BD6670FM

BD6670FM

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    BD6670FM - 3Phase spindle motor driver for CD-RW - Rohm

  • 数据手册
  • 价格&库存
BD6670FM 数据手册
BD6670FM Motor driver ICs 3Phase spindle motor driver for CD-RW BD6670FM BD6670FM is a 3-phase spindle motor driver adopting 180° PWM direct driving system. Noise occurred from the motor driver when the disc is driver can be reduced. Low power consumption and low heat operation are achieved by using DMOS FET in output and driving directly. !Applications CD-RW !Features 1) 180 degree Direct-PWM driving system. 2) Built in power save circuit. 3) Built in current limit circuit. 4) Built in FG-output. 5) Built in 3phase synthesized FG-output. 6) Built in hall bias circuit. 7) Built in reverse protection circuit. 8) Built in short brake circuit. 9) Low consumption by MOS-FET. 10) Built in capacitor for oscillator. 11) Built in gain switch and current limit switch. !Absolute maximum ratings (Ta=25°C) Parameter Power supply voltage Supply voltage for motor VG pin voltage Output current Power dissipation Junction temperature Operating temperature range Storage temperature range Symbol VCC VM VG IOMAX Pd TJMAX Topr Tstg Limits 7 15 20 2500 ∗1 2200 ∗2 150 −20~+75 −55~+150 Unit V V V mA mW °C °C °C ∗1 However, do not exceed Pd, ASO and Tj=150°C. The current is guaranteed 3.0A in case of the current is turn on / off in a duty-ratio of less than 1/10 with a maximum on-time of 5msec. ∗2 70mm×70mm×1.6mm glass epoxy board. Debating in done at 17.6mW / °C for operating above Ta=25°C. !Recommended operating conditions Parameter Power supply voltage Supply voltage for motor VG pin voltage Symbol VCC VM VG Min. 4.5 4.0 8.5 Typ. − − − Max. 5.5 13.2 19 Unit V V V 1/17 BD6670FM Motor driver ICs !Block diagram Hall comp H1+ EXOR 28 + − FG3 1 + − H1− + PWM Comp 27 Hall bias FG 2 − Hall Amp H2+ 3 + − + 26 VH H2− 4 − + − 25 TSD 24 VM H3+ 5 + − + A1 H3− 6 − + − U-Pre 23 RNF1 Driver 22 A2 GSW 7 Gain control Matrix OSC Driver L-Pre Driver GND 8 21 RNF1 CP1 9 Charge pump 20 A3 CP2 10 19 RNF2 VG 11 PS Torque AMP 18 PS CNF 12 Current sense Matrix + − CL + − 17 EC SB 13 16 ECR VCC 14 D CK Q QB 15 VM Reverse detect Fig.1 2/17 BD6670FM Motor driver ICs !Pin descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Pin name H 1+ H 1− H 2+ H 2− H 3+ H 3− GSW GND CP1 CP2 VG CNF SB VCC VM ECR EC PS RNF2 A3 RNF1 A2 RNF1 A1 VM VH FG FG3 Function Hall input AMP 1 positive input Hall input AMP 1 negative input Hall input AMP 2 positive input Hall input AMP 2 negative input Hall input AMP 3 positive input Hall input AMP 3 negative input Gain switch pin GND Capacitor pin 1 for charge pump Capacitor pin 2 for charge pump Capacitor connection pin for charge pump Capacitor connection pin for phase compensation Short brake pin Power supply for signal division Power supply for driver Torque control standard voltage input terminal Torque control voltage input