0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD71847AMWV-E2

BD71847AMWV-E2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    UQFN56BV7070

  • 描述:

    BD71847AMWV-E2

  • 数据手册
  • 价格&库存
BD71847AMWV-E2 数据手册
Datasheet Power Management Integrated Circuit BD71847AMWV General Description  BD71847AMWV is a programmable Power Management IC (PMIC) for powering single-core, dual-core, and quad-core SoC’s such as NXP-i.MX 8M Mini. It is optimized for low BOM cost and compact solution footprint. It integrates 6 Buck regulators and 6 LDO’s to provide all the power rails required by the SoC and the commonly used peripherals.  QFN package and pinout support low cost Type 3 (non-HDI) PCB. Programmable power sequencing and output voltages, flexible power state control for easier system design and supports a wide variety of processors and system implementations. Key Specifications       Input Voltage Range (VSYS): SNVS State Current: SUSPEND State Current: IDLE State Current: RUN State Current: Operating Temperature Range: Applications  Streaming Media Boxes and Dongles  AV Receivers and Wireless Sound Bars  Industrial HMI, SBC, IPC and Panel Computer Package Features  6 Buck Regulators  2.0 MHz Switching Frequency. (BUCK1, BUCK2, BUCK5, BUCK7, and BUCK8).  1.5MHz Switching Frequency. (BUCK6)  Target Efficiency: 83% to 95%.  Output Current & Voltage. BUCK1: 3.0 A, 0.7 V to 1.3 V/10 mV step, DVS BUCK2: 3.0 A, 0.7 V to 1.3 V/10 mV step, DVS BUCK5: 3.0 A, 0.70 V to 1.35 V/8steps, DVS BUCK6: 3.0 A, 2.6 V to 3.3 V/100 mV step BUCK7: 1.5 A, 1.605 V to 1.995 V/8steps BUCK8: 3.0 A, 0.8 V to 1.4 V/10 mV step  6ch Linear Regulators (6 LDOs)  LDO1: 10 mA, 3.0 V to 3.3 V, 1.6 V to 1.9 V  LDO2: 10 mA, 0.9 V, 0.8 V  LDO3: 300 mA, 1.8 V to 3.3 V  LDO4: 250 mA, 0.9 V to 1.8 V  LDO5: 300 mA, 0.8 V to 3.3 V  LDO6: 300 mA, 0.9 V to 1.8 V  Power Mux Switch  1.8V Input: 500 mΩ(Max)  3.3V Input: 500 mΩ(Max)  32.768 kHz Crystal Oscillator Driver  Power Button Detector  Protection and Monitoring: Soft Start, Power Rails Fault Detection, UVLO, OVP and TSD  OTP Configurable Power Sequencing  OTP and Software Programmable Output Voltage, Ramp rates.  Hardware Signaling with SoC for Transition into or out of Low Power States  Interfaces:  I2C: 100 kHz/400 kHz, 1 MHz  Power-on Reset Output: POR_B, RTC_RESET_B,  Watchdog Reset Input: WDOG_B:  Power State Control: PMIC_STBY_REQ, PMIC_ON_REQ, PWRON_B  Interrupt to SoC: IRQ_B  Type3 PCB Applicable 2.7 V to 5.5 V 30 μA(Typ) 126 μA(Typ) 147 μA(Typ) 147 μA(Typ) -40 °C to +105 °C UQFN56BV7070 W(Typ) x D(Typ) x H(Max) 7.00 mm x 7.00 mm x 1.00 mm Product structure : Silicon integrated circuit. This product has no designed protection against radioactive rays www.rohm.com TSZ02201-0Q2Q0A500610-1-2 © 2019 ROHM Co., Ltd. All rights reserved. 1/116 16.Mar.2020 Rev.003 TSZ2211114001 BD71847AMWV Contents General Description ........................................................................................................................................................................ 1 Features.......................................................................................................................................................................................... 1 Key Specifications .......................................................................................................................................................................... 1 Applications .................................................................................................................................................................................... 1 Package W(Typ) x D(Typ) x H(Max) ................................................................................................................ 1 1. Introduction............................................................................................................................................................................. 7 1.1. Terminology .................................................................................................................................................................... 7 1.2. System Power Map & Typical Application Circuit ........................................................................................................... 8 1.3. Pin Configuration.......................................................................................................................................................... 10 1.4. Pin Description ............................................................................................................................................................. 11 1.5. I/O Equivalence Circuit................................................................................................................................................. 12 1.6. Power Rail .................................................................................................................................................................... 13 1.7. Register Map ................................................................................................................................................................ 14 1.8. ESD.............................................................................................................................................................................. 16 2. Operating Conditions ............................................................................................................................................................ 17 2.1. Absolute Maximum Ratings (Ta=25 ˚C)........................................................................................................................ 17 2.2. Thermal Resistance ..................................................................................................................................................... 17 2.3. Recommended Operating Conditions .......................................................................................................................... 18 2.4. Current Consumption ................................................................................................................................................... 18 2.5. Power Reference and Detectors (UVLO) ..................................................................................................................... 19 3. Power State Control ............................................................................................................................................................. 20 3.1. Power Control Signals.................................................................................................................................................. 20 3.1.1. PWRON_B........................................................................................................................................................... 21 3.1.2. PMIC_ON_REQ ................................................................................................................................................... 21 3.1.3. PMIC_STBY_REQ ............................................................................................................................................... 21 3.1.4. WDOG_B ............................................................................................................................................................. 21 3.1.5. RTC_RESET_B ................................................................................................................................................... 22 3.1.6. POR_B................................................................................................................................................................. 22 3.2. Power States ................................................................................................................................................................ 23 3.2.1. Power State Diagram ........................................................................................................................................... 23 3.2.2. Power State Register ........................................................................................................................................... 24 3.2.3. Power State Definition ......................................................................................................................................... 26 3.2.4. Power State Control Events ................................................................................................................................. 27 3.2.4.1. Reset Event ................................................................................................................................................. 27 3.2.4.2. Emergency Shutdown Event ....................................................................................................................... 29 3.2.5. Power State Transitions ....................................................................................................................................... 29 3.2.5.1. OFF to READY ............................................................................................................................................ 29 3.2.5.2. READY to SNVS ......................................................................................................................................... 30 3.2.5.3. SNVS to RUN .............................................................................................................................................. 33 3.2.5.4. RUN to IDLE................................................................................................................................................ 35 3.2.5.5. IDLE to RUN................................................................................................................................................ 35 3.2.5.6. RUN to SUSPEND ...................................................................................................................................... 35 3.2.5.7. SUSPEND to RUN ...................................................................................................................................... 35 3.2.5.8. IDLE to SUSPEND ...................................................................................................................................... 36 3.2.5.9. Emergency Shutdown ................................................................................................................................. 36 3.2.5.10. VR Fault ...................................................................................................................................................... 37 3.2.5.11. EMG to OFF ................................................................................................................................................ 41 3.2.5.12. EMG to READY ........................................................................................................................................... 