0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD4153FV-E2

BD4153FV-E2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    SSOP24_208MIL

  • 描述:

    IC PWR MGMT SWITCH 24SSOP

  • 数据手册
  • 价格&库存
BD4153FV-E2 数据手册
TECHNICAL NOTE Power Management Switch IC Series for PCs and Digital Consumer Product Power Switch ICs TM ExpressCard BD4153FV, BD4153EFV, BD4154FV, BD4155FV, BD4156MUV ●Description BD4153FV, BD4153EFV, BD4154FV, BD4155FV, BD4156MUV is a power management switch IC for the next generation TM TM TM PC card (ExpressCard ) that PCMCIA recommends. Conforms to PCMCIA’s ExpressCard Standard, ExpressCard TM Compliance Checklist, and ExpressCard Implementation Guideline, and obtains the world first Compliance ID「EC100001」 (BD4153FV, BD4153EFV), 「EC100040」(BD4154FV),「EC100052」(BD4155FV) from PCMCIA. Offers various functions such as adjustable soft-starter, overcurrent detector (OC function), card detector, and system condition detector, which are ideally suited for laptop and desktop computers. ●Features 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) TM Incorporates three low on-resistance FETs for ExpressCard . Incorporates an FET for output discharge. Incorporates an enabler. Incorporates an under voltage lockout (UVLO) Incorporates a thermal shutdown protector (TSD). Incorporates a soft-starter. Incorporates an over current protector (OCP). Incorporates an over current flag output (OC). Built-in enable signal for PLL. TM Built-in Pull up resistance for detecting ExpressCard . TM Conforms to ExpressCard Standard. TM Conforms to ExpressCard Compliance Checklist. Conforms to ExpressCardTM Implementation Guideline. ●Use Laptop and desktop computers, and other digital devices equipped with ExpressCard. ●Lineup Parameter Package Soft Start PERST Delay OC detector BD4153FV SSOP-B24 adjustable adjustable BD4153EFV HTSSOP-B24 adjustable adjustable BD4154FV SSOP-B20 Fix Fix ― BD4155FV SSOP-B20 Fix Fix ― BD4156MUV VQFN020V4040 Fix Fix TM “ExpressCard ” is a trademark registered by PCMCIA(Personal Computer Memory Card International Association). Nov. 2006 ●ABSOLUTE MAXIMUM RATINGS (Ta=25℃) ◎BD4153FV, BD4153EFV Parameter Symbol BD4153FV VCC 5.0 * EN,CPPE#,CPUSB#, SYSR,PERST_IN# 5.0 * Logic Output Voltage 1 OC 5.0 * Logic Output Voltage 2 PERST# VCC * Power Supply Voltage Logic Input Voltage BD4153EFV Unit 1 5.0 *1 V 1 5.0 *1 V 1 5.0 *1 V 1 VCC *1 V 1 1 5.0 * V 1 VCC *1 V 1 Input Voltage 1 V3_IN, V15_IN 5.0 * Input Voltage 2 V3AUX_IN VCC * Output Voltage V3,V3AUX,V15 5.0 * 5.0 *1 V Output current 1 IOV3, IOV15 2.0 2.0 A Output current 2 IOV3AUX 1.0 1.0 A Power Dissipation 1 Pd1 787 * - mW Power Dissipation 2 Pd2 1025 * 1100 *4 mW Operating Temperature Range Topr -40~+100 -40~+100 ℃ Storage Temperature Range Tstg -55~+150 -55~+150 ℃ Tjmax +150 +150 ℃ Maximum Junction Temperature 2 3 *1 However, not exceeding Pd. *2 Pd derating at 6.3mW/℃ for temperature above Ta=25℃ *3 In the case of Ta≥25°C (when mounting to 70mmx70mmx1.6mm glass epoxy substrate), derated at 8.2 mW/°C. *4 In the case of Ta≥25°C (when mounting to 70mmx70mmx1.6mm glass epoxy substrate), derated at 8.8 mW/°C. ●OPERATING CONDITIONS (Ta=25℃) ◎BD4153FV, BD4153EFV Parameter Symbol MIN MAX Unit Power Supply Voltage VCC 3.0 3.6 V Logic Input Voltage 1 EN -0.2 3.6 V -0.2 VCC V Logic Input Voltage 2 CPPE#,CPUSB#, SYSR,PERST_IN# Logic Output Voltage 1 OC - 3.6 V Logic Output Voltage 2 PERST# - VCC V Input Voltage 1 V3_IN 3.0 3.6 V Input Voltage 2 V3AUX_IN 3.0 VCC V Input Voltage 3 V15_IN 1.35 1.65 V Soft Start Setup Capacitor 1 CSS_V3, CSS_V15 0.001 1.0 μF Soft Start Setup Capacitor 2 CSS_V3AUX 0.001 0.1 μF ★ This product is designed for protection against radioactive rays. 2/28 ●ABSOLUTE MAXIMUM RATINGS (Ta=25℃) ◎BD4154FV Parameter Symbol Limit Unit 5 Input Voltage V3AUX_IN, V3_IN, V15_IN -0.3~5.0 * V Logic Input Voltage 1 EN,CPPE#,CPUSB#,SYSR, PERST_IN#,RCLKEN -0.3~V3AUX_IN+0.3 *5 V Logic Output Voltage 1 RCLKEN -0.3~V3AUX_IN+0.3 *5 V Logic Output Voltage 2 PERST# -0.3~V3AUX_IN+0.3 V Output Voltage 5 V3AUX,V3, V15 -0.3~5.0 * V Output Current 1 IOV3AUX 1.0 A Output Current 2 IOV3 2.0 A Output Current 3 IOV15 2.0 A Pd1 500.0 *6 mW Power Dissipation 2 Pd2 812.5 * 7 mW Operating Temperature Range Topr -40~+100 ℃ Storage Temperature Range Tstg -55~+150 ℃ Tjmax +150 ℃ Power Dissipation 1 Maximum Junction Temperature *5 Not to exceed Pd. *6 Reduced by 4.0mW for each increase in Ta of 1℃ over 25℃ *7 Reduced by 6.5mW for each increase in Ta of 1℃ over 25℃(When mounted on a board 70mm×70mm×1.6mm Glass-epoxy PCB) ●OPERATING CONDITIONS (Ta=25℃) ◎BD4154FV Parameter Symbol MIN MAX Unit Input Voltage 1 V3AUX_IN 3.0 3.6 V Input Voltage 2 V3_IN 3.0 3.6 V Input Voltage 3 V15_IN 1.35 1.65 V Logic Input Voltage 1 EN -0.3 3.6 V Logic Input Voltage 2 CPPE#,CPUSB#,SYSR, PERST_IN#,RCLKEN 0 V3AUX_IN V Logic Output Voltage 1 RCLKEN 0 V3AUX_IN V Logic Output Voltage 2 PERST# 0 V3AUX_IN V Output Current 1 IOV3AUX 0 275 mA Output Current 2 IOV3 0 1.3 A Output Current 3 IOV15 0 650 mA ★ This product is not designed to offer protection against radioactive rays. 3/28 ●ABSOLUTE MAXIMUM RATINGS (Ta=25℃) ◎BD4155FV Parameter Symbol Limit Unit 8 V3AUX_IN, V3_IN, V15_IN -0.3~+5.0 * V CPPE#,CPUSB#,SYSR,EC_CLKREQ#, EC_CLKEN#,EC_RST#,PLT_RST# -0.3~V3AUX_IN+0.3 *8 V PERST# -0.3~V3AUX_IN+0.3 V Logic Output applied Voltage PLL_CLKREQ# -0.3~+5.0 V Output Voltage V3AUX,V3, V15 -0.3~+5.0 * V Output current 1 IOV3AUX 1.0 A Output current 2 IOV3 2.0 A Output current 3 IOV15 2.0 A Power Dissipation 1 Pd1 500 *9 mW Power Dissipation 2 Pd2 812.5 *10 mW Operating Temperature Range Topr -40~+100 ℃ Storage Temperature Range Tstg -55~+150 ℃ Tjmax +150 ℃ Input Voltage Logic Input Voltage Logic Output Voltage Maximum Junction Temperature 8 *8 Not to exceed Pd. *9 Reduced by 4.0mW for each increase in Ta of 1℃ over 25℃ *10 Reduced by 6.5mW for each increase in Ta of 1℃ over 25℃(When mounted on a board 70mm×70mm×1.6mm Glass-epoxy PCB). ●OPERATING CONDITIONS (Ta=25℃) ◎BD4155FV Parameter Symbol MIN MAX Unit Input Voltage 1 V3AUX_IN 3.0 3.6 V Input Voltage 2 V3_IN 3.0 3.6 V Input Voltage 3 V15_IN 1.35 1.65 V CPPE#,CPUSB#,SYSR,EC_CLKREQ#, EC_CLKEN#,EC_RST#,PLT_RST# 0 V3AUX_IN V Logic Output Voltage 1 PERST# 0 V3AUX_IN V Logic Output Voltage 2 PLL_CLKREQ# 0 3.6 V Output current 1 IOV3AUX 0 275 mA Output current 2 IOV3 0 1.3 A Output current 3 IOV15 0 650 mA Logic Input Voltage ★ This product is not designed to offer protection against radioactive rays. 4/28 ●ABSOLUTE MAXIMUM RATINGS (Ta=25℃) ◎BD4156MUV Parameter Symbol Limit Unit 11 Input Voltage V3AUX_IN, V3_IN, V15_IN Logic Input Voltage 1 EN,CPPE#,CPUSB#,SYSR, PERST_IN#,RCLKEN -0.3~V3AUX_IN+0.3 *11 V Logic Output Voltage 1 RCLKEN -0.3~V3AUX_IN+0.3 *11 V Logic Output Voltage 2 PERST# -0.3~V3AUX_IN+0.3 V Logic Output Voltage 3 OC# -0.3~5.0 V Output Voltage -0.3~5.0 * V 11 V3AUX,V3, V15 -0.3~5.0 * V Output Current 1 IOV3AUX 1.0 A Output Current 2 IOV3 2.0 A Output Current 3 IOV15 2.0 A 12 Power Dissipation 1 Pd1 0.34 * W Power Dissipation 2 Pd2 0.70 *13 W Operating Temperature Range Topr -40~+100 ℃ Storage Temperature Range Tstg -55~+150 ℃ Tjmax +150 ℃ Maximum Junction Temperature *11 Not to exceed Pd. *12 Reduced by 2.7mW for each increase in Ta of 1℃ over 25℃ *13 Reduced by 5.6mW for each increase in Ta of 1℃ over 25℃(When mounted on a board 70mm×70mm×1.6mm Glass-epoxy PCB). ●OPERATING CONDITIONS (Ta=25℃) ◎BD4156MUV Parameter Symbol MIN MAX Unit Input Voltage 1 V3AUX_IN 3.0 3.6 V Input Voltage 2 V3_IN 3.0 3.6 V Input Voltage 3 V15_IN 1.35 1.65 V Logic Input Voltage 1 EN -0.3 3.6 V Logic Input Voltage 2 CPPE#,CPUSB#,SYSR, PERST_IN#,RCLKEN 0 V3AUX_IN V Logic Output Voltage 1 RCLKEN 0 V3AUX_IN V Logic Output Voltage 2 PERST# 0 V3AUX_IN V Logic Output Voltage 3 OC# 0 3.6 V Output Current 1 IOV3AUX 0 275 mA Output Current 2 IOV3 0 1.3 A Output Current 3 IOV15 0 650 mA ★ This product is not designed to offer protection against radioactive rays. 5/28 ●ELECTRICAL CHARACTERISTICS (BD4153FV, BD4153EFV) (unless otherwise noted, Ta=25℃ VCC=3.3V VEN=3.3V V3_IN=V3AUX_IN=3.3V,V15_IN=1.5V) Parameter Symbol Standard Value MIN TYP MAX Unit Condition Standby current IST - 35 70 μA VEN=0V Bias current 1 Icc1 - 0.25 0.50 mA VSYSR=0V Bias current 2 Icc2 - 1.0 2.0 mA VSYSR=3.3V High Level Enable Input Voltage VENHI 2.3 - 5.5 V Low Level Enable Input Voltage VENLOW -0.2 - 0.8 V IEN - 3 10 μA [Enable] Enable Pin Input current VEN=3V [Logic (CPPE#,CPUSB#)] High Level Logic Input Voltage VLHI 2.3 - VCC V Low Level Logic Input Voltage VLLOW -0.2 - 0.8 V IL -1 0 1 μA Logic Pin Input current VCPPE#=3.3V or VCPUSB#=3.3V [Logic (SYSR)] High Level Logic Input Voltage VSYSRHI 2.3 - VCC V Low Level Logic Input Voltage VSYSRLOW -0.2 - 0.8 V ISYSR 6 11 18 μA Logic Pin Input current VSYSR=3.3V [Logic (PERST_IN#)] High Level Logic Input Voltage VPSTHI 2.3 - VCC V Low Level Logic Input Voltage VPSTLOW -0.2 - 0.8 V IPST -18 -11 -6 μA VPERST_IN#=0V RV3 - 35 73 mΩ Tj=-10~100℃ * RV3Dis - 60 150 Ω RV3AUX - 100 210 mΩ RV3AUXDis - 60 150 Ω RV15 - 42 85 mΩ RV15Dis - 60 150 Ω Logic Pin Input current [Switch V3] On Resistance Discharge On Resistance [Switch V3AUX] On Resistance Discharge On Resistance Tj=-10~100℃ * [Switch V15] On Resistance Discharge On Resistance Tj=-10~100℃ * [Soft Start] Charge current Ichr 1.0 2.0 3.0 μA SS_V3high V3+4 V3+5 V3+6 V SS_V15 High Voltage SS_V15high V15+4 V15+5 V15+6 V SS_V3AUX High Voltage SS_AUXhigh 1.5 1.8 2.1 V IDis 0.3 1.0 - mA SSLOW - - 50 mV A SS_V3 High Voltage Discharge current Low Voltage Vss=1V [Over Current Protection] OC Flag V3 OCPV3_S 1.0 - - V3 Over current OCPV3 2.0 - - A OC Flag V3AUX OCPV3AUX_S 0.25 - - A V3AUX Over current OCPV3AUX 0.50 - - A OC Flag V15 OCPV15_S 0.50 - - A V15 Over current OCPV15 1.20 - - A OC_Delay Charge current IOCP_Delaych 1.0 2.0 3.0 μA OC_Delay Discharge current IOCP_Delaydis 1.0 2.0 - mA OC_Delay Standby Voltage VOCP_Delayst - - 50 mV OC_Delay Threshold Voltage VOC_DELAY=1V VOCP_Delayth 0.6 0.7 0.8 V OC Low Voltage VOCP - 0.1 0.2 V IOC=0.5mA OC Leak current IOCP - - 1 μA VOC=3.65V V3_IN UVLO OFF Voltage VUVLOV3_IN 2.80 2.90 3.00 V V3_IN Hysteresis Voltage ⊿VUVLOV3_IN 80 160 240 mV V3AUX_IN UVLO OFF Voltage VUVLOV3AUX_IN 2.80 2.90 3.00 V V3AUX_IN Hysteresis Voltage [Under Voltage Lockout] ⊿VUVLOV3AUX_IN 80 160 240 mV V15 UVLO OFF Voltage VUVLOV15 1.25 1.30 1.35 V V15 Hysteresis Voltage ⊿VUVLO15 50 100 150 mV VCC UVLO OFF Voltage VUVLOVCC 2.80 2.90 3.00 V VCC Hysteresis Voltage ⊿VUVLOVCC 80 160 240 mV * Design Guarantee 6/28 sweep up sweep down sweep up sweep down sweep up sweep down sweep up sweep down ●ELECTRICAL CHARACTERISTICS (BD4154FV) (unless otherwise noted, Ta=25℃ VEN=3.3V V3AUX_IN =V3_IN=3.3V,V15_IN=1.5V) Standard Value Parameter Symbol Unit Condition MIN TYP MAX uA Standby Current IST 40 80 VEN=0V (Include IEN, IRCLKEN) uA Bias Current 1 Icc1 120 250 VSYSR=0V uA Bias Current 2 Icc2 250 500 VSYSR=3.3V [Enable] High Level Enable Input Voltage Low Level Enable Input Voltage Enable Pin Input Current [Logic] High Level Logic Input Voltage Low Level Logic Input Voltage VENHI VENLOW IEN 2.0 -0.2 10 - 5.5 0.8 30 V V uA VLHI VLLOW 0 0 0 0 0 0.1 - 0.8 1 30 1 30 1 30 1 30 1 30 0.3 1 V V uA uA uA uA uA uA uA uA uA VRCLKEN IRCLKEN 2.0 10 10 10 10 10 - RV3AUX RV3AUX Dis - 120 60 220 150 mΩ Ω Tj=-10~100℃ * RV3 RV3Dis - 42 60 90 150 mΩ Ω Tj=-10~100℃ * RV15 RV15Dis - 45 60 90 150 mΩ Ω Tj=-10~100℃ * OCPV3 OCPV3AUX OCPV15 1.3 0.275 0.65 - - A A A VUVLOV3_IN ⊿VUVLOV3_IN VUVLOV3AUX_IN VUVLOV15_IN ⊿VUVLOV15_IN 2.70 50 2.70 50 1.15 50 2.80 100 2.80 100 1.20 100 2.90 150 2.90 150 1.25 150 V mV V mV V mV PGV3 2.700 2.850 3.000 V PGV3AUX 2.700 2.850 3.000 V PGV15 VPERST#Low VPERST#HIGH TPERST# Tast 1.200 3.0 4 - 1.275 0.1 - 1.350 0.3 20 500 V V V ms ns TV3 TV3AUX TV15 0.1 0.1 0.1 - 3 3 3 ms ms ms ICPPE# ICPUSB# Logic Pin Input Current ISYSR IPRT_IN# IRCLKEN RCLKEN Low Voltage RCLKEN Leak Current [Switch V3AUX] On Resistance Discharge On Resistance [Switch V3] On Resistance Discharge On Resistance [Switch V15] On Resistance Discharge On Resistance [Over Current Protection] V3 Over Current V3AUX Over Current V15 Over Current [Under Voltage Lockout] V3_IN UVLO OFF Voltage V3_IN Hysteresis Voltage V3AUX_IN UVLO OFF Voltage V3AUX_IN Hysteresis Voltage V15_IN UVLO OFF Voltage V15_IN Hysteresis Voltage [POWER GOOD] V3 POWER GOOD Voltage V3AUX POWER GOOD Voltage V15 POWER GOOD Voltage PERST# LOW Voltage PERST# HIGH Voltage PERST# Delay Time PERST# assertion time [OUTPUT RISE TIME] V3_IN to V3 V3AUX_IN to V3AUX V15_IN to V15 ⊿VUVLOV3AUX_IN * Design Guarantee 7/28 uA V uA VEN=0V CPPE#=3.6V CPPE#=0V CPUSB#=3.6V CPUSB#=0V SYSR=3.6V SYSR=0V PERST_IN#=3.6V PERST_IN#=0V RCLKEN=3.6V RCLKEN=0V IRCLKEN=0.5mA VRCLKEN=3.65V sweep up sweep down sweep up sweep down sweep up sweep down IPERST=0.5mA ● ELECTRICAL CHARACTERISTICS (BD4155FV) (unless otherwise noted, Ta=25℃ V3AUX_IN =V3_IN=3.3V,V15_IN=1.5V) Standard Value Parameter Symbol MIN TYP MAX Standby current Icc1 120 250 Bias current Icc2 250 500 [Logic] High Level Enable Input Voltage VLHI 2.0 Low Level Enable Input Voltage VLLOW 0.8 0 1 ICPPE# 10 30 0 1 ICPUSB# 10 30 Input current ISYSR -1 0 1 IEC_CLKEN# 5 0 20 IEC_CLKREQ# -1 0 1 IEC_RST# -1 0 1 IPLT_RST# -1 0 1 [Switch V3AUX] On Resistance RV3AUX 120 220 Discharge On Resistance RV3AUXDis 60 150 [Switch V3] On Resistance RV3 42 90 Discharge On Resistance RV3Dis 60 150 [Switch V15] On Resistance RV15 45 90 Discharge On Resistance RV15Dis 60 150 [Over Current Protection] V3 Over current OCPV3 1.6 V3AUX Over current OCPV3AUX 0.35 V15 Over current OCPV15 0.8 [Low input miss operation prevent Block] V3_IN threshold voltage VUVLOV3_IN 2.70 2.80 2.90 V3_IN hysteresis Voltage ⊿VUVLOV3_IN 50 100 150 V3AUX_IN threshold voltage VUVLOV3AUX_IN 2.70 2.80 2.90 V3AUX_IN hysteresis Voltage ⊿VUVLOV3AUX_IN 50 100 150 V15_IN threshold voltage VUVLOV15_IN 1.15 1.20 1.25 V15_IN hysteresis Voltage ⊿VUVLOV15_IN 50 100 150 [POWER GOOD] V3 POWER GOOD Voltage PGV3 2.700 2.850 3.000 V3AUX POWER GOOD Voltage PGV3AUX 2.700 2.850 3.000 V15 POWER GOOD Voltage PGV15 1.200 1.275 1.350 PERST# LOW Voltage VPERST#Low 0.1 0.3 PERST# HIGH Voltage VPERST#HIGH 3.0 PERST Delay TPERST# 4 10 20 PLL_CLKREQ# Low Voltage VPLL 0.1 0.2 PLL_CLKREQ# Leak Current IPLL 1 [WAKE UP TIME] V3_IN to V3 TV3 0.1 3 V3AUX_IN to V3AUX TV3AUX 0.1 3 V15_IN to V15 TV15 0.1 3 * Design Guarantee 8/28 Unit Condition uA uA VSYSR=0V VSYSR=3.3V V V uA uA uA uA uA uA uA uA uA CPPE#=3.6V CPPE#=0V CPUSB#=3.6V CPUSB#=0V SYSR=3.6V EC_CLKEN#=3.6V EC_CLKREQ#=3.6V EC_RST#=3.6V PLT_RST#=3.6V mΩ Ω Tj=-10~100℃ * mΩ Ω Tj=-10~100℃ * mΩ Ω Tj=-10~100℃ * A A A V mV V mV V mV V V V V V ms V uA ms ms ms sweep up sweep down sweep up sweep down sweep up sweep down IPERST=0.5mA IPLL_CLKREQ#=0.5mA VPLL_CLKREQ#=3.6V ● ELECTRICAL CHARACTERISTICS (BD4156MUV) (unless otherwise noted, Ta=25℃ VEN=3.3V V3AUX_IN =V3_IN=3.3V,V15_IN=1.5V) Standard Value Parameter Symbol Unit Condition MIN TYP MAX Standby Current IST 40 80 uA VEN=0V (Include IEN, IRCLKEN) Bias Current 1 Icc1 120 250 uA VSYSR=0V Bias Current 2 Icc2 250 500 uA VSYSR=3.3V [Enable] High Level Enable Input Voltage VENHI 2.0 5.5 V Low Level Enable Input Voltage VENLOW -0.2 0.8 V Enable Pin Input Current IEN 10 30 uA VEN=0V [Logic] High Level Logic Input Voltage VLHI 2.0 V Low Level Logic Input Voltage VLLOW 0.8 V 0 1 uA CPPE#=3.6V ICPPE# 10 30 uA CPPE#=0V 0 1 uA CPUSB#=3.6V ICPUSB# 10 30 uA CPUSB#=0V 0 1 uA SYSR=3.6V Logic Pin Input Current ISYSR 10 30 uA SYSR=0V 0 1 uA PERST_IN#=3.6V IPRT_IN# 10 30 uA PERST_IN#=0V 0 1 uA RCLKEN=3.6V IRCLKEN 10 30 uA RCLKEN=0V RCLKEN Low Voltage VRCLKEN 0.1 0.3 V IRCLKEN=0.5mA RCLKEN Leak Current IRCLKEN 1 uA VRCLKEN=3.65V [Switch V3AUX] On Resistance RV3AUX 120 220 mΩ Tj=-10~100℃ * Discharge On Resistance RV3AUX Dis 60 150 Ω [Switch V3] On Resistance RV3 42 90 mΩ Tj=-10~100℃ * Discharge On Resistance RV3Dis 60 150 Ω [Switch V15] On Resistance RV15 45 90 mΩ Tj=-10~100℃ * Discharge On Resistance RV15Dis 60 150 Ω [Over Current Protection] OC flag V3 Current OCV3 1.0 A V3 Over Current OCPV3 1.3 A OC flag V3AUX Current OCV3AUX 0.25 A V3AUX Over Current OCPV3AUX 0.275 A OC flag V15 Current OCV15 0.5 A V15 Over Current OCPV15 0.65 A OC delay time TOC# 4 20 ms [Under Voltage Lockout] V3_IN UVLO OFF Voltage VUVLOV3_IN 2.70 2.80 2.90 V sweep up V3_IN Hysteresis Voltage ⊿VUVLOV3_IN 50 100 150 mV sweep down V3AUX_IN UVLO OFF Voltage VUVLOV3AUX_IN 2.70 2.80 2.90 V sweep up V3AUX_IN Hysteresis Voltage ⊿VUVLOV3AUX_IN 50 100 150 mV sweep down V15_IN UVLO OFF Voltage VUVLOV15_IN 1.15 1.20 1.25 V sweep up V15_IN Hysteresis Voltage ⊿VUVLOV15_IN 50 100 150 mV sweep down [POWER GOOD] V3 POWER GOOD Voltage PGV3 2.700 2.850 3.000 V V3AUX POWER GOOD PGV3AUX 2.700 2.850 3.000 V Voltage V15 POWER GOOD Voltage PGV15 1.200 1.275 1.350 V PERST# LOW Voltage VPERST#Low 0.1 0.3 V IPERST=0.5mA PERST# HIGH Voltage VPERST#HIGH 3.0 V PERST# Delay Time TPERST# 4 20 ms PERST# assertion time Tast 500 ns [OUTPUT RISE TIME] V3_IN to V3 TV3 0.1 3 ms V3AUX_IN to V3AUX TV3AUX 0.1 3 ms V15_IN to V15 TV15 0.1 3 ms * Design Guarantee 9/28 ●Reference data CPPE#(2V/div) CPPE#(2V/div) SYSR(2V/div) V3(2V/div) V3(2V/div) V3(2V/div) V3AUX(2V/div) V3AUX(2V/div) RV3=3.3Ω RV3AUX=13.2Ω RV15=3Ω V3AUX(2V/div) V15(1V/div) V15(1V/div) 5.0ms/div Fig.1 5.0ms/div Card Assert/ De-assert (Active) Fig.2 Card Assert/De-assert (Standby) SYSR(2V/div) V3AUX(2V/div) V15(1V/div) CPUSB#(2V/div) V3(2V/div) V3(2V/div) V3AUX(2V/div) V3AUX(2V/div) V15(1V/div) V15(1V/div) 500μs/div 5.0ms/div Fig.4 System Active ⇔Standby(No Card) Fig.5 Wakeup Wave Form (Card Assert) EN(2V/div) V3(2V/div) V3AUX(2V/div) (Shut Down→Active) CPPE#(2V/div) V3(2V/div) V3(2V/div) V3AUX(2V/div) V15(1V/div) 500μs/div Fig.8 Wakeup Wave Form (Standby→Active) CPUSB#(2V/div) Wakeup Wave Form (USB2.0 Assert) SYSR(2V/div) V15(1V/div) 500μs/div Wakeup Wave Form 500μs/div Fig.6 V3AUX(2V/div) V15(1V/div) 500μs/div Fig.9 Power Down Wave Form (Card De-assert) EN(2V/div) SYSR(2V/div) V3(2V/div) V3(2V/div) V3(2V/div) V3AUX(2V/div) V3AUX(2V/div) V15(1V/div) V15(1V/div) V3AUX(2V/div) 500μs/div Fig.10 5.0ms/div Fig.3 System Active ⇔Standby( Card Present) CPPE#(2V/div) V3(2V/div) Fig.7 V15(1V/div) Power Down Wave Form (USB2.0 De-assert) V15(1V/div) 500μs/div Fig.11 Power Down Wave Form (Active→Shut Down) 10/28 5.0ms/div Fig.12 Power Down Wave Form (Active→Standby) CPPE#(2V/div) CPPE#(2V/div) CPPE#(2V/div) V3(2V/div) V3(2V/div) V3(2V/div) V3AUX(2V/div) V3AUX(2V/div) V3AUX(2V/div) RCLKEN(2V/div) PERST#(2V/div) PERST#(2V/div) Fig.13 PERST# Wave Form (Card Assert/ De-assert) Fig.14 RCLKEN Wave Form (Card Assert/ De-assert) Fig.15 PERST# Wave Form (USB2.0 Assert/ De-assert) (BD4154FV, BD4156MUV) CPUSB#(2V/div) PERST_IN#(2V/div) V3(2V/div) V3(2V/div) V3AUX(2V/div) V3AUX(2V/div) RCLKEN(2V/div) PERST#(2V/div) Fig.16 RCLKEN Wave Form (USB2.0 Assert/ De-assert) Fig.17 PERST# Wave Form (PERST_IN# Input) (BD4154FV, BD4156MUV) PERST_IN#(2V/div) V3(2V/div) V3AUX(2V/div) RCLKEN(2V/div) Fig.18 RCLKEN Wave Form (PERST_IN# Input) (BD4153FV, BD4153EFV, BD4154FV, BD4156MUV) (BD4154FV, BD4156MUV) PLT_RST#(2V/div) PLT_RST#(2V/div) CPUSB#(2V/div) V3AUX(2V/div) Fig.20 PERST# Wave Form (PLT_RST Input) Fig.21 (BD4155FV) EC_CLKREQ#(2V/div) EC_CLKEN#(2V/div) EC_CLKEN#(2V/div) V3(2V/div) V3(2V/div) PLL_CLKREQ#(2V/div) PLL_CLKREQ#(2V/div) 1.0ms/div 1.0ms/div Fig.23 PLL_CLKREQ# Wave Form (EC_CLKEN# Input) (BD4155FV) 11/28 PERST# Wave Form (EC RST Input) (BD4155FV) EC_CLKREQ#(2V/div) (BD4155FV) 5.0ms/div 5.0ms/div (BD4155FV) PLL_CLKREQ# Wave Form (EC_CLKREQ# Input) PERST#(2V/div) PERST#(2V/div) 5.0ms/div Fig.22 V3(2V/div) V3(2V/div) PLL_CLKREQ#(2V/div) Fig.19 PLL_CLKREQ# Wave Form (USB2.0 Assert/ De-assert) EC_RST(2V/div) EC_RST(2V/div) V3(2V/div) CPPE#(2V/div) V3(2V/div) V3AUX(2V/div) PLL_CLKREQ(2V/div) 5.0ms/div Fig.24 PLL_CLKREQ# Wave Form (EC_CLKEN# Input) (BD4155FV) ●BLOCK DIAGRAM (BD4153FV, BD4153EFV) V3_IN1 3.3V V3-1 21 VD 22 4 V3_IN2 SS_V3 V3AUX_IN 3.3V/1.30A 3 V3-2 2 TSD,CL,UVLO 20 3.3V AUX/275mA 5 V3AUX_IN V3AUX 3.3V SS_V3AUX 6 V15_IN1 V15_IN2 1.5V TSD,CL,UVLO_AUX 17 8 18 CPPE# 11 SYSR SS_V15 1.5V/625mA 9 V15-2 VD CPUSB# V15-1 Input 12 logic Power good 10 19 16 PERST# VCC TSD,CL,UVLO 7 EN,SYSR,CPUSB#,CPPE# PERST_IN# 13 Thermal protection VCC 24 TSD PERST#_DELAY V3_IN,V3AUX_IN,V15 CL V3,V3AUX,V15 EN 23 Reference Block V3_IN V3AUX_IN Charge VD Pump V15_IN VCC 15 Under UVLO OC voltage lock out 14 UVLO_AUX OC_DELAY 1 GND ●PHYSICAL DIMENSIONS ●PIN FUNCTION BD4153FV Lot No. (UNIT:mm) PIN No PIN NAME 1 GND 2 SS_V3 V3 soft start pin 3 V3_1 V3 output pin 1 4 V3_2 V3 output pin 2 5 V3AUX 6 SS_V3AUX 7 PERST_IN# 8 V15_1 V15 output pin 1 10 V15_2 V15 output pin 2 11 SYSR Logic input pin CPPE# Logic input pin 12 CPUSB# Logic input pin 13 PERST#_DELAY 14 OC_DELAY SSOP-B24 D4153EFV Lot No. (Unit:mm) PIN FUNCTION GND pin V3AUX output pin V3AUX soft start pin PERST# control input pin (SysReset#) PERST# delay time setting pin OCP delay time setting pin 15 OC 16 SS_V15 V15 soft start pin 17 V15_IN1 V15 input pin 1 18 V15_IN2 V15 input pin 2 19 PERST# 20 V3AUX_IN 21 V3_IN1 V3 input pin 1 22 V3_IN2 V3 input pin 2 23 EN 24 VCC HTSSOP-B24(ESSOP-B24) 12/28 over current protect signal output pin Logic output pin V3AUX input pin 1 Enable input pin Input voltage ●BLOCK DIAGRAM (BD4154FV) V3-1 V3_IN1 4 VD 5 3.3V 3.3V/1.30A 6 7 V3_IN2 V3-2 TSD,CL,UVLO 3.3V AUX/275mA V3AUX_IN 18 17 VD 3.3V V3AUX TSD,CL,UVLO_AUX V15_IN1 V15_IN2 1.5V CPPE# CPUSB# SYSR V15-1 1.5V/625mA 15 14 V3AUX_IN 16 V3AUX_IN 12 Input 11 logic 19 RCLKEN Power good TSD,CL,UVLO EN,SYSR,CPUSB#,CPPE# Thermal protection TSD V3_IN,V3AUX_IN,V15_IN 2 Reference Block PERST# 1 PERST_IN# V3_IN Under voltage V3AUX_IN Charge Pump 8 CL V3,V3AUX,V15 EN V15-2 VD 3 V3AUX_IN 13 VD V15_IN lock out UVLO UVLO_AUX 10 GND ●PHYSICAL DIMENSIONS ●PIN FUNCTION PIN No 1 D4154FV Lot No. SSOP-B20 (Unit:mm) PIN NAME 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 PERST_IN# EN SYSR V3_IN1 V3_IN2 V3_1 V3_2 PERST# TEST GND CPUSB# CPPE# V15_1 V15_2 V15_IN1 V15_IN2 V3AUX V3AUX_IN 19 RCLKEN 20 NC 13/28 PIN FUNCTION PERST# control input pin (SysReset#) Enable input pin Logic input pin V3 input pin 1 V3 input pin 2 V3 output pin 1 V3 output pin 2 Logic output pin Test pin GND pin Logic input pin Logic input pin V15 output pin 1 V15 output pin 2 V15 input pin 1 V15 input pin 2 V3AUX output pin V3AUX input pin 1 Reference clock enable signal/ Power good signal (No delay) Non connection ●BLOCK DIAGRAM (BD4155FV) V3_IN V3-1 4 3.3V 3.3V/1.30A 6 VD 5 7 V3_IN2 V3-2 TSD,CL,UVLO V3AUX_IN 18 17 VD 3.3V V3AUX TSD,CL,UVLO_AUX V15_IN1 1.5V V15-1 15 13 16 14 V15_IN2 1 2 V3AUX_IN (from host) SYSR 12 Input 11 logic 3 VD V3AUX_IN Reference Block Charge Pump Thermal protection VD Under voltage lock out EC_CLKEN#(from host) CL UVLO UVLO_AUX 10 ●PIN FUNCTION D4155FV Lot No. SSOP-B20 EC_CLKREQ#(from card) 9 GND ●PHYSICAL DIMENSIONS EC_RST#(from host) 20 TSD V3_IN,V3AUX_IN,V15_IN V3,V3AUX,V15 V3_IN V3AUX_IN V15_IN V15-2 PLT_RST#(from host) 19 PLL_CLKREQ#(to PLL) SYSR CPUSB# CPPE# TSD,CL,UVLO V3AUX_IN 1.5V/625mA 8 PERST#(to card) Power good (from card) CPPE# (from card) CPUSB# 3.3V AUX/275mA (Unit:mm) PIN No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 14/28 PIN NAME PLT_RST# EC_RST# SYSR V3_IN1 V3_IN2 V3_1 V3_2 PERST# EC_CLKEN# GND CPUSB# CPPE# V15_1 V15_2 V15_IN1 V15_IN2 V3AUX V3AUX_IN PLL_CLKREQ# EC_CLKREQ# PIN FUNCTION Logic input pin (from HOST) Logic input pin (from HOST) Logic input pin V3 input pin 1 V3 input pin 2 V3 output pin 1 V3 output pin 2 Logic output pin Logic input pin (from HOST) GND pin Logic input pin Logic input pin V15 output pin 1 V15 output pin 2 V15 input pin 1 V15 input pin 2 V3AUX output pin V3AUX input pin 1 Clock enable signal (to PLL) Logic input pin (from CARD) ●BLOCK DIAGRAM (BD4156MUV) 5 2 3.3V 3.3V/1.30A V3 V3_IN VD 4 3 V3_IN V3 TSD,CL,UVLO 3.3V AUX/275mA V3AUX_IN 17 15 VD V3AUX 3.3V TSD,CL,UVLO_AUX V15_IN V15 12 V15_IN 14 1.5V V3AUX_IN CPUSB# SYSR 10 13 V3AUX_IN VD CPPE# 1.5V/625mA 11 Input 9 logic 18 RCLKEN 8 PERST# 6 PERST_IN# Power good TSD,CL,UVLO 1 EN,SYSR,CPUSB#,CPPE# V3AUX_IN V15 TSD Thermal protection V3_IN,V3AUX_IN,V15_IN CL V3,V3AUX,V15 EN Reference 20 V3_IN 19 Block V3AUX_IN voltage Charge VD OC# Under V15_IN UVLO lock out Pump UVLO_AUX 7 GND ●PHYSICAL DIMENSIONS ●PIN FUNCTION D4156 Lot No. PIN No PIN NAME 1 SYSR 2 3 V3_IN 4 V3_IN V3 5 V3 6 PERST_IN# 7 GND 8 9 PERST# CPUSB# 10 CPPE# 11 V15 12 V15_IN 13 V15 14 V15_IN 15 V3AUX 16 TEST 17 V3AUX_IN 18 RCLKEN 19 OC# 20 EN VQFN020V4040 Package(Unit:mm) 15/28 PIN FUNCTION Logic input pin V3 input pin V3 output pin V3 input pin V3 output pin PERST# control input pin (SysReset#) GND pin Logic output pin Logic input pin Logic input pin V15 output pin V15 input pin V15 output pin V15 input pin V3AUX output pin Test pin V3AUX input pin 1 Reference clock enable signal/ Power good signal (No delay) over current protect signal output pin Enable input pin ●Description of operations VCC (BD4153FV, BD4153EFV) BD4153FV, BD4153EFV has an independent power input pin for an internal circuit operation in order to activate UVLO, Input logic, and charge pump, the maximum current through which is rated to 2 mA. It is recommended to connect a bypass capacitor of 0.1 µF or so to VCC pin. EN (BD4153FV, BD4153EFV) With an input of 2.3 volts or higher, this terminal turns to “High” level to activate the circuit, while it turns to “Low” level to deactivate the circuit (with the standby circuit current of 35 µA), discharges each output and lowers output voltage If the input is lowered to 0.8 volts or less. EN (BD4154FV/BD4156MUV) With an input of 2.0 volts or higher, this terminal goes HIGH to activate the circuit, and goes LOW to deactivate the circuit (with the standby circuit current of 40 µA), It discharges each output and lowers output voltage when the input falls to 0.8 volts or less. V3_IN, V15_IN, and V3AUX_IN (BD4153FV, BD4153EFV) These are the input terminals for each channel of a 3ch switch. V3_IN and V15_IN terminals have two pins each, which should be short-circuited on the pc board with a thick conductor. And V3AUX IN terminal should be short-circuited to VCC terminal. Through these three terminals, a big current runs (V3_IN: 1.35A, V3AUX_IN: 0.275 A, and V15_IN: 0.625 A). In order to lower the output impedance of the power supply to be connected, it is recommended to provide ceramic capacitors (of B-characteristics or better) between these terminals and ground; 1 µF or so between V3_IN and GND and between V15_IN and GND, and 0.1 µF or so between V3AUX_IN and GND. V3_IN, V15_IN, and V3AUX_IN (BD4154FV, BD4155FV, BD4156MUV) These are the input terminals for each channel of a 3ch switch. V3_IN and