1:0]
ILEDB83SET[3:0]
W
Data for Matrix 83(DB83)
3Dh
08h
SCYCB84[1:0] SDLYB84[1:0]
ILEDB84SET[3:0]
W
Data for Matrix 84(DB84)
3Eh
08h
SCYCB85[1:0] SDLYB85[1:0]
ILEDB85SET[3:0]
W
Data for Matrix 85(DB85)
3Fh
08h
SCYCB86[1:0] SDLYB86[1:0]
ILEDB86SET[3:0]
W
Data for Matrix 86(DB86)
40h
08h
SCYCB90[1:0] SDLYB90[1:0]
ILEDB90SET[3:0]
W
Data for Matrix 90(DB90)
41h
08h
SCYCB91[1:0] SDLYB91[1:0]
ILEDB91SET[3:0]
W
Data for Matrix 91(DB91)
42h
08h
SCYCB92[1:0] SDLYB92[1:0]
ILEDB92SET[3:0]
W
Data for Matrix 92(DB92)
43h
08h
SCYCB93[1:0] SDLYB93[1:0]
ILEDB93SET[3:0]
W
Data for Matrix 93(DB93)
44h
08h
SCYCB94[1:0] SDLYB94[1:0]
ILEDB94SET[3:0]
W
Data for Matrix 94(DB94)
45h
08h
SCYCB95[1:0] SDLYB95[1:0]
ILEDB95SET[3:0]
W
Data for Matrix 95(DB95)
46h
08h
SCYCB96[1:0] SDLYB96[1:0]
ILEDB96SET[3:0]
W
Data for Matrix 96(DB96)
47h
08h
SCYCBA0[1:0] SDLYBA0[1:0]
ILEDBA0SET[3:0]
W
Data for Matrix A0(DBA0)
48h
08h
SCYCBA1[1:0] SDLYBA1[1:0]
ILEDBA1SET[3:0]
Data for Matrix A1(DBA1)
49h
08h
SCYCBA2[1:0] SDLYBA2[1:0]
ILEDBA2SET[3:0]
MATRIX W
Data
W
4Ah
08h
SCYCBA3[1:0] SDLYBA3[1:0]
ILEDBA3SET[3:0]
W
Data for Matrix A3(DBA3)
4Bh
08h
SCYCBA4[1:0] SDLYBA4[1:0]
ILEDBA4SET[3:0]
W
Data for Matrix A4(DBA4)
4Ch
08h
SCYCBA5[1:0] SDLYBA5[1:0]
ILEDBA5SET[3:0]
W
Data for Matrix A5(DBA5)
4Dh
08h
SCYCBA6[1:0] SDLYBA6[1:0]
ILEDBA6SET[3:0]
W
Data for Matrix A6(DBA6)
4Eh
08h
SCYCBB0[1:0] SDLYBB0[1:0]
ILEDBB0SET[3:0]
W
Data for Matrix B0(DBB0)
4Fh
08h
SCYCBB1[1:0] SDLYBB1[1:0]
ILEDBB1SET[3:0]
W
Data for Matrix B1(DBB1)
50h
08h
SCYCBB2[1:0] SDLYBB2[1:0]
ILEDBB2SET[3:0]
W
Data for Matrix B2(DBB2)
51h
08h
SCYCBB3[1:0] SDLYBB3[1:0]
ILEDBB3SET[3:0]
W
Data for Matrix B3(DBB3)
52h
08h
SCYCBB4[1:0] SDLYBB4[1:0]
ILEDBB4SET[3:0]
W
Data for Matrix B4(DBB4)
53h
08h
SCYCBB5[1:0] SDLYBB5[1:0]
ILEDBB5SET[3:0]
W
Data for Matrix B5(DBB5)
54h
08h
SCYCBB6[1:0] SDLYBB6[1:0]
ILEDBB6SET[3:0]
W
Data for Matrix B6(DBB6)
55h
08h
SCYCBC0[1:0] SDLYBC0[1:0]
ILEDBC0SET[3:0]
W
Data for Matrix C0(DBC0)
56h
08h
SCYCBC1[1:0] SDLYBC1[1:0]
ILEDBC1SET[3:0]
W
Data for Matrix C1(DBC1)
57h
08h
SCYCBC2[1:0] SDLYBC2[1:0]
ILEDBC2SET[3:0]
W
Data for Matrix C2(DBC2)
58h
08h
SCYCBC3[1:0] SDLYBC3[1:0]
ILEDBC3SET[3:0]
W
Data for Matrix C3(DBC3)
59h
08h
SCYCBC4[1:0] SDLYBC4[1:0]
ILEDBC4SET[3:0]
W
Data for Matrix C4(DBC4)
5Ah
08h
SCYCBC5[1:0] SDLYBC5[1:0]
ILEDBC5SET[3:0]
W
Data for Matrix C5(DBC5)
5Bh
08h
SCYCBC6[1:0] SDLYBC6[1:0]
ILEDBC6SET[3:0]
W
Data for Matrix C6(DBC6)
5Ch
08h
SCYCBD0[1:0] SDLYBD0[1:0]
ILEDBD0SET[3:0]
W
Data for Matrix D0(DBD0)
Data for Matrix A2(DBA2)
5Dh
08h
SCYCBD1[1:0] SDLYBD1[1:0]
ILEDBD1SET[3:0]
W
Data for Matrix D1(DBD1)
5Eh
08h
SCYCBD2[1:0] SDLYBD2[1:0]
ILEDBD2SET[3:0]
W
Data for Matrix D2(DBD2)
5Fh
08h
SCYCBD3[1:0] SDLYBD3[1:0]
ILEDBD3SET[3:0]
W
Data for Matrix D3(DBD3)
60h
08h
SCYCBD4[1:0] SDLYBD4[1:0]
ILEDBD4SET[3:0]
W
