0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD6183GUL

BD6183GUL

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    BD6183GUL - System LED Drivers for Mobile Phones - Rohm

  • 数据手册
  • 价格&库存
BD6183GUL 数据手册
System LED Drivers for Mobile Phones 6 LEDs LDO 4ch BD6183GUL ●Description BD6183GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone. It has 3 - 6LED driver and output variable LDO4ch for LCD Backlight. It can be developed widely from the high End model to the Low End model. As it has charge pump circuit for DCDC, it is no need to use coils, and it contributes to small space. VCSP50L3(3.15mm×2.65mm 0.5mm pitch) It adopts the very thin CSP package that is the most suitable for the slim phone. ●Features 1) Total 3 - 6LEDs driver for LCD Backlight ・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 2LEDs which can chose independent control or a main allotment by resister setting. ・“Main Group” can be controlled by external PWM signal. ・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence. 2) Charge Pump DC/DC for LED driver ・It has x1/x1.5/ x2 mode that will be selected automatically. ・The most suitable voltage up magnification is controlled automatically by LED port voltage. ・Soft start functions、Over voltage protection (Auto-return type)、Over current protection (Auto-return type) loading 3) 4ch Series Regulator (LDO) ・LDOIt has selectable output voltage by the register.(16 steps) LDO1, LDO2, LDO3, LDO4 : Iomax=150mA 4) Thermal shutdown 2 5) I C BUS FS mode(max 400kHz)Compatibility ●Absolute Maximum Ratings (Ta=25 ℃) Parameter Maximum Voltage Power Dissipation Operating Temperature Range Storage Temperature Range No.10041EAT09 Symbol VMAX Pd Topr Tstg Ratings 7 1340 note) Unit V mW ℃ ℃ -30 ~ +85 -55 ~ +150 note) Power dissipation deleting is 10.72mW/ ℃ , when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard) ●Operating Conditions (VBAT≥VIO, Ta=-30~85 ℃) Parameter Symbol VBAT Input Voltage VIO Pin Voltage VBAT VIO Limits 2.7 ~ 5.5 1.65 ~ 3.3 Unit V V www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 1/34 2010.07 - Rev.A BD6183GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. 【Circuit Current】 VBAT Circuit Current 1 VBAT Circuit Current 2 VBAT Circuit Current 3 VBAT Circuit Current 4 VBAT Circuit Current 5 VBAT Circuit Current 6 VBAT Circuit Current 7 【LED Driver】 LED Current Step (Setup) LED Current Step (At slope) LED Maximum setup Current LED Current Accuracy LED Current Matching LED OFF Leak Current 【DC/DC(Charge Pump)】 Output Voltage Drive Ability Switching Frequency Over Voltage Protection Detect Voltage Over Current Protection Detect Current VoCP IOUT fosc OVP OCP 0.8 Vf+0.2 1.0 5.6 250 Vf+0.25 150 1.2 375 V mA MHz V mA VOUT=0V ILEDSTP1 ILEDSTP2 IMAXWLED IWLED ILEDMT ILKLED -7% 128 256 25.6 15 +7% 4 1.0 Step LED1~6 Step LED1~6 mA mA % μA LED1~6 IBAT1 IBAT2 IBAT3 IBAT4 IBAT5 IBAT6 IBAT7 0.1 0.5 61 92 123 90 90 3.0 3.0 65 102 140 150 150 μA μA mA mA mA μA μA Technical Note Conditions RESETB=0V, VIO= 0V RESETB=0V, VIO=1.8V DC/DC x1 mode, Io=60mA VBAT=4.0V DC/DC x1.5 mode, Io=60mA VBAT=3.6V DC/DC x2 mode, Io=60mA VBAT=2.7V LDO1,2=ON, ILDO=0mA LDO3,4=ON, ILDO=0mA ILED=15mA setting, VLED=1.0V Between LED1~6 at VLED=1.0V, ILED=15mA VLED=4.5V Vf is forward direction of LED VBAT≥3.2V, VOUT=3.9V www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 2/34 2010.07 - Rev.A BD6183GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. 【Regulator (LDO1)】 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 0.2 10 10 65 200 1.0 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 0.2 10 10 65 200 1.0 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 150 0.3 60 60 400 1.5 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 150 0.3 60 60 400 1.5 V V V V V V V V V V V V V V V V mA V mV mV dB mA kΩ V V V V V V V V V V V V V V V V mA V mV mV dB mA kΩ Technical Note Conditions Output Voltage Vo1 Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=1.8V VBAT=2.5V, Io=150mA, Vo=2.8V Io=1~150mA, Vo=1.8V VBAT=3.4~4.5V, Io=50mA, Vo=1.8V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V Output Current Dropout Voltage Load Stability Input Voltage Stability Ripple Rejection Ratio Short Circuit Current Limit Discharge Resister at OFF 【Regulator (LDO2)】 Io1 Vsat1 ΔVo11 ΔVo12 RR1 Ilim1 ROFF1 Output Voltage Vo2 Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=2.5V VBAT=2.5V, Io=150mA, Vo=2.8V Io=1~150mA, Vo=2.5V VBAT=3.4~4.5V, Io=50mA, Vo=2.5V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V Output Current Dropout Voltage Load Stability Input Voltage Stability Ripple Rejection Ratio Short circuit current Limit Discharge Resister at OFF Io2 Vsat2 ΔVo21 ΔVo22 RR2 Ilim2 ROFF2 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 3/34 2010.07 - Rev.A BD6183GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Conditions Min. Typ. Max. 【Regulator (LDO3)】 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.164 1.261 1.455 1.552 1.746 2.134 2.328 2.425 2.522 2.619 2.716 2.813 2.910 3.007 3.104 3.201 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 0.2 10 10 65 200 1.0 1.20 1.30 1.50 1.60 1.80 2.20 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 0.2 10 10 65 200 1.0 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 150 0.3 60 60 400 1.5 1.236 1.339 1.545 1.648 1.854 2.266 2.472 2.575 2.678 2.781 2.884 2.987 3.090 3.193 3.296 3.399 150 0.3 60 60 400 1.5 V V V V V V V V V V V V V V V V mA V mV mV dB mA kΩ V V V V V V V V V V V V V V V V mA V mV mV dB mA kΩ Technical Note Output Voltage Vo3 Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=1.8V VBAT=2.5V, Io=150mA, Vo=2.8V Io=1~150mA, Vo=1.8V VBAT=3.4~4.5V, Io=50mA, Vo=1.8V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V Output Current Dropout Voltage Load Stability Input Voltage Stability Ripple Rejection Ratio Short Circuit Current Limit Discharge Resister at OFF 【Regulator (LDO4)】 Io3 Vsat3 ΔVo31 ΔVo32 RR3 Ilim3 ROFF3 Output voltage Vo4 Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Io=50mA Vo=2.8V VBAT=2.5V, Io=150mA, Vo=2.8V Io=1~150mA, Vo=2.8V VBAT=3.4~4.5V, Io=50mA, Vo=2.8V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V Output Current Dropout Voltage Load Stability Input Voltage Stability Ripple Rejection Ratio Short Circuit Current Limit Discharge Resister at OFF Io4 Vsat4 ΔVo41 ΔVo42 RR4 Ilim4 ROFF4 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 4/34 2010.07 - Rev.A BD6183GUL ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Limits Parameter Symbol Unit Min. Typ. Max. 【SDA, SCL】(I2C Interface) L Level Input Voltage H Level Input Voltage Hysteresis of Schmitt trigger Input L level Output Voltage Input Current 【RESETB】(CMOS Input Pin) L Level Input Voltage H Level Input Voltage Input Current 【WPWMIN】(NMOS Input Pin) L Level Input Voltage H Level Input Voltage Input Current PWM Input Minimum High Pulse Width VILA VIHA IinA PWmin -0.3 1.4 250 3.6 0.3 VBAT+0.3 10 V V μA μs VILR VIHR IinR -0.3 0.75×VIO 0.25×VIO VBAT+0.3 1 V V μA VILI VIHI VhysI VOLI linI -0.3 0.75×VIO 0.05 ×VIO 0 0.25×VIO VBAT+0.3 0.3 1 V V V V μA Technical Note Conditions SDA Pin, IOL=3 mA Input Voltage= 0.1×VIO ~ 0.9×VIO Input Voltage = 0.1×VIO ~ 0.9×VIO Input Voltage = 1.8V WPWMIN Pin ●Power Dissipation (On the ROHM’s standard board) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 25 50 75 100 125 150 1340mW Power Dissipation Pd (W) Ta(℃) Information of the ROHM’s standard board Material : glass-epoxy Size : 50mm×58mm×1.75mm(8th layer) Wiring pattern figure Refer to after page. Fig.1 Power Dissipation www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 5/34 2010.07 - Rev.A BD6183GUL ●Block Diagram / Application Circuit Example 1 6LED + PWM 1μF/10V 1μF/10V Technical Note VBAT VBATCP VBAT1 CPGND C1N C2N C1P C2P Charge Pump x1 / x1.5 / x2 VOUT 1μF/10V LED1 2.2µF/10V Charge Pump Mode Control VIO Voltage VIO OVP LED terminal voltage feedback LED2 LED3 LED4 6LED Main Back Light RESETB SCL LED5 LED6 From CPU SDA Level I/O Shift I C interface Digital Control 2 TSD LEDGND From LCM W PWMIN IREF LDO1 LDO1O 1μF/6.3V LDO2O 1μF/6.3V LDO3O 1μF/6.3V LDO4O 1μF/6.3V VREF Vo Selectable Io=150mA LDO2 Vo Selectable Io=150mA LDO3 Vo Selectable Io=150mA Vo Selectable Io=150mA LDO4 A6 F1 A1 F6 A3 T2 T1 (Open) Fig.2 Block Diagram / Application Circuit Example 1 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. T3 (Open) GND1 T4 6/34 2010.07 - Rev.A BD6183GUL ●Block Diagram / Application Circuit Example 2 5LED + PWM 1μF/10V 1μF/10V Technical Note VBAT VBATCP VBAT1 CPGND C1N C2N C1P C2P Charge Pump x1 / x1.5 / x2 VOUT 1μF/10V LED1 2.2µF/10V Charge Pump Mode Control VIO Voltage VIO OVP LED terminal voltage feedback LED2 LED3 LED4 5LED Main Back Light RESETB SCL LED5 LED6 From CPU SDA Level I/O Shift I C interface Digital Control 2 TSD LEDGND From LCM W PWMIN IREF LDO1 LDO1O 1μF/6.3V LDO2O 1μF/6.3V LDO3O 1μF/6.3V LDO4O 1μF/6.3V VREF Vo Selectable Io=150mA LDO2 Vo Selectable Io=150mA LDO3 Vo Selectable Io=150mA Vo Selectable Io=150mA LDO4 Fig.3 Block Diagram / Application Circuit Example 2 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. T3 (Open) T1 (Open) GND1 T2 T4 7/34 2010.07 - Rev.A BD6183GUL ●Block Diagram / Application Circuit Example 3 4LED + 2LED + PWM 1μF/10V 1μF/10V Technical Note VBAT VBATCP VBAT1 CPGND C1N C2N C1P C2P Charge Pump x1 / x1.5 / x2 VOUT 1μF/10V 2.2µF/10V LED1 Charge Pump Mode Control VIO Voltage VIO OVP LED terminal voltage feedback LED2 LED3 4LED Main Back Light LED4 RESETB SCL LED5 LED6 From CPU SDA Level I/O Shift I C interface Digital Control 2 TSD LEDGND 2LED Sub Back Light or Key Back Light From LCM W PWMIN IREF LDO1 Vo Selectable Io=150mA LDO1O 1μF/6.3V LDO2O 1μF/6.3V LDO3O 1μF/6.3V LDO4O 1μF/6.3V VREF LDO2 Vo Selectable Io=150mA LDO3 Vo Selectable Io=150mA LDO4 Vo Selectable Io=150mA T2 Fig.4 Block Diagram / Application Circuit Example 3 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. T3 (Open) T1 (Open) GND1 T4 8/34 2010.07 - Rev.A BD6183GUL ●Pin Arrangement [Bottom View] Technical Note E T4 LDO4O VBAT1 LDO2O LDO1O T3 D LED5 LED6 LDO3O RESETB VIO SCL C LEDGND LED4 WPWMIN SDA C2P VOUT index B LED2 LED3 C2N C1P VBATCP A T1 LED1 GND1 C1N CPGND T2 1 Total 29 Ball 2 3 4 5 6 Fig.5 Pin Arrangement www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 9/34 2010.07 - Rev.A BD6183GUL ●Package Outline VCSP50L3 SIZE : Height : A ball pitch : CSP small package 3.15mm x 2.65mm (A difference in public : X,Y Both ±0.05mm) 0.55mm max 0.5 mm Technical Note 1PIN MARK Lot No. BD6183 3.15±0.05 0.1±0.05 0.55MAX P=0.5×4 0.325±0.05 2.65±0.05 S S B (Unit: mm) 0.06 29-φ0.25±0.05 0.05 AB E (φ0.15)INDEX POST D C B A A 1 2345 6 0.325±0.05 P=0.5×5 Fig.6 Package Outline www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 10/34 2010.07 - Rev.A BD6183GUL ●Pin Functions No Ball No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 B6 E3 A1 A6 E6 E1 D5 D4 C4 D6 A5 A3 C1 A4 B5 B4 C5 C6 A2 B1 B2 C2 D1 D2 C3 E5 E4 D3 E2 Pin Name VBATCP VBAT1 T1 T2 T3 T4 VIO RESETB SDA SCL CPGND GND1 LEDGND C1N C1P C2N C2P VOUT LED1 LED2 LED3 LED4 LED5 LED6 WPWMIN LDO1O LDO2O LDO3O LDO4O I/O O I O I I I/O I I/O I/O I/O I/O O I I I I I I I O O O O ESD Diode For Power VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT VBAT For Ground GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND Functions Battery is connected Battery is connected Test Output Pin(Open) Test Input Pin (short to Ground) Test Output Pin(Open) Test Input Pin (short to Ground) I/O Power supply is connected Reset input (L: reset, H: reset cancel) I C data input / output I2C clock input Ground Ground Ground Charge Pump capacitor is connected Charge Pump capacitor is connected Charge Pump capacitor is connected Charge Pump capacitor is connected Charge Pump output pin LED is connected 1 for LCD Back Light LED is connected 2 for LCD Back Light LED is connected 3 for LCD Back Light LED is connected 4 for LCD Back Light LED is connected 5 for LCD Back Light LED is connected 6 for LCD Back Light External PWM input for Back Light * LDO1 output pin LDO2 output pin LDO3 output pin LDO4 output pin 2 Technical Note Equivalent Circuit A A N S M S C H I H B B B F G F G A E E E E E E L Q Q Q Q * A setup of a register is separately necessary to make it effective. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 11/34 2010.07 - Rev.A BD6183GUL ●Equivalent Circuit Technical Note A B VBAT C VBAT E F VBAT G H VBAT VIO I VBAT VIO J VBAT VIO L VBAT VBAT M VBAT VBAT N VBAT Q VBAT VBAT R VBAT VBAT S VBAT VBAT U V VBAT VBAT W VBAT VIO X VoS VBAT Y VIO VBAT Fig.7 Equivalent Circuit www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 12/34 2010.07 - Rev.A BD6183GUL ●I2C BUS format 2 The writing/reading operation is based on the I C slave standard. ・Slave address A7 A6 1 1 Technical Note A5 1 A4 0 A3 1 A2 1 A1 0 R/W 1/0 ・Bit Transfer SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal. SDA SCL SDA a state of stability: SDA It can change Data are effective Fig.8 ・START and STOP condition 2 When SDA and SCL are H, data is not transferred on the I C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end. SDA SCL S START condition P STOP condition Fig.9 ・Acknowledge It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L. DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL 1 2 8 clock pulse for acknowledgement 9 S START condition Fig.10 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 13/34 2010.07 - Rev.A BD6183GUL Technical Note ・Writing protocol A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out. *1 *1 S X X X X X X X 0 A A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address R /W=0(write) from master to slave from slave to master register address D ATA D7 D 6 D 5 D 4 D 3 D 2 D1 D0 A P DATA register address increment A =acknowledge(SD A LOW) A =not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing register address increment Fig.11 ・Reading protocol It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. SXXXXXXX slave address R/W=1(read) 1 A D7 D6 D5 D4 D3 D2 D1 D0 A DATA register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition D7 D6 D5 D4 D3 D2 D1 D0 A P DATA register address increment from master to slave from slave to master Fig.12 ・Multiple reading protocols After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A Sr X X X X X X X 1 A slave address R/W=0(write) register address slave address R/W=1(read) D7 D6 D5 D4 D3D2 D1D0 A DATA register address increment from master to slave from slave to master D7D6 D5D4D3D2D1D0 A P DATA register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition Fig.13 As for reading protocol and multiple reading protocols, please do A (not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge) is done. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 14/34 2010.07 - Rev.A BD6183GUL ●Timing Diagram SDA Technical Note t BUF t LOW t SU;DAT t HD;STA SCL t SU;STO P S t HD;STA S t HD;DAT t HIGH Sr t SU;STA Fig.14 Timing Diagram ●Electrical Characteristics(Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V) Standard-mode Parameter Symbol Min. Typ. Max. 【I2C BUS format】 Fast-mode Min. Typ. Max. Unit SCL clock frequency LOW period of the SCL clock HIGH period of the SCL clock Hold time (repeated) START condition After this period, the first clock is generated Set-up time for a repeated START condition Data hold time Data set-up time Set-up time for STOP condition Bus free time between a STOP and START condition fSCL tLOW tHIGH tHD;STA tSU;STA tHD;DAT tSU;DAT tSU;STO tBUF 0 4.7 4.0 4.0 4.7 0 250 4.0 4.7 - 100 3.45 - 0 1.3 0.6 0.6 0.6 0 100 0.6 1.3 - 400 0.9 - kHz μs μs μs μs μs ns μs μs www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 15/34 2010.07 - Rev.A BD6183GUL ●Register List Address W/R Register data D7 WPWMEN THL (3) D6 IMLED(6) IW5(6) IW6(6) THL (2) D5 IMLED(5) IW5(5) IW6(5) THL (1) D4 IMLED(4) IW5(4) IW6(4) THL (0) D3 W6MD W6EN IMLED(3) IW5(3) IW6(3) TLH (3) LDO4EN D2 W5MD W5EN IMLED(2) IW5(2) IW6(2) TLH (2) LDO3EN D1 W4MD IMLED(1) IW5(1) IW6(1) TLH (1) LDO2EN D0 SFTRST MLEDEN IMLED(0) IW5(0) IW6(0) TLH (0) LDO1EN Technical Note Function 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h W W W W W W W W W W Software Reset LED Pin function setting LED Power Control Main group current setting LED5 current setting LED6 current setting Main Current transition LDO Power Control LDO1 Vout Control LDO2 Vout Control LDO3 Vout Control LDO4 Vout Control LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0 LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0 Input "0” for "-". A free address has the possibility to assign it to the register for the test. Access to the register for the test and the undefined register is prohibited. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 16/34 2010.07 - Rev.A BD6183GUL ●Register Map Address 00h < Software Reset > Address R/W Bit7 Technical Note Bit6 - Bit5 - Bit4 - Bit3 - Bit2 - Bit1 - Bit0 SFTRST 0 00h Initial Value Bit[7:1] : Bit0 : W 00h - (Not used) SFTRST Software Reset “0” : Reset cancel “1” : Reset(All register initializing) Refer to “Reset” for detail. Address 01h < LED Pin function setting> Address R/W Bit7 Bit6 01h Initial Value Bit[7:4] : Bit3 : W 02h - Bit5 - Bit4 - Bit3 W6MD 0 Bit2 W5MD 0 Bit1 W4MD 1 Bit0 - (Not used) W6MD LED6 control setting (individual / Main group) “0” : LED6 individual control (Initial Value) “1” : LED6 Main group control Refer to “LED Driver” for detail. W5MD LED5 control setting (individual / Main group) “0” : LED5 individual control (Initial Value) “1” : LED5 Main group control Refer to “LED Driver” for detail. W4MD LED4 Control Board setting (unuse / use) “0” : LED4 unuse “1” : LED4 use (Main group Control) (Initial Value) Refer to “LED Driver” for detail. (Not used) Bit2 : Bit1 : Bit0 : Set up a fixation in every design because it isn't presumed W*PW that it is changed dynamically. And, do the setup of W*PW when each LED is Off. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 17/34 2010.07 - Rev.A BD6183GUL Address 02h < LED Power Control> Address R/W Bit7 Bit6 02h Initial Value Bit7 : W 00h WPWMEN 0 - Technical Note Bit5 - Bit4 - Bit3 W6EN 0 Bit2 W5EN 0 Bit1 - Bit0 MLEDEN 0 WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid) “0” : External PWM input invalid (Initial Value) “1” : External PWM input valid Refer to “●Current Adjustment”for detail. Bit[6:4] : (Not used) Bit3 : W6EN LED6 Control (ON/OFF) “0” : LED6 OFF (Initial Value) “1” : LED6 ON(individual control) Refer to “LED Driver” for detail. W5EN LED5 Control (ON/OFF) “0” : LED5 OFF (Initial Value) “1” : LED5 ON(individual control) Refer to “LED Driver” for detail. (Not used) MLEDEN Main group LED Control (ON/OFF) “0” : Main group OFF (Initial Value) “1” : Main group ON Refer to “●Slope process”for detail. Bit2 : Bit1 : Bit0 : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 18/34 2010.07 - Rev.A BD6183GUL Address 03h < Main group LED Current setting(Normal Mode) > Address R/W Bit7 Bit6 Bit5 Bit4 03h Initial Value Bit7 : Bit[6:0] : W 00h IMLED(6) 0 IMLED(5) 0 IMLED(4) 0 Technical Note Bit3 IMLED(3) 0 Bit2 IMLED(2) 0 Bit1 IMLED(1) 0 Bit0 IMLED(0) 0 (Not used) IMLED (6:0) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : Main Group LED Current Setting 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 19/34 2010.07 - Rev.A BD6183GUL Address 05h < LED5 Current setting(Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 05h Initial Value Bit7 : Bit[6:0] : W 00h IW5(6) 0 IW5(5) 0 IW5(4) 0 Technical Note Bit3 IW5(3) 0 Bit2 IW5(2) 0 Bit1 IW5(1) 0 Bit0 IW5(0) 0 (Not used) IW5 (6:0) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : LED5 Current setting 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 20/34 2010.07 - Rev.A BD6183GUL Address 06h < LED6 Current setting(Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 06h Initial Value Bit7 : Bit[6:0] : W 00h IW6(6) 0 IW6(5) 0 IW6(4) 0 Technical Note Bit3 IW6(3) 0 Bit2 IW6(2) 0 Bit1 IW6(1) 0 Bit0 IW6(0) 0 (Not used) IW6 (6:0) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : LED6 Current setting 0.2 mA (Initial Value) 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA 10.2 mA 10.4 mA 10.6 mA 10.8 mA 11.0 mA 11.2 mA 11.4 mA 11.6 mA 11.8 mA 12.0 mA 12.2 mA 12.4 mA 12.6 mA 12.8 mA “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 13.0 mA 13.2 mA 13.4 mA 13.6 mA 13.8 mA 14.0 mA 14.2 mA 14.4 mA 14.6 mA 14.8 mA 15.0 mA 15.2 mA 15.4 mA 15.6 mA 15.8 mA 16.0 mA 16.2 mA 16.4 mA 16.6 mA 16.8 mA 17.0 mA 17.2 mA 17.4 mA 17.6 mA 17.8 mA 18.0 mA 18.2 mA 18.4 mA 18.6 mA 18.8 mA 19.0 mA 19.2 mA 19.4 mA 19.6 mA 19.8 mA 20.0 mA 20.2 mA 20.4 mA 20.6 mA 20.8 mA 21.0 mA 21.2 mA 21.4 mA 21.6 mA 21.8 mA 22.0 mA 22.2 mA 22.4 mA 22.6 mA 22.8 mA 23.0 mA 23.2 mA 23.4 mA 23.6 mA 23.8 mA 24.0 mA 24.2 mA 24.4 mA 24.6 mA 24.8 mA 25.0 mA 25.2 mA 25.4 mA 25.6 mA www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 21/34 2010.07 - Rev.A BD6183GUL Address 09h < Main Current slope time setting > Address R/W Bit7 Bit6 Bit5 09h Initial Value Bit[7:4] : W C7h THL(3) 1 THL(2) 1 THL(1) 0 Technical Note Bit4 THL(0) 0 Bit3 TLH(3) 0 Bit2 TLH(2) 1 Bit1 TLH(1) 1 Bit0 TLH(0) 1 THL (3:0) Main LED current Down transition per 0.2mA step “0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms (Initial Value) “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “●Slope process”for detail. Bit[3:0] : TLH (3:0) Main LED current Up transition per 0.2mA step “0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms (Initial Value) “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “●Slope process”for detail. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 22/34 2010.07 - Rev.A BD6183GUL Address 13h Address R/W Bit7 Bit6 13h Initial Value Bit[7:4] Bit3 : W/R 00h - Technical Note Bit5 - Bit4 - Bit3 LDO4EN 0 Bit2 LDO3EN 0 Bit1 LDO2EN 0 Bit0 LDO1EN 0 : (Not used) LDO4EN LDO4 control (ON/OFF) “0” : LDO4 OFF (Initial Value) “1” : LDO4 ON LDO3EN LDO3 control (ON/OFF) “0” : LDO3 OFF (Initial Value) “1” : LDO3 ON LDO2EN LDO2 control (ON/OFF) “0” : LDO2 OFF (Initial Value) “1” : LDO2 ON LDO1EN LDO1 control (ON/OFF) “0” : LDO1 OFF (Initial Value) “1” : LDO1 ON Bit2 : Bit1 : Bit0 : Address 14h < LDO1 Vout Control, LDO2 Vout Control > Address R/W Bit7 Bit6 Bit5 14h Initial Value Bit[7:4] : 74h 0 1 1 Bit4 1 Bit3 0 Bit2 1 Bit1 0 Bit0 0 R/W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0 LDO2VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V (Initial Value) “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V LDO1VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V Bit[3:0] : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 23/34 2010.07 - Rev.A BD6183GUL Address 15h < LDO3 Vout Control, LDO4 Vout Control > Address R/W Bit7 Bit6 Bit5 15h Initial Value Bit[7:4] : A4h 1 0 1 Technical Note Bit4 0 Bit3 0 Bit2 1 Bit1 0 Bit0 0 R/W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0 LDO4VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V (Initial Value) “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V LDO3VSEL [3:0] “0000” : 1.20 V “0001” : 1.30 V “0010” : 1.50 V “0011” : 1.60 V “0100” : 1.80 V (Initial Value) “0101” : 2.20 V “0110” : 2.40 V “0111” : 2.50 V “1000” : 2.60 V “1001” : 2.70 V “1010” : 2.80 V “1011” : 2.90 V “1100” : 3.00 V “1101” : 3.10 V “1110” : 3.20 V “1111” : 3.30 V Bit[3:0] : www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 24/34 2010.07 - Rev.A BD6183GUL ●Reset There are two kinds of reset, software reset and hardware reset Technical Note (1) Software reset ・All the registers are initialized by SFTRST="1". ・SFTRST is an automatically returned to "0". (Auto Return 0). (2) Hardware reset ・It shifts to hardware reset by changing RESETB pin “H” → “L”. ・The condition of all the registers under hardware reset pin is returned to the Initial Value, and it stops accepting all address. ・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”. ・RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs. (3) Reset Sequence ・When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled. (Because the Initial Value of software reset is “0”) ●VIODET The decline of the VIO voltage is detected, and faulty operation inside the LSI is prevented by giving resetting to Levelsift block Image Block Diagram VIO VBAT DEToutput Inside reset 2.6V VBAT Reset by VIODET (typ)1.0V VIO VIODET RESETB R Digital pin I/O LEVEL SHIFT RESETB DET output Inside reset Fig.15 Fig.16 When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed. On the contrary, when VIO is as follows 1.0V, it takes reset.(The VBAT voltage being a prescribed movement range) ●Thermal Shut Down A thermal shutdown function is effective in the following block. DC/DC (Charge Pump) LED Driver LDO1, LDO2, LDO3, LDO4 The thermal shutdown function is detection temperature that it works is about 195℃. Detection temperature has a hysteresis, and detection release temperature is about 175 ℃.(Design reference value) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 25/34 2010.07 - Rev.A BD6183GUL ●DC/DC Start DC/DC circuit operates when any LED turns ON. (DCDCFON=0) When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current. Technical Note Force of VBAT and VIO is to go as follows. VBAT VIO TVIOON=min 0.1ms RESETB TRSTB=min 0.1ms TRST=min 0ms EN (*) TSOFT VOUT TVIOOFF=min 0.1ms LEDcurrent (*) An EN signal means the following in the upper figure. EN = “MLEDEN” or “W*EN” (= LED The LED lighting control of a setup of connection VOUT) But, as for Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective. TSOFT changes by the capacitor connected to VOUT and inside OSC. TSOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF). Fig.17 Over Voltage protection / Over Current protection DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function. A VOUT over-voltage detection voltage is about 5.6V(typ). (VOUT at the time of rise in a voltage) A detection voltage has a hysteresis, and a detection release voltage is about 5.4V (typ). And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection function. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 26/34 2010.07 - Rev.A BD6183GUL Mode transition Technical Note The transition of boosts multiple transits automatically by VBAT Voltage and the VOUT Pin Voltage. STANDBY 1 condition○ ALL off MLEDEN=”1” or W*EN=”1” 1 ○ and Ta1.5V(typ), 128us(typ) wait X1.0 CP x1.0 mode mode down=”H” mode up=”H” X1.5 CP x1.5 mode mode down=”H” mode up=”H” X2.0 CP x2.0 mode Fig.18 The mode transition of the charge pump works as follows. <x1.0→x1.5→x2.0 Mode transition> The transition of the mode is done when VOUT was compared with VBAT and the next condition was satisfied. x1.0→x1.5 Mode transition VBAT ≤ VOUT + (Ron10×Iout) (LED Pin feedback: VOUT = Vf+0.2(Typ)) x1.5→x2.0 Mode transition VBAT×1.5 ≤ VOUT +(Ron15×Iout) (LED Pin feedback: VOUT = Vf+0.2(Typ)) Ron10: x1 Charge pump on resistance 1.4Ω (Typ) Ron15: x1.5 Charge pump on resistance 8.5Ω (Typ) <x2.0→x1.5→x1.0 Mode transition> The transition of the mode is done when the ratio of VOUT and VBAT is detected and it exceeds a fixed voltage ratio. x1.5→x1.0 Mode transition VBAT / VOUT =1.16(Design value) x2.0→x1.5 Mode transition VBAT / VOUT =1.12(Design value) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 27/34 2010.07 - Rev.A BD6183GUL Technical Note ●LED Driver The LED driver of 6ch is constructed as the ground plan. Equivalence control is possible with LED1 - 4(LED4 can choose use/un-use with a register W4MD.). LED5, LED6 is controllable individually. As for LED5, LED6, grouping setting to the main control is possible, and main control becomes effective for the main group in the allotment. LED5 and LED6 are setups of grouping to the main control. When LED5 and LED6 are used by the individual control, a slope time setup (register THL and TLH) doesn't become effective. LED1 IMLED[6:0] MLEDEN MLEDMD WPWMIN LED2 LED3 LED4 W4MD 1 LED5 IW5[6:0] W5EN 0 W5MD 1 LED6 IW6[6:0] W6EN 0 W6MD Fig.19 LED Composition which can be set up is the following. The main, other1 and other2 are controllable to each.(Enable and current setting) Main (PWM) 6LEDs 5LEDs 5LEDs 4LEDs 4LEDs 4LEDs 4LEDs 3LEDs 3LEDs 3LEDs 3LEDs Other1 1LED 1 LED 2 LEDs 1 LED 1 LED 2 LEDs 1 LED Other2 1LED 1LED www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 28/34 2010.07 - Rev.A BD6183GUL Technical Note ●Current Adjustment ・When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible. Register: WPWMEN ・It is suitable for the intensity correction by external control, because PWM based on Main LED current of register setup. WPWMEN(Register) 0 1 WPWMIN(External Pin) L H L H Main group LED current Normal operation Normal operation Forced OFF Normal operation “Normal operation " depends on the setup of each register. EN(*) Internal Soft-Start Time DC/DC Output WPWMIN input WPWMEN LED Current EN(*) : it means “MLEDEN” or “W*EN”. It is possible to make it a WPWMIN input and WPWMEN=1 in front of EN(*). A PWM drive becomes effective after the time of an LED current standup. When rising during PWM operation, as for the standup time of a DC/DC output, only the rate of PWM Duty becomes late. Appearance may be influenced when extremely late frequency and extremely low Duty are inputted. Please secure 250 μs or more of H sections at the time of PWM pulse Force. Fig.20 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 29/34 2010.07 - Rev.A BD6183GUL ●Slope process ・Slope process is given to LED current to dim naturally. ・LED current changes in the 256Step gradation in sloping. ・Up(dark→bright),Down(bright→dark) LED current transition speed are set individually. Register : THL(3:0) Register : TLH(3:0) ・Main LED current changes as follows at the time as the slope. TLH (THL) is setup of time of the current step 2/256. TLH Technical Note Current Data which is set LED Current Main LED current THL (3:0) TLH(3:0) Up/Down transition Speed is set individually time 25.6mA =0.1mA 256 THL Zoom Fig.21 Main LED current TLH(3:0) time ●I/O When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power. W hen RESETB=L, output is fixed at “H.” SCL (SDA) Level shifter EN Logic RESETB Fig.22 Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O power-on sequence or an input level. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 30/34 2010.07 - Rev.A BD6183GUL ●About the Start of LDO1 ~ LDO4 Technical Note It must start as follows. VBAT TVBATON TVBATOFF VIO TVIOON=min 0.1ms TVIOOFF=min 1ms TRSTB=min 0.1ms TRST=min 0ms LDO1EN or LDO2EN or LDO3EN or LDO4EN TRISE = max 1ms LDO1O or LDO2O or LDO3O or LDO4O (LDO output) RESETB Fig.23 VBAT ON (Enough rise up) → VIO ON (Enough rise up) → Reset release → LDO ON (Register access acceptable) LDO OFF → Reset → VIO OFF (Enough fall down) → VBAT OFF ●About the pin management of the function that isn't used and test pins Setting it as follows is recommended with the test pin and the pin which isn't used. Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use. T2, T4 T1,T3 Non-used LED Pin WPWMIN Short to GND because pin for test input OPEN because pin for test output Short to GND (Must) But, the setup of a register concerned with LED that isn’t used is prohibited. Short to ground (A Pull-Down resistance built-in terminal is contained, too.) ●Operation Settings (Flow Example) Backlight: Fade-in/Fade-out Apply supply voltage. Cancel reset. Backlight setting. Slow time setting. The backlight turns on. (Rise at designated slope time) Backlight: Various settings MLEDEN=1 Set the minimum current. (Rise at designated slope time) MLEDEN=0 The backlight turns off. Fig.24 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 31/34 2010.07 - Rev.A BD6183GUL ●PCB Pattern of the Power Dissipation Measuring Board Technical Note 1st layer(component) 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer Fig.25 PCB Pattern 8th layer(solder) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 32/34 2010.07 - Rev.A BD6183GUL ●Notes for Use Technical Note (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Power supply and ground line Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (3) Ground voltage Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient. (4) Short circuit between pins and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down. (5) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (6) Input pins In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (7) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. (8) Thermal Shut Down Circuit (TSD) This LSI builds in a thermal shutdown circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation. (9) Thermal design Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use. (10) LDO Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it has the possibility that an operation becomes unstable. (11) About the pin for the test, the un-use pin Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge. (12) About the rush current For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of wiring. (13) About the function description or application note or more. The function description and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 33/34 2010.07 - Rev.A BD6183GUL ●Ordering Part Number Technical Note B D 6 Part No. 1 8 3 G U L - E 2 Part No. Package GUL: VCSP50L3 Packaging and forming specification E2: Embossed tape and reel VCSP50L3(BD6183GUL) 2.65± 0.05 1PIN MARK Tape Quantity 0.1± 0.05 0.55MAX Embossed carrier tape 2500pcs E2 The direction is the 1pin of product is at the upper left when you hold 3.15± 0.05 S Direction of feed ( reel on the left hand and you pull out the tape on the right hand ) 0.06 S 29- φ 0.25± 0.05 0.05 A B (φ0.15)INDEX POST E D C B A 1 2345 6 A B P=0.5× 4 0.325± 0.05 0.325± 0.05 P=0.5× 5 1pin Direction of feed (Unit : mm) Reel ∗ Order quantity needs to be multiple of the minimum quantity. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 34/34 2010.07 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. R1010A
BD6183GUL 价格&库存

很抱歉,暂时无法提供与“BD6183GUL”相匹配的价格&库存,您可以联系我们找货

免费人工找货