V15_IN terminals have two pins each, which should be short-circuited on the pc board with a thick conductor. A large current runs through these three terminals : (V3_IN: 1.35A; V3AUX_IN: 0.275 A; and V15_IN: 0.625 A). In order to lower the output impedance of the connected power supply, it is recommended that ceramic capacitors (with B-type characteristics or better) be provided between these terminals and the ground. Specifically, the capacitors should be on the order of 1 µF between V3_IN and GND, and between V15_IN and GND; and on the order of 0.1 µF between V3AUX_IN and GND. V3, V15, and V3AUX (BD4153FV, BD4153EFV, BD4154FV, BD4155FV, BD4156MUV) These are the output terminals for each switch. V3 and V15 terminals have two pins each, which should be short-circuited on the pc board and connected to an ExpressCard connector with a thick conductor as shortest as possible. In order to stabilize the output, it is recommended to provide ceramic capacitors (of B-characteristics or better) between these terminals and ground; 10 µF or so between V3 and GND and between V15 and GND, and 1 µF or so between V3AUX and GND. CPPE# (BD4153FV, BD4153EFV) The pin used to find whether a PCI-Express signal compatible card is provided or not. Turns to “High” level with an input of 2.3 volts or higher, which means that no card is provided, while it turns to “Low” level when the input is lowered to 0.8 volts or less, which means that a card is provided. Controls turning ON/OFF of the switch according to the status of the system. CPPE# (BD4154FV, BD4155FV, BD4156MUV) This pin is used to find whether or not a PCI-Express signal compatible card is present. Turns to “High” level with an input of 2.0 volts or higher, which means that no card is provided, while it turns to “Low” level when the input is lowered to 0.8 volts or less, which means that a card is provided. Controls the ON/OFF, switch selecting the proper mode based on the status of the system. Pull up resistance (100kΩ~200kΩ) is built into, so the number of components is reduced. CPUSB# (BD4153FV, BD4153EFV) The pin used to find whether a USB2.0 signal compatible card is provided or not. Turns to “High” level with an input of 2.3 volts or higher, which means that no card is provided, while it turns to “Low” level when the input is lowered to 0.8 volts or less, which means that a card is provided. Controls turning ON/OFF of the switch according to the system status. CPUSB# (BD4154FV, BD4155FV, BD4156MUV) This pin is used to find whether or not a USB2.0 signal compatible card is present. Turns to “High” level with an input of 2.0 volts or higher, which means that no card is provided, while it turns to “Low” level when the input is lowered to 0.8 volts or less, which means that a card is provided. Controls the ON/OFF switch, selecting the proper mode based on the system status. Pull up resistance (100kΩ~200kΩ) is built into, so the number of components is reduced. SYSR (BD4153FV, BD4153EFV) The pin used to detect the system status. Turns to “High” level with an input of 2.3 volts or higher, which means that the system is activated, while it turns to “Low” level when the input is lowered to 0.8 volts or less, which means that the system is on standby. SYSR (BD4154FV, BD4156MUV) This pin is used to detect the system status. Turns to “High” level with an input of 2.0 volts or higher, which means that the system is activated, while it turns to “Low” level when the input is lowered to 0.8 volts or less, which means that the system is on standby. (Pull up resistance (100kΩ~200kΩ) is built into, so the number of components is reduced.) SYSR (BD4155FV) The pin used to detect the system status. Turns to “High” level with an input of 2.0 volts or higher, which means that the system is activated, while it turns to “Low” level when the input is lowered to 0.8 volts or less, which means that the system is on standby. 16/28 PERST_IN# (BD4153FV, BD4153EFV) The pin used to control a reset signal to a card (PERST#) from the system side. (Also referred to as “SysReset#” by PCMCIA.) Turns to “High” level with an input of 2.3 volts or higher, and turns PERST# to “High” level AND with a “Power Good” output. Turns to “Low” level and turns PERST# to “Low” level when the input is lowered to 0.8 volts or less. PERST_IN# (BD4154FV, BD4156MUV) This pin is used to control the reset signal (PERST#) to a card from the system side. (Also referred to as “SysReset#” by PCMCIA.) Turns to “High” level with an input of 2.0 volts or higher, and sets PERST# to “High” AND with a “Power Good” output. Turns to “Low” level and sets PERST# to “Low” when the input falls to 0.8 volts or less. PERST# (BD4153FV, BD4153EFV, BD4154FV, BD4156MUV) The pin used to provide a reset signal to a PCI-Express compatible card. The status is determined by each output, PERST#_IN, CPPE# system status, and EN on/off status. Turns to “High” level and activates the PCI-Express compatible card only if each output is within the “Power Good” threshold with the card kept inserted and with PERST_IN# turned to “High” level. PERST# (BD4155FV) This pin is used to send a reset signal to a PCI-Express compatible card. Reset status is determined by the outputs, PLT_RST#, EC_RST#, CPPE# system status. Turns to “High” level and activates the PCI-Express compatible card only if each output is within the “Power Good” threshold, with the card inserted and PLT_RST#, EC_RST# turned to “High” level. PERST#_DELAY (BD4153FV, BD4153EFV) Delay during which the level at PERST# pin turns from Low to High may be set with a capacitor externally applied. The delay time is determined by the regulated current (2 µA), the reference voltage (0.7 volts) inside the IC and the capacitance of the capacitor externally applied. The delay time is specified as “at least 1 ms” in “ExpressCard Standard”. It does not synchronize with PERST_IN#, and it synchronizes only with a “Power Good” output inside the IC. Turns to “Low” level when SW is turned OFF. OC (BD4153FV, BD4153EFV, BD4156MUV) Turns its output to “Low” level if an overcurrent condition is detected. This open drain output may be pulled up to 3.6 volts power supply via resistor. OC-Delay (BD4153FV, BD4153EFV) Delay during which the level at OC pin turns from High to Low may be set with a capacitor externally applied. The delay time is determined by the regulated current (2 µA), the reference voltage (0.7 volts) inside the IC and the capacitance of the capacitor externally applied. May be used to control with the OC status fed back to the system. If fed back to EN terminal of this IC, it may be used to turn OFF the output that is provided when an overcurrent