terminal Power save pin Resistor connection pin for current sense Output 3 for motor Resistor connection pin for current sense Output 2 for motor Resistor connection pin for current sense Output 1 for motor Power supply for driver Hall bias pin FG output pin FG3 output pin 3/17 BD6670FM Motor driver ICs !Input output circuits Hall input H1+ : Pin1, H1− : Pin2, H2+ : Pin3, H2− : Pin4, H3+ : Pin5, H3− : Pin6 VCC VCC VCC Hn+ 1k 1k Gain Switch (Pin7) Hn− 1k 75k 10k 10k 25k 50 CP1 (Pin9) Gain switch Pin7 CP1 output Pin9 VCC 100k VCC VCC 1k 5k 1k CP2 / VG output CP2 : Pin10, VG : Pin11 CNF Pin12 Short brake Pin13 VCC VM VG (Pin11) CNF (Pin12) 50 SB (Pin13) CP2 (Pin10) 20k 2k 2k 30k VCC Torque amplifier ECR : Pin16, EC : Pin17 Power save Pin18 RNF2 Pin19 VCC VCC ECR (Pin16) EC (Pin17) PS (Pin18) 1k 20k 30k RNF2 (Pin19) 1k VCC 355 Output pins A1 : Pin24, A2 : Pin22, A3 : Pin20 Hall bias Pin26 FG / FG3 output FG : Pin27, FG3 : Pin28 VM VCC VCC VCC FG (Pin27) FG3 (Pin28) A1 A2 A3 VH (Pin26) 50 100k RNF1 4/17 BD6670FM Motor driver ICs !Electrical characteristics (unless otherwise noted, Ta=25°C, VCC=5V, VM=12V) Parameter Symbol Min. Typ. Max. Unit Conditions Test Circuit Fig.2 Fig.2 Circuit current 1 Circuit current 2 ON voltage range OFF voltage range Hall bias voltage In-phase input voltage range Minimum input level Hall hysteresis level (+) Hall hysteresis level (−) Low voltage range High voltage range Open voltage range Input voltage range Offset voltage (+) Offset voltage (−) Input current Input / Output gain L Input / Output gain M Input / Output gain H Output ON-resistance Torque limit current L Torque limit current M Torque limit current H High voltage Low voltage Charge pump output voltage Upper saturation voltage Lower saturation voltage Upper saturation voltage Lower saturation voltage VCP2H VCP2L 0.4 0.15 0.6 0.35 0.8 0.55 V V ICP2=−4mA ICP2=+4mA Fig.11 Fig.11 VCP1H VCP1L 0.25 0.2 0.45 0.4 0.65 0.6 V V ICP1=−4mA ICP1=+4mA Fig.10 Fig.10 VPUMP 12.5 17 19 V VCC=5V, VM=12V, CP1=CP2=0.1µF Fig.9 VFGH VFGL 4.6 − − − − 0.4 V V IFG=−100µA IFG=+100µA Fig.5 Fig.5 RON ITLL ITLM ITLH − 340 680 1020 1.0 400 800 1200 1.35 460 920 1380 Ω mA mA mA IO=±600mA (Upper+Lower) GSW=L, RNF=0.5Ω GSW=M, RNF=0.5Ω GSW=H, RNF=0.5Ω Fig.8 Fig.4 Fig.4 Fig.4 EC, ECR Ecofs+ Ecofs− ECIN GECL GECM GECH 0 5 −100 −11 0.28 0.56 1.12 − 50 −50 −2.5 0.35 0.70 1.40 5 100 5 0 0.42 0.84 1.68 V mV mV µA A/V A/V A/V EC=ECR=1.65V GSL=L, RNF=0.5Ω GSL=M, RNF=0.5Ω GSL=H, RNF=0.5Ω Linear range : 0.5V∼3.0V Fig.6 Fig.6 Fig.6 Fig.6 Fig.7 Fig.7 Fig.7 VGSWL VGSWH VGSWOP − 2.0 − − − 1.3 0.6 − − V V V Fig.4 Fig.4 Fig.4 VHAR VINH VHYS+ VHYS− 1.4 80 5 −40 − − 20 −20 3.6 − 40 −5 V mVPP mV mV Oneside input level Fig.3 Fig.3 Fig.3 Fig.3 VHB 0.7 1.0 1.3 V IHB=10mA Fig.2 VPSON VPSOFF − 2.5 − − 1.0 − V V Stand by mode Fig.2 Fig.2 ICC1 ICC2 − 7 1 12 10 17 µA mA Stand by mode 5/17 BD6670FM Motor driver ICs !Measuring circuit V 0.5Ω 12V 10kΩ 0.01µ 1.65V ICC1 : Value of A VPS=Low ICC2 : Value of A VPS=High RNF1 RNF1 RNF2 EC PS ECR VH VM A1 A2 FG3 FG A3 VM VPSON : Range of VPS that output pins become Input-output table GSW GND H1+ H1− H2− H3+ H3− CNF CP1 CP2 + H2 VCC VG SB VPSOFF : Range of VPS that output become open 17V H1+ H1− H2+ H2− H3+ H3− 5V A VHB : Value of A VPS=5V IVH=10mA Fig.2 V 0.5Ω 12V 10kΩ 0.01µ 5V 1.65V ECR VHAR : Hall in-phase input voltage range that output pins become Input-output table RNF1 RNF1 RNF2 FG3 FG VM PS EC A1 A2 A3 VM VH VINH : Hall minimum input level that output pins become Input-output table GSW GND CNF CP1 CP2 VHYS+/− : Voltage difference H3+ from H3− at the point that FG voltage changes H1+ H1− H2+ − H3+ H3− H2 17V H1+ H1− H2+ H2− H3+ H3− 5V Fig.3 VCC VG SB 6/17 BD6670FM Motor driver ICs 5V 12V 1.65V ITLL : Defining VRNF2 as the voltage that CNF becomes low, ITLL=VRNF2 / 0.5 VGSW=Low ITLM : Defining VRNF2 as the voltage that CNF becomes low, ITLM=VRNF2 / 0.5 VGSW=Open ITLH : Defining VRNF2 as the voltage that CNF becomes low, ITLH=VRNF2 / 0.5 VGSW=High A1 A2 A3 PS EC ECR SB RNF1 RNF1 RNF2 VM FG3 FG GSW GND H1+ H1− H3+ H3− CNF CP1 CP2 + − H2 H2 VCC VG VM VH VGSWL : Range of VGSW that ITLL < ITLM VGSWH : Range of VGSW that ITLH > ITLM 17V H1+ H1− H2+ H2− H3+ H3− V 5V Fig.4 V3 V2 5V 12V 1.65V VGSWOP : Value of V VFGH : IFG (IFG3) = Value of V2(V3) at IFG (IFG3) = −100µA H1+=L, H2+=M, H3+=H H1−=M, H2−=M, H3−=M (for FG) H1+=L, H2+=H, H3+=H H1−=M, H2−=M, H3−=M (for FG3) VFGL : IFG (IFG3) = Value of V2(V3) at IFG (IFG3) = 100µA H1+=M, H2+=H, H3+=L H1−=M, H2−=M, H3−=M (for FG) H1+=L, H2+=H, H3+=L H1−=M, H2−=M, H3−=M (for FG3) VM FG3 FG PS EC GSW GND H1+ H1− H2+ H2− H3− CNF CP1 CP2 + ECR SB 5V A1 A2 RNF1 RNF1 A3 RNF2 H3 V1 17V H1+ H1− H2+ H2− H3+ H3− Fig.5 VCC VG VM VH 7/17 BD6670FM Motor driver ICs 0.5Ω 5Ω 5Ω 12V V 0.01µF 1.65V 5Ω 10kΩ 5V A1 A2 EC / ECR : Torque control operating range ECOfS+ / − : EC voltage range that VM current is 0A monitor VRNF1 ECIN : Value of A1 and A2 at EC=ECR=1.65V FG3 FG A1 A2 A3 PS EC ECR SB VM RNF1 RNF1 GSW GND RNF2 H1+ H1− H2+ H3+ H3− CNF CP1 CP2 − H2 VCC VG VM VH 5V H1+ H1− H2+ H2− H3+ H3− 0.1µF 100pF Fig.6 0.5Ω 5Ω 5Ω V 0.01µ 5Ω 10kΩ 5V 1.65V 12V GECL : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=0V, GECL={(V1−V2) / (1.5−1.2)} / 0.5 GECM : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=open, GECL={(V1−V2) / (1.5−1.2)} / 0.5 GECH : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=5V, GECL={(V1−V2) / (1.5−1.2)} / 0.5 RNF1 RNF1 RNF2 VM PS EC GSW GND H1+ H1− H3+ H3− CNF CP1 CP2 + − ECR SB FG3 FG A1 A2 A3 H2 H2 VCC VG VM VH 17V H1+ H1− H2+ H2− H3+ H3− 100pF 5V Fig.7 8/17 BD6670FM Motor driver ICs 5V 12V 1.65V VOH : Value of V on condition that output pin is H and IO=−600mA RNF1 RNF1 RNF2 VM FG3 FG PS EC ECR A1 A2 A3 VM VH VOL : Value of V on condition that output pin is L and IO=600mA RON : RON = (VOH + VOL) / 0.6 GSW GND H1+ H1− H2+ H3+ H3− CNF CP1 CP2 − H2 VCC 5V VG 5V H1+ H1− H2+ H2− H3+ H3− 17V VM V A1, A2, A3 600mA V A1, A2, A3 600mA Measurement of VOH Measurement of VOL Fig.8 5V 12V SB 1.65V VPUMP : Value of V PS EC ECR SB FG3 FG A1 A2 A3 VM RNF1 RNF1 RNF2 VM VCC 5V VH GSW GND H1+ H2+ H2− H3− H1 H3 H1+ H1− H2+ H2− H3+ H3− 0.1µF Fig.9 CNF V CP1 CP2 − + VG 9/17 BD6670FM Motor driver ICs 5V 12V 1.65V VM A1 A2 A3 EC PS ECR FG3 FG RNF1 RNF1 RNF2 VM VH VCP1H : Value of V on condition that CP1 is H and ICP1=−4mA VCP1L : Value of V on condition that CP1 is L and ICP1=4mA GSW GND H1+ H1− H3+ H3− CNF CP1 CP2 + − H2 H2 VCC 5V VG V 17V H1+ H1− H2+ H2− H3+ H3− Fig.10 5V 12V SB 1.65V A1 A2 A3 PS EC ECR FG3 FG RNF1 RNF1 RNF2 VH VM VM VCP2H : Value of V on condition that CP2 is H and ICP2=−4mA VCP2L : Value of V on condition that CP2 is L and ICP2=4mA GSW GND H1+ H1− H3+ H3− CNF CP1 CP2 + − H2 H2 VCC 5V VG V 17V H1+ H1− H2+ H2− H3+ H3− Fig.11 SB 10/17 BD6670FM Motor driver ICs !Circuit operation 1. Application (1) Input-output table Input condition Pin No. Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 1 H1+ L H M M H L 2 H1− M M M M M M 3 H2+ H L L H M M 4 H2− M M M M M M 5 H3+ M M H L L H 6 H3− M M M M M M 24 A1 H L L H L H Output condition ECECR 22 A2 H L L H H L 20 A3 H L H L L H (2) Hall input Hall element can be used with both series and parallel connection. Determining R1 and R2, make sure to leave an adequate margin for temperature and dispertion in order to satisfy in-phase input voltage range and minimum input level. A motor doesn’t reach the regular number of rotation, if hall input decrease under high temperature. VCC R1 H1 H1 H2 H3 H2 H3 R2 VH Parallel connection R2 VH Series connection VCC R1 Fig.12 11/17 BD6670FM Motor driver ICs (3) Torque voltage By the voltage difference between EC and ECR, the current driving motor changes as shown in Fig.13 below. IM [A] ITL Forward torque Reverse torque 0 ECR EC [V] Fig.13 The gain of the current driving motor for the voltage of EC can be changed by the resistance of RNF and the voltage of GSW. GECL=0.175 / RNF [A / V] (GSW=L) GECM=0.35 / RNF [A / V] (GSW=M) GECH=0.70 / RNF [A / V] (GSW=H) (4) Current limit The maximum value of the current driving motor can be changed by the resistance of RNF and the voltage of GSW. ITLL=0.2 / RNF [A] (GSW=L) ITLM=0.4 / RNF [A] (GSW=M) ITLH=0.6 / RNF [A] (GSW=H) 12/17 BD6670FM Motor driver ICs (5) Short brake The short brake is switched by SB pin and its operation is shown in table below. SB L H EC < ECR Rotating forward Short brake EC > ECR Reverse brake Short brake Output upper (3phase) FET turn off and lower (3phase) FET turn on in short brake mode, as shown Fig.14. VM OFF OFF OFF ON ON ON RNF MOTOR Fig.14 (6) Reverse detection Reverse detection is constructed as shown in Fig.15. Output is opened when EC>ECR and the motor is rotating reverse. H2+ H2− + − + − D Q OUT H3+ H3− CK EC ECR + − Fig.15 13/17 BD6670FM Motor driver ICs Motor rotation at reverse detection Forward rotation (forward torque) when EC < ECR Deceleration (reverse torque) when EC > ECR Reverse detection is triggered and set outputs to open, when motor rotates in the reverse direction. Motor idles in the reverse direction by inertia. Stop 14/17 BD6670FM Motor driver ICs (7) Timing chart H1+ H2+ H3+ 30° A1 Output current A1 Output voltage A2 Output current A2 Output voltage A3 Output current A3 Output voltage Fig.16 15/17 BD6670FM Motor driver ICs !Application example 100Ω H1+ Hall comp + − + − EXOR FG3 H1 1000pF H1− + − PWM Comp FG H2+ Hall Amp + − VH Hall bias VM H2 1000pF H2− + − + − H3+ + − TSD A1 H3 1000pF 100Ω VCC H3− + − RNF1 + − 0.5Ω U-Pre GSW Driver A2 Gain control OSC Matrix Driver L-Pre GND Driver RNF1 CP1 A3 0.1µF CP2 Charge pump RNF2 10kΩ 0.01µF VG PS 0.1µF CNF PS Torque AMP EC VCC Servo signal ECR 100pF VCC SB Current sense Matrix VCC + − CL + − 1.65V VM 10µF D CK Q QB 100µF Reverse detect Fig.17 !Operation notes 1. Absolute maximum ratings Absolute maximum ratings are those values which, if exceeded, may cause the life of a device to become significantly shorted. Moreover, the exact failure mode cannot be defined, such as a short or an open. Physical countermeasures, such as fuse, need to be considered when using a device beyond its maximum ratings. 2. GND potential The GND terminal should be the location of the lowest voltage on the chip. All other terminals should never go under this GND level, even in transition. 16/17 BD6670FM Motor driver ICs 3. Thermal design The thermal design should allow enough margin for actual power dissipation. 4. Mounting failures Mounting failures, such as misdirection or mismounts, may destroy the device. 5. Electromagnetic fields A strong electromagnetic field may cause malfunctions. 6. Coil current flowing into VM A coil current flows from motor into VM when torque control input changes from ECECR, and VM voltage rises if VM voltage source doesn’t have an ability of current drain. A protect circuit turns on and a current (40mA (typ.)) flows from VM to GND when VM voltage reaches to 15V (Typ.). Make sure that surrounding circuits work correctly and aren’t destroyed, when VM voltage rises. Physical countermeasures, such as a diode for voltage clamp, need to be considered under these conditions. 7. CNF pin An appropriate capacitor (100pF (typ.)) at CNF pin make motor current smooth. Make sure the motor current doesn’t oscillate, even in transition. !Electrical characteristics curve Pd (W) 2.2 2.0 1.5 1.0 0.5 0 0 25 50 75 100 125 150 Ta (°C) ∗ 70mm×70mm×1.6mm glass epoxy board. ∗ Debating in done at 17.6mW/°C for operating aboveTa=25°C. Fig.18 Power dissipation curve !External dimensions (Units : mm) 18.5±0.2 28 15 9.9±0.3 7.5±0.2 1 5.15±0.1 0.8 0.35±0.1 0.08 M 16.0±0.2 14 0.25±0.1 2.2±0.1 0.11 0.1 S HSOP-M28 0.5±0.2 17/17
BD6670FM 价格&库存

很抱歉,暂时无法提供与“BD6670FM”相匹配的价格&库存,您可以联系我们找货

免费人工找货