42 3.2.5.13. EMG_STAY Condition ................................................................................................................................. 43 3.2.5.14. Warm Reset................................................................................................................................................. 43 3.2.5.15. PWROFF ..................................................................................................................................................... 44 3.2.5.16. PWROFF to READY.................................................................................................................................... 46 3.2.5.17. PWROFF to SNVS ...................................................................................................................................... 46 3.2.5.18. PWRON_B Functionality ............................................................................................................................. 46 3.3. Power Sequence .......................................................................................................................................................... 48 3.3.1. Power ON Sequence ........................................................................................................................................... 48 3.3.2. Power OFF Sequence ......................................................................................................................................... 50 3.3.3. RUN to IDLE ........................................................................................................................................................ 54 3.3.4. IDLE to RUN ........................................................................................................................................................ 55 3.3.5. RUN to SUSPEND ............................................................................................................................................... 56 3.3.6. SUSPEND to RUN ............................................................................................................................................... 57 3.3.7. IDLE to SUSPEND .............................................................................................................................................. 58 3.3.8. Emergency Shutdown .......................................................................................................................................... 59 3.3.9. Warm Reset ......................................................................................................................................................... 60 3.3.10. Reset Source Indicators....................................................................................................................................... 61 4. I2C and Interrupt .................................................................................................................................................................. 62 4.1. I2C Bus Interface ......................................................................................................................................................... 62 4.1.1. I2C Bus Interface Overview ................................................................................................................................. 62 4.1.2. I2C Bus Interface Electrical Characteristics ......................................................................................................... 63 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 2/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 4.1.3. Device Addressing ............................................................................................................................................... 65 4.1.4. Write / Read Operation ........................................................................................................................................ 66 4.2. Interrupt ........................................................................................................................................................................ 67 4.2.1. Interrupt Overview ............................................................................................................................................... 67 5. Power Rails .......................................................................................................................................................................... 70 5.1. Output Voltage Range .................................................................................................................................................. 70 5.2. Details of Buck ............................................................................................................................................................. 72 5.2.1. BUCK1 ................................................................................................................................................................. 72 5.2.1.1. BUCK1 Block Diagram ................................................................................................................................ 72 5.2.1.2. BUCK1 Electrical Characteristics ................................................................................................................ 73 5.2.1.3. BUCK1 Control ............................................................................................................................................ 74 5.2.2. BUCK2 ................................................................................................................................................................. 76 5.2.2.1. BUCK2 Block Diagram ................................................................................................................................ 76 5.2.2.2. BUCK2 Electrical Characteristics ................................................................................................................ 77 5.2.2.3. BUCK2 Control ............................................................................................................................................ 78 5.2.3. BUCK5 ................................................................................................................................................................. 80 5.2.3.1. BUCK5 Block Diagram ................................................................................................................................ 80 5.2.3.2. BUCK5 Electrical Characteristics ................................................................................................................ 81 5.2.3.3. BUCK5 Control ............................................................................................................................................ 82 5.2.4. BUCK6 ................................................................................................................................................................. 83 5.2.4.1. BUCK6 Block Diagram ................................................................................................................................ 83 5.2.4.2. BUCK6 Electrical Characteristics ................................................................................................................ 84 5.2.4.3. BUCK6 Control ............................................................................................................................................ 85 5.2.5. BUCK7 ................................................................................................................................................................. 86 5.2.5.1. BUCK7 Block Diagram ................................................................................................................................ 86 5.2.5.2. BUCK7 Electrical Characteristics ................................................................................................................ 87 5.2.5.3. BUCK7 Control ............................................................................................................................................ 88 5.2.6. BUCK8 ................................................................................................................................................................. 89 5.2.6.1. BUCK8 Block Diagram ................................................................................................................................ 89 5.2.6.2. BUCK8 Electrical Characteristics ................................................................................................................ 90 5.2.6.3. BUCK8 Control ............................................................................................................................................ 91 5.3. Details of LDO .............................................................................................................................................................. 92 5.3.1. LDO1 ................................................................................................................................................................... 92 5.3.1.1. LDO1 Block Diagram ................................................................................................................................... 92 5.3.1.2. LDO1 Electrical Characteristics ................................................................................................................... 93 5.3.1.3. LDO1 Control .............................................................................................................................................. 94 5.3.2. LDO2 ................................................................................................................................................................... 95 5.3.2.1. LDO2 Block Diagram ................................................................................................................................... 95 5.3.2.2. LDO2 Electrical Characteristics ................................................................................................................... 96 5.3.2.3. LDO2 Control .............................................................................................................................................. 96 5.3.3. LDO3 ................................................................................................................................................................... 97 5.3.3.1. LDO3 Block Diagram ................................................................................................................................... 97 5.3.3.2. LDO3 Electrical Characteristics ................................................................................................................... 98 5.3.3.3. LDO3 Control .............................................................................................................................................. 