condition is detected. RCLKEN (BD4154FV, BD4156MUV) This pin is used to send an enable signal to the reference clock. Activation status is determined by the outputs, CPPE# system status, and EN on/off status. Turns to “High” level and activates the reference clock PLL only if each output is within the “Power Good” threshold, with the card kept inserted. TEST (BD4154FV, BD4156MUV) This pin is used to test, which should be short-circuited to the GND. When it is short-circuited to V3AUX_IN, UVLO (V3_IN, V15_IN) turns OFF. PLT_RST#, EC_RST# (BD4155FV) These pins are used to control the reset signal (PERST#) to a card from the system side. (Also referred to as “SysReset#” by PCMCIA.) Turns to “High” level with an input of 2.0 volts or higher, and sets PERST# to “High” AND with a “Power Good” output. Turns to “Low” level and sets PERST# to “Low” when the input falls to 0.8 volts or less. EC_CLKEN#, EC_CLKREQ# (BD4155FV) These pins are used to control the enable signal (PLL_CLKREQ#) to the reference clock. Turns to “High” level and set PLL_CLKREQ# to “High” when the input rise to 2.0 volts or higher. Turns to “Low” level with an input of 0.8 volts or less, and sets PLL_CLKREQ# to “Low” or with a inverting “Power Good” output. PLL_CLKREQ# (BD4155FV) This pin is used to send an enable signal to the reference clock. Activation status is determined by the outputs, EC_CLKEN#,EC_CLKREQ#, CPPE# system status. Turns to “Low” level and activates the reference clock PLL only if each output is within the “Power Good” threshold, with the card kept inserted, and EC_CLKEN#, EC_CLKREQ# turned to “Low”level. 17/28 ●TIMING CHART TM Power ON/OFF Status of ExpressCard System Status ExpressCARD Primary Auxiliary OFF OFF ON ON Power Switch Status Module Status Primary Auxiliary Don’t Care OFF OFF De-asserted OFF OFF Asserted ON ON De-asserted OFF OFF Asserted Before This OFF ON Asserted After This OFF OFF ON ON TM ExpressCardTM States Transition Diagram SYSR=L CP#=L→H SYSR=H⇔L CP#=H SYSR=H CP#=H→L SYSR=L CP#=H⇔L V3AUX=OFF V15=V3=OFF SYSR=L→H CP#=L V3AUX=ON V15=V3=ON SYSR=H→L CP#=L SYSR=H CP#=L→H SYSR=L→H CP#=L V3AUX=ON V15=V3=OFF SYSR=H→L CP#=L SYSR=L CP#=L ⇔ SYSR=H CP#=H System Status Card Status Stand-by Status :SYSR=L CardAsserted Status :CP#=L ON Status :SYSR=H Card De-asserted Status :CP#=H From ON to Stand-by Status :SYSR=H→L From De-asserted to Asserted Status :CP#=H→L From Stand-by to ON Status :SYSR=L→H From Asserted to De-asserted Status :CP#=L→H 18/28 ●OUTPUT CONDITION LIST(Output) (BD4154FV, BD4156MUV) Power Supply State Logic input Output V3AUX_IN V3_IN V15_IN EN SYSR CPPE# CPUSB# V3/V15 V3AUX OFF 0 × × × × × × OFF OFF Shut down 1 × × 0 × × × OFF OFF 1 1 OFF OFF × 0 OFF ON 0 × OFF ON × × OFF OFF 1 1 OFF OFF × 0 ON ON 0 × ON ON ON 1 ↓ × × 1 1→0 Stand-by Stand-by ON 1 1 × × 1 1 State 1 0 1 1 Logic input Logic output PERST_IN# RCLKEN(Input) PERST# RCLKEN OFF × × 0 0 Shut down × × 0 0 Stand-by × × 0 0 ON(No Card) × × 0 0 0 Hiz 0 0 0 0 0 0 1 Hiz 0 0 1 0 0 0 0 Hiz 0 1 0 0 0 0 1 Hiz 1 1 1 0 0 0 ON(CPUSB#=0) ON(CPPE#=0) 19/28 ●Reference data (BD4155FV) Condition UVLO UVLO Thermal (V3/V15) (V3AUX) ― ― ― ON OFF OFF ― ON OFF OFF ― ― ON OUTPUT CONDITION LIST(Protect Circuit) CPxx# H L Output V3/V15 V3AUX L Hi-Z L H Hi-Z L H L H Hi-Z Input State V3AUX_IN 0 V3_IN 0 1 × Stand-by 1 × ON 1 1 OFF ON ↓ Stand-by V15_IN 0 SYSR 0 CPPE# × 1 × 1→0 × 0 1 × 0 × 0 1 1 1 × 0 OUTPUT CONDITION LIST(Logic) Output V3/V15 V3AUX OFF OFF OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF ON ON ON ON CPUSB# × 1 0 × 1 0 × 1 0 × Input State Output V3AUX_IN V3_IN V15_IN SYSR CPPE# CPUSB# OFF Stand-by 0 1 0 × 0 × 0 0 × × 1 0 × × 1 × ON 1 1 1 1 0 × POWER PLT_RST# EC_RST# PERST# GOOD 1 0 OUTPUT CONDITION LIST(PERST#) × × × NG × × × × OK 0 OK 1 × × × × × × 0 1 0 1 × Input State Output V3AUX_IN V3_IN V15_IN SYSR CPPE# CPUSB# OFF Stand-by 0 1 0 × 0 × 0 0 × × 1 0 × × 1 × ON 1 1 1 1 0 × POWER EC_ EC_ GOOD CLKREQ# CLKEN# × × × NG × × × × OK 0 OK 1 1 0 × OUTPUT CONDITION LIST(PLL_CLKREQ#) × 20/28 L L L L L L L H L × × × × 0 1 0 1 × PLL_ CLKREQ# Hi-Z L H H L H H H H ■ BD4153FV, BD4153EFV Evaluation Board Circuit U1 TP16 TP15 1 C2 TP1 4 TP2 5 C6a 6 C6 C3 TP21 VCC R7 C5 2 TP17 3 V3_AUXIN 7 S2 R7a TP4 TP18 C7 TP6 S4 TP7 8 C8 9 R10a 10 R11a TP8 S5 TP3 R12a 11 12 S6 BD4153FV GND VCC SS_V3 EN V3_1 V3_IN2 V3_2 V3 IN1 V3_AUXIN V3AUX SS_V3AUX PERST# PERST_IN# V15 IN2 V15_1 V15 IN1 V15_2 SS_V15 SYSR OC CPPE# OC_DELAY CPUSB# PERST#_DELAY 24 R24 23 R23 VCC TP14 C23 TP13 22 21 S1 TP20 C24 C23a C21 R20 TP22 20 TP12 TP11 19 C20 TP10 18 TP19 17 C17 C16 16 TP9 15 C14 14 VCC C13 13 R18 R15 VCC R10 R11 R12 C10 C11 C12 ■ BD4153FV, BD4153EFV Evaluation Board Application Components Part No Value Company Part Name Part No Value Company Part Name U1 - ROHM BD4153FV C6a - - - R7 10kΩ ROHM MCR03series C7 - - - R10 10kΩ ROHM MCR03series C8 10μF MURATA GRM31CB10J106KC01B R10a 0Ω ROHM MCR03series C10 - - - R11 120kΩ ROHM MCR03series C11 - - - R11a 0Ω ROHM MCR03series C12 - - - R12 120kΩ ROHM MCR03series C13 0.033μF MURATA GRM155B11A333 R12a 0Ω ROHM MCR03series C14 0.22μF MURATA GRM188B11A224KA61B R15 10kΩ ROHM C16 2200pF MURATA GRM1881X1H222JA01B R18 - MCR03series - C17 1μF MURATA GRM188B10J105KA01B R20 0Ω ROHM MCR03series C20 0.1μF MURATA GRM155B11A104 R23 0Ω ROHM MCR03series C21 1μF MURATA GRM188B10J105KA01B R24 10Ω ROHM MCR03series C23 0.1μF MURATA GRM155B11A104 C2 2200pF MURATA GRM1881X1H222JA01B C23a - - C3 10μF MURATA GRM31CB10J106KC01B C24 0.1μF MURATA C5 1μF MURATA GRM188B10J105KA01B C6 0.01μF MURATA GRM1881X1H103JA01B 21/28 GRM155B11A104 ■ BD4154FV, BD4156MUV Evaluation Board V3AUX_IN BD4156MUV only U1 R1(R6) GND SW2 GND SW3 GND 1(6) PERST_IN# R2(R20) C1(C6) GND 2(20) R3(R1) C2(C20) GND 3(1) EN C3(C1) V3_IN(S) GND 4(2) SYSR V3_IN C4(C2) 5(4) GND R19B BD4154FV (BD4156MUV) SW1 OC# PERST_IN# RCLKEN EN 20(19) R19A 19(18) RCLKEN 18(17) V3AUX_IN(S) V3AUX_IN 17(15) V3AUX(S) C18(C17) GND 16(13) V15_IN(S) C17(C15) GND V3AUX V3_IN1 V15_IN2 V3_IN2 6(3) V3_1 V15_IN1 V3_2 V15_2 C6(C3) GND 7(5) 8(8) PERST # V3AUX_IN SW7 9(16) V15_1 TEST CPPE# CPUSB# GND GND V15 C13(C14) GND 13(12) SW5 R12(R10) 12(10) 11(9) CPPE# SW6 GND CPUSB# ■ BD4154FV, BD4156MUV Evaluation Board Application Components Part No Value Company Part Name R1(R6) 0Ω ROHM MCR03series R2(R20) 0Ω ROHM MCR03series R3(R1) 0Ω ROHM MCR03series R11(R9) 0Ω ROHM MCR03series R12(R10) 0Ω ROHM MCR03series R19A 0Ω ROHM MCR03series ※ BD4156MUV ※ BD4156MUV R19B 20kΩ ROHM MCR03series C1(C6) - - - C2(C20) - - - C3(C1) - - - C4(C2) 1μF MURATA GRM188B10J105KA01B C6(C3) 10μF MURATA GRM31CB10J106KC01B C11(C9) - - - C12(C10) - - - C13(C14) 10μF MURATA GRM31CB10J106KC01B C15(C13) 1μF MURATA