Data for Matrix D4(DBD4)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
18/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address default
D7
D6
D5
D4
D3
D2
D1
D0
Block
R/W
Remark
61h
08h
SCYCBD5[1:0] SDLYBD5[1:0]
ILEDBD5SET[3:0]
W
Data for Matrix D5(DBD5)
62h
08h
SCYCBD6[1:0] SDLYBD6[1:0]
ILEDBD6SET[3:0]
W
Data for Matrix D6(DBD6)
63h
08h
SCYCBE0[1:0] SDLYBE0[1:0]
ILEDBE0SET[3:0]
W
Data for Matrix E0(DBE0)
64h
08h
SCYCBE1[1:0] SDLYBE1[1:0]
ILEDBE1SET[3:0]
W
Data for Matrix E1(DBE1)
65h
08h
SCYCBE2[1:0] SDLYBE2[1:0]
ILEDBE2SET[3:0]
W
Data for Matrix E2(DBE2)
66h
08h
SCYCBE3[1:0] SDLYBE3[1:0]
ILEDBE3SET[3:0]
W
Data for Matrix E3(DBE3)
67h
08h
SCYCBE4[1:0] SDLYBE4[1:0]
ILEDBE4SET[3:0]
W
Data for Matrix E4(DBE4)
68h
08h
SCYCBE5[1:0] SDLYBE5[1:0]
ILEDBE5SET[3:0]
W
Data for Matrix E5(DBE5)
69h
08h
SCYCBE6[1:0] SDLYBE6[1:0]
ILEDBE6SET[3:0]
W
Data for Matrix E6(DBE6)
6Ah
08h
SCYCBF0[1:0] SDLYBF0[1:0]
ILEDBF0SET[3:0]
W
Data for Matrix F0(DBF0)
6Bh
08h
SCYCBF1[1:0] SDLYBF1[1:0]
ILEDBF1SET[3:0]
W
Data for Matrix F1(DBF1)
6Ch
08h
SCYCBF2[1:0] SDLYBF2[1:0]
ILEDBF2SET[3:0]
6Dh
08h
SCYCBF3[1:0] SDLYBF3[1:0]
ILEDBF3SET[3:0]
MATRIX
W
Data
W
6Eh
08h
SCYCBF4[1:0] SDLYBF4[1:0]
ILEDBF4SET[3:0]
W
Data for Matrix F2(DBF2)
Data for Matrix F3(DBF3)
Data for Matrix F4(DBF4)
6Fh
08h
SCYCBF5[1:0] SDLYBF5[1:0]
ILEDBF5SET[3:0]
W
Data for Matrix F5(DBF5)
70h
08h
SCYCBF6[1:0] SDLYBF6[1:0]
ILEDBF6SET[3:0]
W
Data for Matrix F6(DBF6)
71h
08h
SCYCBG0[1:0] SDLYBG0[1:0]
ILEDBG0SET[3:0]
W
Data for Matrix G0(DBG0)
72h
08h
SCYCBG1[1:0] SDLYBG1[1:0]
ILEDBG1SET[3:0]
W
Data for Matrix G1(DBG1)
73h
08h
SCYCBG2[1:0] SDLYBG2[1:0]
ILEDBG2SET[3:0]
W
Data for Matrix G2(DBG2)
74h
08h
SCYCBG3[1:0] SDLYBG3[1:0]
ILEDBG3SET[3:0]
W
Data for Matrix G3(DBG3)
75h
08h
SCYCBG4[1:0] SDLYBG4[1:0]
ILEDBG4SET[3:0]
W
Data for Matrix G4(DBG4)
76h
08h
SCYCBG5[1:0] SDLYBG5[1:0]
ILEDBG5SET[3:0]
W
Data for Matrix G5(DBG5)
77h
08h
SCYCBG6[1:0] SDLYBG6[1:0]
ILEDBG6SET[3:0]
W
Data for Matrix G6(DBG6)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
19/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Register Map
Address 00H < Software Reset >
Address
R/W
Bit7
(Index)
00H
W
Initial value
00H
-
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
-
-
-
-
SFTRST
-
-
-
-
-
-
0
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
-
OSCEN
-
-
-
0
0
0
0
0
0
0
Bit 0 : SFTRST Software Reset
“0” : Reset cancel
“1” : Reset(All register initializing)
*SFTRST register return to 0 automatically.
Address 01H
Address
R/W
Bit7
(Index)
01H
W
Initial value
00H
0
Bit 3 : OSCEN OSC block ON/OFF control
“0” : OFF(Initial)
“1” : ON
This register should not change into “1 “→” 0” at the time of START (30h, D0) register =“1” setup (under lighting operation).
This register must be set to “0” after LED putting out lights (“START register = 0”), and please surely stop an internal oscillation circuit.
Address 11H < LED1-6 Enable >
Address
R/W
Bit7
(Index)
11H
W
Initial value
00H
0
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
LED6ON
LED5ON
LED4ON
LED3ON
LED2ON
LED1ON
0
0
0
0
0
0
0
Bit 0 : LED1ON LED1 ON/OFF setting
“0” : LED1 OFF(initial)
“1” : LED1 ON
Bit 1 : LED2ON LED2 ON/OFF setting
“0” : LED2 OFF(initial)
“1” : LED2 ON
Bit 2 : LED3ON LED3 ON/OFF setting
“0” : LED3 OFF(initial)
“1” : LED3 ON
Bit 3 : LED4ON LED4 ON/OFF setting
“0” : LED4 OFF(initial)
“1” : LED4 ON
Bit 4 : LED5ON LED5 ON/OFF setting
“0” : LED5 OFF(initial)
“1” : LED5 ON
Bit 5 : LED6ON LED6 ON/OFF setting
“0” : LED6 OFF(initial)
“1” : LED6 ON
* Current setting follows ILEDAXXSET[3:0] or ILEDBXXSET[3:0] register.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
20/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address 12H < LED7-12 Enable >
Address
R/W
Bit7
(Index)
12H
W
Initial value
00H
0
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
LED12ON
LED11ON
LED10ON
LED9ON
LED8ON
LED7ON
0
0
0
0
0
0
0
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
LED17ON
LED16ON
LED15ON
LED14ON
LED13ON
0
0
0
0
0
0
Bit 0 : LED7ON LED7 ON/OFF setting
“0” : LED7 OFF(initial)
“1” : LED7 ON
Bit 1 : LED8ON LED8 ON/OFF setting
“0” : LED8 OFF(initial)
“1” : LED8 ON
Bit 2 : LED9ON LED9 ON/OFF setting
“0” : LED9 OFF(initial)
“1” : LED9 ON
Bit 3 : LED10ON LED10 ON/OFF setting
“0” : LED10 OFF(initial)
“1” : LED10 ON
Bit 4 : LED11ON LED11 ON/OFF setting
“0” : LED11 OFF(initial)
“1” : LED11 ON
Bit 5 : LED12ON LED12 ON/OFF setting
“0” : LED12 OFF(initial)
“1” : LED12 ON
* Current setting follows ILEDAXXSET[3:0] or ILEDBXXSET[3:0] register.
Address 13H < LED13-17 Enable >
Address
R/W
Bit7
Bit6
(Index)
13H
W
Initial value
00H
0
0
Bit 0 : LED13ON LED13 ON/OFF setting
“0” : LED13 OFF(initial)
“1” : LED13 ON
Bit 1 : LED14ON LED14 ON/OFF setting
“0” : LED14 OFF(initial)
“1” : LED14 ON
Bit 2 : LED15ON LED15 ON/OFF setting
“0” : LED15 OFF(initial)
“1” : LED15 ON
Bit 3 : LED16ON LED16 ON/OFF setting
“0” : LED16 OFF(initial)
“1” : LED16 ON
Bit 4 : LED17ON LED17 ON/OFF setting
“0” : LED17 OFF(initial)
“1” : LED17 ON
* Current setting follows ILEDAXXSET[3:0] or ILEDBXXSET[3:0] register.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
21/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address 17H < LED14-17 TDMA Enable >
Address
R/W
Bit7
Bit6
(Index)
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
17H
W
-
-
-
-
LED17
TDMAON
LED16
TDMAON
LED15
TDMAON
LED14
TDMAON
Initial value
0FH
0
0
0
0
1
1
1
1
Bit 0 : LED14TDMAON TDMA control Enable setting for LED14
“0” : TDMA control for LED14 is OFF
LED current value is set by ILEDAD0SET[3:0] or ILEDBD0SET[3:0] (it changes by the OAB [7Fh, D1] register).
It becomes the setting value of ILEDAD0SET [3:0] until scroll reset is carried out
by SCLRST (2Eh, D0) register =“1” after a scroll stop, under scrolling.
“1” : TDMA control for LED14 is ON (initial)
Bit 1 : LED15TDMAON TDMA control Enable setting for LED15
“0” : TDMA control for LED15 is OFF
LED current value is set by ILEDAE0SET[3:0] or ILEDBE0SET[3:0]. (it changes by the OAB [7Fh, D1] register).
It becomes the setting value of ILEDAE0SET [3:0] until scroll reset is carried out
by SCLRST (2Eh, D0) register =“1” after a scroll stop, under scrolling.
“1” : TDMA control for LED15 is ON (initial)
Bit 2 : LED16TDMAON TDMA control Enable setting for LED16
“0” : TDMA control for LED16 is OFF
LED current value is set by ILEDAF0SET[3:0] or ILEDBF0SET[3:0]. (it changes by the OAB [7Fh, D1] register).
It becomes the setting value of ILEDAF0SET [3:0] until scroll reset is carried out
by SCLRST (2Eh, D0) register =“1” after a scroll stop, under scrolling.
“1” : TDMA control for LED16 is ON (initial)
Bit 3 : LED17TDMAON TDMA control Enable setting for LED17
“0” : TDMA control for LED17 is OFF
LED current value is set by ILEDAG0SET[3:0] or ILEDBG0SET[3:0]. (it changes by the OAB [7Fh, D1] register).
It becomes the setting value of ILEDAG0SET [3:0] until scroll reset is carried out
by SCLRST (2Eh, D0) register =“1” after a scroll stop, under scrolling.
“1” : TDMA control for LED17 is ON (initial)
* The setting change at the time of START (30h, D0) register =“1” of this register is prohibition.
* LED, which is set to “0”(TDMA off), is put on and not controlled by SYNC terminal however
SYNCON (21h,D2) register is set to “1”.
* Please use this register only in the following combination.
LED17TDMAON
LED16TDMAON
LED15TDMAON
LED14TDMAON
0
0
0
0
0
0
0
1
0
0
1
1
0
1
1
1
1
1
1
1
Except the above: Prohibition
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
22/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address 20H < LED1-17 PWM setting >
Address
R/W
Bit7
Bit6
(Index)
20H
W
Initial value
00H
0
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
PWMSET [5:0]
0
0
0
0
0
0
0
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
SYNCACT
SYNCON
CLKOUT
CLKIN
0
0
0
0
0
0
Bit 5-0 : PWMSET[5:0] LED1-17 PWM DUTY setting
“000000” : 0/63=0%(initial)
“000001” : 1/63=1.59%
:
:
“100000” : 32/63=50.8%
:
:
“111110” : 62/63=98.4%
“111111” : 63/63=100%
*Please refer to Description of operation, chapter 2
Address 21H < SYNC operation control >
Address
R/W
Bit7
Bit6
(Index)
21H
W
Initial value
00H
0
Bit5
0
Bit 0 : CLKIN Selection CLK for PWM control
“0” : Internal OSC (initial)
“1” : External CLK input
Bit 1 : CLKOUT Output CLK enable
“0” : CLK is not output (initial)
“1” : Output selected CLK from CLKOUT pin
As for CLKIN & CLKOUT, setting change is forbidden under OSCEN (01h, D3) register =“1” and also under clock input to CLKIN terminal.
Bit 2 : SYNCON SYNC operation enable
“0” : Disable SYNC operation (initial)
“1” : SYNC pin control LED driver ON/OFF
Bit 3 : SYNCACT SYNC operation setting
“0” : When SYNC pin is “L”, LED drivers are ON (initial)
“1” : When SYNC pin is “H”, LED drivers are ON
Address 2DH < PWM, SLOPE, SCROLL ON/OFF setting >
Address
R/W
Bit7
Bit6
Bit5
(Index)
2DH
W
Initial value
00H
0
0
0
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
PWMEN
SLPEN
SCLEN
0
0
0
0
0
Bit 0 : SCLEN SCROLL operation ON/OFF setting
“0” : SCROL operation OFF(initial value)
“1” : SCROL operation ON
Bit 1 : SLPEN SLOPE operation ON/OFF setting
“0” : SLOPE operation OFF(initial value)
“1” : SLOPE operation ON
Bit 2 : PWMEN PWM control at LED1-17 ON/OFF setting
“0” : PWM operation is invalid(initial value)
“1” : PWM operation is valid
*Please refer to Description of operation, chapter 2
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
23/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address 2EH < Reset scroll >
Address
R/W
Bit7
(Index)
2EH
W
Initial value
00H
0
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
-
-
-
-
SCLRST
0
0
0
0
0
0
0
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
UP
DOWN
RIGHT
LEFT
0
0
0
0
Bit 0 : SCLRST Reset scroll state
“0” : Not reset(initial value)
“1” : Reset scroll state
* SCLRST register return to 0 automatically
Address 2FH < Scroll setting >
Address
R/W
Bit7
(Index)
2FH
W
Initial value
00H
0
SCLSPEED [2:0]
0
0
0
Bit 0 : LEFT Setting the scroll operation from right to left
“0” : Scroll operation OFF (initial value)
“1” : Scroll operation ON
Bit 1 : RIGHT Setting the scroll operation from left to right
“0” : Scroll operation OFF (initial value)
“1” : Scroll operation ON
*When LEFT operation is valid, RIGHT setting is ignored.
Bit 2 : DOWN Setting the scroll operation from top to bottom
“0” : Scroll operation OFF (initial value)
“1” : Scroll operation ON
Bit 3 : UP Setting the scroll operation from bottom to top
“0” : Scroll operation OFF (initial value)
“1” : Scroll operation ON
*When UP operation is valid, DOWN setting is ignored.
Bit 6-4 : SCLSPEED[2:0] Setting the scroll speed
“000” : 0.1s (initial value)
“001” : 0.2s
“010” : 0.3s
“011” : 0.4s
“100” : 0.5s
“101” : 0.6s
“110” : 0.7s
“111” : 0.8s
*Setting time is based on OSC frequency, and the above-mentioned shows the value under Typ (1.2MHz).
*Setting time changes on CLKIN terminal input frequency at the external clock operation.
Example)
CLKIN input frequency=1.2MHz→”000”: 0.1sec (it is the same as the above)
CLKIN input frequency=2.4MHz→”000”: 0.05sec
CLKIN input frequency= 0.6MHz→”000”: 0.2sec
Address 30H < LED Matrix control >
Address
R/W
Bit7
Bit6
(Index)
30H
W
Initial value
00H
0
0
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
-
-
-
START
0
0
0
0
0
0
Bit 0 : START Lighting/turning off bit of MATRIX LED(LED1-17)
“0” : MATRIX LED(LED1-17) Lights out
“1” : MATRIX LED(LED1-17) Lighting, SLOPE and SCROLL sequence start
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
24/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address 31H < Matrix data clear >
Address
R/W
Bit7
(Index)
31H
W
Initial value
00H
0
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
-
-
-
CLRB
CLRA
0
0
0
0
0
0
0
Bit 0 : CLRA Reset A-pattern register
“0” : A-pattern register is not reset and writable(initial value)
“1” : A-pattern register is reset
Bit 0 : CLRB Reset B-pattern register
“0” : B-pattern register is not reset and writable(initial value)
“1” : B-pattern register is reset
*CLRA and CLRB register return to 0 automatically.
Address 7FH < Register map change >
Address
R/W
Bit7
Bit6
(Index)
7FH
W
Initial value
00H
0
0
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
-
IAB
OAB
RMCG
0
0
0
0
0
0
Bit 0 : RMCG Change register map
“0” : Control register is selected(initial value)
“1” : A-pattern register or B-pattern register is selected
Bit 1 : OAB Select register to output for matrix
“0” : A-pattern register is selected(initial value)
“1” : B-pattern register is selected
Bit 2 : IAB Select register to write matrix data
“0” : A-pattern register is selected(initial value)
“1” : B-pattern register is selected
* It is prohibition to write A-pattern data when A-pattern is displaying (OAB=0).
Also, it is prohibition to write B-pattern data when B-pattern is displaying (OAB=1).
Change of a display picture should be done by change of the OAB register, after updating of a non-displaying pattern register.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
25/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address 01H-77H < A-pattern register data >
Address
R/W
Bit7
Bit6
(Index)
01-77H
W
SCYCAXX [1:0]
Initial value
08H
0
0
Bit5
Bit4
Bit3
SDLYAXX [1:0]
0
0
Bit2
Bit1
Bit0
ILEDAXXSET [3:0]
1
0
0
0
Bit 3-0 : ILEDAXXSET[3:0] LED output current setting for A-pattern matrix data
“0000” : 0.00mA
“0001” : 1.33mA
“0010” : 2.67mA
“0011” : 4.00mA
“0100” : 5.33mA
“0101” : 6.67mA
“0110” : 8.00mA
“0111” : 9.33mA
“1000” : 10.67mA(initial value)
“1001” : 12.00mA
“1010” : 13.33mA
“1011” : 14.67mA
“1100” : 16.00mA
“1101” : 17.33mA
“1110” : 18.67mA
“1111” : 20.00mA
Bit 5-4 : SDLYAXX[1:0] SLOPE delay setting for A-pattern matrix
“00” :
No delay(initial value)
“01” :
1/4x(slope cycle time)
“10” :
1/2x(slope cycle time)
“11” :
3/4x(slope cycle time)
Bit 7-6 : SCYCAXX[1:0] SLOPE cycle time setting for A-pattern matrix
“00” :
No SLOPE control(initial value)
“01” :
1s(=slope cycle time)
“10” :
2s(=slope cycle time)
“11” :
3s(=slope cycle time)
* The “XX” shows the matrix number from “00” to “G6”. Please refer 7x17 LED Matrix coordinate.
*Setting time is based on OSC frequency, and the above-mentioned shows the value under Typ (1.2MHz).
*Setting time changes on CLKIN terminal input frequency at the external clock operation.
Example)
CLKIN input frequency=1.2MHz→”01”: Slope cycle =1sec (it is the same as the above)
CLKIN input frequency=2.4MHz→”01”: Slope cycle =0.5sec
CLKIN input frequency=0.6MHz→”01”: Slope cycle =2sec
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
26/40
2013.02 - Rev.A
Technical Note
BD26503GUL
Address 01H-77H < B-pattern register data >
Address
R/W
Bit7
Bit6
(Index)
01-77H
W
SCYCBXX[1:0]
Initial value
08H
0
0
Bit5
Bit4
Bit3
SDLYBXX[1:0]
0
0
Bit2
Bit1
Bit0
ILEDBXXSET[3:0]
1
0
0
0
Bit 3-0 : ILEDBXXSET[3:0] LED output current setting for B-pattern matrix data
“0000” :
0.00mA
“0001” :
1.33mA
“0010” :
2.67mA
“0011” :
4.00mA
“0100” :
5.33mA
“0101” :
6.67mA
“0110” :
8.00mA
“0111” :
9.33mA
“1000” : 10.67mA(initial value)
“1001” : 12.00mA
“1010” : 13.33mA
“1011” : 14.67mA
“1100” : 16.00mA
“1101” : 17.33mA
“1110” : 18.67mA
“1111” : 20.00mA
Bit 5-4 : SDLYBXX[1:0] SLOPE delay setting for B-pattern matrix
“00” :
No delay(initial value)
“01” :
1/4x(slope cycle time)
“10” :
1/2x(slope cycle time)
“11” :
3/4x(slope cycle time)
Bit 7-6 : SCYCBXX[1:0] SLOPE cycle time setting for B-pattern matrix
“00” :
No SLOPE control(initial value)
“01” :
1s(=slope cycle time)
“10” :
2s(=slope cycle time)
“11” :
3s(=slope cycle time)
* The “XX” shows the matrix number from “00” to “G6”. Please refer 7x17 LED Matrix coordinate.
*Setting time is based on OSC frequency, and the above-mentioned shows the value under Typ (1.2MHz).
*Setting time changes on CLKIN terminal input frequency at the external clock operation.
Example)
CLKIN input frequency=1.2MHz→”01”: Slope cycle =1sec (it is the same as the above)
CLKIN input frequency=2.4MHz→”01”: Slope cycle =0.5sec
CLKIN input frequency=0.6MHz→”01”: Slope cycle =2sec
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
27/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Description of operation
1. LED Matrix
1-1. Lighting method of dot Matrix
It can control 7 x 17 Matrix.
VINSW
SW 1
40
50
60
70
80
90
A0
B0
C0
D0
E0
F0
G0
01
11
21
31
41
51
61
71
81
91
A1
B1
C1
D1
E1
F1
G1
02
12
22
32
42
52
62
72
82
92
A2
B2
C2
D2
E2
F2
G2
03
13
23
33
43
53
63
73
83
93
A3
B3
C3
D3
E3
F3
G3
04
14
24
34
44
54
64
74
84
94
A4
B4
C4
D4
E4
F4
G4
05
15
25
35
45
55
65
75
85
95
A5
B5
C5
D5
E5
F5
G5
06
16
26
36
46
56
66
76
86
96
A6
B6
C6
D6
E6
F6
G6
SW 4
SW 5
TDMA
LED17
LED16
TDMA
LED15
TDMA
LED14
TDMA
TDMA
LED13
LED12
TDMA
TDMA
LED11
LED10
TDMA
TDMA
LED9
LED8
LED4
TDMA
LED3
LED2
TDMA
TDMA
LED1
T06
TDMA
SW 7
LED7
SW 6
TDMA
T05
30
LED6
T04
20
TDMA
T03
10
LED5
T02
SW 3
00
TDMA
T01
SW 2
TDMA
T00
Fig.10 7 x 17 LED Matrix coordinate
The SW1 – SW7 is turned on by serial. LED is driven one by one within the ON period.
SW 1
SW 2
SW 3
SW 4
SW 5
SW 6
SW 7
LED1
・・
・
・・
DA00
DA01
DA02
DA03
DA04
DA05
DA06
DA00
DA02
DA03
DAG0
DAG1
DAG2
DAG3
DAG4
DAG5
DAG6
DAG0
DAG2
DAG3
LED17
PW M period= 635clk(@ 1.2MHz、529.2us)
1/7TDMA period= 680clk(@ 1.2MHz、566.67us)
Duty is variable 0/63 and between
1/63 and 63/63 of PW M period.
TDMA period= 4760clk(@ 1.2MHz、3.97m s)
Fig.11 SW timing
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
28/40
2013.02 - Rev.A
Technical Note
BD26503GUL
1-2. LED lighting example
The firefly lighting example.
The following command set is the example of LED matrix firefly lighting.
It can control the turn on/off time in detail by SLOPE setting registers.
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
7FH
21H
01H
11H
12H
13H
20H
1FH
01-77H
7FH
2DH
30H
30H
00000000
00000000
00001000
00111111
00111111
00011111
00111111
00000001
xxxxxxxx
00000000
00000100
00000001
00000000
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
Select control register
Select internal OSC for CLK
Start OSC
Set LED1-6 enable
Set LED7-12 enable
Set LED13-17 enable
Set Max Duty at Slope
Select A-pattern or B-pattern register, Select A-pattern register to write matrix data
Write A-pattern data
Select control register, Select A-pattern register to output for matrix
Set SLOPE control enable
Start SLOPE sequence
Lights out
29/40
2013.02 - Rev.A
Technical Note
BD26503GUL
2. LED Driver Current, SLOPE and SCROLL Sequence Control
2-1. LED driver current control
It can be controlled PWM Duty and DC current for LED driver current.
Item
Control object
Setting Registers
Control detail
Name *
Bits
(A)
PWM Duty
Whole matrix
0/63~63/63 (64 step)
PWMSET
6
(B)
DC current
Each matrix dot
0~20.00mA (16 step)
ILEDAXXSET
ILEDBXXSET
4
* The “XX” shows the matrix number from “00” to “G6”. Please refer 7x17 LED Matrix coordinate.
Minimum width=5clk
Duty is variable by PWMSET[5:0] or slope control between 0/63 and 63/63.
(Duty 1/63=10clk)
(A) PWM Duty
LED Drive
Internal enable signal
OFF
Clk
(ex.1.2MHz at
internal OSC)
~
~
~
~
680clk = 1/7TDMA
Fig.12 LED output current timing and PWM cycle
635clk of PWM period is set in the 1/7 TDMA period (680clk).
PWM is operated 63 steps of 10clk. TDMA period is 3.97s (@1.2MHz).
Moreover, it has the starting waiting time of a constant current driver by 5clk(s).
PWM”H” time turns into ON time after waiting 5 clk.
(However, LED driver is set “OFF” compulsorily at PWM=0% setting.)
5clk wait
LED Drive
OFF
Internal enable signal
PWM = 0/63 setting
0mA
PWM = 1/63 setting
5clk
1/63 = 10clk
PWM = 2/63 setting
5clk
Fig.13
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
2/63 = 20clk
LED output current timing and a PWM cycle
30/40
2013.02 - Rev.A
Technical Note
BD26503GUL
2-2. SLOPE control
It can be controlled Delay and SLOPE cycle time for LED driver current.
Item
Control object
Setting Registers
Control detail
(A)
Delay
Each matrix dot
0~3/4 x slope cycle time
(4 step)
(B)
SLOPE cycle time
Each matrix dot
0~3sec (4 step)
Name *
SDLYAXX
SDLYBXX
SCYCAXX
SCYCBXX
Bits
2
2
* The “XX” shows the matrix number from “00” to “G6”. Please refer 7x17 LED Matrix coordinate.
PWM Duty
1/4 of SLOPE cycle time
100%
0%
Time
SLOPE 1
(A) Delay
SLOPE 2
SLOPE 3
SLOPE 4
Repeat SLOPE 1-4
(B) SLOPE cycle time
START
Fig.14 SLOPE operation
When SLPEN=“1” and PWMEN=SCLEN=“0”, SLOPE operation starts (like upper figure).
After “Delay” time SLOPE1-4 operation repeat.
Each period of SLOPE1-4 is 1/4 of SLOPE cycle time.
SLOPE 1: 1 step is 1/63 of SLOPE 1 period. Duty is increased 1.587% step by step.
SLOPE 2: Duty is fixed at 100%.
SLOPE 3: 1 step is 1/63 of SLOPE 1 period. Duty is decreased 1.587% step by step.
SLOPE 4: Duty is fixed at 0%.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
31/40
2013.02 - Rev.A
Technical Note
BD26503GUL
2-3. SCROLL control
2-3-1 Normal operation
A-pattern data
B-pattern data
LEFT scroll
RIGHT scroll
UP scroll
DOWN scroll
2-3-2 Operation at TDMA off setting (The following is the matrix arrangement which has not assigned LED16-LED17.)
A-pattern data
LEFT scroll
TDMA off B-pattern data
RIGHT scroll
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TDMA off
UP scroll
32/40
DOWN scroll
2013.02 - Rev.A
Technical Note
BD26503GUL
2-4. Relation of PWM, SLOPE and SCROLL control
Register of condition and enable
PWM
Condition
PWMSET [5:0]
Enable
SLOPE
SCYCXXX [1:0]
SDLYXXX [1:0]
SCROLL
SCLSPEED [2:0]
UP/DOWN/RIGHT/LEFT
SLPEN
SCLEN
PWMEN
Combination of command
Operation
PWMEN
SLPEN
SCLEN
1
OFF
OFF
OFF
2
ON
OFF
OFF
3
OFF
ON
OFF
4
ON
ON
OFF
5
OFF
OFF
ON
ON
OFF
ON
OFF
ON
ON
ON
ON
ON
Do not use
this combination
PW M D uty
100%
Operation 1
0%
Tim e
S TA RT
PW M D uty
100%
Operation 2
D uty set at PW M SE T[5:0]( 0/63~ 63/63)
0%
Tim e
S TA RT
PW M D uty
D elay
S LO P E cyc le tim e
100%
Operation 3
0%
Tim e
S TA RT
PW M D uty
D elay
S LO P E cyc le tim e
100%
D uty s et at PW M S E T[5:0]
( 0/63~ 63/63)
Operation 4
0%
Tim e
S TA RT
PWM Duty
Operation 5
100%
0%
Time
START
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
33/40
2013.02 - Rev.A
Technical Note
BD26503GUL
3. Power up sequence
VBAT
2.5V
T VBATO N =m in 0m s
T VBATO FF2 =m in 0m s
2.5V
VINSW
T VINSW ON =m in 0m s
T VINSW O FF =m in 0.1m s
T VIOO N =m in 0.5m s
T VIO O FF =m in 1m s
1.55V
VIO
0.4V
RESETB
T RSTB =m in 0.1m s
COM MAND
Inhibit
Possible
T RST =m in 0m s
Inhibit
Fig.15 Power up sequence
Please take sufficient wait time for each Power/Control signal.
However, if VBATTTSD(typ:175℃), the command input is not effective because of the protection operation
Please rise VIO voltage after VBAT voltage raise more 2.5V, and fall VIO voltage after VBAT voltage fall less 0.4V.
4. Reset
There are two kinds of reset, software reset and hardware reset
(1)Software reset
・All the registers are initialized by SFTRST=“1”.
・SFTRST is an automatically returned to “0”. (Auto Return 0).
(2)Hardware reset
・It shifts to hardware reset by changing RESETB pin “H” → “L”.
・The condition of all the registers under hardware reset pin is returned to the Initial Value
and it stops accepting all address.all LED driver turn off.
・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”.
RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.
5. Thermal shutdown
A thermal shutdown function is effective at all blocks of those other than VREF.
Return to the state before detection automatically at the time of release.
The thermal shutdown function is detection temperature that it works is about 175℃
Detection temperature has a hysteresis, and detection release temperature is about 150℃(Design reference value)
6. UVLO Function (VBAT Voltage Low-Voltage Detection)
UVLO function is effective at all blocks of those other than VREF, and when detected, those blocks function is stopped.
Return to the state before detection automatically at the time of release.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
34/40
2013.02 - Rev.A
Technical Note
BD26503GUL
7. I/O
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.
VBAT
VIO
RESETB=L, Output “H”
SCL
(SDA)
Level
Shift
EN
LOGIC
RESETB
Fig.16 Input disabling by RESETB
8. Standard Clock Input and Output
It is possible to carry out synchronous operation of two or more ICs using the input-and-output function of a standard clock.
CLKOUT
PMOS
Register : CLKOUT
TDMA
CLKIN
Switch
LED Matrix
Controller
SEL
OSC
LED
Driver
Register : CLKIN
SYNC
Register: SYNCON
Fig.17 I/O part equivalent circuit diagram
・When a clock is supplied from the exterior
Inputting an external standard clock from CLKIN and setting register CLKIN=1, IC operates with the clock inputted
from CLKIN as a standard clock.
・When the built-in oscillation circuit of one IC is used
When a clock cannot be supplied from the exterior, it is possible to synchronize between ICs by the connection as
the following figure.
When a clock is strung
IC1
IC2
IC3
OSC
CLKIN
OSC
CLKOUT
CLKIN
OSC
CLKOUT
CLKIN
CLKOUT
When a clock is supplied from IC1
IC1
IC2
IC3
OSC
CLKIN
Fig.18
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
OSC
CLKOUT
CLKIN
OSC
CLKOUT
CLKIN
CLKOUT
It is an example of application for the usage of two or more.
35/40
2013.02 - Rev.A
Technical Note
BD26503GUL
9. External ON/OFF Synchronization (SYNC Terminal)
Lighting of LED that synchronized with the external signal is possible.
By setting H/L of SYNC terminal, LED drivers output is set ON/OFF.
It’s asynchronous operation with the internal TDMA control.
CLKOUT
PMOS
Register : CLKOUT
TDMA
CLKIN
Switch
LED Matrix
Controller
SEL
OSC
LED
Driver
Register : CLKIN
SYNC
Register : SYNCON
Fig.19 I/O part equivalent circuit diagram
10. About terminal processing of the function which is not used
Please set up a test terminal and the unused terminal as the following table.
Especially, if an input terminal is not fixed, it may occur the unstable state of a device and the unexpected internal current.
Terminal name
Processing
Reason
SYNC
GND Short
The input terminal
CLKIN
GND Short
The input terminal
CLKOUT
Open
The output terminal
TEST1 – TEST5
GND Short
The input terminal for a test
TESTO
Open
The output terminal for a test
DO
Open
The output terminal
LED Terminal
GND Short
In order to avoid an unfixed state.
(A register setup in connection with LED terminal that is not used is forbidden.)
SW Terminal
VINSW Short
In order to avoid an unfixed state.
(A register setup in connection with SW terminal that is not used is forbidden.)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
36/40
2013.02 - Rev.A
Technical Note
BD26503GUL
11.About the prevention of a little lighting LED from SW pin’s parasitic capacitance
The LED little light up by SW pin’s parastic capacitance maybe that it depends on LED’s sensitivity of current though
LED current setting is 0mA.
It improves this problem that the register (reference value: 1MΩ) is set up between SW pin and GND pin.
Fig.20 example: A little lighting LED
Matrix: SW1-LED1=0mA, SW2-LED1=20mA
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
37/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●PCB pattern of the Power dissipation measuring board
1st layer(component)
2nd layer
3rd layer
4th layer
5th layer
6th layer
7th layer
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
8th layer(solder)
38/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Notes for use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety
measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention
to the interference by common impedance of layout pattern when there are plural power supplies and ground lines.
Especially, when there are ground pattern for small signal and ground pattern for large current included the external
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low
temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric
transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin
and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal shutdown circuit (TSD)
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating
the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do
not continuously use the LSI with this circuit operating or use the LSI assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in
actual states of use.
(10) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our
company person in charge.
(11) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width
of ground wiring, and routing of wiring.
(12) About the function description or application note or more.
The function description and the application notebook are the design materials to design a set. So, the contents of the
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the
external elements.
(13) SW1-7 don’t have short protection.
When need protection, please use fuse element.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
39/40
2013.02 - Rev.A
Technical Note
BD26503GUL
●Ordering part number
B
D
Part No.
2
6
5
Part No.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
0
3
G
U
L
Package
GUL : VCSP50L3
40/40
-
E
2
Packaging and forming specification
E2: Embossed tape and reel
2013.02 - Rev.A
Datasheet
Notice
Precaution on using ROHM Products
1.
Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you
(Note 1)
, transport
intend to use our Products in devices requiring extremely high reliability (such as medical equipment
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific
Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN
USA
EU
CHINA
CLASSⅢ
CLASSⅡb
CLASSⅢ
CLASSⅢ
CLASSⅣ
CLASSⅢ
2.
ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3.
Our Products are designed and manufactured for use under standard conditions and not under any special or
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any
special or extraordinary environments or conditions. If you intend to use our Products under any special or
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of
product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning
residue after soldering
[h] Use of the Products in places subject to dew condensation
4.
The Products are not subject to radiation-proof design.
5.
Please verify and confirm characteristics of the final or mounted products in using the Products.
6.
In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7.
De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual
ambient temperature.
8.
Confirm that operation temperature is within the specified range described in the product specification.
9.
ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1.
When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2.
In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the
ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Notice - GE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.002
Datasheet
Precautions Regarding Application Examples and External Circuits
1.
If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2.
You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1.
Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2.
Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3.
Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4.
Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
QR code printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,
please consult with ROHM representative in case of export.
Precaution Regarding Intellectual Property Rights
1.
All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable
for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2.
No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the information contained in this document.
Other Precaution
1.
This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2.
The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3.
In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4.
The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
Notice - GE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.002
Datasheet
General Precaution
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.
ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s
representative.
3.
The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or
concerning such information.
Notice – WE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.001