99 5.3.4. LDO4 ................................................................................................................................................................. 100 5.3.4.1. LDO4 Block Diagram ................................................................................................................................. 100 5.3.4.2. LDO4 Electrical Characteristics ................................................................................................................. 101 5.3.4.3. LDO4 Control ............................................................................................................................................ 102 5.3.5. LDO5 ................................................................................................................................................................. 103 5.3.5.1. LDO5 Block Diagram ................................................................................................................................. 103 5.3.5.2. LDO5 Electrical Characteristics ................................................................................................................. 104 5.3.5.3. LDO5 Control ............................................................................................................................................ 105 5.3.6. LDO6 ................................................................................................................................................................. 106 5.3.6.1. LDO6 Block Diagram ................................................................................................................................. 106 5.3.6.2. LDO6 Electrical Characteristics ................................................................................................................. 107 5.3.6.3. LDO6 Control ............................................................................................................................................ 108 5.4. MUXSW ..................................................................................................................................................................... 109 5.4.1. MUXSW Block Diagram ..................................................................................................................................... 109 5.4.2. MUXSW Electrical Characteristics ..................................................................................................................... 110 6. 32.768 kHz Crystal Oscillator Driver ................................................................................................................................... 111 6.1. 32.768 kHz Crystal Oscillator Driver Block Diagram .................................................................................................. 111 6.2. 32.768 kHz Crystal Oscillator Driver Electrical Characteristics .................................................................................. 111 7. Operational Notes .............................................................................................................................................................. 112 8. Ordering Information........................................................................................................................................................... 114 9. Marking Diagram ................................................................................................................................................................ 114 10. Physical Dimension and Packing Information ................................................................................................................ 115 11. Revision History ............................................................................................................................................................. 116 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 3/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV Figure Figure 1-1. System Power Map ............................................................................................................................................... 8 Figure 1-2. Typical Applications Circuit .................................................................................................................................... 9 Figure 1-3. Pin Configuration (TOP VIEW) ............................................................................................................................ 10 Figure 1-4. I/O Equivalence Circuit 1 ..................................................................................................................................... 12 Figure 2-1. Power Reference and Detectors Block Diagram ................................................................................................. 19 Figure 3-1. Power Control Signals of BD71847AMWV .......................................................................................................... 20 Figure 3-2. Power State Transition ........................................................................................................................................ 23 Figure 3-3. Power Sub State Definition.................................................................................................................................. 25 Figure 3-4. VSYS Condition for moving to SNVS .................................................................................................................. 30 Figure 3-5. PMIC_ON_REQ Condition for moving to SNVS .................................................................................................. 30 Figure 3-6. PWRON_B Short Push Condition for moving to SNVS ....................................................................................... 31 Figure 3-7. PWRON_B Long Push Condition for moving to SNVS ........................................................................................ 31 Figure 3-8. Cold Reset Condition for moving to SNVS .......................................................................................................... 31 Figure 3-9. VSYS Condition for moving to RUN .................................................................................................................... 33 Figure 3-10. PMIC_ON_REQ Condition for moving to RUN .................................................................................................. 33 Figure 3-11. PWRON_B Short Push Condition for moving to RUN ....................................................................................... 34 Figure 3-12. PWRON_B Long Push Condition for moving to RUN ........................................................................................ 34 Figure 3-13. Cold Reset Condition for moving to RUN .......................................................................................................... 34 Figure 3-14. Example of VR Fault and Recovery Sequence (RCVLMT[3:0] = 2) .................................................................. 41 Figure 3-15. EMG to OFF Power State Transition ................................................................................................................. 41 Figure 3-16. EMG to READY Power State Transition (VSYS_UVLO) ................................................................................... 42 Figure 3-17. EMG to READY Power State Transition (Die Temperature) .............................................................................. 42 Figure 3-18. Warm Reset by WDOG_B ................................................................................................................................. 43 Figure 3-19. Cold Reset Duration Time set by PONT[3:0] ..................................................................................................... 45 Figure 3-20. Power Button Block Diagram............................................................................................................................. 46 Figure 3-21. Power ON Sequence ......................................................................................................................................... 48 Figure 3-22. Power OFF Sequence (To SNVS) ..................................................................................................................... 50 Figure 3-23. Power OFF Sequence (To READY) .................................................................................................................. 52 Figure 3-24. RUN to IDLE...................................................................................................................................................... 54 Figure 3-25. IDLE to RUN...................................................................................................................................................... 55 Figure 3-26. RUN to SUSPEND ............................................................................................................................................ 56 Figure 3-27. SUSPEND to RUN ............................................................................................................................................ 57 Figure 3-28. IDLE to SUSPEND ............................................................................................................................................ 58 Figure 3-29. Emergency Shutdown ....................................................................................................................................... 59 Figure 3-30. Warm Reset (SWRESET) ................................................................................................................................. 60 Figure 3-31. Warm Reset (WDOG_B) ................................................................................................................................... 60 Figure 3-32. Warm Reset (PWRON_B Long Push) ............................................................................................................... 60 Figure 4-1. I2C (Slave) Block Diagram .................................................................................................................................. 62 Figure 4-2. I2C Bus Interface AC Timing ............................................................................................................................... 64 Figure 4-3. I2C Device Addressing ........................................................................................................................................ 65 Figure 4-4. I2C Write / Read Operation ................................................................................................................................. 66 Figure 4-5. IRQ_B Architecture Block Diagram ..................................................................................................................... 67 Figure 5-1. BUCK1 Block Diagram ........................................................................................................................................ 72 Figure 5-2. BUCK2 Block Diagram ........................................................................................................................................ 76 Figure 5-3. BUCK5 Block Diagram ........................................................................................................................................ 80 Figure 5-4. BUCK6 Block Diagram ........................................................................................................................................ 83 Figure 5-5. BUCK7 Block Diagram ........................................................................................................................................ 86 Figure 5-6. BUCK8 Block Diagram ........................................................................................................................................ 89 Figure 5-7. LDO1 Block Diagram ........................................................................................................................................... 92 Figure 5-8. LDO2 Block Diagram ........................................................................................................................................... 95 Figure 5-9. LDO3 Block Diagram ........................................................................................................................................... 97 Figure 5-10. LDO3 Voltage Source Switching ....................................................................................................................... 99 Figure 5-11. LDO4 Block Diagram ....................................................................................................................................... 100 Figure 5-12. LDO4 Voltage Source Switching ..................................................................................................................... 102 Figure 5-13. LDO5 Block Diagram ....................................................................................................................................... 103 Figure 5-14. LDO6 Block Diagram ....................................................................................................................................... 106 Figure 5-15. MUXSW Block Diagram .................................................................................................................................. 109 Figure 5-16. MUXSW Sequence ......................................................................................................................................... 110 Figure 6-1. 32.768 kHz Crystal Oscillator Driver Block Diagram ......................................................................................... 111 Figure 9-1. Marking Diagram ............................................................................................................................................... 114 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 4/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV Table Table 1-1. Acronyms, Conventions and Terminology ............................................................................................................... 7 Table 1-2. Pin Description ...................................................................................................................................................... 11 Table 1-3. Power Rails and Output Signals ........................................................................................................................... 13 Table 1-4. Register Map......................................................................................................................................................... 14 Table 1-5. REV - Revision Register ....................................................................................................................................... 14 Table 1-6. REGLOCK - Lock Register ................................................................................................................................... 15 Table 1-7. OTPVER – OTP Version Register ......................................................................................................................... 15 Table 1-8. ESD ...................................................................................................................................................................... 16 Table 2-1. Absolute Maximum Ratings................................................................................................................................... 17 Table 2-2. Thermal Resistance .............................................................................................................................................. 17 Table 2-3. Recommended Operating Conditions ................................................................................................................... 18 Table 2-4. Current Consumption ............................................................................................................................................ 18 Table 2-5. Power Reference and Detectors Electrical Characteristics ................................................................................... 19 Table 3-1. PWRON_B Electrical Characteristics .................................................................................................................... 21 Table 3-2. PMIC_ON_REQ Electrical Characteristics ............................................................................................................ 21 Table 3-3. PMIC_STBY_REQ Electrical Characteristics ........................................................................................................ 21 Table 3-4. WDOG_B Electrical Characteristics ...................................................................................................................... 21 Table 3-5. RTC_RESET_B Electrical Characteristics ............................................................................................................ 22 Table 3-6. POR_B Electrical Characteristics.......................................................................................................................... 22 Table 3-7. POW_STATE – Power State Register................................................................................................................... 24 Table 3-8. Voltage Rails ON/OFF for Respective Power State .............................................................................................. 27 Table 3-9. Setting of Cold or Warm Reset Selection .............................................................................................................. 28 Table 3-10. SWRESET - Software Reset Register ................................................................................................................ 28 Table 3-11. PWRCTRL0 - Power Control 0 Register ............................................................................................................. 28 Table 3-12. Conditions from OFF to READY state ................................................................................................................. 29 Table 3-13. Conditions from READY to SNVS ....................................................................................................................... 30 Table 3-14. TRANS_COND0 - Transition Condition Select 0 Register .................................................................................. 32 Table 3-15. Conditions from SNVS to RUN ........................................................................................................................... 33 Table 3-16. Conditions from RUN to IDLE ............................................................................................................................. 35 Table 3-17. PWRCTRL1 - Power Control 1 Register ............................................................................................................. 35 Table 3-18. Conditions from IDLE to RUN ............................................................................................................................. 35 Table 3-19. Conditions from RUN to SUSPEND .................................................................................................................... 35 Table 3-20. Conditions from SUSPEND to RUN .................................................................................................................... 35 Table 3-21. Conditions from IDLE to SUSPEND .................................................................................................................... 36 Table 3-22. Conditions from SNVS, RUN, IDLE, SUSPEND, PWROFF to EMG ................................................................... 36 Table 3-23. VR FAULT threshold and monitoring condition.................................................................................................... 37 Table 3-24. VRFAULTEN - VR FAULT ON/OFF Register: Debugging Purpose ..................................................................... 38 Table 3-25. MVRFLTMASK0 - VR FAULT Mask 0 Register ................................................................................................... 38 Table 3-26. MVRFLTMASK1 - VR FAULT Mask 1 Register ................................................................................................... 39 Table 3-27. MVRFLTMASK2 - VR FAULT Mask 2 Register ................................................................................................... 39 Table 3-28. RCVCFG - Recovery Configuration Register ...................................................................................................... 40 Table 3-29. RCVNUM - Recovery Number Register .............................................................................................................. 40 Table 3-30. Conditions from EMG to OFF.............................................................................................................................. 41 Table 3-31. Conditions from EMG to READY ........................................................................................................................ 42 Table 3-32. Conditions for Stay at EMG................................................................................................................................. 43 Table 3-33. Conditions from RUN, IDLE, SUSPEND to PWROFF ........................................................................................ 44 Table 3-34. TRANS_COND1 - Transition Condition Select 1 Register .................................................................................. 44 Table 3-35. VR Summary After Power OFF Sequence .......................................................................................................... 45 Table 3-36. PWRONCONFIG0 - PWRON_B Configuration 0 Register.................................................................................. 46 Table 3-37. PWRONCONFIG1 - PWRON_B Configuration 1 Register.................................................................................. 47 Table 3-38. Power ON Sequence Timing Specification.......................................................................................................... 49 Table 3-39. Power OFF Sequence Timing Specification (To SNVS) ...................................................................................... 51 Table 3-40. Power OFF Sequence Timing Specification (To READY) ................................................................................... 53 Table 3-41. RUN to IDLE Timing Specification ...................................................................................................................... 54 Table 3-42. IDLE to RUN Timing Specification ...................................................................................................................... 55 Table 3-43. RUN to SUSPEND Timing Specification ............................................................................................................. 56 Table 3-44. SUSPEND to RUN Timing Specification ............................................................................................................. 57 Table 3-45. IDLE to SUSPEND Timing Specification ............................................................................................................. 58 Table 3-46. Emergency Shutdown Timing Specification ........................................................................................................ 59 Table 3-47. Warm Reset (SWRESET) Timing Specification .................................................................................................. 60 Table 3-48. Warm Reset (WDOG_B) Timing Specification .................................................................................................... 60 Table 3-49. Warm Reset (PWRON_B Long Push) Timing Specification ................................................................................ 60 Table 3-50. RESETSRC - Reset Source Indicator Register................................................................................................... 61 Table 4-1. I2C Bus Interface DC Electrical Characteristics .................................................................................................... 63 Table 4-2. I2C Bus Interface AC Timing - Fast Mode ............................................................................................................. 64 Table 4-3. I2C_DEV - I2C Device Address Indicator Register ............................................................................................... 65 Table 4-4. Interrupt Event ...................................................................................................................................................... 67 Table 4-5. IRQ_B Electrical Characteristics ........................................................................................................................... 67 Table 4-6. IRQ - Interrupt Register ......................................................................................................................................... 68 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 5/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV Table 4-7. MIRQ – IRQ Mask Register .................................................................................................................................. 68 Table 4-8. IN_MON - Input Port Monitor Register .................................................................................................................. 69 Table 5-1. Output Voltage Range1 ......................................................................................................................................... 70 Table 5-2. Output Voltage Range2 ......................................................................................................................................... 71 Table 5-3. BUCK1 Electrical Characteristics .......................................................................................................................... 73 Table 5-4. BUCK1_CTRL - BUCK1 Control Register ............................................................................................................. 74 Table 5-5. BUCK1_VOLT_RUN - BUCK1 Voltage (RUN) Register ........................................................................................ 74 Table 5-6. BUCK1_VOLT_IDLE - BUCK1 Voltage (IDLE) Register ....................................................................................... 75 Table 5-7. BUCK1_VOLT_SUSP - BUCK1 Voltage (SUSPEND) Register ............................................................................ 75 Table 5-8. BUCK2 Electrical Characteristics .......................................................................................................................... 77 Table 5-9. BUCK2_CTRL - BUCK2 Control Register ............................................................................................................. 78 Table 5-10. BUCK2_VOLT_RUN - BUCK2 Voltage (RUN) Register ...................................................................................... 78 Table 5-11. BUCK2_VOLT_IDLE - BUCK2 Voltage (IDLE) Register...................................................................................... 79 Table 5-12. BUCK5 Electrical Characteristics ........................................................................................................................ 81 Table 5-13. BUCK5_CTRL - BUCK5 Control Register ........................................................................................................... 82 Table 5-14. BUCK5_VOLT - BUCK5 Voltage Register ........................................................................................................... 82 Table 5-15. BUCK6 Electrical Characteristics ........................................................................................................................ 84 Table 5-16. BUCK6_CTRL - BUCK6 Control Register ........................................................................................................... 85 Table 5-17. BUCK6_VOLT - BUCK6 Voltage Register........................................................................................................... 85 Table 5-18. BUCK7 Electrical Characteristics ........................................................................................................................ 87 Table 5-19. BUCK7_CTRL - BUCK7 Control Register ........................................................................................................... 88 Table 5-20. BUCK7_VOLT - BUCK7 Voltage Register ........................................................................................................... 88 Table 5-21. BUCK8 Electrical Characteristics ........................................................................................................................ 90 Table 5-22. BUCK8_CTRL - BUCK8 Control Register ........................................................................................................... 91 Table 5-23. BUCK8_VOLT - BUCK8 Voltage Register ........................................................................................................... 91 Table 5-24. LDO1 Electrical Characteristics .......................................................................................................................... 93 Table 5-25. LDO1_VOLT - LDO1 Voltage Register ................................................................................................................ 94 Table 5-26. LDO2 Electrical Characteristics .......................................................................................................................... 96 Table 5-27. LDO2_VOLT - LDO2 Voltage Register ................................................................................................................ 96 Table 5-28. LDO3 Electrical Characteristics .......................................................................................................................... 98 Table 5-29. LDO3_VOLT - LDO3 Voltage Register ................................................................................................................ 99 Table 5-30. LDO4 Electrical Characteristics ........................................................................................................................ 101 Table 5-31. LDO4_VOLT - LDO4 Voltage Register .............................................................................................................. 102 Table 5-32. LDO5 Electrical Characteristics ........................................................................................................................ 104 Table 5-33. LDO5_VOLT - LDO5 Voltage Register .............................................................................................................. 105 Table 5-34. LDO6 Electrical Characteristics ........................................................................................................................ 107 Table 5-35. LDO6_VOLT - LDO6 Voltage Register .............................................................................................................. 108 Table 5-36. MUXSW Electrical Characteristics .................................................................................................................... 110 Table 5-37. SD_VSELECT Electrical Characteristics........................................................................................................... 110 Table 5-38. MUXSW Sequence Timing................................................................................................................................ 110 Table 5-39. MUXSW_EN - MUXSW Enable Register .......................................................................................................... 110 Table 6-1. C32K_OUT Control Register............................................................................................................................... 111 Table 6-2. 32.768 kHz Crystal Oscillator Driver Electrical Characteristics ........................................................................... 111 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 6/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1. Introduction 1.1. Terminology Term Table 1-1. Acronyms, Conventions and Terminology Definition BOM Bill Of Materials DAC DVS Digital to Analog Converter Dynamic Voltage Scaling FET I2C Field Effect Transistor Inter-Integrated Circuit IRQ LDO Interrupt Request Low Drop-Out regulator NTC OCP Negative Temperature Coefficient. (a type of thermistor) Over Current Protection OTP One Time Programmable memory OVP PFM Over Voltage Protection Pulse-Frequency Modulation POR PWM Power On Reset Pulse-Width Modulation SMPS SoC Switched Mode Power Supply System-On-a-Chip UVLO VR Under Voltage-LockOut Voltage Regulator www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 7/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.2. System Power Map & Typical Application Circuit BD71847AMWV VSYS(5V) i.MX8M Mini BUCK1 – DVS 3.0 A, 0.7 V to 1.3 V /10 mV step 0.8 V BUCK2 – DVS 3.0 A, 0.7 V to 1.3 V /10 mV step 0.8 V/0.9 V/ 1.0V VDD_SOC VDDA_0V8 PHY_0V8 VDD_ARM I2C I/F PWRON_B PMIC_STBY_REQ PMIC_ON_REQ WDOG_B HOST I/F RTC_RESET_B BUCK5 - DVS 3.0 A, 0.70 V to 1.35 V / 8steps POR_B 0.8 V/0.9 V VDD_GPU VDD_VPU VDD_DRAM IRQ_B BUCK8 3.0 A, 0.8 V to 1.4 V /10 mV step SD_VSELECT C32K_OUT XIN XOUT 32kHz Crystal Driver 1.10 V/1.20 V/1.35 V LDO1 10 mA, 3.0 V to 3.3 V /1.6 V to 1.9 V 1.8V LDO2 10 mA, 0.9 V/0.8 V 0.8V BUCK6 3.0 A, 2.6 V to 3.3 V /0.1 V step NVCC_SNVS 3.3V LDO3 300 mA, 1.8 V to 3.3 V NVCC_DRAM 1.8V VDD_SNVS NVCC_3V3 VDDA_1V8 VDDA_DRAM LDO5 300 mA, 0.8 V to 3.3 V BUCK7 1.5 A, 1.605 V to 1.995 V/ 8steps 1.8V 1.8V LDO4 250 mA, 0.9 V to 1.8 V 0.9V LDO6 300 mA, 0.9 V to 1.8 V 1.2V 150mA MUXSW NVCC_1V8 VDD_PHY_0V9 (MIPI) VDD_PHY_1V2 (MIPI) 1.8V/3.3V(SD CARD) 3.3V Figure 1-1. System Power Map www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 8/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.2. System Power Map & Typical Application Circuit - continued BD71847AMWV VDD_V1P5 VDD_V1P5 VSYS VSYS VDD_V1P5 BUCK1_VIN VDD_V1P5 VSYS VREF BUCK1_LX BUCK1 INTLDO1P5 AGND BUCK1 (VDD_SOC VDDA_0V8 PHY_0V8) VREF Voltage Reference Buck Converter DVS 0.7 V to 1.3 V / 3.0 A Internal Power On Reset P GND BUCK1_FB UVLO VDD_V1P5 VSYS TSD VSYS BUCK2_VIN Connect to the VSYS pin when not use the Power Button Function VREF VDD_V1P5 VSYS BUCK2 (VDD_ARM) BUCK2_LX BUCK2 CLOCK Generator Buck Converter DVS 0.7 V to 1.3 V / 3.0 A PWRON_B OTP P GND BUCK2_FB Power ON Key VDD_V1P5 XIN XOUT 32.768 kHz Crystal Oscillator Driver VDD_V1P5 DVDD,VSYS C32K_OUT NVCC_SNVS NVCC_SNVS DVDD SCL I2C Slave Interface SDA NVCC_SNVS POR_B SOC IRQ_B RTC_RESET_B Power Controll PMIC_ON_REQ PMIC_STBY_REQ SD_VSELECT WDOG_B Register Sequencer VSYS BUCK5_VIN VSYS VREF VDD_V1P5 VSYS VDD_V1P5 VSYS BUCK5 (VDD_GPU,VPU,DRAM) BUCK5_LX VSYS BUCK5 VREF Buck Converter DVS 0.7 V to 1.35 V / 3.0 A LDO1 LDO1 (NVCC_SNVS) LDO1_VOUT LDO2 (VDD_SNVS) LDO2_VOUT 3.0 V to 3.3 V, 1.6 V to 1.9 V / 10 mA P GND LDO2 BUCK5_FB 0.9 V, 0.8V / 10 mA VDD_V1P5 VSYS BUCK6_VIN VSYS/VIN_1P8 VSYS VREF VDD_V1P5 BUCK6 (NVCC_3V3) BUCK6_LX BUCK6 BUCK7 Buck Converter 2.6 V to 3.3 V / 3.0 A VIN_1P8_1 LDO4 0.9 V to1.8 V / 250 mA VSYS VSYS P GND BUCK6_FB VREF LDO6 0.9 V to 1.8 V / 300 mA LDO4 (VDD_PHY_0V9) VDD_V1P5 VSYS VSYS BUCK7_VIN LDO4_VOUT VREF LDO6 (VDD_PHY_1V2) LDO6_VOUT BUCK7 VDD_V1P5 Buck Converter 1.605 V to 1.995 V / 1.5 A VIN_1P8_2 MUXSW P GND 1.8 V / 500 mΩ (Max) 3.3 V / 500 mΩ (Max) LOADSW (NVCC_SD2) BUCK7 (NVCC_1V8) BUCK7_LX BUCK7 VSYS BUCK7_FB MUXSW_VOUT VSYS/VIN_3P3 BUCK6 VDD_V1P5 VDD_V1P5 VSYS VIN_3P3 BUCK8_VIN VSYS VREF BUCK8_LX VSYS VSYS BUCK8 VREF LDO3 Buck Converter 0.8 V to 1.4 V / 3.0 A 1.8 V to 3.3 V / 300 mA LDO3 (VDDA_1V8&VDDA_DRAM) BUCK8 (NVCC_DRAM) LDO5 LDO3_VOUT 0.8 V to 3.3 V / 300 mA P GND BUCK8_FB LDO5 LDO5_VOUT P GND PGND (EXP-PAD) Figure 1-2. Typical Applications Circuit www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 9/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.3. Pin Configuration VSYS PWRON_B IRQ_B BUCK8_FB BUCK8_VIN BUCK8_LX BUCK8_LX BUCK5_LX BUCK5_LX BUCK5_VIN BUCK5_VIN BUCK5_FB C32K_OUT 42 41 40 39 38 37 36 35 34 33 32 31 30 29 EXP-PAD LDO4_VOUT EXP-PAD VIN_1P8_1 43 28 DVDD LDO6_VOUT 44 27 SDA SD_VSELECT 45 26 SCL BUCK6_FB 46 25 POR_B BUCK6_VIN 47 24 BUCK2_FB BUCK6_VIN 48 23 BUCK2_VIN BUCK6_LX 49 22 BUCK2_LX BUCK6_LX 50 21 BUCK2_LX BUCK7_LX 51 20 BUCK1_LX BUCK7_LX 52 19 BUCK1_LX BUCK7_VIN 53 18 BUCK1_VIN BUCK7_FB 54 17 BUCK1_FB MUXSW_VOUT 55 16 PMIC_STBY_REQ VIN_1P8_2 56 15 PMIC_ON_REQ EXP-PAD (PGND) 1Pin Mark 7 8 9 10 11 12 13 14 LDO2_VOUT VSYS LDO1_VOUT INTLDO1P5 AGND XOUT XIN 6 VIN_3P3 RTC_RESET_B 5 LDO3_VOUT WDOG_B 4 VSYS 3 LDO5_VOUT 2 VIN_3P3 EXP-PAD 1 EXP-PAD Figure 1-3. Pin Configuration (TOP VIEW) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 10/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.4. Pin Description Table 1-2. Pin Description Pin# 18 19 20 17 23 21 22 24 31 32 33 34 30 47 48 49 50 46 53 51 52 54 37 35 36 38 9 10 8 43 41 42 44 7 5 6 4 1 56 55 11 12 14 13 28 26 27 29 39 25 3 2 15 16 45 40 - Block Name BUCK1 BUCK2 BUCK5 BUCK6 BUCK7 BUCK8 LDO1 LDO2 LDO4 LDO6 LDO3 LDO5 MUXSW REF Crystal Oscillator Interface - Pin Name Dir Pin Description BUCK1_VIN BUCK1_LX BUCK1_LX BUCK1_FB BUCK2_VIN BUCK2_LX BUCK2_LX BUCK2_FB BUCK5_VIN BUCK5_VIN BUCK5_LX BUCK5_LX BUCK5_FB BUCK6_VIN BUCK6_VIN BUCK6_LX BUCK6_LX BUCK6_FB BUCK7_VIN BUCK7_LX BUCK7_LX BUCK7_FB BUCK8_VIN BUCK8_LX BUCK8_LX BUCK8_FB VSYS LDO1_VOUT LDO2_VOUT VIN_1P8_1 VSYS LDO4_VOUT LDO6_VOUT VIN_3P3 VSYS LDO3_VOUT LDO5_VOUT VIN_3P3 VIN_1P8_2 MUXSW_VOUT INTLDO1P5 AGND XIN XOUT DVDD SCL SDA C32K_OUT IRQ_B POR_B RTC_RESET_B WDOG_B PMIC_ON_REQ PMIC_STBY_REQ SD_VSELECT PWRON_B I O O I I O O I I I O O I I I O O I I O O I I O O I I O O I I O O I I O O I I O O I I O I I I /O O O O O I I I I I EXP-PAD (PGND) - BUCK1 switcher input supply BUCK1 switch node connection BUCK1 switch node connection BUCK1 feedback sense BUCK2 switcher input supply BUCK2 switch node connection BUCK2 switch node connection BUCK2 feedback sense BUCK5 switcher input supply BUCK5 switcher input supply BUCK5 switch node connection BUCK5 switch node connection BUCK5 feedback sense BUCK6 switcher input supply BUCK6 switcher input supply BUCK6 switch node connection BUCK6 switch node connection BUCK6 feedback sense BUCK7 switcher input supply BUCK7 switch node connection BUCK7 switch node connection BUCK7 feedback sense BUCK8 switcher input supply BUCK8 switch node connection BUCK8 switch node connection BUCK8 feedback sense LDO1, LDO2 input supply LDO1 output LDO2 output LDO4, LDO6 input supply LDO4 input supply LDO4 output LDO6 output LDO3,MUXSW input supply LDO3,LDO5 input supply LDO3 output LDO5 output LDO3,MUXSW input supply MUXSW input supply LOADSW output Internal LDO for PMIC AGND 32.768kHz crystal input 32.768kHz crystal output Interface input supply I2C CLOCK 2 I C DATA 32.768kHz clock output Interrupt signal to processor(Open Drain) Power on reset output(Open Drain) Power OK signal for LDO1,2(Open Drain) Watchdog input from processor Power on/off control Input Standby input signal Voltage select for SD Power Button Power Ground. Connect the center EXP-PAD in the Figure 1-3 to the GND plane of PCB. The EXP-PADs on the 4-corner have the same potential as the center EXP-PAD. The EXP-PADs on the 4-coner are recommended to be soldered to PCB (GND or open). PWR /GND PWR PWR PWR PWR PWR PWR PWR PWR PWR PWR PWR PWR PWR PWR PWR PWR GND PWR - Voltage Level VSYS VSYS VSYS BUCK1 VSYS VSYS VSYS BUCK2 VSYS VSYS VSYS VSYS BUCK5 VSYS VSYS VSYS VSYS BUCK6 VSYS VSYS VSYS BUCK7 VSYS VSYS VSYS BUCK8 VSYS LDO1 LDO2 BUCK7 VSYS LDO4 LDO6 BUCK6 VSYS LDO3 LDO5 BUCK6 BUCK7 LOADSW INTLDO1P5 0V INTLDO1P5 INTLDO1P5 DVDD DVDD DVDD DVDD DVDD DVDD DVDD DVDD VSYS DVDD DVDD VSYS Terminal Equivalent H1_1 H1_1 H1_1 D2_1 H1_1 H1_1 H1_1 D2_1 H1_1 H1_1 H1_1 H1_1 D2_1 H1_1 H1_1 H1_1 H1_1 D2_1 H1_1 H1_1 H1_1 D2_1 H1_1 H1_1 H1_1 D2_1 G1_1 G1_1 G1_1 G1_2,G3_1 G1_1,G3_1 G3_1 G1_2 G3_2 G1_1,G3_2 G3_2 G1_1 F2_1 F2_1 F2_1 G1_3 Z1_1 E1_1 E1_1 Z1_1 A1_1 A3_1 C1_1 C1_1 C1_1 C1_1 C1_1 A6_1 C1_1 C1_1 A6_1 Internal pull-up/down No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No(Note 1) (Note 1) No No (Note 1) No No(Note 1) (Note 1) No No No No No No GND 0V Z1_1 No (Note 1) Need to pull-up external resistance to DVDD www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 11/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.5. I/O Equivalence Circuit VDD VDD A1_1) VDD=DVDD GND=AGND VDD A3_1) VDD=DVDD GND=AGND A6_1) VDD=VSY S GND GND GND GND GND (A1_1) GND GND (A3_1) VDD C1_1) VDD=DVDD GND=AGND (A6_1) D2_1) GND=AGND E1_1) VDD=INTLDO1P5 GND=AGND VDD VDD XOUT XIN GND GND GND GND (C1_1) GND (D2_1) F2_1) IN1=VIN_3P3 IN2=VIN_1P8_2 OUT =MUXSW_VOUT IN1 AGND G1_1) VDD=VSY S GND=AGND OUT=LDO1,LDO2, LDO5 G1_2) VDD=VIN_1P8_1 GND=AGND OUT=LDO6 G1_3) VDD=VSY S GND=AGND OUT=INTLDO1P5 VDD GND GND OUT OUT IN2 GND GND (E1_1) VDD1 G3_1) VDD1=VSY S VDD2=VIN_1P8_1 GND=AGND OUT=LDO4 G3_2) VDD1=VSY S VDD2=VIN_3P3 GND=AGND OUT=LDO3 GND VDD2 GND OUT GND GND GND GND GND (F2_1) H1_1) VDD=BUCK1_VIN, BUCK2_VIN, BUCK5_VIN to BUCK8_VIN LX =BUCK1_LX, BUCK2_LX, BUCK5_LX to BUCK8_LX GND=PGND AGND (G1_1,2,3) VDD GND AGND (G3_1,2) BUCK1_VIN, BUCK2_VIN, BUCK5_VIN to BUCK8_VIN DVDD INTLDO1P5 LX VSY S PGND AGND GND (H1_1) (Z1_1) Figure 1-4. I/O Equivalence Circuit 1 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 12/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.6. Power Rail Table 1-3. Power Rails and Output Signals Sequence Order(Note) Function Rail/Signal Name Type Input Rail Output Voltage Initial (Note) Value [V] Output Voltage Adjustable Range [V] DVS IOMAX [A] 1 NVCC_SNVS LDO1 Source LDO VSYS 1.8 3.0 to 3.3,1.6 to 1.9 (100 mV step) - 0.01 2 VDD_SNVS LDO2 Source LDO VSYS 0.8 0.9, 0.8 - 0.01 3 RTC_RESET_B RTC_RESET_B Open drain - - - - - 4 32K_OUT C32K_OUT CMOS DVDD - - - - 5 VDD_SOC, VDDA_0V8, PHY_0V8 BUCK1 SMPS VSYS 0.8 0.7 to 1.3 (10 mV step) DVS 3.0 6 VDD_GPU, VDD_VPU, VDD_DRAM BUCK5 SMPS VSYS 0.9 0.70,0.80,0.90,1.00 1.05,1.10,1.20,1.35 DVS 3.0 6 VDD_PHY_0V9 LDO4 Source LDO VSYS/ BUCK7 0.9 - 0.25 7 VDD_ARM BUCK2 SMPS VSYS 0.9 DVS 3.0 7 VDDA_1V8, VDDA_DRAM LDO3 Source LDO VSYS/ BUCK6 1.8 - 0.3 8 NVCC_1V8 BUCK7 SMPS VSYS 1.8 - 1.5 9 NVCC_DRAM BUCK8 SMPS VSYS 1.1 - 3.0 10 NVCC_3V3 BUCK6 SMPS VSYS 3.3 - 3.0 10 NVCC_SD2 MUXSW MUX Switch BUCK6/ BUCK7 3.3/1.8 - - 0.15 11 VDD_PHY_1V2 LDO6 Source LDO BUCK7 1.2 0.9 to 1.8 (100 mV step) - 0.3 12 POR_B POR_B Open drain - - - - - - - LDO5 Source LDO VSYS 3.3 0.8 to 3.3 (100 mV step) - 0.3 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 13/116 0.9 to 1.8 (100 mV step) 0.7 to 1.3 (10 mV step) 1.8 to 3.3 (100 mV step) 1.605,1.695,1.755, 1.800,1.845,1.905, 1.950,1.995 0.8 to 1.4 (10 mV step) 2.6 to 3.3 (100mVstep) TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.7. Register Map Table 1-4. Register Map Reset Address Condition (Hex) (Note 1) 00 01 02 03 04 05 06 07 NA UVLO UVLO UVLO UVLO READY READY - Register Nam e D7 REV SWRESET I2C_DEV PWRCTRL0 PWRCTRL1 BUCK1_CTRL BUCK2_CTRL - D6 D5 D4 D3 D2 RELOAD_REG - - BUCK1_PWM_FIX BUCK2_PWM_FIX - - MAJREV[3:0] DEBUG_STATE[1:0] BUCK1_RAMPRATE[1:0] BUCK2_RAMPRATE[1:0] - D1 D0 MINREV[3:0] SWRESET_SEL[1:0] SWRESET I2C_DEV_ADRS[1:0] WDOGB_SEL[1:0] IDLE_MODE BUCK1_SEL BUCK1_EN BUCK2_SEL BUCK2_EN - Initial Value (Hex) Access (R, W, R/W) OTP A1 04 03 A2 00 40 40 - R R/W R R/W R/W R/W R/W - No No Yes Yes Yes Yes Yes - Write Access Lock (Note 2) PWRSEQ VREG VREG - 08 - - - - - - - - - - - - - - 09 READY BUCK5_CTRL - - - - BUCK5_PWM_FIX - BUCK5_SEL BUCK5_EN 00 R/W Yes VREG 0A READY BUCK6_CTRL - - - - BUCK6_PWM_FIX - BUCK6_SEL BUCK6_EN 00 R/W Yes VREG 0B READY BUCK7_CTRL - - - - BUCK7_PWM_FIX - BUCK7_SEL BUCK7_EN 00 R/W Yes VREG 0C READY BUCK8_CTRL - - - - BUCK8_PWM_FIX - BUCK8_SEL BUCK8_EN 00 R/W Yes VREG 0D READY BUCK1_VOLT_RUN - BUCK1_VOLT_RUN[6:0] 0A R/W Yes VREG 0E READY BUCK1_VOLT_IDLE - BUCK1_VOLT_IDLE[6:0] 0A R/W Yes VREG 0F READY BUCK1_VOLT_SUSP - BUCK1_VOLT_SUSP[6:0] 0A R/W Yes VREG 10 READY BUCK2_VOLT_RUN - BUCK2_VOLT_RUN[6:0] 14 R/W Yes VREG 11 READY BUCK2_VOLT_IDLE - 0A R/W Yes VREG 12 13 - - - - - - - 14 READY BUCK5_VOLT BUCK5_VOLT[2:0] 02 R/W Yes VREG 15 16 READY READY BUCK6_VOLT BUCK7_VOLT BUCK6_VOLT[1:0] BUCK7_VOLT[2:0] 03 03 R/W R/W Yes Yes VREG VREG 17 READY BUCK8_VOLT - 1E R/W Yes VREG 18 19 1A 1B 1C 1D 1E READY READY READY READY READY READY - LDO1_VOLT LDO2_VOLT LDO3_VOLT LDO4_VOLT LDO5_VOLT LDO6_VOLT - 22 20 00 00 8F 03 - R/W R/W R/W R/W R/W R/W - Yes Yes Yes Yes Yes Yes - VREG VREG VREG VREG VREG VREG - 1F UVLO TRANS_COND0 48 R/W Yes PWRSEQ 20 UVLO TRANS_COND1 C0 R/W Yes PWRSEQ 21 UVLO VRFAULTEN 01 R/W Yes - 22 UVLO MVRFLTMASK0 00 R/W Yes - 23 UVLO 00 R/W Yes - 24 00 R/W Yes - 4C 00 16 00 00 7F 00 00 00 01 11 01 R/W R/W R/W R/W R/W R/W R/W R R R/W R/W R/W Yes No Yes Yes No No No No No Yes No Yes - C1 R Yes - BUCK2_VOLT_IDLE[6:0] - BUCK5_VOLT_SEL[1:0] - - - - - - BUCK6_VOLT_SEL - - - - LDO1_SEL LDO2_SEL LDO3_SEL LDO4_SEL LDO5_SEL LDO6_SEL C1_ VSYS_3P0_ ONLY_EN LDO1_EN LDO2_EN LDO3_EN LDO4_EN LDO5_EN LDO6_EN C1_ PMIC_ON_ REQ_EN LDO1_VOLT_SEL LDO2_VOLT_SEL LDO5_VOLT_SEL C1_ SHORT_ PUSH_EN C1_ LONG_ PUSH_EN MBUCK8_ VOUTOKH MBUCK8_ VOUTOKL MBUCK7_ VOUTOKH MBUCK7_ VOUTOKL MVRFLTMASK1 - - - - UVLO MVRFLTMASK2 - 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 UVLO UVLO UVLO UVLO UVLO UVLO UVLO UVLO UVLO READY READY READY RCVCFG RCVNUM PWRONCONFIG0 PWRONCONFIG1 RESETSRC MIRQ IRQ IN_MON POW_STATE OUT32K REGLOCK MUXSW_EN FF NA OTPVER - - - - - BUCK8_VOLT[6:0] - MLDO6_ MLDO5_ VOUTOKL VOUTOKL RCVLMT[3:0] PBDBNCT[1:0] RWDOG RSWRST RPMIC_ON_REQ MSWRST MPWRON_S MPWRON_L SWRST PWRON_S PWRON_L POW_ST[3:0] VREG - - LDO1_VOLT[1:0] LDO3_VOLT[3:0] LDO4_VOLT[3:0] LDO5_VOLT[3:0] LDO6_VOLT[3:0] C0_ C0_ C0_ PMIC_ON_ SHORT_ LONG_ REQ_EN PUSH_EN PUSH_EN WDOG_ SWRST_ ON_REQ_ POFF_TO_ POFF_TO_ POFF_TO_ READY READY READY VRFLTEN MBUCK6_ MBUCK5_ MBUCK5_ VOUTOKL VOUTOKH VOUTOKL MBUCK2_ MBUCK1_ MBUCK1_ VOUTOKL VOUTOKH VOUTOKL MLDO3_ MLDO2_ MLDO1_ VOUTOKL VOUTOKL VOUTOKL RCVDT[3:0] RCVNUM[3:0] SHORTT[3:0] LONGT[3:0] RTEMP ROCP RVR_FAULT MWDOG MON_REQ MSTBY_REQ WDOG ON_REQ STBY_REQ STAT_WDOG STAT_ON_REQ STAT_STBY_REQ POW_SUB[1:0] OUT32K_EN PWRSEQ MUXSW_EN C0_ VSYS_3P0_ ONLY_EN PWRON_ POFF_TO_ READY MBUCK6_ VOUTOKH MBUCK2_ VOUTOKH MLDO4_ VOUTOKL PONT[3:0] RPWRON - - RVSYS_2P7 MPWRON PWRON STAT_PWRON OTPVER[7:0] (Note 1) Reset Condition of each register is classified as follow s. UVLO: When INTLDO1P5_UVLO=0, register values are reset to the default value. READY: When Pow er State enters READY, register values are reset to the default value. (Note 2) Regarding registes labeled in this column, its w rite access is disabled as follow s. PWRSEQ: When PWRSEQ in REGLOCK register is set to 1, w rite access is disabled. VREG: When VREG in REGLOCK register is set to 1, w rite access is disabled. Table 1-5. REV - Revision Register Register Name R/W REV R D7 D6 D5 D4 D3 D2 MAJREV[3:0] D1 MINREV[3:0] Initial Address 0xA1 0x00 Bit Name D[7:4] MAJREV[3:0] Major Revision 1010 D[3:0] MINREV[3:0] Minor Revision 0001 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Function D0 14/116 Initial TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.7. Register Map – continued Table 1-6. REGLOCK - Lock Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address REGLOCK R/W - - - VREG - - - PWRSEQ 0x11 0x2F Bit Name D[4] VREG Function Write access to following 21 registers is controlled by this bit. 0 = Enable the write access 1 = Disable the write access BUCK1_CTRL, BUCK2_CTRL, BUCK5_CTRL, BUCK6_CTRL, BUCK7_CTRL, BUCK8_CTRL BUCK1_VOLT_RUN, BUCK1_VOLT_IDLE BUCK1_VOLT_SUSP, BUCK2_VOLT_RUN BUCK2_VOLT_IDLE, BUCK5_VOLT, BUCK6_VOLT, BUCK7_VOLT BUCK8_VOLT, LDO1_VOLT, LDO2_VOLT, LDO3_VOLT LDO4_VOLT, LDO5_VOLT, LDO6_VOLT 1 Write access to following 3 registers is controlled by this bit. 0 = Enable the write access 1 = Disable the write access PWRSEQ D[0] Initial 1 PWRCTRL0, TRANS_COND0, TRANS_COND1 Table 1-7. OTPVER – OTP Version Register Register Name R/W OTPVER R D7 D6 D5 D4 D3 D2 OTPVER[7:0] Bit Name D[7:0] OTP_VER[7:0] www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Function OTP Version D1 D0 Initial Address 0xC1 0xFF Initial 0xC1 15/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 1.8. ESD Table 1-8. ESD Minimum Parameter Limit Unit Human Body Model(HBM) ±2000 V Charged Device Model(CDM) ±1000 V www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 16/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 2. Operating Conditions 2.1. Absolute Maximum Ratings (Ta=25 ˚C) Table 2-1. Absolute Maximum Ratings Parameter Limit Symbol Voltage Range in PINs: VSYS, BUCK1_VIN, BUCK2_VIN, BUCK5_VIN to BUCK8_VIN, VIN_1P8_1, VIN_1P8_2, VIN_3P3, PWRON_B, PMIC_ON_REQ Voltage Range in PIN: DVDD Voltage Range in PIN: INTLDO1P5 Voltage Range in PINs: BUCK1_LX, BUCK2_LX, BUCK5_LX to BUCK8_LX Voltage Range in PINs: SCL,SDA,IRQ_B,POR_B,WODG_B, RTC_RESET_B PMIC_STBY_REQ,SD_VSELECT,C32K_OUT Voltage Range in PINs: BUCK1_FB, BUCK2_FB, BUCK5_FB to BUCK8_FB, LDO1_VOUT to LDO6_VOUT, MUXSW_VOUT Voltage Range in PINs: XIN, XOUT Maximum Junction Temperature Storage Temperature Range Unit Min Max VAMR_1 -0.3 +6.0 V VAMR_2 -0.3 +4.5 V VAMR_3 -0.3 +2.1 V VAMR_4 -1.0(DC) -2.0(10 ns) +7.0 V VAMR_5 -0.3 +4.5 V VAMR_6 -0.3 +4.5 V VAMR_7 -0.3 +2.1 V Tjmax - 150 °C Tstg -55 +150 °C Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating. 2.2. Thermal Resistance Table 2-2. Thermal Resistance Parameter Symbol (Note 1) Thermal Resistance (Typ) 1s (Note 3) 2s2p (Note 4) Unit UQFN56BV7070 Junction to Ambient Junction to Top Characterization Parameter (Note 2) θJA 76.8 28.1 °C/W ΨJT 6 6 °C/W (Note 1) Based on JESD51-2A(Still-Air). (Note 2) The thermal characterization parameter to report the dif f erence between junction temperature and the temperature at the top center of the outside        surf ace of the component package. (Note 3) Using a PCB board based on JESD51-3. (Note 4) Using a PCB board based on JESD51-5, 7. Layer Number of Measurement Board Material Board Size Single FR-4 114.3mm x 76.2mm x 1.57mmt Top Copper Pattern Thickness Footprints and Traces 70μm Layer Number of Measurement Board Material Board Size 4 Layers FR-4 114.3mm x 76.2mm x 1.6mmt (Note 6) Top Thermal Via Pitch Diameter 2 Internal Layers Φ0.30mm 1.20mm Bottom Copper Pattern Thickness Copper Pattern Thickness Copper Pattern Thickness Footprints and Traces 70μm 74.2mm x 74.2mm 35μm 74.2mm x 74.2mm 70μm (Note 5) This thermal v ia connects with the copper pattern of all lay ers. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 17/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 2.3. Recommended Operating Conditions Table 2-3. Recommended Operating Conditions Parameter Limit Symbol Voltage Range in PINs: VSYS, BUCK1_VIN, BUCK2_VIN, BUCK5_VIN to BUCK8_VIN (Note 1) Voltage Range in PIN: (Note 2) VIN_3P3 Voltage Range in PIN: (Note 3) VIN_1P8_1 Voltage Range in PIN: VIN_1P8_2 (Note 3) Voltage Range in PIN: DVDD Operating Temperature Unit Min Typ Max VOPR_1 2.70 5.00 5.50 V VOPR_2 2.70 3.30 3.60 V VOPR_3 1.71 1.80 5.50 V VOPR_4 1.71 1.80 1.89 V VOPR_5 1.71 1.80 3.60 V Topr -40 +25 +105 °C (Note 1) It is necessary to supply the same v oltage to the VSY S pin and the BUCK1_VIN, BUCK2_VIN, and BUCK5_VIN to BUCK8_VIN pins. (Note 2) The VIN_3P3 pin is recommended to connect with BUCK6 outputs. (Note 3) The VIN_1P8_1 pin and the VIN_1P8_2 pin are recommended to connect with BUCK7 outputs. 2.4. Current Consumption Table 2-4. Current Consumption (Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V, DVDD=1.8 V) Parameter Symbol Limit Min Typ Max Unit Condition VSYS Circuit Current 1 IQ_VSYS1 - 14 23 μA READY State VSYS Circuit Current 2 VSYS Circuit Current 3 VSYS Circuit Current 4 VSYS Circuit Current 5 DVDD Circuit Current 1 IQ_VSYS2 IQ_VSYS3 IQ_VSYS4 IQ_VSYS5 IQ_DVDD1 - 30 126 147 147 - 50 195 216 216 2 μA μA μA μA μA DVDD Circuit Current 2 IQ_DVDD2 - 4 - μA SNVS State (Note 1) SUSPEND State (Note 1) IDLE State (Note 1) Run State (Note 1) DVDD static current (OUT32K_EN=0) DVDD oparation current (OUT32K_EN=1) (Note 1) (Note 2) (Note 1) When DVDD is connected with LDO1, total circuit current is the v alue that added VSY S and DVDD circuit current of this table. (Note 2) This circuit current is af f ected by parasitic capacitance of the board. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 18/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 2.5. Power Reference and Detectors (UVLO) VSYS VDD_V1P5 + VDD_V1P5 INTLDO1P5 Ref Sequencer - VSYS + VSYS INTLDO1P5_UVLO + VSYS_UVLO VDD_V1P5 Thermal Sensor + Debounce Alert Temp Detect Figure 2-1. Power Reference and Detectors Block Diagram Table 2-5. Power Reference and Detectors Electrical Characteristics (Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V) Parameter Symbol Limit Min Typ Max Unit Remarks Voltage Detector - VSYS under voltage(VSYS_UVLO) Release Voltage VUVLORL 2.65 3.00 3.35 V VSYS=Sweep up Detect Voltage VUVLODT 2.65 2.70 2.75 V VSYS =Sweep down Hysteresis Voltage VUVLOHYS 0.3 Voltage Detector - INTLDO1P5 under voltage(INTLDO1P5_UVLO) - V Release Voltage 1.39 - V VSYS=Sweep up Detect Voltage VINTUVLODT 1.35 PMIC Die Critical Temperature Detector (Thermal Shutdown factor) - V VSYS =Sweep down Detect Temperature Power Reference TCTD - 150 - °C INTLDO1P5 Output Voltage VLDO15 - 1.5 - V CO_LDO15 0.5 1.0 5.0 μF COUT Capacitor VINTUVLORL www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 - 19/116 Die Temperature=Sweep up This output voltage is for internal use only. TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3. Power State Control 3.1. Power Control Signals VSYS [Internal Logic Circuit] VSYS Ena ble sig nal for PWRON_B PWRON_B VR (BUCK1,BUCK2, BUCK5 to B UCK8) (LDO1 to L DO6) VSYS PMIC_ON_REQ POR_B DVDD PMIC_STBY_REQ GND RTC_RESET_B WDOG_B GND Figure 3-1. Power Control Signals of BD71847AMWV www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 20/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.1.1. PWRON_B PWRON_B is an active-low input for triggering the system to power on or off. Normally, PWRON_B is connected to a power button. Table 3-1. PWRON_B Electrical Characteristics (Unless otherwise specified, Ta= +25°C, VSYS=5.0 V, DVDD=1.8 V) Limit Parameter Symbol Min Typ Max Input "H" Level VIH_PWRON 1.44 Input "L" Level VIL_PWRON 0.40 Unit Condition V V 3.1.2. PMIC_ON_REQ PMIC_ON_REQ is an active-high input for going to RUN state. Table 3-2. PMIC_ON_REQ Electrical Characteristics (Unless otherwise specified, Ta= +25°C, VSYS=5.0 V, DVDD=1.8 V) Limit Parameter Symbol Min Typ Max Input "H" Level VIH_ONREQ 1.44 Input "L" Level VIL_ONREQ 0.40 Unit Condition V V 3.1.3. PMIC_STBY_REQ PMIC_STBY_REQ is an active-high input for going to SUSPEND state. Table 3-3. PMIC_STBY_REQ Electrical Characteristics (Unless otherwise specified, Ta= +25 °C, VSYS=5.0 V, DVDD=1.8 V) Limit Parameter Symbol Min Typ Max Input "H" Level VIH_STBYREQ DVDD x 0.75 Input "L" Level VIL_STBYREQ DVDD x 0.25 Unit Condition V V 3.1.4. WDOG_B WDOG_B is an active-low input for triggering Cold Reset or Warm Reset. Table 3-4. WDOG_B Electrical Characteristics (Unless otherwise specified, Ta= +25 °C, VSYS=5.0 V, DVDD=1.8 V) Limit Parameter Symbol Min Typ Max Input "H" Level VIH_WDOG DVDD x 0.75 Input "L" Level VIL_WDOG DVDD x 0.25 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 21/116 Unit