Datasheet
Voltage Detector (Reset) IC Series for Automotive Application
Free Time Delay Setting
CMOS Voltage Detector (Reset) IC
BD52xx-2M Series and BD53xx-2M Series
Key Specifications
General Description
ROHM's BD52xx-2M and BD53xx-2M series are highly
accurate, low current consumption Voltage Detector
ICs with a capacitor controlled time delay. The lineup
includes N-channel open drain output (BD52xx-2M)
and CMOS output (BD53xx-2M) so that the users can
select depending on the application. The devices are
available for specific detection voltage ranging from
0.9V to 5.0V with 0.1V increment.
The time delay has ±30% accuracy in the overall
operating temperature range of -40°C to 105°C.
Detection Voltage:
0.9V to 5.0V (Typ.)
0.1V step
Ultra-Low Current Consumption:
270nA (Typ.)
Time Delay Accuracy:
±30% (-40°C to +105°C, )
(CT pin capacitor ≥ 1nF)
Special Characteristics
Detection Voltage Accuracy:
±2.0%±12mV (VDET=0.9V to 1.6V)
±2.5% (VDET=1.7V to 5.0V)
Special Features
AEC-Q100 Qualified (Note1)
Nano Energy
Delay Time Setting controlled by external capacitor
Two output types (Nch open drain and CMOS output)
Very small, lightweight and thin package
Package SSOP5 is similar to SOT-23-5 (JEDEC)
(Note1: Grade 1)
Package
SSOP5:
W(typ) x D(typ) x H(max)
2.90mm x 2.80mm x 1.25mm
Application
Automotive (audio system, navigation system, etc.)
Application Circuit
VDD1
VDD2
VDD1
RL
Microcontroller
BD52xx-2M
Microcontroller
BD53xx-2M
RST
CCT
RST
CCT
GND
GND
Figure 1. Open Drain Output Type
BD52xx-2M Series
Figure 2. CMOS Output Type
BD53xx-2M Series
Pin Configuration
SSOP5
TOP VIEW
Pin Description
CT
N.C.
SSOP5
Lot No.
Marking
PIN No.
1
2
3
4
Symbol
VOUT
VDD
GND
N.C.
5
CT
VOUT VDD GND
Function
Output pin
Power supply voltage
GND
No connection pin
Capacitor connection pin
for output delay time setting
N.C. pin is electrically open and can
be connected to either VDD or GND.
Nano Energy is a combination of technologies which realizes ultra low quiescent current operation.
○Product structure:Silicon monolithic integrated circuit
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・14・001
○This product has no designed protection against radioactive rays
1/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Ordering Information
B
Part
Number
D
x
x
Output Type
52 : Open Drain
53 : CMOS
x
x
x
-
2
Detection Voltage
Package
09 : 0.9V
G : SSOP5
0.1V step
50 : 5.0V
M
T
R
Product Rank
Packaging and forming
M : for Automotive specification
TR : Embossed tape and reel
Lineup
Output Type
Detection Voltage Marking
5.0V
1Z
4.9V
1Y
4.8V
1X
4.7V
1W
4.6V
1V
4.5V
1U
4.4V
1T
4.3V
1S
4.2V
1R
4.1V
1Q
4.0V
1P
3.9V
1N
3.8V
08
3.7V
07
3.6V
06
3.5V
05
3.4V
04
3.3V
03
3.2V
02
3.1V
01
3.0V
5G
2.9V
Z9
2.8V
Z8
2.7V
Z7
2.6V
XS
2.5V
XR
2.4V
24
2.3V
23
2.2V
22
2.1V
21
2.0V
20
1.9V
19
1.8V
18
1.7V
17
1.6V
16
1.5V
15
1.4V
14
1.3V
13
1.2V
12
1.1V
11
1.0V
10
0.9V
09
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
Open Drain
Part Number
BD5250
BD5249
BD5248
BD5247
BD5246
BD5245
BD5244
BD5243
BD5242
BD5241
BD5240
BD5239
BD5238
BD5237
BD5236
BD5235
BD5234
BD5233
BD5232
BD5231
BD5230
BD5229
BD5228
BD5227
BD5226
BD5225
BD5224
BD5223
BD5222
BD5221
BD5220
BD5219
BD5218
BD5217
BD5216
BD5215
BD5214
BD5213
BD5212
BD5211
BD5210
BD5209
2/20
CMOS
Marking
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
5F
5E
Part Number
BD5350
BD5349
BD5348
BD5347
BD5346
BD5345
BD5344
BD5343
BD5342
BD5341
BD5340
BD5339
BD5338
BD5337
BD5336
BD5335
BD5334
BD5333
BD5332
BD5331
BD5330
BD5329
BD5328
BD5327
BD5326
BD5325
BD5324
BD5323
BD5322
BD5321
BD5320
BD5319
BD5318
BD5317
BD5316
BD5315
BD5314
BD5313
BD5312
BD5311
BD5310
BD5309
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Absolute Maximum Ratings (Ta=+25°C)
Parameter
Symbol
VDD-GND
Power Supply Voltage
Output Voltage
Nch Open Drain Output
CMOS Output
Unit
V
Io
Limit
-0.3 to +7
GND-0.3 to +7
GND-0.3 to VDD+0.3
70
Topr
Tjmax
-40 to +105
+150
°C
°C
Tstg
-55 to +150
°C
VOUT
Output Current
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
V
mA
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is
operated over the absolute maximum ratings.
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the
properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the
maximum junction temperature rating.
Thermal Resistance (Note 1)
Parameter
Symbol
Thermal Resistance (Typ)
Unit
1s(Note 3)
2s2p(Note 4)
θJA
376.5
185.4
°C/W
ΨJT
40
30
°C/W
SSOP5
Junction to Ambient
Junction to Top Characterization Parameter
(Note 2)
(Note 1)Based on JESD51-2A(Still-Air).
(Note 2)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside
surface of the component package.
(Note 3)Using a PCB board based on JESD51-3.
Layer Number of
Measurement Board
Single
Material
Board Size
FR-4
114.3mm x 76.2mm x 1.57mmt
Top
Copper Pattern
Thickness
Footprints and Traces
70μm
(Note 4)Using a PCB board based on JESD51-7.
Layer Number of
Measurement Board
4 Layers
Material
Board Size
FR-4
114.3mm x 76.2mm x 1.6mmt
Top
2 Internal Layers
Bottom
Copper Pattern
Thickness
Copper Pattern
Thickness
Copper Pattern
Thickness
Footprints and Traces
70μm
74.2mm x 74.2mm
35μm
74.2mm x 74.2mm
70μm
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
3/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Electrical Characteristics (Unless otherwise specified Ta=-40°C to +105°C, VDD=0.8V to 6V)
Parameter
Symbol
Condition
VDET=0.9V to 1.6V, VDD=HL, RL=100kΩ
Detection Voltage
VDET
VDET=1.7V to 5.0V, VDD=HL, RL=100kΩ
Hysteresis Voltage
∆VDET VDD=LHL, RL=100kΩ
Circuit Current when ON
Circuit Current when OFF
Operating Voltage Range
IDD1
IDD2
VOPL
“Low” Output Voltage (Nch)
VOL
“High” Output Voltage (Pch)
VOH
Output Leak Current (BD52xx)
ILEAK
Delay Time (L → H)
tPLH
VDD= VDET-0.2V
VDD= VDET+0.5V
VOL≤0.4V, Ta=-40°C to 105°C, RL=100kΩ
VDD=0.8V, ISINK = 0.17mA, VDET=0.9V to 1.6V
VDD=1.2V, ISINK = 1.0mA, VDET=1.7V to 5.0V
VDD=2.4V, ISINK = 2.0mA, VDET=2.7V to 5.0V
VDD=4.8V, ISOURCE=2.0mA,
VDET(0.9V to 4.2V)
VDD=6.0V, ISOURCE=2.5mA,
VDET(0.9V to 5.0V)
VDD= VDS=6V
VOUT=GND→50%, CT=0.01μF
Note 1 Note 2
Min
VDET(T)
×0.98
-0.012
VDET (T)
×0.975
VDET
×0.03
0.80
-
Limit
Typ
Unit
VDET
×0.05
0.23
0.27
-
Max
VDET(T)
×1.02
+0.012
VDET(T)
×1.025
VDET
×0.07
1.00
1.10
0.4
0.4
0.4
VDD-0.4
-
-
VDD-0.4
-
-
-
-
1.0
µA
38.9
55.5
72.1
ms
VDET(T)
VDET(T)
V
V
µA
µA
V
V
V
VDET(T) : Standard Detection Voltage(0.9V to 5.0V, 0.1V step)
RL: Pull-up resistor to be connected between VOUT and power supply.
Note 1 tPLH : VDD=(VDET(T)–0.1V) → (VDET(T)+0.5V) for VDET=0.9V to 1.2V
tPLH : VDD=(VDET(T)–0.5V) → (VDET(T)+0.5V) for VDET=1.3V to 5.0V
Note 2 CT delay capacitor range: open to 4.7µF.
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Block Diagram
VDD
VOUT
Delay
Delay
Circuit
Vref
*1
T
*1
*1
GND
*1: Parasitic Diode
CT
Figure 3. BD52xx-2M Series
VDD
*1
Delay
Delay
Circuit
Circuit
Vref
VOUT
*1
*1
*1
GND
*1: Parasitic Diode
CT
Figure 4. BD53xx-2M Series
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
5/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Typical Performance Curves
1.0
0.6
0.9
BD5209G-2M
BD5209G-2M
0.5
Circuit Current : IDD[µA]
Circuit Current : IDD[µA]
0.8
0.7
Ta=105°C
0.6
Ta=25°C
0.5
0.4
0.3
0.2
VDD=VDET+0.5V
0.3
0.2
VDD=VDET-0.2V
0.1
Ta=-40°C
0.1
0.4
0.0
0.0
0
1
2
3
4
5
-40
6
-20
Supply Voltage : VDD [V]
20
40
60
80
100
Temperature : Ta [°C]
Figure 5. Circuit Current vs. VDD
Figure 6. Circuit Current vs. Temp
1.0
0.6
0.9
BD5230G-2M
BD5230G-2M
0.5
Circuit Current : IDD[µA]
0.8
Circuit Current : IDD[µA]
0
0.7
0.6
Ta=105°C
0.5
Ta=25°C
0.4
0.3
0.2
0.4
VDD=VDET+0.5V
0.3
0.2
VDD=VDET-0.2V
0.1
Ta=-40°C
0.1
0.0
0.0
0
1
2
3
4
5
-40
6
0
20
40
60
80
100
Figure 8. Circuit Current vs. Temp
Figure 7. Circuit Current vs. VDD
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
-20
Temperature : Ta [°C]
Supply Voltage : VDD [V]
6/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Typical Performance Curves - continued
1.0
0.6
0.9
BD5250G-2M
BD5250G-2M
0.5
Circuit Current : IDD[µA]
Circuit Current : IDD[µA]
0.8
0.7
0.6
0.5
Ta=25°C
Ta=105°C
0.4
0.3
0.2
0.3
VDD=VDET-0.2V
0.2
0.1
Ta=-40°C
0.1
VDD=VDET+0.5V
0.4
0.0
0.0
0
1
2
3
4
5
-40
6
-20
20
40
60
80
100
Figure 10. Circuit Current vs. Temp
Figure 9. Circuit Current vs. VDD
6.0
1.3
BD5209G-2M
BD5209G-2M
1.2
Detection Voltage : VDET[V]
5.0
Output Voltage : VOUT[V]
0
Temperature : Ta [°C]
Supply Voltage : VDD [V]
4.0
3.0
2.0
1.0
1.1
VDET + ΔVDET
1.0
0.9
VDET
0.8
0.7
0.0
0.6
0.7
0.8
0.9
1.0
1.1
1.2
-40
-20
0
20
40
60
80
100
Supply Voltage : VDD [V]
Temperature : Ta [°C]
Figure 11. Detection Voltage
Figure 12. Detection Voltage and Release Voltage
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
7/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Typical Performance Curves - continued
6.0
3.6
Detection Voltage : VDET[V]
5.0
Output Voltage : VOUT[V]
BD5230G-2M
3.5
BD5230G-2M
4.0
3.0
2.0
1.0
3.4
VDET + ΔVDET
3.3
3.2
3.1
3.0
2.9
VDET
2.8
2.7
0.0
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
-40
0
20
40
60
80
100
Temperature : Ta [°C]
Figure 13. Detection Voltage
Figure 14. Detection Voltage and Release Voltage
5.6
6.0
BC
BD5250G-2M
5.5
BD5250G-2M
Detection Voltage : VDET[V]
5.0
Output Voltage : VOUT[V]
-20
Supply Voltage : VDD [V]
4.0
3.0
2.0
1.0
VDET + ΔVDET
5.4
5.3
5.2
5.1
5.0
VDET
4.9
4.8
4.7
0.0
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5
5.6
-40
-20
0
20
40
60
80
100
Supply Voltage : VDD [V]
Temperature : Ta [°C]
Figure 15. Detection Voltage
Figure 16. Detection Voltage and Release Voltage
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
8/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Typical Performance Curves - continued
Pull-up to 5V
Pull-up resistance: 100kΩ
Pull-up to VDD
Pull-up resistance: 100kΩ
6.0
4.0
BD5230G-2M
BD5230G-2M
3.5
4.0
Output Voltage : VOUT[V]
Output Voltage : VOUT[V]
5.0
Ta=105°C
Ta=25°C
3.0
Ta=-40°C
2.0
1.0
3.0
2.5
2.0
1.5
1.0
Ta=105°C
Ta=25°C
0.5
Ta=-40°C
0.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0.0
0.5
1.0
1.5
2.0
3.0
Supply Voltage : VDD [V]
Supply Voltage : VDD [V]
Figure 17. I/O Characteristics
Figure 18. I/O Characteristics
Pull-up to 5V
Pull-up resistance: 100kΩ
3.5
Pull-up to VDD
Pull-up resistance: 100kΩ
1.0
Minimum Operating Voltage: VOPL[V]
1.0
Minimum Operating Voltage: VOPL[V]
2.5
0.8
0.6
0.4
0.2
0.8
0.6
0.4
0.2
0.0
0.0
-40
-20
0
20
40
60
80
-40
100
-20
0
20
40
60
80
Temperature : Ta [°C]
Temperature : Ta [°C]
Figure 19. Operating Limit Voltage
Figure 20. Operating Limit Voltage
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
9/20
100
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Typical Performance Curves - continued
70
70
BD5309G-2M
BD5250G-2M
VDD = 2V
60
"Low" Output Current : IOL[mA]
"High" Output Current : IOH[mA]
60
VDD = 4V
50
40
30
VDD = 3V
20
VDD = 2V
10
50
40
30
20
VDD = 1.2V
10
VDD = 0.85V
VDD = 1.2V
0
0
0.0
1.0
2.0
3.0
4.0
5.0
0.0
1.0
1.5
2.0
2.5
Drain-Source Voltage : VDS [V]
Drain-Source Voltage : VDS [V]
Figure 21. “High” Output Current
Figure 22. “Low” Output Current
35
3.0
70
BD5309G-2M
30
25
Ta=25°C
Ta=105°C
20
BD5220G-2M
60
Ta=-40°C
"Low" Output Current : IOL[mA]
"High" Output Current : IOH[mA]
0.5
15
10
5
Ta=-40°C
50
Ta=25°C
40
Ta=105°C
30
20
10
0
0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.0
0.5
1.0
1.5
2.0
2.5
Supply Voltage : VDD [V]
Supply Voltage : VDD [V]
Figure 23. “High” Output Current (VDS=0.5V)
Figure 24. “Low” Output Current (VDS=0.5V)
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
10/20
3.0
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Typical Performance Curves - continued
70
80
70
60
Delay Time (H~L) : tPHL[µs]
Delay Time (L~H) : tPLH[ms]
CCT=10nF
60
50
40
CCT=4.7nF
30
20
50
40
30
20
10
10
0
0
-40
-20
0
20
40
60
80
-40
100
-20
0
20
40
60
80
100
Temperature : Ta [°C]
Temperature : Ta [°C]
Figure 26. Output Delay Time (H to L)
Figure 25. Output Delay Time (L to H)
100000
70
Ta=-40°C
Delay Time (H~L) : tPHL[µs]
Delay Time (L~H) : tPLH[ms]
60
Ta=25°C
10000
Ta=105°C
1000
100
10
1
0.1
0.0001
50
40
30
20
10
0.001
0.01
0.1
1
10
CT Pin Capacitance : CCT [µF]
0.001
0.01
0.1
1
10
CT Pin Capacitance : CCT [µF]
Figure 27. Output Delay Time (L to H)
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
0.0001
Figure 28. Output Delay Time (H to L)
11/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
Application Information
1. Explanation of Operation
For both the open drain type (Figure 29) and the CMOS output type (Figure 30), the detection and release voltages
are used as threshold voltages. When the voltage applied to the VDD pin reaches the applicable threshold voltage,
the VOUT pin voltage switches from either “High” to “Low” or from “Low” to “High”. BD52xx-2M series and
BD53xx-2M series have delay time function which set tPLH (output “Low” to ”High”) using an external capacitor
connected in CT pin (CCT). Because the BD52xx-2M series uses an open drain output type, it is necessary to connect
a pull up resistor to VDD or another power supply if needed [The output “High” voltage (VOUT) in this case becomes
VDD or the voltage of the other power supply].
VDD
VDD
VOUT
Vref
Delay
Circuit
Delay
Circuit
Vref
GND
GND
CT
CT
Figure 30. (BD53xx-2M type internal block diagram)
Figure 29. (BD52xx-2M type internal block diagram)
2.
VOUT
Setting of Detector Delay Time
Delay time L to H (tPLH) is the time when VOUT rises to 1/2 of VDD after VDD rises up and beyond the release
voltage (VDET+∆VDET). The delay time (tPLH) at the rise of VDD is determined by delay coefficient, CT capacitor and
delay time when CT pin is open (tCTO) and calculated from the following formula. When CT capacitor ≥ 1nF, tCTO has
less effect and tPLH computation is shown on Example No.2. The result has ±30% tolerance within the operating
temperature range of -40°C to +105°C
Formula: (Ta=25°C)
𝑡𝑃𝐿𝐻 = 𝐶𝐶𝑇 × 𝐷𝑒𝑙𝑎𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 + 𝑡𝐶𝑇𝑂
[s]
where:
CCT is the CT pin external capacitor
Delay Coefficient is equal to 5.55 x 106
tCTO is the delay time when CT=open Note1
Temperature
Ta = -40°C to +105°C
Min
15µs
Delay Time (tCTO)
Typ
Max
50µs
150µs
Note1: tCTO is design guarantee only; outgoing inspection is not done on all products.
Example No.1:
CT capacitor = 100pF
𝑡𝑃𝐿𝐻_𝑚𝑖𝑛 = (100 × 10−12 × 5.55 × 106 ) × 0.7 + 15 × 10−6 = 403µ𝑠
𝑡𝑃𝐿𝐻_𝑡𝑦𝑝 = (100 × 10−12 × 5.55 × 106 ) × 1.0 + 50 × 10−6 = 605µ𝑠
𝑡𝑃𝐿𝐻_𝑚𝑎𝑥 = (100 × 10−12 × 5.55 × 106 ) × 1.3 + 150 × 10−6 = 872µ𝑠
Example No.2:
CT capacitor = 1nF
𝑡𝑃𝐿𝐻_𝑡𝑦𝑝 = 1 × 10−9 × 5.55 × 106 = 5.55𝑚𝑠
www.rohm.com
© 2017 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
12/20
TSZ02201-0GIG0G300010-1-2
05.Jul.2018 Rev.002
BD52xx-2M Series BD53xx-2M Series
3.
Timing Waveform
The following shows the relationship between the input voltage VDD and the output voltage VOUT when the power supply
voltage VDD is sweep up and sweep down.
VDD
RL
VDD
Delay
Circuit
Vref
VOUT
GND
CT
CCT
Figure 31. BD52xx-2M Set-up
VDD
⑤
VDET+ΔVDET
Hysteresis Voltage (ΔVDET)
VDET
VOPL: