BD6083GUL
LED Drivers for LCD BackLights
Multifunction Backlight LED Driver
for Small LCD Panels (Charge Pump Type)
BD6083GUL
No.10040EAT16
●Description
BD6083GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone.
It has 3 - 6LED driver and output variable LDO4ch for LCD Backlight.
It has ALC function that is “Low Power Consumption System” realized.
It can be developed widely from the high End model to the Low End model.
As it has charge pump circuit for DCDC, it is no need to use coils, and it contributes to small space.
VCSP50L3 (3.15mm x 3.15mm 0.5mm pitch)
It adopts the very thin CSP package that is the most suitable for the slim phone.
●Features
1) Total 3 - 6LEDs driver for LCD Backlight
・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 2LEDs which can chose independent
control or a main allotment by resister setting.
・Main Group” can be controlled by Auto Luminous Control (ALC) system.
“Main Group” can be controlled by external PWM signal.
・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence.
2) Ambient Light sensor interface
・Incorporates various functions such as a sensor bias adjustment function, an ADC with an average filter, a gainoffset
adjustment function and an LOG conversion function so that options can be increased for illumination intensity
sensors (Photo Diode, Photo Transistor, Photo IC (Linear/LOG)).
・Incorporates an auto gain switching function for suppressing an illumination intensity sensor current
at high illumination intensity and improving sensitivity at low illumination intensity
・Capable of customizing an LED current value according to a table setting.
・Slope control loading and an independent control change are possible.
3) Charge Pump DC/DC for LED driver
・It has x1/x1.5/ x2 mode that will be selected automatically.
・The most suitable voltage up magnification is controlled automatically by LED port voltage.
・Soft start functions、Over voltage protection (Auto-return type),Over current protection (Auto-return type) loading
4) 4ch Series Regulator (LDO)
・It has selectable output voltage by the register.(16 steps)
LDO1, LDO2, LDO3, LDO4: Iomax=150mA
5) Thermal shutdown
2
6) I C BUS FS mode (max 400 kHz) Compatibility
●Absolute Maximum Ratings (Ta=25 ℃)
Parameter
Maximum Voltage
Power Dissipation
Symbol
Ratings
Unit
VMAX
7
V
Pd
1280
(Note)
mW
Operating Temperature Range
Topr
-30 ~ +85
℃
Storage Temperature Range
Tstg
-55 ~ +150
℃
(Note)
Power dissipation deleting is 10.24mW/ ℃ , when it’s used in over 25 ℃.
(It’s deleting is on the board that is ROHM’s standard)
●Operating Conditions (VBAT≥VIO, Ta=-30~85 ℃)
Parameter
Symbol
VBAT Input Voltage
VIO Pin Voltage
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
Limits
Unit
VBAT
2.7 ~ 5.5
V
VIO
1.65 ~ 3.3
V
1/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Conditions
【Circuit Current】
VBAT Circuit Current 1
IBAT1
-
0.1
3.0
μA
RESETB=0V, VIO= 0V
VBAT Circuit Current 2
IBAT2
-
0.5
3.0
μA
RESETB=0V, VIO=1.8V
VBAT Circuit Current 3
IBAT3
-
61
65
mA
VBAT Circuit Current 4
IBAT4
-
92
102
mA
VBAT Circuit Current 5
IBAT5
-
123
140
mA
VBAT Circuit Current 6
IBAT6
-
0.25
1.0
mA
VBAT Circuit Current 7
IBAT7
-
90
150
μA
LDO1,2=ON, ILDO=0mA
VBAT Circuit Current 8
IBAT8
-
90
150
μA
LDO3,4=ON, ILDO=0mA
DC/DC x1 mode, Io=60mA
VBAT=4.0V
DC/DC x1.5 mode, Io=60mA
VBAT=3.6V
DC/DC x2 mode, Io=60mA
VBAT=2.7V
ALC Operating
ALCEN=1, AD cycle=0.5s setting
Except sensor current
【LED Driver】
LED Current Step (Setup)
ILEDSTP1
128
Step LED1~6
LED Current Step (At slope)
ILEDSTP2
256
Step LED1~6
LED Maximum Setup Current
IMAXWLED
-
25.6
-
mA
LED1~6
LED Current Accuracy
IWLED
-7%
15
+7%
mA
ILED=15mA setting, VLED=1.0V
LED Current Matching
ILEDMT
-
-
4
%
Between LED1~6 at VLED=1.0V,
ILED=15mA
LED OFF Leak Current
ILKLED
-
-
1.0
μA
VLED=4.5V
Output Voltage
VoCP
-
Vf+0.2
Vf+0.25
V
Vf is forward direction of LED
Drive Ability
IOUT
-
-
150
mA
Switching Frequency
fosc
0.8
1.0
1.2
MHz
OVP
-
5.6
-
V
OCP
-
250
375
mA
VOUT=0V
VoS
2.85
3.0
3.15
V
Io=200µA
IomaxS
30
-
-
mA
ROFFS
-
1.0
1.5
kΩ
VISS
0
-
VoS×
255/256
V
【DC/DC(Charge Pump)】
Over Voltage Protection
Detect Voltage
Over Current Protection
Detect Current
VBAT≥3.2V, VOUT=3.9V
【Sensor Interface】
SBIAS
Output Voltage
SBIAS
Maximum Output Current
SBIAS
Discharge Resister at OFF
SSENS Input Range
ADC Resolution
ADC Integral Calculus
Non-linearity
ADC Differential Calculus
Non-linearity
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
ADRES
8
bit
ADINL
-3
-
+3
LSB
ADDNL
-1
-
+1
LSB
2/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【Regulator (LDO1)】
Output Voltage
Vo1
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io1
-
-
150
mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=1.8V
Dropout Voltage
Vsat1
-
0.2
0.3
V
Load Stability
ΔVo11
-
10
60
mV
VBAT=2.5V, Io=150mA, Vo=2.8V
Input Voltage Stability
ΔVo12
-
10
60
mV
VBAT=3.4~4.5V, Io=50mA, Vo=1.8V
Io=1~150mA, Vo=1.8V
Ripple Rejection Ratio
RR1
-
65
-
dB
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz~20kHz
Short Circuit Current Limit
Ilim1
-
200
400
mA
Vo=0V
Discharge Resister at OFF
ROFF1
-
1.0
1.5
kΩ
Output Voltage
Vo2
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io2
-
-
150
mA
【Regulator (LDO2)】
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=2.5V
Dropout Voltage
Vsat2
-
0.2
0.3
V
Load Stability
Δvo21
-
10
60
mV
VBAT=2.5V, Io=150mA, Vo=2.8V
Input Voltage Stability
Δvo22
-
10
60
mV
VBAT=3.4~4.5V, Io=50mA, Vo=2.5V
Io=1~150mA, Vo=2.5V
Ripple Rejection Ratio
RR2
-
65
-
dB
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz~20kHz
Short Circuit Current Limit
Ilim2
-
200
400
mA
Vo=0V
Discharge Resister at OFF
ROFF2
-
1.0
1.5
kΩ
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
3/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【Regulator (LDO3)】
Output Voltage
Vo3
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io3
-
-
150
mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=1.8V
Dropout Voltage
Vsat3
-
0.2
0.3
V
Load Stability
ΔVo31
-
10
60
mV
VBAT=2.5V, Io=150mA, Vo=2.8V
Input Voltage Stability
ΔVo32
-
10
60
mV
VBAT=3.4~4.5V, Io=50mA, Vo=1.8V
Io=1~150mA, Vo=1.8V
Ripple Rejection Ratio
RR3
-
65
-
dB
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz~20kHz
Short Circuit Current Limit
Ilim3
-
200
400
mA
Vo=0V
Discharge Resister at OFF
ROFF3
-
1.0
1.5
kΩ
Output Voltage
Vo4
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io4
-
-
150
mA
【Regulator (LDO4)】
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=2.8V
Dropout Voltage
Vsat4
-
0.2
0.3
V
Load Stability
ΔVo41
-
10
60
mV
VBAT=2.5V, Io=150mA, Vo=2.8V
Input Voltage Stability
ΔVo42
-
10
60
mV
VBAT=3.4~4.5V, Io=50mA, Vo=2.8V
Io=1~150mA, Vo=2.8V
Ripple Rejection Ratio
RR4
-
65
-
dB
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz~20kHz
Short Circuit Current Limit
Ilim4
-
200
400
mA
Vo=0V
Discharge Resister at OFF
ROFF4
-
1.0
1.5
kΩ
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
4/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【SDA, SCL】 (I2C Interface)
L Level Input Voltage
VILI
-0.3
-
0.25 ×VIO
V
H Level Input Voltage
VIHI
0.75 ×VIO
-
VBAT+0.3
V
Hysteresis of
Schmitt trigger Input
VhysI
0.05 ×VIO
-
-
V
L Level Output Voltage
VOLI
0
-
0.3
V
SDA Pin, IOL=3 mA
linI
-
-
1
μA
Input Voltage= 0.1×VIO ~ 0.9×VIO
Input Current
【RESETB】 (CMOS Input Pin)
L Level Input Voltage
VILR
-0.3
-
0.25 ×VIO
V
H Level Input Voltage
VIHR
0.75 ×VIO
-
VBAT+0.3
V
Input Current
IinR
-
-
1
μA
L Level Input Voltage
VILA
-0.3
-
0.3
V
H Level Input Voltage
VIHA
1.4
-
VBAT+0.3
V
Input Current
IinA
-
3.6
10
μA
Input Voltage = 1.8V
PWmin
250
-
-
μs
WPWMIN Pin
Input Voltage = 0.1×VIO ~ 0.9×VIO
【WPWMIN】 (NMOS Input Pin)
PWM Input Minimum
High Pulse Width
【GC1, GC2】 (Sensor Gain Control CMOS Output Pin)
L Level Output Voltage
VOLS
-
-
0.2
V
IOL=1mA
H Level Output Voltage
VOHS
VoS-0.2
-
-
V
IOH=1mA
●Power Dissipation (On the ROHM’s standard board)
1.6
Power Dissipation Pd (W)
1.4
1280mW
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
25
50
75
100
125
150
Ta(℃)
Information of the ROHM’s standard board
Material: glass-epoxy
Size : 50mm×58mm×1.75mm(8th layer)
Wiring pattern figure Refer to after page.
Fig.1 Power Dissipation
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
5/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Block Diagram / Application Circuit Example 1
6LED + ALC +PWM
C5
C2P
C2N
C1P
C1N
A4
CPGND
1μF/10V
1μF/10V
B5
C6
A5
VBAT
VBATCP B6
VBAT1
VOUT
Charge Pump
F4
VBAT2
F5
D6
x1 / x1.5 / x2
1μF/10V
2.2µF/10V
LED1
A2
LED2
OVP
Charge Pump
Mode Control
B1
LED3
LED terminal voltage feedback
VIO Voltage
VIO
SCL
SDA
WPWMIN
From LCM
C2
LED5
D1
B4
LED6
C4
I/O
D4
Level
I C interface
Shift
Digital Control
D2
TSD
2
LEDGND
C1
B3
IREF
LDO1
VCC
GND
GC1
VREF
SBIAS
F3
Vo Selectable
Io=150mA
LDO4
(ALC)
F2
Vo Selectable
Io=150mA
E6
LDO1O
1μF/6.3V
E5
LDO2O
1μF/6.3V
LDO3O
E4
1μF/6.3V
E3
LDO4O
1μF/6.3V
D3
E2
T2
A6
F1
A1
F6
A3
GND1
GC1
Vo Selectable
Io=150mA
LED
control
T3
(Open)
GC2
Sensor
I/F
E1
T4
SGND
LDO3
T1
(Open)
IOUT
1μF/6.3V
GC2
Vo Selectable
Io=150mA
LDO2
BH1621FVC
SSENS
6LED
Main Back Light
LED4
D5
RESETB
From CPU
B2
Fig.2 Block Diagram / Application Circuit Example 1
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
6/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Block Diagram / Application Circuit Example 2
5LED + ALC +PWM
C5
C2P
C2N
C1P
C1N
A4
CPGND
1μF/10V
1μF/10V
B5
C6
A5
VBAT
VBATCP B6
VBAT1
VOUT
Charge Pump
F4
VBAT2
F5
D6
x1 / x1.5 / x2
1μF/10V
2.2µF/10V
LED1
A2
LED2
OVP
Charge Pump
Mode Control
B1
LED3
LED terminal voltage feedback
VIO Voltage
VIO
SCL
SDA
WPWMIN
From LCM
C2
LED5
D1
B4
LED6
C4
I/O
D4
Level
I C interface
Shift
Digital Control
D2
TSD
2
LEDGND
C1
B3
IREF
LDO1
VCC
GND
GC1
VREF
SBIAS
F3
Vo Selectable
Io=150mA
LDO4
(ALC)
F2
Vo Selectable
Io=150mA
E6
LDO1O
1μF/6.3V
E5
LDO2O
1μF/6.3V
LDO3O
E4
1μF/6.3V
E3
LDO4O
1μF/6.3V
D3
E2
T2
A6
F1
A1
F6
A3
GND1
GC1
Vo Selectable
Io=150mA
LED
control
T3
(Open)
GC2
Sensor
I/F
E1
T4
SGND
LDO3
T1
(Open)
IOUT
1μF/6.3V
GC2
Vo Selectable
Io=150mA
LDO2
BH1621FVC
SSENS
5LED
Main Back Light
LED4
D5
RESETB
From CPU
B2
Fig.3 Block Diagram / Application Circuit Example 2
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Block Diagram / Application Circuit Example 3
4LED + 2LED + ALC +PWM
C5
C2P
C2N
C1P
C1N
A4
CPGND
1μF/10V
1μF/10V
B5
C6
A5
VBAT
VBATCP B6
VBAT1
VOUT
Charge Pump
F4
VBAT2
F5
D6
x1 / x1.5 / x2
1μF/10V
2.2µF/10V
LED1
A2
LED2
OVP
Charge Pump
Mode Control
B1
VIO
SCL
SDA
WPWMIN
From LCM
B2
LED4
D5
C2
LED5
RESETB
From CPU
B4
D1
C4
D2
I/O
D4
Level
I2C interface
Shift
Digital Control
TSD
LEDGND
C1
B3
IREF
LDO1
VCC
GND
GC1
VREF
SBIAS
F3
Vo Selectable
Io=150mA
Vo Selectable
Io=150mA
LED
control
LDO4
(ALC)
F2
Vo Selectable
Io=150mA
E6
LDO1O
1μF/6.3V
E5
LDO2O
1μF/6.3V
LDO3O
E4
1μF/6.3V
E3
LDO4O
1μF/6.3V
D3
E2
F1
A1
F6
A3
GND1
T2
A6
T3
(Open)
GC1
Sensor
I/F
E1
T4
GC2
LDO3
T1
(Open)
IOUT
1μF/6.3V
GC2
Vo Selectable
Io=150mA
LDO2
BH1621FVC
SGND
2LED
Sub Back Light
or
Key Back Light
LED6
SSENS
6LED
Main Back Light
LED3
LED terminal voltage feedback
VIO Voltage
Fig.4 Block Diagram / Application Circuit Example 3
.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
8/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Pin Arrangement [Bottom View]
F
T4
SGND
SBIAS
VBAT1
VBAT2
T3
E
SSENS
GC1
LDO4O
LDO3O
LDO2O
LDO1O
D
LED5
LED6
GC2
SDA
VIO
VOUT
SCL
C1P
C2P
index
C
LEDGND
LED4
B
LED2
LED3
WPWMIN
RESETB
C2N
VBATCP
A
T1
LED1
GND1
C1N
CPGND
T2
1
2
3
4
5
6
Total 35 Ball
Fig.5 Pin Arrangement
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
9/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Package Outline
VCSP50L3 CSP small package
SIZE
: 3.15mm x 3.15mm (A difference in public:X,Y Both ±0.05mm)
Height
: 0.55mm max
A ball pitch : 0.5 mm
(Unit : mm)
Fig.6 Package Outline
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
10/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Pin Functions
ESD Diode
Equivalent
Circuit
No
Ball No.
Pin Name
I/O
Functions
1
B6
VBATCP
2
F4
VBAT1
3
F5
VBAT2
-
-
GND
Battery is connected
A
4
A1
T1
O
VBAT
GND
Test Output Pin(Open)
N
5
A6
T2
I
VBAT
GND
Test Input Pin (short to Ground)
S
6
F6
T3
O
VBAT
GND
Test Output Pin(Open)
M
7
F1
T4
I
VBAT
GND
Test Input Pin (short to Ground)
S
8
D5
VIO
-
VBAT
GND
I/O Power supply is connected
C
9
B4
RESETB
I
VBAT
GND
Reset input (L: reset, H: reset cancel)
H
For Power
For Ground
-
-
GND
Battery is connected
A
-
-
GND
Battery is connected
A
2
10
D4
SDA
I/O
VBAT
GND
I C data input / output
I
11
C4
SCL
I
VBAT
GND
I2C clock input
H
12
A5
CPGND
-
VBAT
-
Ground
B
13
A3
GND1
-
VBAT
-
Ground
B
14
C1
LEDGND
-
VBAT
-
Ground
B
15
A4
C1N
I/O
VBAT
GND
Charge Pump capacitor is connected
F
16
C5
C1P
I/O
-
GND
Charge Pump capacitor is connected
G
17
B5
C2N
I/O
VBAT
GND
Charge Pump capacitor is connected
F
18
C6
C2P
I/O
-
GND
Charge Pump capacitor is connected
G
19
D6
VOUT
O
-
GND
Charge Pump output pin
A
20
A2
LED1
I
-
GND
LED is connected 1 for LCD Back Light
E
21
B1
LED2
I
-
GND
LED is connected 2 for LCD Back Light
E
22
B2
LED3
I
-
GND
LED is connected 3 for LCD Back Light
E
23
C2
LED4
I
-
GND
LED is connected 4 for LCD Back Light
E
24
D1
LED5
I
-
GND
LED is connected 5 for LCD Back Light
E
25
D2
LED6
I
-
GND
LED is connected 6 for LCD Back Light
E
26
F3
SBIAS
O
VBAT
GND
Bias output for the Ambient Light Sensor
Q
27
E1
SSENS
I
VBAT
GND
Ambient Light Sensor input
N
28
E2
GC1
O
VBAT
GND
Ambient Light Sensor gain control output 1
X
29
D3
GC2
O
VBAT
GND
Ambient Light Sensor gain control output 2
X
30
F2
SGND
-
VBAT
-
Ground
B
31
B3
WPWMIN
I
VBAT
GND
External PWM input for Back Light *
L
32
E6
LDO1O
O
VBAT
GND
LDO1 output pin
Q
33
E5
LDO2O
O
VBAT
GND
LDO2 output pin
Q
34
E4
LDO3O
O
VBAT
GND
LDO3 output pin
Q
35
E3
LDO4O
O
VBAT
GND
LDO4 output pin
Q
* A setup of a register is separately necessary to make it effective.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
11/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Equivalent Circuit
A
B
VBAT
F
VBAT
G
J
VBAT
VIO
L
VBAT
Q
VBAT
VBAT
R
V
VBAT
VBAT
W
C
VBAT
E
H
VBAT
VIO
I
VBAT
M
VBAT
VBAT
N
VBAT
VBAT
S
VBAT
VBAT
U
VBAT
VIO
X
VoS
VBAT
Y
VBAT
VIO
VBAT
VIO
VBAT
Fig.7 Equivalent Circuit
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
12/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●I2C BUS Format
2
The writing/reading operation is based on the I C slave standard.
・Slave address
A7
A6
A5
A4
A3
A2
A1
1
1
1
0
1
1
0
R/W
1/0
・Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability:
SDA
It can change
Data are effective
Fig.8
・START and STOP condition
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL
has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S
P
STOP condition
START condition
Fig.9
・Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and
a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT
BY TRANSMITTER
not acknowledge
DATA OUTPUT
BY RECEIVER
acknowledge
SCL
S
1
2
8
9
clock pulse for
acknowledgement
START condition
Fig.10
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
13/45
2010.07 - Rev.A
Technical Note
BD6083GUL
・Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is
carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next
transmission. After the transmission end, the increment of the address is carried out.
*1
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
register address
*1
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
R/W=0(write)
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
*1: Write Timing
from master to slave
from slave to master
Fig.11
・Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following
address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns
into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried
out.
1 A D7 D6 D5 D4 D3 D2 D1 D0 A
S X X X X X X X
slave address
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
register address
increment
R/W=1(read)
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
from master to slave
from slave to master
Fig.12
・Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will
read out 00h. After the transmission end, the increment of the address is carried out.
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A Sr X X X X X X X 1 A
slave address
register address
slave address
R/W=0(write)
R/W=1(read)
D7 D6 D5 D4 D3D2 D1D0 A
DATA
D7D6 D5D4D3D2D1D0 A P
DATA
register address
increment
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
Sr=repeated START condition
from master to slave
from slave to master
Fig.13
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading
operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of
that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
14/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Timing Diagram
SDA
t BUF
t SU;DAT
t LOW
t HD;STA
SCL
t HD;STA
S
t SU;STO
t SU;STA
t HD;DAT
Sr
t HIGH
P
S
Fig.14
●Electrical Characteristics(Unless otherwise specified, Ta=25 oC, VBAT=3.6V, VIO=1.8V)
Standard-mode
Parameter
Symbol
Min.
Typ.
Max.
Fast-mode
Min.
Typ.
Max.
Unit
【I2C BUS format】
SCL clock frequency
fSCL
0
-
100
0
-
400
kHz
LOW period of the SCL clock
tLOW
4.7
-
-
1.3
-
-
μs
HIGH period of the SCL clock
tHIGH
4.0
-
-
0.6
-
-
μs
Hold time (repeated) START condition
After this period, the first clock is generated
tHD;STA
4.0
-
-
0.6
-
-
μs
Set-up time for a repeated START condition
tSU;STA
4.7
-
-
0.6
-
-
μs
Data hold time
tHD;DAT
0
-
3.45
0
-
0.9
μs
Data set-up time
tSU;DAT
250
-
-
100
-
-
ns
Set-up time for STOP condition
tSU;STO
4.0
-
-
0.6
-
-
μs
Bus free time between a STOP
and START condition
tBUF
4.7
-
-
1.3
-
-
μs
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
15/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Register List
Address W/R
Register data
D7
D6
D5
D4
D3
D2
D1
D0
Function
00h
W
-
-
-
-
-
-
-
SFTRST
Software Reset
01h
W
-
-
-
-
W6MD
W5MD
W4MD
MLEDMD
LED Pin function setting
02h
W
WPWMEN
ALCEN
-
-
W6EN
W5EN
-
MLEDEN
LED Power Control
03h
W
-
IMLED(6)
IMLED(5)
IMLED(4)
IMLED(3)
IMLED(2)
IMLED(1)
IMLED(0)
Main group current setting
04h
-
-
-
-
-
-
-
-
-
05h
W
-
IW5(6)
IW5(5)
IW5(4)
IW5(3)
IW5(2)
IW5(1)
IW5(0)
LED5 current setting
-
06h
W
-
IW6(6)
IW6(5)
IW6(4)
IW6(3)
IW6(2)
IW6(1)
IW6(0)
LED6 current setting
07h
-
-
-
-
-
-
-
-
-
-
08h
-
-
-
-
-
-
-
-
-
-
09h
W
THL (3)
THL (2)
THL (1)
THL (0)
TLH (3)
TLH (2)
TLH (1)
TLH (0)
0Ah
W
-
ADCYC
-
GAIN
-
-
MDCIR
SBIASON
Measurement mode setting
Main Current transition
0Bh
W
-
-
-
-
CRV
STEP (2)
STEP (1)
STEP (0)
ALC Slope curve setup
0Ch
R
-
-
-
-
AMB (3)
AMB (2)
AMB (1)
AMB (0)
Ambient level
0Dh
W
-
IU0 (6)
IU0 (5)
IU0 (4)
IU0 (3)
IU0 (2)
IU0 (1)
IU0 (0)
LED Current at Ambient level 0h (ALC)
0Eh
W
-
IU1 (6)
IU1 (5)
IU1 (4)
IU1 (3)
IU1 (2)
IU1 (1)
IU1 (0)
LED Current max (ALC)
0Fh
-
-
-
-
-
-
-
-
-
-
10h
-
-
-
-
-
-
-
-
-
-
11h
-
-
-
-
-
-
-
-
-
-
12h
-
-
-
-
-
-
-
-
-
-
13h
W
-
-
-
-
LDO4EN
LDO3EN
LDO2EN
LDO1EN
LDO Power Control
LDO1 Vout Control
14h
W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
LDO2 Vout Control
LDO3 Vout Control
15h
W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
LDO4 Vout Control
Input "0” for "-".
A free address has the possibility to assign it to the register for the test.
Access to the register for the test and the undefined register is prohibited.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
16/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Register Map
Address 00h
Address
< Software Reset >
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
00h
W
-
-
-
-
-
-
-
SFTRST
Initial Value
00h
-
-
-
-
-
-
-
0
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Bit[7:1] :
(Not used)
Bit0 :
SFTRST Software Reset
“0” :
Reset cancel
“1” :
Reset(All register initializing)
Refer to “Reset” for detail.
Address 01h < LED Pin function setting>
Address
R/W
Bit7
Bit6
01h
W
-
-
-
-
W6MD
W5MD
W4MD
MLEDMD
Initial Value
02h
-
-
-
-
0
0
1
0
Bit[7:4] :
(Not used)
Bit3 :
W6MD
LED6 control setting (individual / Main group)
“0” :
LED6 individual control (Initial Value)
“1” :
LED6 Main group control
Refer to “LED Driver” for detail.
Bit2 :
W5MD
LED5 control setting (individual / Main group)
“0” :
LED5 individual control (Initial Value)
“1” :
LED5 Main group control
Refer to “LED Driver” for detail.
Bit1 :
W4MD
LED4 Control Board setting (unuse / use)
“0” :
LED4 unuse
“1” :
LED4 use (Main group Control) (Initial Value)
Refer to “LED Driver” for detail.
Bit0 :
MLEDMD Main group setting (Normal / ALC)
“0” :
Main group Normal Mode(ALCNon-reflection)(Initial Value)
“1” :
Main group ALC Mode
Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail.
Set up a fixation in every design because it isn't presumed W*PW that it is changed dynamically.
And, do the setup of W*PW when each LED is Off.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
17/45
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 02h < LED Power Control>
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
02h
W
WPWMEN
ALCEN
-
-
W6EN
W5EN
-
MLEDEN
Initial Value
00h
0
0
0
0
0
0
0
0
Bit7 :
WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)
“0” :
External PWM input invalid (Initial Value)
“1” :
External PWM input valid
Refer to “(10) Current Adjustment” of “ALC” for detail.
Bit6 :
ALCEN
ALC function Control (ON/OFF)
“0” :
ALC block OFF (Initial Value)
“1” :
ALC block ON (Ambient Measurement)
Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail.
Bit[5:4] : (Not used)
Bit3 :
W6EN
LED6 Control (ON/OFF)
“0” :
LED6 OFF (Initial Value)
“1” :
LED6 ON(individual control)
Refer to “LED Driver” for detail.
Bit2 :
W5EN
LED5 Control (ON/OFF)
“0” :
LED5 OFF (Initial Value)
“1” :
LED5 ON(individual control)
Refer to “LED Driver” for detail.
Bit1 :
(Not used)
Bit0 :
MLEDEN
Main group LED Control (ON/OFF)
“0” :
Main group OFF (Initial Value)
“1” :
Main group ON
Refer to “(1) Auto Luminous Control ON/OFF” of “ALC” for detail.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
18/45
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 03h < Main group LED Current setting(Normal Mode) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
03h
W
-
IMLED(6)
IMLED(5)
IMLED(4)
IMLED(3)
IMLED(2)
IMLED(1)
IMLED(0)
Initial Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit[6:0] :
IMLED (6:0)
Main Group LED Current Setting at non-ALC mode
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA (Initial Value)
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
19/45
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 05h < LED5 Current setting(Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
05h
W
-
IW5(6)
IW5(5)
IW5(4)
IW5(3)
IW5(2)
IW5(1)
IW5(0)
Initial Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit[6:0] :
IW5 (6:0)
LED5 Current setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA (Initial Value)
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20/45
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 06h < LED6 Current setting(Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
06h
W
-
IW6(6)
IW6(5)
IW6(4)
IW6(3)
IW6(2)
IW6(1)
IW6(0)
Initial Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit[6:0] :
IW6 (6:0)
LED6 Current setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA (Initial Value)
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
21/45
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 09h < Main Current slope time setting >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
09h
W
THL(3)
THL(2)
THL(1)
THL(0)
TLH(3)
TLH(2)
TLH(1)
TLH(0)
Initial Value
C7h
1
1
0
0
0
1
1
1
Bit[7:4] :
THL (3:0)
Main LED current Down transition per 0.2mA step
“0000” :
0.256 ms
“0001” :
0.512 ms
“0010” :
1.024 ms
“0011” :
2.048 ms
“0100” :
4.096 ms
“0101” :
8.192 ms
“0110” :
16.38 ms
“0111” :
32.77 ms
“1000” :
65.54 ms
“1001” :
131.1 ms
“1010” :
196.6 ms
“1011” :
262.1 ms
“1100” :
327.7 ms (Initial Value)
“1101” :
393.2 ms
“1110” :
458.8 ms
“1111” :
524.3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “(8) Slope Process” of “ALC” for detail.
Bit[3:0] : TLH (3:0)
Main LED current Up transition per 0.2mA step
“0000” :
0.256 ms
“0001” :
0.512 ms
“0010” :
1.024 ms
“0011” :
2.048 ms
“0100” :
4.096 ms
“0101” :
8.192 ms
“0110” :
16.38 ms
“0111” :
32.77 ms (Initial Value)
“1000” :
65.54 ms
“1001” :
131.1 ms
“1010” :
196.6 ms
“1011” :
262.1 ms
“1100” :
327.7 ms
“1101” :
393.2 ms
“1110” :
458.8 ms
“1111” :
524.3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “(8) Slope Process” of “ALC” for detail.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
22/45
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 0Ah < ALC mode setting >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Ah
W
-
ADCYC
-
GAIN
-
-
MDCIR
SBIASON
Initial Value
01h
-
0
-
0
-
-
0
1
Bit7 :
(Not used)
Bit6 :
ADCYC
ADC Measurement Cycle
“0” :
0.52 s (Initial Value)
“1” :
1.05 s
Refer to “(4) A/D conversion” of “ALC” for detail.
Bit5 :
(Not used)
Bit4 :
GAIN
Sensor Gain Switching Function Control
“0” :
Auto Change (Initial Value)
“1” :
Fixed
Refer to “(3) Gain control” of “ALC” for detail.
Bit[3:2] :
(Not used)
Bit1 :
MDCIR
LED Current Reset Select by Mode Change
“0” :
LED current non-reset when mode change (Initial Value)
“1” :
LED current reset when mode change
Refer to “(9) LED current reset when mode change” of “ALC” for detail.
Bit0 :
SBIASON
“0” :
Measurement cycle synchronous
“1” :
Usually ON (at ALCEN=1) (Initial Value)
Refer to “(4) A/D conversion” of “ALC” for detail.
Address 0Bh < ALC slope curve setting >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Bh
W
-
-
-
-
CRV
STEP (2)
STEP (1)
STEP (0)
Initial Value
00h
-
-
-
-
0
0
0
1
Bit[7:4] :
(Not used)
Bit3 :
CRV Brightness Current Conversion Curve Type
“0”
Log curve (Initial Value)
“1”
linear
Bit[2:0] :
STEP (2:0) Step At the time of Brightness Current Conversion
“000” : 1.0mA
“001” : 1.1mA (Initial Value)
“010” : 1.2mA
“011” : 1.3mA
“100” : 1.6mA
“101” : 1.7mA
“110” : 1.8mA
“111” : 1.9mA
Refer to “(7) Convert LED Current” of “ALC” for detail.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
23/45
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 0Ch < Ambient level (Read Only) >
Address
R/W
Bit7
Bit6
0Ch
R
Initial Value (00h)
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
-
-
AMB(3)
AMB(2)
AMB(1)
AMB(0)
-
-
-
-
(0)
(0)
(0)
(0)
Bit[7:4] :
(Not used)
Bit[3:0] :
AMB (3:0)
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
Ambient Level
0h (Initial Value)
1h
2h
3h
4h
5h
6h
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
It begins to read Ambient data through I2C, and possible.
To the first AD measurement completion, it is AMB(3:0)=0000.
Refer to “(6) Ambient level detection” of “ALC” for detail.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
24/45
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 0Dh < Ambient LED Current setting >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Dh
W
-
IU0 (6)
IU0 (5)
IU0 (4)
IU0 (3)
IU0 (2)
IU0 (1)
IU0 (0)
Initial Value
13
-
0
0
1
0
0
1
1
Bit7 :
(Not used)
Bit[6:0] :
IU0 (6:0)
Main Current at Ambient Level for 0h
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA (Initial Value)
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
25/45
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 0Eh < LED Max Current setting >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Eh
W
-
IU1 (6)
IU1 (5)
IU1 (4)
IU1 (3)
IU1 (2)
IU1 (1)
IU1 (0)
Initial Value
63h
-
1
1
0
0
0
1
1
Bit7 :
(Not used)
Bit[6:0] :
IU1 (6:0)
LED Max Current (for ALC)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
26/45
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA (Initial Value)
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 13h
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
13h
W/R
-
-
-
-
LDO4EN
LDO3EN
LDO2EN
LDO1EN
Initial Value
00h
-
-
-
-
0
0
0
0
Bit4
Bit3
Bit2
Bit1
Bit0
Bit[7:4]
: (Not used)
Bit3 :
LDO4EN
LDO4 control (ON/OFF)
“0” :
LDO4 OFF (Initial Value)
“1” :
LDO4 ON
Bit2 :
LDO3EN
LDO3 control (ON/OFF)
“0” :
LDO3 OFF (Initial Value)
“1” :
LDO3 ON
Bit1 :
LDO2EN
LDO2 control (ON/OFF)
“0” :
LDO2 OFF (Initial Value)
“1” :
LDO2 ON
Bit0 :
LDO1EN
LDO1 control (ON/OFF)
“0” :
LDO1 OFF (Initial Value)
“1” :
LDO1 ON
Address 14h < LDO1 Vout Control, LDO2 Vout Control >
Address
R/W
Bit7
Bit6
Bit5
14h
Initial Value
R/W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
74h
0
1
Bit[7:4] :
LDO2VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V (Initial Value)
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
Bit[3:0] :
LDO1VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V (Initial Value)
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
1
1
27/45
0
1
0
0
2010.07 - Rev.A
Technical Note
BD6083GUL
Address 15h < LDO3 Vout Control, LDO4 Vout Control >
Address
R/W
Bit7
Bit6
Bit5
15h
Initial Value
Bit4
Bit3
Bit2
Bit1
Bit0
R/W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
A4h
1
0
Bit[7:4] :
LDO4VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V (Initial Value)
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
Bit[3:0] :
LDO3VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V (Initial Value)
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
1
0
28/45
0
1
0
0
2010.07 - Rev.A
Technical Note
BD6083GUL
●Reset
There are two kinds of reset, software reset and hardware reset
(1)Software reset
・All the registers are initialized by SFTRST="1".
・SFTRST is an automatically returned to "0". (Auto Return 0).
(2) Hardware reset
・It shifts to hardware reset by changing RESETB pin “H” → “L”.
・The condition of all the registers under hardware reset pin is returned to the Initial Value, and it stops accepting all address.
・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”.
・RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.
(3) Reset Sequence
・When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled.
(Because the Initial Value of software reset is “0”)
●VIODET
The decline of the VIO voltage is detected, and faulty operation inside the IC is prevented by giving resetting to Levelsift block
Image Block Diagram
VIO
VBAT
DEToutput
2.6V
Inside reset
Reset by
VIODET
VBAT
(typ)1.0V
VIO
VIODET
RESETB
RESETB
R
Digital
pin
I/O
LEVEL
SHIFT
DET output
Inside reset
Fig.15
Fig.16
When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed.
On the contrary, when VIO is as follows 1.0V, it takes reset.(The VBAT voltage being a prescribed movement range)
●Thermal Shut Down
A thermal shutdown function is effective in the following block.
DC/DC (Charge Pump)
LED Driver
SBIAS
LDO1, LDO2, LDO3, LDO4
The thermal shutdown function is detection temperature that it works is about 195℃.
Detection temperature has a hysteresis, and detection release temperature is about 175 oC.
(Design reference value)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
29/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●DC / DC
Start
DC/DC circuit operates when any LED turns ON. (DCDCFON=0)
When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current.
Force of VBAT and VIO is to go as follows.
VBAT
VIO
T VIOON=min 0.1ms
T VIOOFF=min 0.1ms
RESETB
T RSTB=min 0.1ms
T RST=min 0ms
EN (*)
T SO FT
VOUT
LEDcurrent
(*) An EN signal means the following in the upper figure.
EN = “MLEDEN” or “W*EN”
(= LED The LED lighting control of a setup of connection VOUT)
But, as for Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective.
TSOFT changes by the capacitor connected to VOUT and inside OSC.
TSOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF).
Fig.17
Over Voltage protection / Over Current protection
DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function.
A VOUT over-voltage detection voltage is about 5.6V(typ). (VOUT at the time of rise in a voltage)
A detection voltage has a hysteresis, and a detection release voltage is about 5.4V (typ).
And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection
function.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
30/45
2010.07 - Rev.A
Technical Note
BD6083GUL
Mode transition
The transition of boosts multiple transits automatically by VBAT Voltage and the VOUT Pin Voltage.
STANDBY
1
condition○
ALL off
MLEDEN=”1” or W*EN=”1”
1
○
and
Ta1.5V(typ), 128us(typ) wait
X1.0
CP x1.0 mode
mode up=”H”
mode down=”H”
X1.5
CP x1.5 mode
mode up=”H”
mode down=”H”
X2.0
CP x2.0 mode
Fig.18
The mode transition of the charge pump works as follows.
<x1.0→x1.5→x2.0 Mode transition>
The transition of the mode is done when VOUT was compared with VBAT and the next condition was satisfied.
x1.0→x1.5 Mode transition
VBAT ≤ VOUT + (Ron10×Iout)
(LED Pin feedback:VOUT = Vf+0.2(Typ))
x1.5→x2.0 Mode transition
VBAT×1.5 ≤ VOUT +(Ron15×Iout)
(LED Pin feedback:VOUT = Vf+0.2(Typ))
Ron10: x1 Charge pump on resistance 1.4Ω(Typ)
Ron15: x1.5 Charge pump on resistance 8.5Ω(Typ)
<x2.0→x1.5→x1.0 Mode transition>
The transition of the mode is done when the ratio of VOUT and VBAT is detected and it exceeds a fixed voltage ratio.
x1.5→x1.0 Mode transition
VBAT / VOUT =1.16(Design value)
x2.0→x1.5 Mode transition
VBAT / VOUT =1.12(Design value)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
31/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●LED Driver
The LED driver of 6ch is constructed as the ground plan.
Equivalence control is possible with LED1 - 4(LED4 can choose use/un-use with a register W4MD.).
LED5, LED6 is controllable individually.
As for LED5, LED6, grouping setting to the main control is possible, and main control becomes effective for the main group
in the allotment. LED5 and LED6 are setups of grouping to the main control.
When LED5 and LED6 are used by the individual control, a slope time setup (register THL and TLH) doesn't become
effective.
LED1
LED2
IMLED[6:0]
MLEDEN
LED3
MLEDMD
WPWMIN
LED4
W4MD
1
IW5[6:0]
LED5
0
W5EN
W5MD
1
IW6[6:0]
LED6
0
W6EN
W6MD
Fig.19
LED Composition which can be set up is the following.
The main, other1 and other2 are controllable to each.(Enable and current setting)
Main
(ALC,PWM)
Other1
Other2
6LEDs
-
-
5LEDs
-
-
5LEDs
1LED
-
4LEDs
-
-
4LEDs
1 LED
-
4LEDs
2 LEDs
-
4LEDs
1 LED
1LED
3LEDs
-
-
3LEDs
1 LED
-
3LEDs
2 LEDs
-
3LEDs
1 LED
1LED
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
32/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●ALC (Auto Luminous Control)
LCD backlight current adjustment is possible in the basis of the data detected by external ambient light sensor.
・Extensive selection of the ambient light sensors (Photo Diode, Photo Transistor, Photo IC(linear / logarithm)) is possible by
building adjustment feature of Sensor bias, gain adjustment and offset adjustment.
・Ambient data is changed into ambient level by digital data processing, and it can be read through I2C I / F.
・ Register setting can customize a conversion to LED current. (Initial Value is pre-set.)
・Natural dimming of LED driver is possible with the adjustment of the current transition speed.
PWM enabling
Always ON / Intermittence
WPWMIN
SBIAS
SBIAS
Slope Timer
Conversion
Mode Select
LED*
Sensor
SSENS
LCD
Backlight
Average
ADC
Slope
process
Current
Logarithmic Conv.
Conversion
Ambient Level
DC current setup
Main Group
setup
GC1
Gain
Control
GC2
Ambient Level
Gain Control ON/OFF
:Effective also in ALC functional the case of not using it
Fig.20
(1)Auto Luminous Control ON/OFF
・ALC block can be independent setting ON/OFF.
・It can use only to measure the Ambient level.
Register: ALCEN
Register: MLEDEN
Register: MLEDMD
・Refer to under about the associate ALC mode and Main LED current.
ALCEN
MLEDEN
MLEDMD
0
0
x
0
1
0
0
1
1
(*1)
(*2)
1
0
x
1
1
0
1
1
1
Sensor I/F
LED control
Mode
Main LED current
OFF
OFF
-
ON
Non ALC mode
OFF
( AMB(3:0)=0h )
OFF
ON
ON
IMLED(6:0)
IU0(6:0) (*1)
-
ALC mode
IMLED(6:0)
ALC mode (*2)
At this mode, because Sensor I/F is OFF, AMB(3:0)=0h.
So, Main LED current is selected IU0(6:0).
At this mode, Main LED current is calculated (See(8)Convert LED Current)
It becomes current value corresponding to each brightness.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
33/45
2010.07 - Rev.A
Technical Note
BD6083GUL
SBIAS
Sensor Current (Iout)
(2) I/V conversion
・External resistance for the I-V conversion (Rs)
are adjusted with adaptation of sensor characteristic
SBIAS
SSENS voltage
VSSENS
VCC
Sensor IC
A/D
Iout
IOUT
Ambient
SSENS
GND
Rs
Rs : Sense resistance (A sensor output current is changed into the voltage value.)
SBIAS : Bias power supply terminal for the sensor
SSENS : Sense voltage input terminal
SSENS Voltage = Iout x Rs
www.rohm.com
Rs is large
Rs is small
Ambient
Fig.21
© 2010 ROHM Co., Ltd. All rights reserved.
SSENS Voltage (=Iout x Rs)
SGND
34/45
2010.07 - Rev.A
Technical Note
(3) Gain control
・Sensor gain switching function is built in to extend the dynamic range.
・It is controlled by register setup.
・When automatic gain control is off, the gain status can be set upin the manual.
Register : GAIN
・GC1 and GC2 are outputted corresponding to each gain status.
SSENS Voltage
BD6083GUL
High Gain mode
Low Gain mode
SSENS Voltage
Ambient
Auto Gain mode
Ambient
Example 1 (Use BH1621FVC)
SBIAS
SSENS
SSENS
SSENS
GC1
GC1
GC1
GC2
GC2
GND
GC2
GC2
SGND
SGND
SGND
1
SBIAS
BH1621
GC1
Example 3
SBIAS
9.5 (*1)
VCC IOUT
Application
example
Example 2
Resister values are relative
Operating mode
Auto
Auto
Fixed
GAIN setting
0
0
1
Gain status
High
GC1 output
GC2 output
Low
High
L
Low
-
L
L
L
L
: This means that it becomes High with A/D measurement cycle synchronously.
(*1) : Set up the relative ratio of the resistance in the difference in the brightness change of the High Gain mode and the Low Gain mode carefully.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
35/45
2010.07 - Rev.A
Technical Note
BD6083GUL
(4) A/D conversion
・The detection of ambient data is done periodically for the low power.
・SBIAS and ADC are turned off except for the ambient measurement.
・The sensor current may be shut in this function, it can possible to decrease the current consumption.
・SBIAS pin and SSENS pin are pull-down in internal when there are OFF.
・SBIAS circuit has the two modes. (Usually ON mode or intermittent mode)
Register: ADCYC
Register: SBIASON
16 times
ALCEN
ADCYC
ADC Cycle
SBIAS Output
Twait= 64ms(typ)
(Wait time)
When SBIASON=1
ADC Movement
TAD= 16.4ms(typ)
AD start signal
(A/D conversion time)
GC1, GC2
GC1, GC2=00
TADone= 1.024ms(typ)
AMB(3:0)
AMB(3:0)
Toprt= 80.4ms(typ)
16 times measurement
Fig.22
(Operate time)
(5) Average filter
・Average filter is built in to rid noise or flicker. Average is 16 times
(6) Ambient level detection
・Averaged A/D value is converted to Ambient level corresponding to Gain control.
・Ambient level is judged to rank of 16 steps by ambient data.
・Ambient level is output through I2C.
Register: AMB(3:0)
GAIN
0
GAIN Setting
Low
Ambient Level
1
High
-
SSENS Voltage
0h
VoS×0 / 256
VoS×0 / 256
1h
VoS×1 / 256
VoS×1 / 256
2h
VoS×2 / 256
VoS×3 / 256
VoS×4 / 256
VoS×5 / 256
VoS×7 / 256
VoS×8 / 256
VoS×12 / 256
VoS×13 / 256
VoS×21 / 256
VoS×22 / 256
VoS×37 / 256
VoS×38 / 256
VoS×65 / 256
VoS×66 / 256
VoS×113 / 256
VoS×114 / 256
VoS×199 / 256
VoS×200 / 256
VoS×255 / 256
VoS×2 / 256
VoS×3 / 256
VoS×4 / 256
VoS×5 / 256
VoS×6 / 256
VoS×7 / 256
VoS×9 / 256
VoS×10 / 256
VoS×13 / 256
VoS×14 / 256
VoS×19 / 256
VoS×20 / 256
VoS×27 / 256
VoS×28 / 256
VoS×38 / 256
VoS×39 / 256
VoS×53 / 256
VoS×54 / 256
VoS×74 / 256
VoS×75 / 256
VoS×104 / 256
VoS×105 / 256
VoS×144 / 256
VoS×145 / 256
VoS×199 / 256
VoS×200 / 256
VoS×255 / 256
3h
4h
5h
VoS×0 / 256
6h
VoS×1 / 256
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
VoS×2 / 256
VoS×3 / 256
VoS×4 / 256
VoS×6 / 256
VoS×7 / 256
VoS×11 / 256
VoS×12 / 256
VoS×20 / 256
VoS×21 / 256
VoS×36 / 256
VoS×37 / 256
VoS×64 / 256
VoS×65 / 256
VoS×114 / 256
VoS×115 / 256
VoS×199 / 256
VoS×200 / 256
VoS×255 / 256
※In the Auto Gain control mode, sensor gain changes in gray-colored ambient level.
※“/”: This means that this zone is not outputted in this mode.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
36/45
2010.07 - Rev.A
Technical Note
BD6083GUL
(7)Convert LED Current
・LED current can be assigned as each of 16 steps of the ambient level.
・Convert LED Current by Min Current setting,Max Current setting,step setting and curbu setting.
Register: IU0
IU1
CRV
STEP [2:0]
Conversion Table (Initial Value)
Coefficient
Ambient
Level
CRV=0
CRV=1
Step Table Setting
Coefficient
Ambient
Level
CRV=0
CRV=1
STEP[2:0]
ΔI
0h
0
0
8h
6.5
8
000
1.0mA
1h
0.25
1
9h
8
9
001
1.1mA
2h
0.5
2
Ah
10
10
010
1.2mA
3h
1
3
Bh
12
11
011
1.3mA
4h
1.5
4
Ch
13
12
100
1.6mA
5h
2.5
5
Dh
14
13
101
1.7mA
6h
3.5
6
Eh
15
14
110
1.8mA
7h
5
7
Fh
16
15
111
1.9mA
I=ΔI×Coefficient+IU0
※ I≧IU1:I=IU1
※ ΔI×Coefficient
Drop under 1mA
The example of a setting
IU0=4mA
IU1=20mA
CRV=1
CRV=0
30
30
SLP=1mA
SLP=1.1mA
SLP=1.2mA
SLP=1.3mA
SLP=1.6mA
SLP=1.7mA
SLP=1.8mA
SLP=1.9mA
20
25
LED Current(mA)
LED Current(mA)
25
15
10
20
SLP=1mA
SLP=1.1mA
SLP=1.2mA
SLP=1.3mA
SLP=1.6mA
SLP=1.7mA
SLP=1.8mA
SLP=1.9mA
15
10
5
5
0
0h0
0
0h
0
3h
3
6h
6
9h
9
Ch
12
Fh
15
Fig.23
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
3h3
6h
6
9h
9
Ch
12
C
Fh
15
AMBLevel
Ambient
Ambient AMB
Level
Fig.24
37/45
2010.07 - Rev.A
Technical Note
BD6083GUL
Current Data which is set
LED Current
Main LED current
(8) Slope process
・Slope process is given to LED current to dim naturally.
・LED current changes in the 256Step gradation in sloping.
・Up(dark→bright),Down(bright→dark) LED current transition speed
are set individually.
Register: THL (3:0)
Register: TLH (3:0)
・Main LED current changes as follows at the time as the slope.
TLH (THL) is setup of time of the current step 2/256.
THL (3:0)
TLH(3:0)
Up/Down transition Speed
is set individually
TLH
time
THL
Zoom
Main LED current
25.6mA
=0.1mA
256
Fig.25
TLH(3:0)
time
NonALC
mode
Main LED current
(9) LED current reset when mode change
・When mode is changed (ALC↔Non ALC),
it can select the way to sloping.
Register : MDCIR
“0” : LED current non-reset when mode change
“1” : LED current reset when mode change
ALC
mode
NonALC
mode
IMLED(6:0)
IMLED(6:0)
IU*(6:0)
MDCIR= “0”
0mA
time
Main LED current
NonALC
mode
ALC
mode
NonALC
mode
IMLED(6:0)
IMLED(6:0)
IU*(6:0)
MDCIR= “1”
0mA
time
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
38/45
2010.07 - Rev.A
Technical Note
BD6083GUL
(10) Current adjustment
・When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible.
Register : WPWMEN
・It is suitable for the intensity correction by external control, because PWM based on Main LED current of register
setup or ALC control.
WPWMEN
(Register)
WPWMIN(External Pin)
Main group LED current
L
Normal operation
H
Normal operation
L
Forced OFF
H
Normal operation
0
1
" Normal operation " depends on the setup of each register.
EN(*)
Internal Soft-Start Time
DC/DC Output
WPWMIN input
WPWMEN
LED Current
EN(*) : it means “MLEDEN” or “W*EN”.
It is possible to make it a WPWMIN input and WPWMEN=1 in front of EN(*).
A PWM drive becomes effective after the time of an LED current standup.
When rising during PWM operation, as for the standup time of a DC/DC output, only the rate of
PWM Duty becomes late. Appearance may be influenced when extremely late frequency and
extremely low Duty are inputted.
Please secure 250 μs or more of H sections at the time of PWM pulse Force.
Fig.26
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
39/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●I/O
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.
When RESETB=L, output is fixed at “H.”
Level shifter
SCL
(SDA)
Logic
EN
RESETB
Fig.27
Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O
power-on sequence or an input level.
●About the start of LDO1~LDO4
It must start as follows.
VBAT
TVBATON
TVBATOFF
VIO
TVIOON=min 0.1ms
TVIOOFF=min 1ms
RESETB
TRSTB=min 0.1ms
TRST=min 0ms
LDO1EN or LDO2EN or
LDO3EN or LDO4EN
TRISE = max 1ms
LDO1O or LDO2O or
LDO3O or LDO4O
(LDO output)
Fig.28
VBAT ON (Enough rise up) → VIO ON (Enough rise up) → Reset release → LDO ON (Register access acceptable)
LDO OFF → Reset → VIO OFF (Enough fall down) → VBAT OFF
●About the pin management of the function that isn't used and test pins
Setting it as follows is recommended with the test pin and the pin which isn't used.
Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use.
T2, T4
Short to GND because pin for test input
T1,T3
OPEN because pin for test output
Non-used LED Pin
Short to GND (Must)
But, the setup of a register concerned with LED that isn’t used is prohibited.
WPWMIN
Short to ground
(A Pull-Down resistance built-in terminal is contained, too.)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
40/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Operation Settings (Flow Example)
1. Backlight: Auto Luminous Mode
Apply supply voltage.
Cancel reset.
Luminous control: Various
settings
Backlight: Various settings
The backlight settings can be made at any timing
so long as it precedes MLEDEN=1.
MLEDMD=1 is mandatory.
ALC block operation takes place for
Illumination Intensity measurement.
ALCEN=1
Wait for 80.4 ms or more
Time required for initial Illumination
Intensity acquisition.
MLEDEN=1
The backlight turns on.
MLEDEN=0 must be set first when the backlight is off.
Fig.29
A LC E N
A D C YC
A D C C ycle
S B IA S
O utput
T w ait= 64m s(typ)
W hen S B IA S O N =1
A D C M ovem ent
T A D = 16.4m s(typ)
G C 1, G C 2
G C 1, G C 2=00
A M B (3:0)
A M B (3:0)
T A M B = 80.4m s(typ)
VOUT
LE D current
①
T S O FT
Fig.30
When It cannot wait for the first illumination measurement, backlight lighting is possible with ALCEN.
But the extremely short case of slope rise time, a shoulder may be done like ① for an LED electric current.
(To the first illumination measurement for AMB(3:0)=00h)
2. Backlight: Fade-in/Fade-out
Apply supply voltage.
Cancel reset.
Backlight: Various settings
Backlight setting.
Slow time setting.
MLEDEN=1
The backlight turns on.
(Rise at designated slope time)
Set the minimum current.
(Rise at designated slope time)
MLEDEN=0
The backlight turns off.
Fig.31
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
41/45
2010.07 - Rev.A
Technical Note
BD6083GUL
3. Backlight without Auto Luminous Mode
Apply supply voltage.
Cancel reset.
Backlight: Various settings
MLEDEN=1
The backlight settings can be made at any timing
so long as it precedes MLEDEN=1.
MLEDMD=0 is mandatory.
The backlight turns on.
MLEDEN=0 must be set first when the backlight is off.
Fig.32
M LE D EN
V O UT
LED current
T SO FT
The rise time depends on TLH(3:0) setting
Fig.33
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
42/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●PCB Pattern of the Power Dissipation Measuring Board
1st layer(component)
2nd layer
3rd layer
4th layer
5th layer
6th layer
7th layer
8th layer(solder)
Fig.34 PCB Pattern of the Power Dissipation Measuring Board
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
43/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Notes for Use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety
measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention
to the interference by common impedance of layout pattern when there are plural power supplies and ground lines.
Especially, when there are ground pattern for smalICgnal and ground pattern for large current included the external circuits,
please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power
supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of
the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus
determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric
transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin
and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal shutdown circuit (TSD)
This IC builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating
the IC from thermal runaway as much as possible, is not aimed at the protection or guarantee of the IC. Therefore, do not
continuously use the IC with this circuit operating or use the IC assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in
actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it
has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our
company person in charge.
(12) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width
of ground wiring, and routing of wiring.
(13) About the function description or application note or more.
The function description and the application notebook are the design materials to design a set. So, the contents of the
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the
external elements.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
44/45
2010.07 - Rev.A
Technical Note
BD6083GUL
●Ordering Part Number
B
D
6
Part No.
0
8
3
Part No.
G
U
L
-
Package
GUL: VCSP50L3
E
2
Packaging and forming specification
E2: Embossed tape and reel
VCSP50L3(BD6083GUL)
0.1± 0.05
35- φ 0.25±0.05
A
0.05 A B
F
E
D
C
B
A
B
1 2 3 4 5
0.325±0.05
Embossed carrier tape (heat sealing method)
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
P=0.5 × 5
0.06 S
(φ0.15)INDEX POST
S
Tape
0.325± 0.05
3.15±0.05
0.55MAX
3.15± 0.05
1PIN MARK
6
1pin
P=0.5×5
(Unit : mm)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
Reel
45/45
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2010.07 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
R1010A