GRM188B10J105KA01B C17(C15) 1μF MURATA GRM188B10J105KA01B C18(C17) 0.1μF MURATA GRM155B11A104 C19 - - - GND R11(R9) C11(C9) GND SSOP-B20 22/28 V15_IN V15(S) C12(C10) 10(7) V3AUX C15(C13) GND 15(11) 14(14) PERST# GND V3AUX_IN V3AUX_IN SYSR V3(S) V3 SW4 C19 GND ※ BD4156MUV GND ■ BD4155FV Evaluation Board U1 V3AUX_IN SW1 R1a R1 GND 1 PLT_RST# V3AUX_IN SW2 R2a R2 GND SYSR PLT_RST# EC_CLKREQ# 2 C2 GND C3 GND PLL_CLKREQ# GND 19 R19 SYSR V3AUX_IN1 18 V3AUX_IN V3_IN(S) 4 V3_IN C4 GND 5 V3_IN1 V3AUX V3_IN2 V15_IN2 V3AUX(S) C18 GND V15_IN(S) C17 GND 17 V3AUX 16 V15_IN C15 GND V3(S) 6 V3 PLL_CLKREQ# V3AUX_IN V3AUX_IN(S) 3 R3 GND V3AUX_IN EC_CLKREQ# C20 EC_RST# SW20 R20 R20a 20 C1 GND EC_RST# V3AUX_IN SW3 R3a GND V3AUX_IN BD4155FV V3_1 V15_IN1 V3_2 V15_2 15 C6 GND 7 V15(S) 14 V15 C13 GND SW9 8 PERST # V3AUX_IN R9a GND EC_CLKEN# 9 R9 C9 GND PERST# V15_1 EC_CLKEN# CPPE# 13 V3AUX_IN C12 10 GND CPUSB# SW12 R12 R12a 12 GND 11 C11 GND GND V3AUX_IN CPPE# SW11 R11 R11a GND CPUSB# GND SSOP-B20 ■ BD4155FV Evaluation Board Application Components Part No Value Company Part Name Part No Value Company Part Name R1 0Ω ROHM MCR03series C1 - - - R1a 100kΩ ROHM MCR03series C2 - - - R2 0Ω ROHM MCR03series C3 - - - R2a 100kΩ ROHM MCR03series C4 1μF MURATA GRM188B10J105KA01B R3 0Ω ROHM MCR03series C6 10μF MURATA GRM31CB10J106KC01B R3a 100kΩ ROHM MCR03series C9 - - - R9 0Ω ROHM MCR03series C11 - - - R9a 100kΩ ROHM MCR03series C12 - - - R11 0Ω ROHM MCR03series C13 10μF MURATA GRM31CB10J106KC01B R11a - - - C15 1μF MURATA GRM188B10J105KA01B R12 0Ω ROHM MCR03series C17 1μF MURATA GRM188B10J105KA01B R12a - - - C18 0.1μF MURATA GRM155B11A104 R19 10kΩ ROHM MCR03series C20 - - - R20 0Ω ROHM MCR03series R20a 100kΩ ROHM MCR03series 23/28 ●NOTE FOR USE 1.Absolute maximum ratings For the present product, thoroughgoing quality control is carried out, but in the event that applied voltage, working temperature range, and other absolute maximum rating are exceeded, the present product may be destroyed. Because it is unable to identify the short mode, open mode, etc., if any special mode is assumed, which exceeds the absolute maximum rating, physical safety measures are requested to be taken, such as fuses, etc. 2.GND potential Bring the GND terminal potential to the minimum potential in any operating condition. 3.Thermal design Consider allowable loss (Pd) under actual working condition and carry out thermal design with sufficient margin provided. 4.Terminal-to-terminal short-circuit and erroneous mounting When the present IC is mounted to a printed circuit board, take utmost care to direction of IC and displacement. In the event that the IC is mounted erroneously, IC may be destroyed. In the event of short-circuit caused by foreign matter that enters in a clearance between outputs or output and power-GND, the IC may be destroyed. 5.Operation in strong electromagnetic field The use of the present IC in the strong electromagnetic field may result in maloperation, to which care must be taken. 6.Built-in thermal shutdown protection circuit The present IC incorporates a thermal shutdown protection circuit (TSD circuit). The working temperature is 175°C (standard value) and has a -15°C (standard value) hysteresis width. When the IC chip temperature rises and the TSD circuit operates, the output terminal is brought to the OFF state. The built-in thermal shutdown protection circuit (TSD circuit) is first and foremost intended for interrupt IC from thermal runaway, and is not intended to protect and warrant the IC. Consequently, never attempt to continuously use the IC after this circuit is activated or to use the circuit with the activation of the circuit premised. 7.Capacitor across output and GND In the event a large capacitor is connected across output and GND, when Vcc and VIN are short-circuited with 0V or GND for some kind of reasons, current charged in the capacitor flows into the output and may destroy the IC. Use a capacitor smaller than 1000 µF between output and GND. 8.Inspection by set substrate In the event a capacitor is connected to a pin with low impedance at the time of inspection with a set substrate, there is a fear of applying stress to the IC. Therefore, be sure to discharge electricity for every process. As electrostatic measures, provide grounding in the assembly process, and take utmost care in transportation and storage. Furthermore, when the set substrate is connected to a jig in the inspection process, be sure to turn OFF power supply to connect the jig and be sure to turn OFF power supply to remove the jig. 9.IC terminal input + The present IC is a monolithic IC and has a P substrate and P isolation between elements. With this P layer and N layer of each element, PN junction is formed, and when the potential relation is yGND>terminal A>terminal B, PN junction works as a diode, and yterminal B>GND terminal A, PN junction operates as a parasitic transistor. The parasitic element is inevitably formed because of the IC construction. The operation of the parasitic element gives rise to mutual interference between circuits and results in malfunction, and eventually, breakdown. Consequently, take utmost care not to use the IC to operate the parasitic element such as applying voltage lower than GND (P substrate) to the input terminal. Resistor NPN Transistor Structure (NPN) (PIN A) (PIN B) B E C Parasitic diode GND N P+ P+ P P P+ N GND (PIN B) P+ N N N P substrate (PIN A) N Parasitic diode GND C N B E P substrate Parasitic diode GND GND Nearby other device Parasitic diode 24/28 10. GND wiring pattern If there are a small signal GND and a high current GND, it is recommended to separate the patterns for the high current GND and the small signal GND and provide a proper grounding to the reference point of the set not to affect the voltage at the small signal GND with the change in voltage due to resistance component of pattern wiring and high current. Also for GND wiring pattern of component externally connected, pay special attention not to cause undesirable change to it. 11. Electrical characteristics The electrical characteristics in the Specifications may vary depending on ambient temperature, power supply voltage, circuit(s) externally applied, and/or other conditions. It is therefore requested to carefully check them including transient characteristics. 