Nano EnergyTM
Datasheet
Voltage Detector (Reset) IC Series for Automotive Application
Free Time Delay Setting Dual Output
Window Voltage Detector (Reset) IC
BD52WxxG-C
General Description
Key Specifications
ROHM's free time delay setting window voltage
detector ICs are highly accurate, with low current
consumption feature that uses CMOS process. Delay
time setting can be control by an external capacitor. It
has dual N-channel open drain output. The time delay
has ±50 % accuracy for the entire operating
temperature range of -40 °C to +125 °C.
◼ Over Voltage Detection:
1.32 V, 1.65 V, 1.98 V, 2.75 V, 3.63 V, 5.50 V (Typ)
◼ Under Voltage Detection:
1.08 V, 1.35 V, 1.62 V, 2.25 V, 2.97 V, 4.50 V (Typ)
◼ Ultra-Low Current Consumption:
300 nA (Typ)
◼ Delay Time Accuracy:
±50 % (-40 °C to +125 °C)
(CT pin capacitor ≥ 1 nF)
Features
◼
◼
◼
◼
◼
◼
◼
◼
Nano Energy™
AEC-Q100 Qualified(Note 1)
Functional Safety Supportive Automotive Products
Under and Over Voltage Monitor
Free Time Delay Setting
Nch Open Drain Output
Very Small, Lightweight and Thin Package
SSOP6 Package is Similar to SOT-23-6 (JEDEC)
Special Characteristics
◼ Detection Voltage Accuracy:
±5.0 % (-40 °C to +125 °C)
Package
SSOP6:
W (Typ) x D (Typ) x H (Max)
2.9 mm x 2.8 mm x 1.25 mm
(Note 1) Grade 1
Application
All Automotive Devices That Requires Voltage Detection
Typical Application Circuit
VSENSE
VDD2
VDD1
VDD
CT
SENSE
GND
UVB
RST
OVB
Microcontroller
CCT
GND
Nano Energy™ is a trademark or a registered trademark of ROHM Co., Ltd.
〇Product structure : Silicon integrated circuit
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 14 • 001
〇This product has no designed protection against radioactive rays.
1/20
TSZ02201-0GAG2G600090-1-2
05.Nov.2021 Rev.003
BD52WxxG-C
Pin Configuration
SSOP6
TOP VIEW
SENSE
6
1
CT
GND
5
2
VDD
OVB
4
3
UVB
Pin Description
Pin No.
Pin Name
1
CT
2
3
4
5
6
VDD
UVB
OVB
GND
SENSE
Function
Capacitor connection pin for output
delay time setting
Power supply voltage
Under voltage detection output pin
Over voltage detection output pin
GND
SENSE pin
Block Diagram
VDD
(Note)
UVB
SENSE
(Note)
Delay
(Note)
Vref
OVB
Circuit
(Note)
(Note)
GND
CT
(Note) Parasitic Diode
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
2/20
TSZ02201-0GAG2G600090-1-2
05.Nov.2021 Rev.003
BD52WxxG-C
Absolute Maximum Ratings (Ta = 25 °C)
Parameter
Symbol
VDD
VSENSE
VCT
VUVB
VOVB
Power Supply Voltage
SENSE Pin Voltage
CT Pin Voltage
UVB Pin Voltage
OVB Pin Voltage
UVB Pin Output Current
OVB Pin Output Current
Limit
-0.3 to +7
-0.3 to +7
(GND - 0.3) to +7
(GND - 0.3) to +7
(GND - 0.3) to +7
70
70
+150
-55 to +150
IOUVB
IOOVB
Tjmax
Tstg
Maximum Junction Temperature
Storage Temperature Range
Unit
V
mA
°C
°C
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is
operated over the absolute maximum ratings.
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing
board size and copper area so as not to exceed the maximum junction temperature rating.
Thermal Resistance(Note 1)
Parameter
Symbol
Thermal Resistance (Typ)
Unit
1s(Note 3)
2s2p(Note 4)
θJA
376.5
185.4
°C/W
ΨJT
40
30
°C/W
SSOP6
Junction to Ambient
Junction to Top Characterization
Parameter(Note 2)
(Note 1) Based on JESD51-2A (Still-Air).
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface
of the component package.
(Note 3) Using a PCB board based on JESD51-3.
(Note 4) Using a PCB board based on JESD51-7.
Layer Number of
Measurement Board
Single
Material
Board Size
FR-4
114.3 mm x 76.2 mm x 1.57 mmt
Top
Copper Pattern
Thickness
Footprints and Traces
70 μm
Layer Number of
Measurement Board
4 Layers
Material
Board Size
FR-4
114.3 mm x 76.2 mm x 1.6 mmt
Top
2 Internal Layers
Bottom
Copper Pattern
Thickness
Copper Pattern
Thickness
Copper Pattern
Thickness
Footprints and Traces
70 μm
74.2 mm x 74.2 mm
35 μm
74.2 mm x 74.2 mm
70 μm
Recommended Operating Conditions
Parameter
Operating Supply Voltage
SENSE Pin Voltage
Operating Temperature
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
Symbol
VDD
VSENSE
Topr
3/20
Min
1.6
0
-40
Typ
+25
Max
6.0
6.0
+125
Unit
V
V
°C
TSZ02201-0GAG2G600090-1-2
05.Nov.2021 Rev.003
BD52WxxG-C
Electrical Characteristics (Unless otherwise specified Ta = -40 °C to +125 °C, VDD = 1.6 V to 6.0 V)
Parameter
Symbol
Under Voltage
Detection Voltage
VUVDET
Over Voltage
Detection Voltage
VOVDET
Circuit Current
UVB Operating
Voltage Range
OVB Operating
Voltage Range
IDD
VOPLUVB
VOPLOVB
UVB “Low” Output Voltage
VOLUVB
OVB “Low” Output Voltage
VOLOVB
L→H Propagation
Delay Time
tPLH
Condition
BD52W01G-C
BD52W02G-C
BD52W03G-C
VSENSE = H→L, RL = 100 kΩ
BD52W04G-C
BD52W05G-C
BD52W06G-C
BD52W01G-C
BD52W02G-C
BD52W03G-C
VSENSE = L→H, RL = 100 kΩ
BD52W04G-C
BD52W05G-C
BD52W06G-C
VDD = VSENSE = (VUVDET + VOVDET) / 2
VOLUVB ≤ 0.4 V, Ta = -40 °C to +125 °C,
RL = 100 kΩ
VOLOVB ≤ 0.4 V, Ta = -40 °C to +125 °C,
RL = 100 kΩ
VSENSE < VUVDET, VDD = 1.6 V, ISINK = 1.0 mA
VSENSE < VUVDET, VDD = 2.4 V, ISINK = 2.0 mA
VSENSE > VOVDET, VDD = 1.6 V, ISINK = 1.0 mA
VSENSE > VOVDET, VDD = 2.4 V, ISINK = 2.0 mA
VUVB = GND→50 %, CCT = 0.01 μF, VDD = 3.0 V
(Note 1)
Min
1.02
1.28
1.54
2.13
2.82
4.27
1.25
1.56
1.88
2.61
3.45
5.22
Limit
Typ
1.08
1.35
1.62
2.25
2.97
4.50
1.32
1.65
1.98
2.75
3.63
5.50
Max
1.14
1.42
1.70
2.37
3.12
4.73
1.39
1.74
2.08
2.89
3.82
5.78
-
300
3000
nA
1.6
-
-
V
1.6
-
-
V
-
-
0.4
0.4
0.4
0.4
27.7
55.5
83.2
Unit
V
V
V
V
ms
RL: Pull-up resistor connected between UVB, OVB and power supply.
(Note 1) CT delay capacitor range: open to 4.7 μF.
Function Explanation
1.
Nano Energy™
Nano Energy™ is a combination of technologies which realizes ultra low quiescent current operation.
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
4/20
TSZ02201-0GAG2G600090-1-2
05.Nov.2021 Rev.003
BD52WxxG-C
Typical Performance Curves
1.0
1.0
0.9
0.9
0.8
+125 °C
Circuit Current: IDD [µA]
Circuit Current: IDD [µA]
0.8
0.7
0.6
+25 °C
0.5
0.4
0.3
0.2
6.0 V
0.7
3.0 V
0.6
0.5
0.4
0.3
0.2
-40 °C
0.1
1.6 V
0.1
0.0
0.0
1
2
3
4
5
Operating Supply Voltage: VDD [V]
6
-50
Figure 1. Circuit Current vs Operating Supply
Voltage (VDD = SENSE)
0
25
50
75 100
Temperature: Ta [°C]
125
150
Figure 2. Circuit Current vs Temperature
(VDD = SENSE)
2.1
2.1
BD52W03G-C
VOVDET
Detection Voltage: VUVDET, VOVDET [V]
BD52W03G-C
Detection Voltage: VUVDET, VOVDET [V]
-25
2.0
1.9
1.8
VUVDET
1.7
1.6
1.5
VOVDET
2.0
1.9
1.8
1.7
VUVDET
1.6
1.5
1.0
2.0
3.0
4.0
5.0
Operating Supply Voltage: VDD [V]
6.0
-50
Figure 3. Detection Voltage vs Operating Supply
Voltage (Ta = 25 °C)
-25
0
25
50
75 100
Temperature: Ta [°C]
125
150
Figure 4. Detection Voltage vs Temperature
(VDD = 3 V)
(Note) The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
5/20
TSZ02201-0GAG2G600090-1-2
05.Nov.2021 Rev.003
BD52WxxG-C
Typical Performance Curves - continued
2.0
Hysteresis Voltage: ΔVUVDET, ΔVOVDET [%]
Hysteresis Voltage: ΔVUVDET, ΔVOVDET [%]
2.0
1.5
UVB
1.0
OVB
0.5
1.5
UVB
1.0
OVB
0.5
0.0
0.0
1.0
2.0
3.0
4.0
5.0
Operating Supply Voltage: VDD [V]
-50
6.0
Figure 5. Hysteresis Voltage vs Operating Supply
Voltage (Ta = 25 °C)
2.0
BD52W03G-C
Operating Voltage: VOPLUVB, VOPLOVB [V]
Output Voltage: VUVB, VOVB [V]
0
25
50
75 100
Temperature: Ta [°C]
125
150
Figure 6. Hysteresis Voltage vs Temperature
(VDD = 3 V)
6.0
Pull-up to 5 V
Pull-up resistance: 100 kΩ
-25
5.0
4.0
3.0
2.0
1.0
0.0
Pull-up to 5 V
Pull-up resistance: 100 kΩ
1.5
OVB
1.0
UVB
0.5
0.0
1.5
1.6
1.7
1.8
1.9
2.0
Operating Supply Voltage: VDD [V]
2.1
-50
-25
0
25
50
75 100
Temperature: Ta [°C]
125
150
Figure 8. Operating Voltage vs Temperature
Figure 7. Output Voltage vs Operating Supply
Voltage
(Ta = 25 °C, VDD = SENSE, UVB = OVB)
(Note) The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
6/20
TSZ02201-0GAG2G600090-1-2
05.Nov.2021 Rev.003
BD52WxxG-C
90
90
80
80
VDD = 2.4 V (OVB)
70
60
"Low" Output Current: IOL[mA]
"Low" Output Current: IOL [mA]
Typical Performance Curves - continued
VDD = 2.4 V (UVB)
50
VDD = 1.6 V (OVB)
40
30
20
VDD = 1.6 V (UVB)
10
70
60
VDD = 2.4 V (OVB)
50
40
VDD = 2.4 V (UVB)
30
VDD = 1.6 V (OVB)
20
VDD = 1.6 V (UVB)
10
0
0
0.0
0.5
1.0
1.5
2.0
2.5
Drain-Source Voltage : VDS [V]
3.0
-50
Figure 9. “Low” Output Current vs Drain-Source
Voltage (Ta = 25 °C)
0
25
50
75 100
Temperature: Ta [°C]
125
150
Figure 10. “Low” Output Current vs Temperature
(VDS = 0.4 V)
90
90
L→H Propagation Delay Time: tPLH [ms]
L→H Propagation Delay Time: tPLH [ms]
-25
80
70
OVB
60
50
UVB
40
30
20
80
70
OVB
60
50
UVB
40
30
20
1.0
2.0
3.0
4.0
5.0
Operating Supply Voltage: VDD [V]
6.0
-50
-25
0
25
50
75 100
Temperature: Ta [°C]
125
150
Figure 12. L→H Propagation Delay Time vs
Temperature (VDD = 3 V, CCT = 10 nF)
Figure 11. L→H Propagation Delay Time vs
Operating Supply Voltage
(Ta = 25 °C, CCT = 10 nF)
(Note) The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
7/20
TSZ02201-0GAG2G600090-1-2
05.Nov.2021 Rev.003
BD52WxxG-C
Typical Performance Curves - continued
120
H→L Propagation Delay Time: tPHL [µs]
H→L Propagation Delay Time: tPHL [µs]
120
100
UVB
80
60
40
OVB
20
100
0
1.0
2.0
3.0
4.0
5.0
Operating Supply Voltage: VDD [V]
80
60
40
OVB
20
0
6.0
-50
Figure 13. H→L Propagation Delay Time vs
Operating Supply Voltage
(Ta = 25 °C)
0
25
50
75 100
Temperature: Ta [°C]
125
150
70
H→L Propagation Delay Time: tPHL [µs]
L→H Propagation Delay Time: tPLH [ms]
-25
Figure 14. H→L Propagation Delay Time vs
Temperature (VDD = 3 V)
100000
10000
1000
UVB
100
OVB
10
1
0.1
0.0001
UVB
0.001
0.01
0.1
1
CT Pin Capacitance: CCT [µF]
10
Figure 15. L→H Propagation Delay Time vs CT
Pin Capacitance (VDD = 3 V, Ta = 25 °C)
UVB
60
50
40
30
OVB
20
10
0
0.0001
0.001
0.01
0.1
1
CT Pin Capacitance: CCT [µF]
10
Figure 16. H→L Propagation Delay Time vs CT
Pin Capacitance (VDD = 3 V, Ta = 25 °C)
(Note) The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
8/20
TSZ02201-0GAG2G600090-1-2
05.Nov.2021 Rev.003
BD52WxxG-C
Timing Chart
The following shows the change of the output voltages when operating supply voltage (VDD) and SENSE pin Voltage (VSENSE)
sweep.
VDD
VSENSE
VDD
RL
UVB
SENSE
RL
Delay
CVDD
Vref
OVB
Circuit
CL
GND
CL
CT
CCT
Figure 17. Set-up diagram
VDD
VOPL: