Datasheet
36V
2ch DC Brush Motor Driver
BD60203EFV
General Description
BD60203EFV is 2ch H-bridge motor driver for DC brush
motor. This driver can facilitate low power consumption by
PWM constant current control. Various protection circuits
are built in. And also a circuit for lock detection is built in,
so it is possible to output an error detection signal
corresponding to Wired-Or signaling motor lock status. It
contributes to high reliability of the set.
Features
Single Power Supply Input (rated voltage of 36 V)
Rated Output Current (peak): 1.7 A(3.0 A)
Low ON-Resistance DMOS Output
PH, EN Input
Power Save Function
PWM Constant Current Control (current limit function)
Built-in Spike Noise Cancel Function (external noise
filter is unnecessary)
Driver for 2 DC Brush Motor
Built-in Logic Input Pull-down Resistor
Cross-conduction Prevention Circuit
Thermal Shutdown Circuit (TSD)
Over-current Protection Circuit (OCP)
Under Voltage Lockout Circuit (UVLO)
Over Voltage Lockout Circuit (OVLO)
Built-in Comparator for Lock Detection
Ghost Supply Prevention (protects against malfunction
when power supply is disconnected)
Microminiature, Ultra-thin and High Heat-radiation
(exposed metal type) HTSSOP-B24 Package
Applications
Plain Paper Copier (PPC), Multi-function Printer, Laser
Printer, Inkjet Printer, Photo Printer, FAX, Mini Printer and
etc.
Key Specifications
Power Supply Voltage Range:
Rated Output Current:
Rated Output Current (Peak):
Operating Temperature Range:
Output ON-Resistance:
(Total of upper and lower resistors)
Package
HTSSOP-B24
8.0 V to 28.0 V
1.7 A
3.0 A
-25 °C to +85 °C
0.65 Ω (Typ)
W(Typ) x D(Typ)x H(Max)
7.80 mm x 7.60 mm x 1.00 mm
Figure 1. HTSSOP-B24
Typical Application Circuit
PH1
EN1
PH2
GND
EN2
LOCK1
LOCK2
SET1
VCC1
SET2
OUT1A
VREF1
VREF2
CR
OUT1B
RNF1
VCC2
OUT2A
TEST
OUT2B
RNF2
PS
GND
Figure 2. Application Circuit
○Product structure:silicon monolithic integrated circuit ○This product has no designed protection against radioactive rays.
www.rohm.com
TSZ02201-0P2P0C301980-1-2
© 2018 ROHM Co., Ltd. All rights reserved.
1/19
TSZ22111 • 14 • 001
27.May.2020 Rev.002
BD60203EFV
Pin Configuration
Block Diagram
[TOP VIEW]
GND
1
24
OUT2B
OUT1B
2
23
RNF2
RNF1
3
22
11 LOCK1
SET1 16
Detect
SET2 17
12 LOCK2
VREF1 14
NC
+
-
1/8
+
-
RNF1
4
21
VREF2 15
OUT2A
+
-
1/8
+
-
Regulator
RNF2
TEST
PH1
EN1
5
20
VCC2
6
19
GND
7
18
CR
8
17
SET2
TEST 6
Blank time
PWM control
9
16
15
10
LOCK1 11
Forward
Reverse
BRAKE
Open
PH1 7
SET1
VREF2
Forward
Reverse
BRAKE
Open
PH2 9
EXP-PAD
14
LOCK2 12
13
UVLO
OVLO
5 VCC1
PS 13
EN2
OCP
OSC
CR 18
EN1 8
PH2
TSD
VREF1
EN2 10
4 OUT1A
2 OUT1B
3 RNF1
Control logic
VCC1
1 GND
Predriver
OUT1A
20 VCC2
21 OUT2A
24 OUT2B
23 RNF2
GND 19
PS
Figure 3. Pin Configuration
Figure 4. Block Diagram
Pin Descriptions
Pin No.
Pin Name
1
GND
2
OUT1B
3
RNF1
4
OUT1A
5
Function
Pin No.
Pin Name
Ground pin
13
PS
H bridge output pin
14
VREF1
Current limit value setting pin
Connection pin of resistor
for output current detection
15
VREF2
Current limit value setting pin
H bridge output pin
16
SET1
Motor lock current setting pin
VCC1
Power supply pin
17
SET2
Motor lock current setting pin
6
TEST
Test pin
18
CR
7
PH1
H bridge control pin
19
GND
Ground pin
8
EN1
H bridge control pin
20
VCC2
Power supply pin
9
PH2
H bridge control pin
21
OUT2A
10
EN2
H bridge control pin
22
NC
11
LOCK1
Motor lock detection signal output pin
23
RNF2
12
LOCK2
Motor lock detection signal output pin
24
OUT2B
-
EXP-PAD
The EXP-PAD of the center of product
connected to GND.
-
-
(Connected to GND)
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
2/19
Function
Power save pin
Chopping frequency setting pin
H bridge output pin
No connection
Connection pin of resistor
for output current detection
H bridge output pin
-
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Absolute Maximum Ratings (Ta=25 °C)
Parameter
Symbol
Rating
Unit
VCC1, VCC2
-0.2 to +36.0
V
VIN
-0.3 to +5.5
V
RNF Maximum Voltage
VRNF
0.7
V
Output Current
IOUT
1.7(Note 1)
A/ch
Output Current (Peak) (Note 2)
IOUTPEAK
3.0(Note 1)
A/ch
Storage Temperature Range
Tstg
-55 to +150
°C
Tjmax
+150
°C
Supply Voltage
Input Voltage for Control Pin
Maximum Junction Temperature
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is
operated over the absolute maximum ratings.
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by
increasing board size and copper area so as not to exceed the maximum junction temperature rating.
(Note 1) Do not exceed Tjmax=150 °C.
(Note 2) Pulse width tw ≤1ms, duty 20 %
Thermal Resistance(Note 3)
Parameter
Thermal Resistance (Typ)
Symbol
1s(Note 5)
2s2p(Note 6)
Unit
HTSSOP-B24
Junction to Ambient
θJA
143.8
26.4
°C/W
Junction to Top Characterization Parameter(Note 4)
ΨJT
7
2
°C/W
(Note 3) Based on JESD51-2A(Still-Air).
(Note 4) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside
surface of the component package.
(Note 5) Using a PCB board based on JESD51-3.
(Note 6) Using a PCB board based on JESD51-5, 7.
Layer Number of
Measurement Board
Single
Material
Board Size
FR-4
114.3 mm x 76.2 mm x 1.57 mmt
Top
Copper Pattern
Thickness
Footprints and Traces
70 μm
Layer Number of
Measurement Board
4 Layers
Material
Board Size
FR-4
114.3 mm x 76.2 mm x 1.6 mmt
Top
Thermal Via(Note 7)
Pitch
Diameter
1.20 mm
Φ0.30 mm
2 Internal Layers
Bottom
Copper Pattern
Thickness
Copper Pattern
Thickness
Copper Pattern
Thickness
Footprints and Traces
70 μm
74.2 mm x 74.2 mm
35 μm
74.2 mm x 74.2 mm
70 μm
(Note 7) This thermal via connects with the copper pattern of all layers.
Recommended Operating Conditions
Parameter
Operating Temperature
Supply Voltage
Maximum Output Current (Continuous)
Symbol
Min
Typ
Max
Unit
Topr
-25
+25
+85
°C
VCC1, VCC2
+8
+24
+28
V
IOUT
-
-
+1.2(Note 8)
A/ch
(Note 8) Do not exceed Tjmax=150 °C.
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
3/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Electrical Characteristics (Unless otherwise specified Ta=25 °C, VCC1, VCC2=24 V)
Parameter
Symbol
Limit
Unit
Conditions
Min
Typ
Max
ICCST
-
-
10
µA
PS=L
ICC
-
2.5
5.0
mA
PS=H, VREF1=VREF2=2 V
H Level Input Voltage
VINH
2.0
-
-
V
L Level Input Voltage
VINL
-
-
0.8
V
H Level Input Current
IINH
35
50
100
µA
VIN=5 V
L Level Input Current
IINL
-10
0
-
µA
VIN=0 V
IOUT=±1.0 A
(Sum of upper and lower)
[Whole]
Circuit Current at Standby
Circuit Current
[Control Input]
[Output (OUT1A, OUT1B, OUT2A, OUT2B)]
Output ON-Resistance
RON
-
0.65
0.85
Ω
Output Leak Current
ILEAK
-
-
10
µA
RNFx(Note 9) Input Current
IRNF
-80
-40
-
µA
RNFx=0 V
VREFx(Note 10) Input Current
IVREF
-2.0
-0.1
-
µA
VREFx=0 V
VREFx Input Voltage Range
VVREF
-
-
2.0
V
Minimum ON Time
(Blank Time)
tONMIN
1.5
3.0
5.5
µs
Comparator Threshold Accuracy
VCTH1
-0.02
0
+0.02
V
VREFx=1.5 V
SETx(Note 11) Input Current
ISET
-2.0
0
-
µA
SETx=0 V
SETx Input Voltage Range
VSET
0
-
2.0
V
Comparator Threshold Accuracy
VCTH2
-0.03
0
+0.03
V
[Current Control]
[Lock]
SETx=2 V
(Note 9) x=1 or 2
(Note 10) x=1 or 2
(Note 11) x=1 or 2
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
4/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Application Information and Points to Notice for Pin Description and PCB Layout
PS/ Power Save Pin
PS can make circuit into standby state and make motor outputs OPEN.
Be careful because there is a delay of 40 μs (Max) at PS=L→H, until it is returned from standby state to normal state and
the motor output becomes ACTIVE.
PS
State
L
H
POWER SAVE (STANDBY)
ACTIVE
PS, EN1, EN2, PH1, PH2/ H Bridge Control Pin
It decides output logic for H bridge.
Input
Output
EN1
PH1
OUT1A
OUT1B
PS
EN2
PH2
OUT2A
OUT2B
x(Note 12)
x(Note 12)
L
OPEN
OPEN
H
L
L
L
L
H
H
L
L
H
H
L
H
OPEN
OPEN
H
H
H
H
L
State
POWER SAVE (STANDBY)
BREAK
REVERSE
STOP
FORWARD
(Note 12) x=H or L
VCC1, VCC2/ Power Supply Pin
Motor’s drive current is flowing in it, so the wire should be thick, short and has low impedance. Voltage VCC may have
great fluctuation, so arrange the bypass capacitor of about 100 μF to 470 μF as close to the pin as possible and adjust the
voltage VCC is stable. When 100 μF or less is selected, please confirm that the voltage of the VCC1 and VCC2 pins of the
IC does not exceed the rating even instantly. Also, please make sure that there is no breakdown / malfunction etc. even if
the VCC1 and VCC2 pins voltage is within the rating. In particular, when using a large current or a motor with a large
counter electromotive force, please add the capacity of the capacitor as necessary. In addition, for the purpose of reducing
of power supply’s impedance in wideband, it is recommended to set parallel connection of multi-layered ceramic capacitor
of 0.01 μF to 0.1 μF etc. Extreme care must be used to make sure that the voltage VCC does not exceed the rating even
for a moment. The VCC1 pin and the VCC2 pin are shorted inside the IC, but be sure to short externally the VCC1 and the
VCC2 pins when using. If used without shorting, malfunction or destruction may occur because of concentration of current
routes etc. Still more, in the power supply pin, there is built-in clamp component for preventing of electrostatic destruction.
When a steep pulse signal or voltage such as a surge exceeding the absolute maximum rating is applied, this clamp
component operates, as a result there is the danger of destruction, so be sure that the absolute maximum rating must not
be exceeded. It is effective to mount a Zener diode of about the absolute maximum rating. Moreover, the diode for
preventing of electrostatic destruction is inserted between the VCC1, the VCC2 and the GND pins, as a result there is the
danger of IC destruction if reverse voltage is applied between the VCC1, the VCC2 and the GND pins, so be careful.
GND/ Ground Pin
In order to reduce the noise caused by switching current and to stabilize the internal reference voltage of IC, the wiring
impedance from this pin is made as low as possible to achieve the lowest electrical potential no matter what operating
state it may be. Moreover, design patterns not to have any common impedance with other GND patterns.
OUT1A, OUT1B, OUT2A, OUT2B/ H Bridge Output Pin
Motor’s drive current is flowing in it, so the wire should be thick, short and has low impedance. It is also effective to add a
Schottky diode if output has positive or negative great fluctuation when large current is used. For example, counter
electromotive voltage etc. Moreover, in the output pin, there is built-in clamp component for preventing of electrostatic
destruction. When a steep pulse signal or voltage such as a surge exceeding the absolute maximum rating is applied, this
clamp component operates, as a result there is the danger of even destruction, so be sure that the absolute maximum
rating must not exceeded.
RNF1, RNF2/ Connection Pin of Resistor for Detecting of Output Current
Connect the resistor for current detection between this pin and GND. Determine the resistor so that power consumption
W=IOUT2・R [W] of the current-detecting resistor should not have exceed the power dissipation of the resistor and the
absolute maximum rating of the RNF1 and RNF2 pins. Also, when using the motor lock detection comparator, consider the
two values of the current limit setting value and the motor lock detection setting value, and decide the resistance value of
the RNF1 and RNF2 pins.
In addition, it should have a low impedance and should not have a common impedance with other GND patterns because
motor’s drive current flows in the pattern through the RNF1 and RNF2 pins to current-detecting resistor to GND. Do not
exceed the rating because there is the possibility of circuits’ malfunction etc. if the RNF1 and RNF2 pin voltage has
exceeded the maximum rating (0.7 V). If the RNF1 and RNF2 pins are open, then there is the possibility of such
malfunction as output current does not flow either, so do not let it open.
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
5/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Application Information and Points to Notice for Pin Description and PCB Layout – continued
VREF1, VREF2/ Output Current Limit Setting Pin
This is the pin to set the current limit value. It can be set by the VREF1 and VREF2 pins voltage and current-detecting
resistor (RNF resistor).
𝐼𝑂𝑈𝑇 =
𝑉𝑉𝑅𝐸𝐹
8
/ 𝑅𝑁𝐹
[A]
Where:
IOUT is the output current.
VVREF is the voltage of output current limit setting.
RNF is the current-detecting resistor.
Avoid using it with the VREF1 and VREF2 pins open because if the VREF1 and VREF2 pins are open, the input is
unsettled, and there is the possibility of malfunctions such as the setting current increases and a large current flows. Keep
to the input voltage range because if the voltage of 2 V or more is applied on the VREF1 and VREF2 pins, there is also the
danger that a large current flows in the output and OCP or TSD will operate. Besides, select the resistance value in
consideration of the outflow current (Max 2 μA) if it is inputted by resistance division. If the setting voltages of the VREF1
and the VREF2 pins are equal, there is no problem even if the VREF1 and the VREF2 pins are short-circuited and input.
The minimum current, which can be controlled by the VREF1 and VREF2 pins voltage, is determined by motor coil’s L, R
values and minimum ON time because there is a minimum ON time in PWM drive.
CR/ Chopping Frequency Setting Pin
This is the pin to set the switching frequency of the output. Please connect the external C (330 pF to 680 pF) and R (10 kΩ
to 150 kΩ) between this pin and GND. Please refer to PWM Constant Current Control.
Please connect the external components to GND in such a way that the interconnection does not have impedance in
common with other GND patterns. In addition, please create the pattern design in such a way to keep sudden pulses as
square wave etc. away and that there is no noise spike. Please mount the two components of C and R if PWM constant
current control is being used. This is because normal PWM constant current control cannot be used if the CR pin is open
or it is biased externally. When not using PWM constant current control, connect this pin to GND.
SET1, SET2/ Motor Lock Current Setting Pin
Compare the voltage set by the SETx(Note 13) pin with 4 times the voltage of the RNFx (Note 14) pin, and when the RNFx pin
voltage increases, the LOCKx(Note 15) pin become L. For this output voltage, a mask circuit of about 50 μs (Typ) is provided
for detection in order to prevent malfunction. And at the time of the release, the LOCKx pin become H after 50 μs (Typ)
was delayed.
Locked condition occurred
Motor OFF signal input
Output current[A]
Lock detection current set value
Lock signal
Figure 5. Lock Signal Timing Chart
LOCK1, LOCK2/ Motor Lock Detection Signal Output Pin
When the RNFx pin voltage becomes higher than the voltage set by the SETx pin, the LOCKx pin drop to L. This signal
can be connected to the microcomputer and the system can be shut down. Since the output format of this pin is an open
drain type, please pull up the resistor of 5 kΩ to 100 kΩ in resistance to a power supply of 7 V or less (eg 5 V or 3.3 V
power supply) before using. When this pin is not used, please use it with GND connection.
LOCK
Non motion
Motion
Output LOCK pin
H (OFF)
L (ON)
(Note 13) x=1 or 2
(Note 14) x=1 or 2
(Note 15) x=1 or 2
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
6/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Application Information and Points to Notice for Pin Description and PCB Layout – continued
TEST/ Pin for Testing
This is the pin used at the time of distribution test. Connect to GND. Be careful because there is a possibility of malfunction
if it is not connected to GND.
NC Pin
This pin is unconnected electrically with the IC internal circuit.
EXP-PAD
HTSSOP-B24 package has the heat-radiating metal on its backside. It is the precondition that making the heat-radiating
treatment when in use. Therefore, it must be connected by solder with the GND plane on the board and ensure the
sufficient heat-radiation area by taking the GND pattern as wide as possible. Moreover, the backside metal is shorted with
IC chip’s backside and becomes the GND potential, so there is the danger of malfunction and destruction if shorted with
potentials other than GND. Never design any wiring patterns other than GND through the IC’s backside.
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
7/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Protection Circuits
Thermal Shutdown (TSD)
This IC has a built-in Thermal Shutdown circuit for thermal protection. When the IC’s chip temperature rises 175 °C (Typ)
or more, the motor output becomes OPEN. Also, when the temperature returns to 150 °C (Typ) or less, it automatically
returns to normal operation. However, even when TSD is in operation, if heat is continued to be applied externally, heat
overdrive can lead to destruction.
Over-Current Protection (OCP)
This IC has a built in Over-Current Protection circuit as a provision against destruction when the motor outputs are shorted
to each other or VCC-motor output or motor output-GND is shorted. This circuit latches the motor output to OPEN
condition when the regulated current flows for 4 μs (Typ). It returns with power reactivation or a reset of the PS pin. The
over current protection circuit’s only aim is to prevent the destruction of the IC from irregular situations such as motor
output shorts, and is not meant to be used as protection or security for the set. Therefore, sets should not be designed to
take into account this circuit’s functions. After OCP operating, if irregular situations continue and the return by power
reactivation or a reset of the PS pin is carried out repeatedly, then OCP operates repeatedly and the IC may generate heat
or otherwise deteriorate. When the L value of the wiring is great due to the wiring being long of faults, ground faults and
shorting, there is a possibility of destruction after the over current has flowed and the output pin voltage jumps up and the
absolute maximum values can be exceeded. Also, when current which is the output current rating or more and the OCP
detection current or less flows, the IC can heat up to over Tjmax=150 °C and can deteriorate, so current which exceeds
the output rating should not be applied.
Under Voltage Lockout (UVLO)
This IC has a built-in Under Voltage Lockout function to prevent false operation such as IC output during power supply
under voltage. When the applied voltage to the VCC pin goes 5 V (Typ) or less, the motor output is set to OPEN. This
switching voltage has a 1 V (Typ) hysteresis to prevent malfunction due to noise etc. Be aware that this protection circuit
does not operate during power save mode.
Over Voltage Lockout (OVLO)
This IC has a built-in Over Voltage Lockout function to protect the IC output and the motor during power supply over
voltage. When the applied voltage to the VCC pin goes 32 V (Typ) or more, the motor output is set to OPEN. This
switching voltage has a 1 V (Typ) hysteresis and a 4 μs (Typ) mask time to prevent malfunction due to noise etc. Although
this over voltage locked out circuit is built-in, there is a possibility of destruction if the absolute maximum value for power
supply voltage is exceeded. Therefore, the absolute maximum value should not be exceeded. Be aware that this
protection circuit does not operate during power save mode.
Ghost Supply Prevention (protects against malfunction when power supply is disconnected)
If a control signal (PH1, PH2, EN1, EN2, PS, VREF1, VREF2, SET1, SET2) is applied when there is no power supplied to
the IC, there is a function which prevents a malfunction where voltage is supplied to power supply of this IC or other IC in
the set via the electrostatic destruction prevention diode from these input pins to the VCC. Therefore, there is no
malfunction in the circuit even when voltage is supplied to these input pin while there is no power supply.
Operation Under Strong Electromagnetic Field
The IC is not designed for using in the presence of strong electromagnetic field. Be sure to confirm that no malfunction is
found when using the IC in a strong electromagnetic field.
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
8/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
PWM Constant Current Control
This function can limit the peak current or switching current in driving DC brush motor.
(1) Current Control Operation
When the output transistor is turned on, the output current increases. When the RNF voltage (the voltage obtained by
converting the output current by the external resistor of the RNFx(Note 16) pin) reaches the IC internal reference voltage
value set by the VREFx(Note 17) input voltage, the current limit comparator operates and enters current decay mode.
Thereafter the output turned on again after a period of time determined the internal timer. The process repeats itself
constantly.
(Note 16) x=1 or 2
(Note 17) x=1 or 2
(2) Blank Time (Fixed in Internal Circuit)
In order to avoid misdetection of output current due to RNF spike noise that may occur when the output turns ON, the IC
employs an automatic current detection-masking period (tONMIN 3.0 µs Typ). During this period, the current detection is
disabled immediately after the output transistor is turned on. This allows for constant-current drive without the need for
an external filter.
(3) CR Timer
The CR component connected to the CR pin is repeatedly charged and discharged between the V CRH and VCRL levels.
The CR continues to discharge during this period until it reaches VCRL, at which point the IC output is switched back ON.
The CR charge time (tCHARGE) and discharge time (tDISCHARGE) are set by external components, according to the following
formulas. The total of tCHARGE and tDISCHARGE the chopping period, tCHOP.
𝑅 ′ ×𝑅
𝑉
−0.4
𝑡𝐶𝐻𝐴𝑅𝐺𝐸 ≈ 𝐶 × 𝑅′ +𝑅 × 𝑙𝑛 (𝑉𝐶𝑅 −1.0)
[s]
𝐶𝑅
0.35
0.30
0.25
α [V]
tCHARGE is CR charge time.
C is the capacitance of the CR pin.
R is the resistance of the CR pin.
R’ is the CR pin internal impedance 5 kΩ(Typ)
VCR is the CR pin voltage.
0.20
0.15
0.10
0.05
0.00
200
𝑅
𝑉𝐶𝑅 = 𝑉 × 𝑅′ +𝑅
400
[V]
600
800
C [pF]
V is the internal regulator voltage 5 V(Typ).
1+𝛼
𝑡𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸 ≈ 𝐶 × 𝑅 × 𝑙𝑛 ( 0.4 )
[s]
tDISCHARGE is the CR discharge time.
α is refer to the right graph.
𝑡𝐶𝐻𝑂𝑃 = 𝑡𝐶𝐻𝐴𝑅𝐺𝐸 + 𝑡𝐷𝐼𝑆𝐶𝐻𝐴𝑅𝐺𝐸
tCHOP is the chopping period.
Output current
[s]
Spike noise
Current limit value
0 mA
RNF voltage
Current limit value
GND
VCRH(1.0 V Typ)
CR voltage
VCRL(0.4 V Typ)
GND
Chopping period tCHOP
Figure 6. Timing Chart of Internal Voltage, RNF Voltage and Output Current
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
9/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Power Dissipation
Confirm that the IC’s chip temperature Tj is not over 150 °C in consideration of the IC’s power consumption (W), thermal
resistance (°C/W) and ambient temperature (Ta). When Tj=150 °C is exceeded, the functions as a semiconductor do not
operate and problems such as parasitism and leaks occur. Constant use under these circumstances leads to deterioration
and eventually destruction of the IC. Tjmax=150 °C must be strictly obeyed under all circumstances.
Thermal Calculation
The IC’s consumed power can be estimated roughly with the power supply voltage (V CC), circuit current (ICC), output
ON-Resistance (RONH, RONL) and motor output current value (IOUT).
Here, the calculation method per H bridge 1ch in direct PWM drive (SLOW DECAY) is shown.
When using 2 channels at the same time, calculate for each H bridge.
𝑊𝑉𝐶𝐶 = 𝑉𝐶𝐶 × 𝐼𝐶𝐶 [W]
where:
WVCC is the consumed power of the VCC.
VCC is the power supply voltage.
ICC is the circuit current.
𝑊𝐷𝑀𝑂𝑆 = 𝑊𝑂𝑁 + 𝑊𝐷𝐸𝐶𝐴𝑌 [W]
𝑊𝑂𝑁 = (𝑅𝑂𝑁𝐻 + 𝑅𝑂𝑁𝐿 ) × 𝐼𝑂𝑈𝑇 2 ×
𝑊𝐷𝐸𝐶𝐴𝑌 = (2 × 𝑅𝑂𝑁𝐿 ) × 𝐼𝑂𝑈𝑇 2 ×
𝑜𝑛_𝑑𝑢𝑡𝑦
[W]
100
100−𝑜𝑛_𝑑𝑢𝑡𝑦
100
[W]
where:
WDMOS is the consumed power of the output DMOS.
WON is the consumed power during output ON.
WDECAY is the consumed power during current decay.
RONH is the upper P-channel DMOS ON-resistance.
RONL is the lower N-channel DMOS ON-resistance.
IOUT is the motor output current value.
on_duty is PWM on duty[%].
“ 2 ” is the H bridge A and B.
Model Number
BD60203EFV
Upper P-Channel DMOS ON-Resistance
RONH[Ω] (Typ)
0.40
𝑊_𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑉𝐶𝐶 + 𝑊𝐷𝑀𝑂𝑆
[W]
𝑇𝑗 = 𝑇𝑎 + 𝜃𝑗𝑎 × 𝑊_𝑡𝑜𝑡𝑎𝑙
[°C]
Lower N-Channel DMOS ON-Resistance
RONL[Ω] (Typ)
0.25
where:
W_total is the upper P-channel DMOS ON-resistance.
Tj is the junction temperature.
Ta is the air temperature.
θja is the thermal resistance value.
However, the thermal resistance value θja [°C/W] differs greatly depending on circuit board conditions. The calculated
values above are only theoretical. For actual thermal design, perform sufficient thermal evaluation for the application
board used, and create the thermal design with enough margin not to exceed Tjmax=150 °C. Although unnecessary with
normal use, if the IC is to be used under especially strict heat conditions, consider externally attaching a Schottky diode
between the motor output pin and GND to abate heat from the IC.
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
10/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Power Dissipation – continued
Temperature Monitoring
There is a way to directly measure the approximate chip temperature by using the TEST pin. However, temperature
monitor using the TEST pin is only for evaluation and experimenting, and must not be used in actual usage conditions.
The TEST pin has a protection diode to prevent electrostatic discharge. The temperature can be monitored using this
protection diode.
(1) Measure the pin voltage when a current of IDIODE=50 μA flows from the TEST pin to the GND, without supplying
VCC to the IC. This measurement is the VF voltage inside the diode.
(2) Measure the temperature characteristics of this pin voltage. (VF has a linear negative temperature factor against
the temperature.) With the results of these temperature characteristics, chip temperature can be calibrated from
the TEST pin voltage.
(3) Supply VCC, confirm the TEST pin voltage while running the motor, and the chip temperature can be approximated
from the results of (2).
-VF [mV]
TEST
Circuitry
IDIODE
V
25
150
Chip temperature Tj [°C]
Figure 7. Model Diagram for Measuring Chip Temperature
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
11/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Application Examples
Constant Voltage Control or External PWM Control
3.3 V or 5.0 V
When using the LOCK output
function
Pull up resistor 5 kΩ to 100
kΩ.
When not using the LOCK
output function
Connect to GND.
Refer to LOCK1, LOCK2/ Motor
Lock Detection Signal Output
Pin.
10 kΩ
Detect
LOCK1
3.3 V or 5.0 V
1/8
LOCK2
SET1
SET2
10 kΩ
VREF1
RNF1
VREF2
1/8
Control input pin.
Input PWM signal (to 100
kHz) at external PWM
control.
Refer
to
Application
Information and Points to
Notice for Pin Description
and PCB Layout for
detail.
Regulator
RNF2
Blank time
PWM control
CR
TSD
OCP
UVLO
OVLO
Bypass capacitor.
Setting range is
100 µF to 470 µF (electrolytic)
0.01µF to 0.1µF(multilayer
ceramic etc.)
Refer to VCC1, VCC2/ Power
Supply Pin for detail.
Be sure to short VCC1 &
VCC2.
OSC
VCC1
EN1
RNF1
Forward
Reverse
BRAKE
Open
EN2
Predriver
PS
PH2
Pin for testing
Connect to GND.
M
OUT1B
Controllogic
Power save pin
Refer to PS/ Power Save
Pin for detail.
OUT1A
Forward
Reverse
BRAKE
Open
PH1
GND
100 µF
0.1 µF
VCC2
OUT2A
M
OUT2B
TEST
RNF2
Figure 8. Block Diagram & Application Circuit Diagram
(1) Example of external PWM control sequence
SLOW DECAY (forward rotation)
Input
EN1
PH1
PS
EN2
PH2
H
H
H
H
L
L
H
H
H
H
L
L
H
H
H
Output
OUT1A
OUT1B
OUT2A
OUT2B
H
L
L
L
H
L
L
L
H
L
State
ON
SLOW DECAY
ON
SLOW DECAY
ON
FAST DECAY (forward rotation)
PS
H
H
H
H
H
Input
EN1
EN2
H
H
H
H
H
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
PH1
PH2
H
L
H
L
H
Output
OUT1A
OUT1B
OUT2A
OUT2B
H
L
L
H
H
L
L
H
H
L
12/19
State
ON
FAST DECAY
ON
FAST DECAY
ON
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Application Examples – continued
PWM Constant Current Control
Sets the current limit value.
Input range: 0V to 2 V
Refer to VREF1, VREF2/
Output Current limit setting Pin
for detail.
3.3 V or 5.0 V
When using the LOCK
output function
Pull up resistor 5 kΩ to
100 kΩ.
When not using the
LOCK output function
Connect to GND.
Refer to LOCK1, LOCK2/
Motor Lock Detection
Signal Output Pin.
10 kΩ
LOCK1
3.3 V or 5.0 V
SET1
Detect
3.3 V or 5.0 V SET2
10 kΩ
12.0 kΩ
VREF1
LOCK2
1/8
6.8 kΩ
RNF1
VREF2
1/8
Sets the switching frequency.
Setting range is
C:330 pF to 680 pF
R:10 kΩ to 150 kΩ
Refer to CR /Chopping
Frequency Settng Pin, and
PWM
Constant
Current
Control.
Blank time
PWM control
CR
39 kΩ
OCP
UVLO
OVLO
PH1
EN1
Bypass capacitor.
Setting range is
100 µF to 470 µF(electrolytic)
0.01 µF to 0.1 µF(multilayer ceramic
etc.)
Refer to VCC1, VCC2/ Power Supply
Pin for detail.
Be sure to short VCC1 & VCC2.
VCC1
470 pF
OUT1A
Forward
Reverse
BRAKE
Open
M
OUT1B
RNF1
EN2
Forward
Reverse
BRAKE
Open
Predriver
PS
PH2
Power save pin
Refer to PS/ Power Save
Pin for detail.
TSD
OSC
Controllogic
Control input pin. Input
PWM signal (to 100 kHz)
at external PWM control.
Refer
to
Application
Information and Points to
Notice for Pin Description
and PCB Layout for
detail.
Regulator
RNF2
0.2 Ω
GND
100 µF
VCC2
OUT2A
M
OUT2B
TEST
RNF2
Pin for testing
Connect to GND.
0.1 µF
0.2 Ω
Current
detection
setting resistor
0.1 Ω to 0.3 Ω
Refer
to RNF1,
RNF2/Connection
Pin of Resistor for
Detecting of Output
Current for detail.
Figure 9. Application Circuit Diagram of
Constant Voltage Control or External PWM Control
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
13/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
I/O Equivalence Circuits
LOCK1
LOCK2
SET1
SET2
10 kΩ
Control
input
5 kΩ
100 kΩ
VREG(Internal power supply)
5 kΩ
CR
10 kΩ
VREF1
VREF2
10 kΩ
5 kΩ
5 kΩ
VCC1, VCC2
OUTxA(Note 18)
10 kΩ
OUTxB(Note 19)
10 kΩ
5 kΩ
5 kΩ
RNFx (Note 20)
Internal circuit
(Note 18) x=1 or 2
(Note 19) x=1 or 2
(Note 20) x=1 or 2
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
14/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Operational Notes
1.
Reverse Connection of Power Supply
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power
supply pins.
2.
Power Supply Lines
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic
capacitors.
3.
Ground Voltage
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.
4.
Ground Wiring Pattern
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.
5.
Recommended Operating Conditions
The function and operation of the IC are guaranteed within the range specified by the recommended operating
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical
characteristics.
6.
Inrush Current
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and
routing of connections.
7.
Operation Under Strong Electromagnetic Field
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
8.
Testing on Application Boards
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply
should always be turned off completely before connecting or removing it from the test setup during the inspection
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during
transport and storage.
9.
Inter-pin Short and Mounting Errors
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and
unintentional solder bridge deposited in between pins during assembly to name a few.
10. Unused Input Pins
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the
power supply or ground line.
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
15/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Operational Notes – continued
11. Regarding the Input Pin of the IC
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a
parasitic diode or transistor. For example (refer to figure below):
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be
avoided.
Resistor
Transistor (NPN)
Pin A
Pin B
C
E
Pin A
N
P+
P
N
N
P+
N
Pin B
B
Parasitic
Elements
N
P+
N P
N
P+
B
N
C
E
Parasitic
Elements
P Substrate
P Substrate
GND
GND
Parasitic
Elements
GND
Parasitic
Elements
GND
N Region
close-by
Figure 10. Example of Monolithic IC Structure
12. Thermal Shutdown Circuit(TSD)
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj
falls below the TSD threshold, the circuits are automatically restored to normal operation.
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from
heat damage.
13. Over Current Protection Circuit (OCP)
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should
not be used in applications characterized by continuous operation or transitioning of the protection circuit.
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
16/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Ordering Information
B
D
6
0
2
Part number
0
E
3
F
V
Package type
EFV : HTSSOP-B24
-
E2
Packaging and forming specification
E2: Reel-wound embossed taping
Marking Diagram
HTSSOP-B24 (TOP VIEW)
Part Number Marking
B D 6 0 2 0 3
LOT Number
Pin 1 Mark
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
17/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Physical Dimension and Packing Information
Package Name
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
HTSSOP-B24
18/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
BD60203EFV
Revision History
Date
Revision
Changes
21.May.2018
001
27.May.2020
002
New Release
Application Information and Points to Notice for Pin Description and PCB Layout in
page 5, changed the written pin name from IN1 and IN2 to PS, EN1, EN2, PH1 and PH2.
And the state of output logic are partial changed.
And the expression of RNFx is changed.
Application Information and Points to Notice for Pin Description and PCB Layout in
page 6, changed the expression of VREFx and SETx.
Application Examples of page 12 and 13, the Input/Output table is deleted.
And the logic of Example of external PWM control sequence are partial changed.
I/O Equivalence Circuits of page14, changed the circuits.
www.rohm.com
© 2018 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
19/19
TSZ02201-0P2P0C301980-1-2
27.May.2020 Rev.002
Notice
Precaution on using ROHM Products
1.
Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific
Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN
USA
EU
CHINA
CLASSⅢ
CLASSⅡb
CLASSⅢ
CLASSⅢ
CLASSⅣ
CLASSⅢ
2.
ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3.
Our Products are designed and manufactured for use under standard conditions and not under any special or
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any
special or extraordinary environments or conditions. If you intend to use our Products under any special or
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of
product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble
cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4.
The Products are not subject to radiation-proof design.
5.
Please verify and confirm characteristics of the final or mounted products in using the Products.
6.
In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7.
De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in
the range that does not exceed the maximum junction temperature.
8.
Confirm that operation temperature is within the specified range described in the product specification.
9.
ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1.
When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2.
In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,
please consult with the ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Notice-PGA-E
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.004
Precautions Regarding Application Examples and External Circuits
1.
If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2.
You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1.
Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl 2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2.
Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3.
Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4.
Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign
trade act, please consult with ROHM in case of export.
Precaution Regarding Intellectual Property Rights
1.
All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data.
2.
ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the
Products with other articles such as components, circuits, systems or external equipment (including software).
3.
No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to
manufacture or sell products containing the Products, subject to the terms and conditions herein.
Other Precaution
1.
This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2.
The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3.
In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4.
The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
Notice-PGA-E
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.004
Datasheet
General Precaution
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this document is current as of the issuing date and subject to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales
representative.
3.
The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccuracy or errors of or
concerning such information.
Notice – WE
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.001