12. Capacitors to be applied to the input terminals The capacitors to be applied to the input terminals (VCC, V3_IN, V3AUX_IN and V15_IN) are used to lower the output impedance of the power supply to be connected. An increase in the output impedance of the power supply may result in destabilization of input voltages (VCC, V3_IN, V3AUX_IN and V15_IN). It is recommended to use a low ESR capacitor with less temperature coefficient (change in capacitance vs. change in temperature), 0.1 µF more or less for VCC and V3AUX_IN while 1 µF more or less for V3_IN and V15_IN, but it must be thoroughly checked at the temperature and with the load of the range expected to use because it significantly depends on the characteristics of the input power supply to be used and the conductor pattern of the pc board. 13. Capacitors to be applied to the output terminals To the output terminals (V3, V3_AUX, and V15), the output capacitors should be connected between the respective output terminal and GND. It is recommended to use a low ESR capacitor with less temperature coefficient, 1 µF more or less for V3 and V15 terminals while 1µF more or less for V3_AUX, but it must be thoroughly checked at the temperature and with the load of the range expected to use because it significantly depends on the temperature and the load conditions. 14. Not of a radiation-resistant design. 15. .Allowable loss Pd With respect to the allowable loss, the thermal derating characteristics are shown in the Exhibit, which we hope would be used as a good-rule-of-thumb. Should the IC be used in such a manner to exceed the allowable loss, reduction of current capacity due to chip temperature rise, and other degraded properties inherent to the IC would result. You are strongly urged to use the IC within the allowable loss. 16. In the event that load containing a large inductance component is connected to the output terminal, and generation of back-EMF at the start-up and when output is turned OFF is assumed, it is requested to insert a protection diode. OUTPUT PIN 17. Operating ranges If it is within the operating ranges, certain circuit functions and operations are warranted in the working ambient temperature range. With respect to characteristic values, it is unable to warrant standard values of electric characteristics but there are no sudden variations in characteristic values within these ranges. 18. We are certain that examples of applied circuit diagrams are recommendable, but you are requested to thoroughly confirm the characteristics before using the IC.In addition, when the IC is used with the external circuit changed, decide the IC with sufficient margin provided while consideration is being given not only to static characteristics but also variations of external parts and our IC including transient 19. Wiring to the input terminals (V3 IN, V3AUX IN, and V15 IN) and output terminals (V3, V3AUX and V15) of built-in FET should be carried out with special care. Unnecessarily long and/or thin conductors used in wiring may result in degradation of characteristics including decrease in output voltage. 20. Heat sink Heat sink is connected to SUB, which should be short-circuited to GND. Solder the heat sink to a pc board properly, which offers lower thermal resistance. 25/28 ●POWER DISSIPATION ◎BD4153FV [W] 1.4 Mounted on board 1.025W 70mm×70mm×1.6mm Glass-epoxy PCB θj-a=122.0℃/W 1.0 Without heat sink. 0.787W 0.8 θj-a=158.7℃/W 0.6 100℃ 0.4 0.2 0 0 Power Dissipation (Pd) Power Dissipation (Pd) 1.2 ◎BD4153EFV [W] 5 4 PCB①:θja=113.6℃/W PCB②:θja=43.5℃/W ④4.0W PCB③:θja=44.6℃/W PCB④:θja=31.3℃/W 3 2 1 25 50 75 100 125 150 Ambient Temperature (Ta) [℃] measure:TH-156(Kuwano-Denki) measure condition:Rohm Standard Board PCB size:70mm×70mm×1.6mmt (PCB with Thermal Via) ③2.8W ②1.7W PCB①:Single-layer substrate (substrate surface copper foil area:0mm×0mm) PCB②:Double-layer substrate (substrate surface copper foil area:15mm×15mm) PCB③:Double-layer substrate (substrate surface copper foil area:70mm×70mm) PCB④:Fourth-layer substrate (substrate surface copper foil area:70mm×70mm) ①1.1W 0 25 50 75 100 125 150 Ambient Temperature (Ta) [℃] ●Ordering part number B D 4 1 5 3 Package Type Part Number ・BD4153 V 2 7.8 ± 0.2 13 0.3Min. 7.6 ± 0.3 5.6 ± 0.2 24 1 Embossed carrier tape 2000pcs Direction of feed E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand) 0.15 ± 0.1 1234 1234 4 +6 −4 7.6 ± 0.2 5.6 ± 0.1 0.53 ± 0.15 1 ± 0.2 13 12 2000pcs Direction of feed E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand) 1234 1234 1234 1pin 1234 (Unit:mm) 1234 Reel 1234 0.08 M 1234 +0.05 −0.04 Embossed carrier tape Quantity 1234 0.2 Tape +0.05 0.17 −0.03 0.08 S 0.65 1234 1 1234 7.8 ± 0.1 24 Direction of feed 1pin Reel HTSSOP-B24 1234 1234 0.22 ± 0.1 1234 0.1 1234 0.65 12 Quantity (Unit:mm) 1.0Max. 0.85 ± 0.05 0.08 ± 0.05 E E2 : Embossed carrier tape Tape 0.325 ― ・FV : SSOP-B24 ・EFV : HTSSOP-B24 SSOP-B24 1.15 ± 0.1 0.1 F Direction of feed ※When you order , please order in times the amount of package quantity. 26/28 ●POWER DISSIPATION ◎BD4154FV, BD4155FV [mW] 1000 Mounted on board 70mm×70mm×1.6mmglass-epoxy PCB θj-a=153.8℃/W 812.5mW Power Dissipation (Pd) 800 600 Without heat sink θj-a=250.0℃/W 500mW 400 100℃ 200 0 0 25 50 75 125 100 150 [℃] Ambient Temperature (Ta) ● Ordering part number B D 4 Type 1 5 4 ― V E 2 E2:Embossed tape and reel, Pin 1 fed last Package Type BD4154 BD4155 F FV : SSOP - B20 SSOP-B20 Embossed carrier tape Tape 20 11 0.3Min. 1 10 0.15 ± 0.1 (With reel in left hand, unreeling with the right, the index pin [1-pin] is at top left)) Direction of feed ※Please order by the number of reels desired.bb 27/28 1234 1234 1234 1pin 1234 1234 (Unit:mm) Reel 1234 0.1 Direction of feed 1234 0.65 0.22 ± 0.1 2500pcs E2 1234 6.4 ± 0.3 1.15 ± 0.1 4.4 ± 0.2 0.1 6.5 ± 0.2 Quantity/Reel ●POWER DISSIPATION ◎BD4156MUV Mounted on board 70mm×70mm×1.6mm Glass-epoxy PCB θj-a=178.6℃/W Power Dissipation (Pd) [W] 1.0 0.8 ②0.70W Without heat sink. 0.6 0.4 θj-a=367.6℃/W ①0.34W 0.2 0 25 50 75 100 125 150 [℃] Ambient Temperature (Ta) ● Ordering part number B D Type BD4156 4 1 5 6 M U Package Type ― V E 2 E2:Embossed tape and reel, Pin 1 fed last MUV : VQFN020V4040 VQFN020V4040 Embossed carrier tape Tape Quantity/Reel 2500pcs Direction of feed E2 (With reel in left hand, unreeling with the right, the index pin [1-pin] is at top left)) Direction of 1pin Reel ※Please order by the number of reels desired.bb 1234 1234 1234 1234 1234 1234 (Unit:mm) feed Catalog No.06T259A '06.11 ROHM © 1000 TSU 28/28 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2008 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster@ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix1-Rev2.0
BD4153FV-E2 价格&库存

很抱歉,暂时无法提供与“BD4153FV-E2”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BD4153FV-E2
    •  国内价格
    • 10+24.01736
    • 30+22.87368
    • 50+21.90595

    库存:100

    BD4153FV-E2
      •  国内价格 香港价格
      • 1+6.031421+0.72900
      • 10+3.8720310+0.46800

      库存:1805