0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD3509MUV

BD3509MUV

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    BD3509MUV - Ultra Low Dropout Linear Regulators for PC Chipsets - Rohm

  • 数据手册
  • 价格&库存
BD3509MUV 数据手册
High-performance Regulator IC Series for PCs Ultra Low Dropout Linear Regulators for PC Chipsets BD3508MUV, BD3509MUV No.09030EAT22 ● Description The BD3508MUV / BD3509MUV ultra low-dropout linear chipset regulator operates from a very low input supply, and offers ideal performance in low input voltage to low output voltage applications. It incorporates a built-in N-MOSFET power transistor to minimize the input-to-output voltage differential to the ON resistance (RON MAX=100mΩ/50mΩ) level. By lowering the dropout voltage in this way, the regulator realizes high current output (Iomax=3.0A/4.0A) with reduced conversion loss, and thereby obviates the switching regulator and its power transistor, choke coil, and rectifier diode. Thus, the BD3508MUV / BD3509MUV are designed to enable significant package profile downsizing and cost reduction. An external resistor allows the entire range of output voltage configurations between 0.65 and 2.7V, while the NRCS (soft start) function enables a controlled output voltage ramp-up, which can be programmed to whatever power supply sequence is required. ● Features 1) Internal high-precision reference voltage circuit (0.65V±1%) 2) Built-in VCC under voltage lock out circuit (VCC=3.80V) 3) NRCS (soft start) function reduces the magnitude of in-rush current 4) Internal Nch MOSFET driver offers low ON resistance (65mΩ/28mΩ typ) 5) Built-in current limit circuit (3.0A/4.0A min) 6) Built-in thermal shutdown (TSD) circuit 7) Variable output (0.65~2.7V) 8) Incorporates high-power VQFN020V4040 package: 4.0×4.0×1.0(mm) 9) Tracking function ● Applications Notebook computers, Desktop computers, LCD-TV, DVD, Digital appliances ● Model Lineup Maximum output current 3A 4A Package VQFN020V4040 VCC=5V BD3508MUV BD3509MUV www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 1/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Absolute Maximum Ratings (Ta=100℃) BD3508MUV / BD3509MUV Limit BD3508MUV BD3509MUV 6.0 *1 6.0 *1 6.0*1 6.0 6.0 0.34 *2 0.70 *3 1.21 *4 3.56 *5 -10~+100 -55~+125 +150 Technical Note Parameter Input Voltage 1 Input Voltage 2 Input Voltage 3 Enable Input Voltage Power Good Input Voltage Power Dissipation 1 Power Dissipation 2 Power Dissipation 3 Power Dissipation 4 Operating Temperature Range Storage Temperature Range Maximum Junction Temperature Symbol VCC VIN VDD Ven VPGOOD Pd1 Pd2 Pd3 Pd4 Topr Tstg Tjmax Unit V V V V V W W W W ℃ ℃ ℃ *1 Should not exceed Pd. *2 Reduced by 4mW/℃ for each increase in Ta≧25℃(no heat sink) *3 1 layer, mounted on a board 74.2mm×74.2mm×1.6mm Glass-epoxy PCB (Copper foil area : 10.29mm2) *4 4 layers, mounted on a board 74.2mm×74.2mm×1.6mm Glass-epoxy PCB (Copper foil area : 10.29mm2) , copper foil in each layers. *5 4 layers, mounted on a board 74.2mm×74.2mm×1.6mm Glass-epoxy PCB (Copper foil area : 5505mm2) , copper foil in each layers. ●Operating Conditions(Ta=25℃) Parameter Input Voltage 1 Input Voltage 2 Input Voltage 3 Output Voltage setting Range Enable Input Voltage NRCS capacity Symbol VCC VIN VDD Vo Ven CNRCS BD3508MUV Min Max 4.3 5.5 0.75 VCC-1 *6 VFB 2.7 -0.3 5.5 0.001 1 BD3509MUV Min Max 4.3 5.5 0.7 VCC-1 *6 2.7 5.5 VFB 2.7 -0.3 5.5 0.001 1 Unit V V V V V uF *6 VCC and VIN do not have to be implemented in the order listed. ★This product is not designed for use in radioactive environments. www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 2/20 2009.05 - Rev.A BD3508MUV, BD3509MUV Technical Note ●Electrical Characteristics (Unless otherwise specified, Ta=25℃ VCC=5V Ven=3V VIN=1.8V VDD=3.3V R1=3.9KΩ R2=3.3KΩ) ◎BD3508MUV Limit Parameter Symbol Unit Condition Min. Typ. Max. Bias Current ICC 0.7 1.4 mA VCC Shutdown Mode Current IST 0 10 uA Ven=0V Output Voltage Vo 1.200 V Maximum Output Current Io 3.0 A Output Short Circuit Current Iost 3.0 A Vo=0V Output Voltage Temperature Tcvo 0.01 %/℃ Coefficient Feedback Voltage 1 VFB1 0.643 0.650 0.657 V Io=0 to 3A Feedback Voltage 2 VFB2 0.630 0.650 0.670 V 7 Tj=-10 to 100℃ * Line Regulation 1 Reg.l1 0.1 0.5 %/V VCC=4.3V to 5.5V Line Regulation 2 Reg.l2 0.1 0.5 %/V VIN=1.2V to 3.3V Load Regulation Reg.L 0.5 10 mV Io=0 to 3A Minimum Input-Output Voltage Io=1A,VIN=1.2V dVo 65 100 mV 7 Differential Tj=-10 to 100℃ * Standby Discharge Current Iden 1 mA Ven=0V, Vo=1V [ENABLE] Enable Pin Enhi 2 V Input Voltage High Enable Pin Enlow -0.2 0.8 V Input Voltage Low Enable Input Bias Current Ien 7 10 uA Ven=3V [FEEDBACK] Feedback Pin Bias Current IFB -100 0 100 nA [NRCS] NRCS Charge Current Inrcs 14 20 26 uA Vnrcs=0.5V NRCS Standby Voltage VSTB 0 50 mV Ven=0V [UVLO] VCC Under voltage Lock out VccUVLO 3.5 3.8 4.1 V VCC:Sweep-up Threshold Voltage VCC Under voltage Lock out Vcchys 100 160 220 mV VCC:Sweep-down Hysteresis Voltage [AMP] Gate Source Current Gate Sink Current *7 Design Guarantee IGSO IGSI - 1.6 4.7 - mA mA VFB=0, VGATE=2.5V VFB=VCC, VGATE=2.5V www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 3/20 2009.05 - Rev.A BD3508MUV, BD3509MUV Technical Note ●Electrical Characteristics (Unless otherwise specified, Ta=25℃ VCC=5V Ven=3V VIN=1.5V VDD=3.3V R1=3.9KΩ R2=3.6KΩ) ◎BD3509MUV Limit Parameter Symbol Unit Condition Min. Typ. Max. Bias Current ICC 1.1 2.0 mA VCC Shutdown Mode Current IST 0 10 uA Ven=0V Output Voltage Vo 1.25 V Maximum Output Current Io 4.0 A Output Voltage Temperature Tcvo 0.01 %/℃ Coefficient Feedback Voltage 1 VFB1 0.643 0.650 0.657 V Io=0 to 4A Feedback Voltage 2 VFB2 0.637 0.650 0.663 V Tj=-10 to 100℃ *7 Line Regulation 1 Reg.l1 0.1 0.5 %/V VCC=4.3V to 5.5V Line Regulation 2 Reg.l2 0.1 0.5 %/V VIN=1.2V to 3.3V Load Regulation Reg.L 0.5 10 mV Io=0 to 4A Minimum Input-Output Voltage Io=1A,VIN=1.25V dVo 28 50 mV Differential Tj=-10 to 100℃ *7 Standby Discharge Current Iden 1 mA Ven=0V, Vo=1V [ENABLE] Enable Pin Enhi 2 V Input Voltage High Enable Pin Enlow -0.2 0.8 V Input Voltage Low Enable Input Bias Current Ien 7 10 uA Ven=3V [FEEDBACK] Feedback Pin Bias Current IFB -100 0 100 nA [NRCS] NRCS Charge Current Inrcs 14 20 26 uA Vnrcs=0.5V NRCS Standby Voltage VSTB 0 50 mV Ven=0V [UVLO] VCC Under voltage Lock out VccUVLO 3.5 3.8 4.1 V VCC:Sweep-up Threshold Voltage VCC Under voltage Lock out Vcchys 100 160 220 mV VCC:Sweep-down Hysteresis Voltage [AMP] Gate Source Current Gate Sink Current [PGOOD Block] Threshold voltage Ron *7 Design Guarantee IGSO IGSI VTHPG RPG - 10 18 0.585 0.1 - mA mA V kΩ VFB=0, VGATE=2.5V VFB=VCC, VGATE=2.5V FB voltage www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 4/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Reference Data BD3508MUV Technical Note Vo 50mV/div 45mV Vo 50mV/div 64mV Vo 100mV/div 91mV Io 2A/div 3.0A Io 2A/div 3.0A Io 2A/div 3A Io=0A→3A/3μsec t(5μsec/div) Io=0A→3A/3μsec t(5μsec/div) Io=0A→3A/3μsec t(5μsec/div) Fig.1 Transient Response (0→3A) Co=150μF×2, CFB=0.01uF Vo 50mV/div Vo 50mV/div Fig.2 Transient Response (0→3A) Co=150μF Vo 100mV/div Fig.3 Transient Response (0→3A) Co=47μF, CFB=0.01uF 55mV 79mV 87mV Io 2A/div 3.0A Io 2A/div 3.0A Io 2A/div 3A Io=3A→0A/3μsec t(5μsec/div) Io=3A→0A/3μsec t(5μsec/div) Io=3A→0A/3μsec t(5μsec/div) Fig.4 Transient Response (3→0A) Co=150μF×2 Fig.5 Transient Response (3→0A) Co=150μF Fig.6 Transient Response (3→0A) Co=47μF Ven 2V/div Ven 2V/div VCC Ven VNRCS 2V/div Vo 1V/div t(200μsec/div) VNRCS 2V/div VIN Vo 1V/div t(2msec/div) Vo VCC→VIN→Ven Fig.7: Waveform at output start Fig.8 Waveform at output OFF Fig.9 Input sequence VCC VCC VCC Ven Ven Ven VIN Vo VIN→VCC→Ven VIN Vo Ven→VCC→VIN VIN Vo VCC→Ven→VIN Fig.10 Input sequence Fig.11 Input sequence Fig.12 Input sequence www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 5/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Reference Data 1.25 Technical Note VCC VCC 1.23 Vo(V) Ven Ven 1.21 1.19 VIN Vo VIN→Ven→VCC VIN 1.17 Vo Ven→VIN→VCC 1.15 -10 10 30 50 Ta( ℃) 70 90 100 Fig.13 Input sequence Fig.14 Input sequence Fig.15 Tj-Vo (Io=0mA) 1.00 0.95 0.90 0.85 ICC(mA) ICC(uA) 0.80 0.75 0.70 0.65 0.60 0.55 0.50 -10 10 30 50 Ta(℃) 70 90 100 1.2 1.0 0.8 IIN(mA) 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.6 0.4 0.2 0.0 -60 -30 0 30 60 Ta(℃) 90 120 150 -10 10 30 50 Ta(℃) 70 90 100 Fig.16 Tj-ICC 25 Fig.17 Tj-ISTB 20 15 10 IFB(nA) 5 0 -5 -10 -15 -20 10 30 50 Ta( ℃) 70 90 Fig.18 Tj-IIN 30 25 INRCS(uA) 24 23 22 20 IIN(uA) 15 10 5 0 -60 -30 0 30 60 Ta(℃) 90 120 150 21 20 19 18 17 16 15 -10 100 -10 10 30 50 Ta(℃) 70 90 100 Fig.19 Tj-IINSTB Fig.20 Tj-INRCS Fig.21 Tj-IFB 10 9 8 7 60 50 40 RON(mΩ) RON(mΩ) 30 20 10 0 -10 10 30 50 Ta(℃) 70 90 100 60 55 50 45 40 35 30 25 -10 10 30 50 Ta(℃) 70 90 100 2 4 Vcc(V) 6 8 2.5V 1.8V Ien(uA) 6 5 4 3 2 1 0 1.2V Fig.22 Tj-Ien Fig.23 Tj-RON (Vcc=5V/Vo=1.2V) Fig.24 Vcc-RON www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 6/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Reference Data BD3509MUV Vo 50mV/div 39mV Technical Note Vo 50mV/div 51mV Vo 100mV/div 41mV Io 2A/div 4.0A Io 2A/div 4.0A Io 2A/div 4.0A Io=0A→4A/4μsec t(10μsec/div) Io=0A→4A/4μsec t(10μsec/div) Io=0A→4A/4μsec t(10μsec/div) Fig.25 Transient Response (0→4A) Co=22μF Fig.26 Transient Response (0→4A) Co=100μF Fig.27 Transient Response (0→4A) Co=47μF Vo 50mV/div 37mV Vo 50mV/div 41mV Vo 50mV/div 39mV Io 2A/div 4.0A Io 2A/div 4.0A Io 2A/div 4.0A Io=4A→0A/4μsec t(100μsec/div) Io=4A→0A/4μsec t(100μsec/div) Io=4A→0A/4μsec t(100μsec/div) Fig.28 Transient Response (4→0A) Co=22μF, CFB=0.01μF VEN 2V/div VNRCS 1V/div Vo 1V/div PGOOD 2V/div t(200μsec/div) VEN 2V/div VNRCS 1V/div Vo 1V/div PGOOD 2V/div Fig.29 Transient Response (4→0A) Co=100μF Fig.30 Transient Response (4→0A) Co=47μF, CFB=0.01μF VEN VCC VIN Vo t(2msec/div) VCC→VIN→VEN Fig.31: Waveform at output start Fig.32 Waveform at output OFF Fig.33 Input sequence VEN VEN VEN VCC VCC VCC VIN Vo VIN→VCC→VEN VIN Vo VEN→VCC→VIN VIN Vo VCC→VEN→VIN Fig.34 Input sequence Fig.35 Input sequence Fig.36 Input sequence www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 7/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Reference Data 1.3 1.29 Technical Note VEN VEN VO(V) 1.28 1.27 1.26 1.25 1.24 1.23 1.22 1.21 1.2 VCC VCC VIN Vo VIN→VEN→VCC VIN Vo VEN→VIN→VCC -50 -25 0 25 50 75 100 125 150 Ta(℃) Fig.37 Input sequence Fig.38 Input sequence Fig.39 Tj-Vo (Io=0mA) 1.5 1.2 ICC(mA) 0.9 0.6 0.3 0 -50 -25 0 25 50 75 100 125 150 Ta(℃) 1 0.9 0.8 0.7 ISTB(uA) 0.6 0.5 0.4 0.3 0.2 0.1 0 -50 -25 0 25 50 75 100 125 150 Ta(℃) IDD(uA) 50 45 40 35 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 150 Ta(℃) Fig.40 Tj-ICC Fig.41 Tj-ISTB Fig.42 Tj-IDD 0.1 0.09 0.08 IDDSTB(uA) 0.07 IIN(mA) 0.06 0.05 0.04 0.03 0.02 0.01 0 -50 -25 0 25 50 75 100 125 150 Ta(℃) 2 1.8 1.6 1.4 1.2 1 -50 -25 0 25 50 75 100 125 150 Ta(℃) 50 45 40 35 IIN(uA) 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 150 Ta(℃) Fig.43 Tj-IDDSTB Fig.44 Tj-IIN Fig.45 Tj-IINSTB 25 24 23 22 INRCS(uA) IFB(nA) 10 8 6 4 0 -2 -4 -6 -8 -10 IEN(uA) 10 9 8 7 6 5 4 3 2 1 21 20 19 18 17 16 15 -50 -25 0 25 50 75 100 125 150 Ta(℃) 2 -50 -25 0 25 50 75 100 125 150 Ta(℃) 0 -50 -25 0 25 50 75 100 125 150 Ta(℃) Fig.46 Tj-INRCS Fig.47 Tj-IFB Fig.48 Tj-Ien www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 8/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Reference Data 50 45 40 35 RON(mΩ) Technical Note 50 45 RON[mΩ] 40 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 125 150 Ta(℃) 1.8V 35 30 2.5V 1.25V 25 4 4.3 VCC[V] 1.0V 5 5.5 Fig.49 Tj-RON (Vcc=5V/Vo=1.2V) ●Block Diagram BD3508MUV Fig.50 Vcc-RON VCC 6 VCC VIN1 VCC 8 EN UVLO 7 Reference Block CL Current Limit VIN2 9 10 VIN VIN3 VCC Vo1 16 17 Vo2 Vo3 Vo CL UVLO TSD Thermal Shutdown TSD NRCS 20 18 EN FB GATE 19 11 1 2 NRCS GND BD3509MUV VCC 6 VCC 8 VIN1 VIN2 VIN3 VIN4 VIN5 Vo1 Vo2 Vo3 Vo4 Vo5 FB Vo VIN VCC EN 7 9 VDD 5 Reference Block UVLO CL VCC Current Limit 10 12 13 14 15 VCC PGOOD 4 POWER GOOD Thermal Shutdown TSD NRCS NRCS 20 CL UVLO TSD EN 16 17 18 19 11 GATE GND 1 2 www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 9/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Pin Layout BD3508MUV N.C 15 Vo1 16 Vo2 17 Vo3 18 FB 19 NRCS 20 1 2 3 4 N.C 5 N.C FIN N.C 14 N.C 13 N.C GATE 12 11 10 9 8 7 6 VIN3 VIN2 VIN1 EN VCC Vo3 16 Vo4 17 Vo5 18 FB 19 NRCS 20 1 2 3 4 FIN BD3509MUV Vo2 15 Vo1 14 Technical Note VIN5 VIN4 GATE 13 12 11 10 9 8 7 6 5 VIN3 VIN2 VIN1 EN VCC GND1 GND2 N.C GND1 GND2 N.C PGOOD VDD ●Pin Function Table BD3508MUV PIN No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 rever se BD3509MUV PIN No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 rever se PIN Name GND1 GND2 N.C. N.C. N.C. VCC EN VIN1 VIN2 VIN3 GATE N.C. N.C. N.C. N.C. Vo1 Vo2 Vo3 FB NRCS FIN PIN Function Ground pin 1 Ground pin 2 No connection (empty) pin * No connection (empty) pin * No connection (empty) pin * Power supply pin Enable input pin Input pin 1 Input pin 2 Input pin 3 Gate pin No connection (empty) pin * No connection (empty) pin * No connection (empty) pin * No connection (empty) pin * Output voltage pin 1 Output voltage pin 2 Output voltage pin 3 Reference voltage feedback pin In-rush current protection (NRCS) capacitor connection pin Connected to heatsink and GND PIN Name GND1 GND2 N.C. PGOOD VDD VCC EN VIN1 VIN2 VIN3 GATE VIN4 VIN5 Vo1 Vo2 Vo3 Vo4 Vo5 FB NRCS FIN PIN Function Ground pin 1 Ground pin 2 No connection (empty) pin * Power Good pin Power supply pin Power supply pin Enable input pin Input pin 1 Input pin 2 Input pin 3 Gate pin Input pin 4 Input pin 5 Output voltage pin 1 Output voltage pin 2 Output voltage pin 3 Output voltage pin 4 Output voltage pin 5 Reference voltage feedback pin In-rush current protection (NRCS) capacitor connection pin Connected to heatsink and GND * Please short N.C to the GND。 * Please short N.C to the GND www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 10/20 2009.05 - Rev.A BD3508MUV, BD3509MUV Technical Note ●Operation of Each Block ・AMP This is an error amp that functions by comparing the reference voltage (0.65V) with Vo to drive the output Nch FET (Ron=50mΩ). Frequency optimization helps to realize rapid transit response, and to support the use of functional polymer output capacitors. AMP input voltage ranges from GND to 2.7V, while the AMP output ranges from GND to VCC. When EN is OFF, or when UVLO is active, output goes LOW and the output NchFET switches OFF. ・EN The EN block controls the regulator ON/OFF pin by means of the logic input pin. In OFF position, circuit voltage is maintained at 0μA, thus minimizing current consumption at standby. The FET is switched ON to enable discharge of the NRCS pin Vo, thereby draining the excess charge and preventing the load IC from malfunctioning. Since no electrical connection is required (such as between the VCC pin and the ESD prevention Di), module operation is independent of the input sequence. ・UVLO To prevent malfunctions that can occur when there is a momentary decrease in VCC supply voltage, the UVLO circuit switches output OFF, and, like the EN block, discharges the NRCS Vo. Once the UVLO threshold voltage (TYP3.80V) is exceeded, the power-on reset is triggered and output begins. ・CURRENT LIMIT With output ON, the current limit function monitors internal IC output current against the parameter value. When current exceeds this level, the current limit module lowers the output current to protect the load IC. When the overcurrent state is eliminated, output voltage is restored at the parameter value. ・NRCS The soft start function is realized by connecting an NRCS pin external capacitor to the target ground. Output ramp-up can be set for any period up to the time the NRCS pin reaches VFB (0.65V). During startup, the NRCS pin serves as the 20μA (TYP) constant current source and charges the externally connected capacitor. ・TSD (Thermal Shut Down) The shutdown (TSD) circuit automatically switches output OFF when the chip temperature gets too high, thus serving to protect the IC against “thermal runaway” and heat damage. Because the TSD circuit is provided to shut down the IC in the presence of extreme heat, in order to avoid potential problems with the TSD, it is crucial that the Tj (max) parameter not be exceeded in the thermal design. ・VIN The VIN line is the major current supply line, and is connected to the output NchFET drain. Since no electrical connection (such as between the VCC pin and an ESD protective Di) is necessary, VIN operates independent of the input sequence. However, since there is an output NchFET body Di between VIN and Vo, a VIN-Vo electric (Di) connection is present. Note, therefore, that when output is switched ON or OFF, reverse current may flow to the VIN from Vo. ・PGOOD (BD3509MUV) This is the monitor pin for output voltage (Vo). It is used through the pull-up resistance (100kΩ). PGOOD pin judges the voltage High or Low (FB Voltage 0.585V typ. : threshold voltage). www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 11/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Timing Chart Technical Note VIN VCC EN 0.65V(typ) NRCS Start up Vo×0.9V(typ) Vo 80μs(typ) PGOOD (BD3509MUV) t VCC ON/OFF VIN UVLO Hysteresis VCC EN 0.65V(typ) NRCS Start up Vo×0.9V(typ) Vo 80μs(typ) t PGOOD (BD3509MUV) www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 12/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Evaluation Board ■ BD3509MUV Evaluation Board Schematic Technical Note ■ BD3509MUV Evaluation Board Standard Component List Component U1 C5 C6 C8 C16 C20 Rating 0.1uF 1uF 10uF 22uF 0.01uF Manufacturer ROHM MURATA MURATA MURATA KYOCERA MURATA Product Name BD3509MUV GRM155F11E104ZD GRM188B11A105KD GRM21BB10J106KD CM316W5R226K06AT Component R4 R7 R8 R9 JP13 JP14 Rating 100kΩ 0Ω 3.6k 3.9kΩ 0Ω 0Ω Manufacturer ROHM ROHM ROHM - Product Name MCR03EZPF1003 Jumper MCR03EZPF3601 MCR03EZPF3901 Jumper Jumper GRM188B11H103KD www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 13/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ■ BD3509MUV Evaluation Board Layout Silk Screen (Top) Silk Screen (Bottom) Technical Note TOP Layer Middle Layer_1 Middle Layer_2 Bottom Layer ●Recommended Circuit Example Vo (1.25V/4A) C16 16 17 C18 R18 18 19 R19 20 1 2 3 4 5 8 7 6 C6 VCC VEN 15 14 13 12 11 10 9 C8 VIN C20 R4 VPGOOD VDD C5 www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 14/20 2009.05 - Rev.A BD3508MUV, BD3509MUV Technical Note Component R1/R2 Recommended Value 3.6k/3.9k Programming Notes and Precautions IC output voltage can be set with a configuration formula using the values for the internal reference output voltage (VFB) and the output voltage resistors (R1, R2). Select resistance values that will avoid the impact of the VFB current ( ± 100nA). The recommended total resistance value is 10KΩ. This is the pull-up resistance for open drain pin. It is recommended to set the value about 100kΩ. To assure output voltage stability, please be certain the Vo1, Vo2, and Vo3 pins and the GND pins are connected. Output capacitors play a role in loop gain phase compensation and in mitigating output fluctuation during rapid changes in load level. Insufficient capacitance may cause oscillation, while high equivalent series reisistance (ESR) will exacerbate output voltage fluctuation under rapid load change conditions. While a 47μF ceramic capacitor is recomended, actual stability is highly dependent on temperature and load conditions. Also, note that connecting different types of capacitors in series may result in insufficient total phase compensation, thus causing oscillation. In light of this information, please confirm operation across a variety of temperature and load conditions. The input capacitor reduces the output impedence of the voltage supply source connected to the VCC. When the output impedence of this power supply increases, the input voltage (VCC) may become unstable. This may result in the output voltage oscillation or lowering ripple rejection. A low ESR 1uF capacitor with minimal susceptibility to temperature is preferable, but stability depends on power supply characteristics and the substrate wiring pattern. Please confirm operation across a variety of temperature and load conditions. Input capacitors reduce the output impedance of the voltage supply source connected to the (VIN) input pins. If the impedance of this power supply were to increase, input voltage (VIN) could become unstable, leading to oscillation or lowered ripple rejection function. While a low-ESR 10uF capacitor with minimal susceptibility to temperature is recommended, stability is highly dependent on the input power supply characteristics and the substrate wiring pattern. In light of this information, please confirm operation across a variety of temperature and load conditions. Input capacitors reduce the output impedance of the voltage supply source connected to the (VDD) input pins. If the impedance of this power supply were to increase, input voltage (VDD) could become unstable, leading to oscillation or lowered ripple rejection function. While a low-ESR 0.1uF capacitor with minimal susceptibility to temperature is recommended, stability is highly dependent on the input power supply characteristics and the substrate wiring pattern. In light of this information, please confirm operation across a variety of temperature and load conditions. The Non Rush Current on Startup (NRCS) function is built into the IC to prevent rush current from going through the load (VIN to Vo) and impacting output capacitors at power supply start-up. Constant current comes from the NRCS pin when EN is HIGH or the UVLO function is deactivated. The temporary reference voltage is proportionate to time, due to the current charge of the NRCS pin capacitor, and output voltage start-up is proportionate to this reference voltage. Capacitors with low susceptibility to temperature are recommended, in order to assure a stable soft-start time. This component is employed when the C16 capacitor causes, or may cause, oscillation. It provides more precise internal phase correction. R4 C16 100k 22uF C6 1uF C8 10uF C5 0.1uF C20 0.01uF C18 0.01uF www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 15/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Heat Loss Technical Note Thermal design should allow operation within the following conditions. Note that the temperatures listed are the allowed temperature limits, and thermal design should allow sufficient margin from the limits. 1. Ambient temperature Ta can be no higher than 100 ℃. 2. Chip junction temperature (Tj) can be no higher than 150℃. Chip junction temperature can be determined as follows: ① Calculation based on ambient temperature (Ta) Tj=Ta+θj-a×W <Reference values> θj-a: VQFN020V4040 367.6℃/W Bare (unmounted) IC 2 178.6℃/W 4-layer substrate (bottom layer surface copper foil area 10.29mm ) 2 103.3℃/W 4-layer substrate (bottom layer surface copper foil area 10.29mm ) 2 35.1℃/W 4-layer substrate (top layer copper foil area 5505mm ) 3 Substrate size: 74.2×74.2×1.6mm (substrate with thermal via) It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in the inner layer (in using multiplayer substrate). This package is so small (size: 4.2mm×4.2mm) that it is not available to layout the VIA in the bottom of IC. Spreading the pattern and being increased the number of VIA like the figure below). enable to get the superior heat radiation characteristic. (This figure is the image. It is recommended that the VIA size and the number is designed suitable for the actual situation.). Most of the heat loss that occurs in the BD3509MUV is generated from the output Nch FET. Power loss is determined by the total VIN-Vo voltage and output current. Be sure to confirm the system input and output voltage and the output current conditions in relation to the heat dissipation characteristics of the VIN and Vo in the design. Bearing in mind that heat dissipation may vary substantially depending on the substrate employed (due to the power package incorporated in the BD3509MUV) make certain to factor conditions such as substrate size into the thermal design. Power consumption (W) = Input voltage (VIN)- output voltage (Vo) ×Io (Ave) Example) VIN=1.5V, Vo=1.25V, Io(Ave) = 4A Power consumption (W) = 1.5(V)-1.2(V) = 1.0(W) ×4.0(A) www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 16/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Input-Output Equivalent Circuit Diagram VCC VCC Technical Note VCC 1kΩ 1kΩ NRCS 1kΩ 1kΩ 1kΩ VIN1 VIN2 VIN3 10kΩ GATE 10kΩ 1kΩ VIN4 VIN5 VCC VCC EN FB 1kΩ 100kΩ 100kΩ 20pF 10kΩ 1kΩ 350kΩ 1kΩ Vo1 Vo2 Vo3 Vo4 Vo5 50kΩ PGOOD www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 17/20 2009.05 - Rev.A BD3508MUV, BD3509MUV ●Operation Notes 1. Technical Note Absolute maximum ratings An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses. 2. Connecting the power supply connector backward Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added. 3. Output pin In the event that load containing a large inductance component is connected to the output terminal, and generation of back-EMF at the start-up and when output is turned OFF is assumed, it is requested to insert a protection diode. (Example) OUTPUT PIN 4. GND voltage The potential of GND pin must be minimum potential in all operating conditions. 5. Thermal design Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions. 6. Inter-pin shorts and mounting errors Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if pins are shorted together. 7. Actions in strong electromagnetic field Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction. 8. ASO When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO. 9. Thermal shutdown circuit The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed. TSD on temperature [°C] (typ.) Hysteresis temperature [°C] (typ.) BD3508MUV / 175 15 BD3509MUV 10. Testing on application boards When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting or storing the IC. www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 18/20 2009.05 - Rev.A BD3508MUV, BD3509MUV Technical Note 11. Regarding input pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows: When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes can occur inevitable in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used. Resistor Pin A Pin A P+ N P P+ Transistor (NPN) Pin B C B E B P P+ N C E Pin B N N Parasitic element N P+ N P substrate Parasitic element GND P substrate Parasitic element GND GND GND Parasitic element Other adjacent elements 12. Ground Wiring Pattern When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either. ● Heat Dissipation Characteristics ① 4 layers (Copper foil area : 5505mm ) copper foil in each layers. θj-a=35.1℃/W 2 ② 4 layers (Copper foil area : 10.29m ) copper foil in each layers. θj-a=103.3℃/W 2 ③ 4 layers (Copper foil area : 10.29m ) θj-a=178.6℃/W ④IC only. 2 4.0 ①3.56W Power dissipation:Pd [W] 3.0 2.0 ②1.21W 1.0 ③0.70W ④0.34W 0 0 25 50 75 100105 125 150 Ambient temperature:Ta [℃] www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 19/20 2009.05 - Rev.A BD3508MUV, BD3509MUV  Ordering part number Technical Note B D 3 Part No. 3508 3509 5 0 8 M U V - E 2 Part No. Package MUV: VQFN020V4040 Packaging and forming specification E2: Embossed tape and reel VQFN020V4040 4.0±0.1 4.0±0.1 Tape Quantity Direction of feed Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 1PIN MARK 1.0MAX S (0.22) ( reel on the left hand and you pull out the tape on the right hand ) 0.08 S 2.1±0.1 1.0 1 20 16 15 11 5 6 10 C0.2 0.4±0.1 0.5 +0.05 0.25 –0.04 2.1±0.1 +0.03 0.02 –0.02 1pin Direction of feed (Unit : mm) Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com c ○ 2009 ROHM Co., Ltd. All rights reserved. 20/20 2009.05 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. R0039A
BD3509MUV 价格&库存

很抱歉,暂时无法提供与“BD3509MUV”相匹配的价格&库存,您可以联系我们找货

免费人工找货