Condition V V TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.1.5. RTC_RESET_B RTC_RESET_B is an active-low output for RTC. Table 3-5. RTC_RESET_B Electrical Characteristics (Unless otherwise specified, Ta= +25 °C, VSYS=5.0 V, DVDD=1.8 V) Limit Parameter Symbol Min Typ Max Output "L" Level Voltage VOL_RTCRESET DVDD x 0.2 Output Off Leak Current IOLK_RTCRESET -1 +1 Unit Condition V μA IOL=3 mA Sink Unit Condition V μA IOL=3 mA Sink 3.1.6. POR_B POR_B is an active-low output for the reset of SoC. Table 3-6. POR_B Electrical Characteristics (Unless otherwise specified, Ta= +25 °C, VSYS=5.0 V, DVDD=1.8 V) Limit Parameter Symbol Min Typ Max Output "L" Level Voltage VOL_POR DVDD x 0.2 Output Off Leak Current IOLK_POR -1 +1 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 22/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2. Power States 3.2.1. Power State Diagram BD71847AMWV has eight power states or modes: OFF, READY, SNVS, RUN, IDLE, SUSPEND, PWROFF and EMG. Figure 3-2 shows the state transition diagram along with the conditions to enter and exit each state. READY_TO_SNVS Condition is described in 3.2.5.2. This condition is configurable by TRANS_COND0 registers. SNVS_TO_RUN Condition is described in 3.2.5.3. This condition is configurable by TRANS_COND0 registers. BD71847AMWV has Thermal Shutdown, OCP, VR Fault, and VSYS_UVLO=0 as Emergency Shutdown events. Emergency Shutdown Condition is described in 3.2.5.9. EMG_TO_READY Condition is described in 3.2.5.12. EMG_STAY Condition is described in 3.2.5.13. BD71847AMWV has WDOG_B, SWRESET, and PWRON_B long detection as Cold Reset events. COLD_RESET Condition is described in 3.2.4.1. After cold reset events or PMIC_ON_REQ=0, BD71847AMWV is configurable that it returns to READY or SNVS state. POFF_TO_READY Condition is described in 3.2.5.16. POFF_TO_SNVS Condition is described in 3.2.5.17. Concerning VSYS_UVLO and INTLDO1P5_UVLO, please refer to 2.5. Any state INTLDO1P5_UVLO = 0 OFF INTLDO1P5_UVLO = 0 VSYS_UVLO = 1 VSYS_UVLO = 0 READY EMG_TO_READY Condition (All Emergency shutdown events are not met, or VR fault recovery attempt.) POFF_TO_READY Condition (Default setting: Not available) READY_TO_SNVS Condition (Default setting: VSYS_UVLO =1) POFF_TO_SNVS Condition (Default setting: PMIC_ON_REQ=0, SWRESET=1, WDOG_B=0, or PWRON_B long push) PWROFF EMG SNVS COLD_RESET Condition or PMIC_ON_REQ = 0 IDLE EMG_STAY Condition (VSYS_UVLO=0, Thermal shutdown(T>130˚C), or VR fault recovery failed.) Emergency Shutdown Condition Emergency Shutdown SNVS_TO_RUN Condition Condition (Default setting: PMIC_ON_REQ=1) PMIC_STBY_REQ = 1 PMIC_ON_REQ = 1 SUSPEND (reg) IDLE_MODE = 1 PMIC_STBY_REQ = 1 PMIC_ON_REQ = 1 PMIC_STBY_REQ = 0 PMIC_ON_REQ = 1 (reg) IDLE_MODE = 0 RUN Emergency Shutdown Condition COLD_RESET Condition: WDOG_B = 0 SWRESET = 1 PWRON_B long push Emergency Shutdown Condition: Thermal Shutdown(T>150˚C) OCP, VR Fault, VSYS_UVLO=0 COLD_RESET Condition or PMIC_ON_REQ = 0 Figure 3-2. Power State Transition www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 23/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.2. Power State Register The POW_STATE register shows current power state and power sub state in Table 3-7. The power sub state definition is illustrated in Figure 3-3. Table 3-7. POW_STATE – Power State Register Register Name R/W POW_STATE R Bit D[7:4] D[1:0] D7 D6 D5 D4 POW_ST[3:0] Name POW_ST[3:0] POW_SUB[1:0] www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D3 D2 - - Function This bit field shows current power state. 0x0 = OFF 0x1 = READY 0x2 = SNVS 0x8 = RUN 0x9 = IDLE 0xA = SUSPEND 0xB = PWROFF 0xC = EMG This bit field shows current power sub state. 00 = Stable 01 = Up 10 = Down 11 = Counting Cold Reset duration time (set by PONT[3:0]) 24/116 D1 D0 POW_SUB[1:0] Initial Address 0x00 0x2D Initial 0000 00 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.2. Power State Register – continued Stable OFF (0x0) Any state Down Down Up Down Stable READY (0x1) Down Down Up Stable Stable Stable PWROFF (0xB) EMG (0xC) Up SNVS (0x2) Down Down Down Up Stable Stable Down IDLE (0x9) SUSPEND (0xA) Down Stable Down Up Up RUN (0x8) Down Down Figure 3-3. Power Sub State Definition www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 25/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.3. Power State Definition (a) OFF state BD71847AMWV is in OFF state when INTLDO1P5_UVLO is detected. If INTLDO1P5_UVLO is 0, the data in all registers are reset to their default values. To exit this state, VSYS voltage must exceed 3.0 V (VSYS_UVLO = 1) (b) READY state In this state, VSYS voltage is over 3.0V. When power state transitions from OFF state to READY state, OTP data will only be loaded to registers with "Yes" in "OTP" column of Register Map (Table 1-4). When power state transitions from PWROFF or EMG state to READY state, OTP data will only be loaded to registers with reset condition during READY state and "Yes" condition in "OTP" column. This OTP loading can be skipped depending on the value of RELOAD_REG in PWRCTRL0 register. (c) SNVS state If READY_TO_SNVS condition is satisfied, the power state changes to SNVS state. In this state, LDO1(NVCC_SNVS) and LDO2(VDD_SNVS) are turned on as shown in Table 3-8. (d) RUN state If SNVS_TO_RUN condition is satisfied, the power state changes to RUN state. In this state, the VR’s shown in Table 3-8 are turned ON. The voltage of BUCK1(VDD_SOC, VDDA_0V8, PHY_0V8) depends on BUCK1_VOLT_RUN register. The voltage of BUCK2(VDD_ARM) depends on BUCK2_VOLT_RUN register. (e) IDLE state If IDLE_MODE in PWRCTRL1 register is set to 1, the power state changes to IDLE state. The voltage of BUCK1(VDD_SOC, VDDA_0V8, PHY_0V8) depends on BUCK1_VOLT_IDLE register. The voltage of BUCK2(VDD_ARM) depends on BUCK2_VOLT_IDLE register. (f) SUSPEND state If PMIC_STBY_REQ is set to 1, the power state changes to SUSPEND state. The voltage of BUCK1(VDD_SOC, VDDA_0V8, PHY_0V8) depends on BUCK1_VOLT_SUSP register. (g) EMG state If Emergency Shutdown Condition is satisfied, the power state changes to EMG state. In this state, all VR’s are OFF. (h) PWROFF state If COLD_RESET Condition is satisfied or PMIC_ON_REQ is reset to 0, the power state changes to PWROFF state. In this state, all VR’s except LDO1(NVCC_SNVS) and LDO2(VDD_SNVS) are OFF. The next state of PWROFF is either READY or SNVS. TRANS_COND1[3:0] values decide which power state to go. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 26/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.3. VR No. Power State Definition – continued Table 3-8. Voltage Rails ON/OFF for Respective Power State Function Rail Name Power State OFF READY SNVS (Note) SUSPEND (Note) IDLE(Note) RUN(Note) PWROFF EMG VR1 NVCC_SNVS LDO1 OFF OFF ON ON ON ON ON/OFF OFF VR2 VDD_SNVS VDD_SOC, VDDA_0V8, PHY_0V8 LDO2 OFF OFF ON ON ON ON ON/OFF OFF BUCK1 OFF OFF OFF ON ON ON OFF OFF VR3 VR4 VDD_ARM BUCK2 OFF OFF OFF OFF ON ON OFF OFF VR5 - - - - - - - - - - VR6 - - - - - - - - - - BUCK5 OFF OFF OFF OFF ON ON OFF OFF LDO3 OFF OFF OFF ON ON ON OFF OFF VR9 VDD_GPU, VDD_VPU, VDD_DRAM VDDA_1V8, VDDA_DRAM VDD_PHY_0V9 LDO4 OFF OFF OFF ON ON ON OFF OFF VR10 NVCC_3V3 BUCK6 OFF OFF OFF ON ON ON OFF OFF VR11 NVCC_1V8 BUCK7 OFF OFF OFF ON ON ON OFF OFF VR12 NVCC_DRAM BUCK8 OFF OFF OFF ON ON ON OFF OFF VR13 - LDO5 OFF OFF OFF OFF OFF OFF OFF OFF VR14 VDD_PHY_1V2 LDO6 OFF OFF OFF ON ON ON OFF OFF VR15 - - - - - - - - - - VR16 NVCC_SD2 MUXSW OFF OFF OFF ON ON ON OFF OFF VR7 VR8 (Note) ON/OFF setting of each VR at SNVS/SUSPEND/IDLE/RUN state can be conf igured by OTP. 3.2.4. Power State Control Events 3.2.4.1. Reset Event BD71847AMWV has Cold and Warm resets. Cold reset initiates POR_B asserted to L and power rails are turned off. Then, the power state changes to either READY state or SNVS state. Next, the power state returns to RUN state automatically. Warm reset initiates POR_B asserted to L for 1 ms. It does not affect the on/off status of all power rails. Warm reset does not initiate the power state transition. BD71847AMWV has three reset sources as follows. • PWRON_B terminal is set H to L. (PWRON_B Long Push reset) • WDOG_B terminal is set H to L. (WDOG_B reset) • SWRESET in SWRESET register is set 0 to 1 (Software reset) The cold or warm reset selection setting is shown in Table 3-9. The details of the two registers related to the setting are shown in Table 3-10 and Table 3-11. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 27/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.4.1. Reset Source PWRON_B Long Push WDOG_B Software Reset Event – continued Table 3-9. Setting of Cold or Warm Reset Selection Register Name Register Bit Name PWRCTRL0 DEBUG_STATE[1:0] PWRCTRL0 WDOGB_SEL[1:0] SWRESET SWRESET_SEL[1:0] Value Cold/Warm Reset or No Reset 10 (default) Cold reset 11 Warm reset 00 or 01 No reset action 10 (default) Cold reset 11 Warm reset 00 or 01 No reset action 10 (default) Cold reset 11 Warm reset 00 or 01 No reset action Table 3-10. SWRESET - Software Reset Register Register Name R/W D7 D6 D5 D4 D3 SWRESET R/W - - - - - Bit D[2:1] D[0] D2 D1 SWRESET_SEL[1:0] D0 Initial Address SWRESET 0x04 0x01 Name Function Initial SWRESET_SEL[1:0] Select Cold reset, Warm reset or No reset action when SWRESET bit ( D[0]) is set to 1. 00 = No reset action 01 = No reset action 10 = Cold reset 11 = Warm reset 10 SWRESET 0 – No action 1 – Initiates Cold Reset or Warm Reset in accordance with SWRESET_SEL bit. Writing 1 to SWRESET bit, then SWRESET bit is automatically cleared to 0 when Cold Reset or Warm Reset operation is completed. Writing 1 to SWRESET bit can be done when Power State = RUN, IDLE and SUSPEND. 0 Table 3-11. PWRCTRL0 - Power Control 0 Register Register Name PWRCTRL0 Bit R/W R/W D7 D6 DEBUG_STATE[1:0] D5 D4 D3 D2 RELOAD_ REG - - - D1 D0 Initial Address WDOGB_SEL[1:0] 0xA2 0x03 Name Function Initial D[7:6] DEBUG_STATE[1:0] Select Cold reset, Warm reset or No reset action when PWRON_B long push is detected. 00 = No reset action 01 = No reset action 10 = Cold reset 11 = Warm reset 10 D[5] RELOAD_REG Select OTP configurable registers initialization when the power state goes through READY state. 0 = No initialization 1= Reload OTP registers and set to initial value 1 WDOGB_SEL[1:0] Select Cold reset, Warm reset or No reset action when WDOG_B is asserted to 0. 00 = No reset action 01 = No reset action 10 = Cold reset 11 = Warm reset 10 D[1:0] www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 28/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.4.2. Emergency Shutdown Event There are four Emergency Shutdown Events as follows: • Thermal Shutdown (Thermal Protection) If the die temperature surpasses 150ºC, the thermal protection circuit will shut down all VR’s to avoid damage. This detection is not valid at OFF, READY and SNVS state. • OCP If the OCP is triggered in any VR’s, all VR’s are turned off. • VR Fault If the voltage of VR is not within the regular range, all VR’s are turned off. • VSYS_UVLO = 0 If the VSYS_UVLO = 0, Emergency Shutdown sequence is initiated. 3.2.5. Power State Transitions 3.2.5.1. OFF to READY Table 3-12 shows the conditions for exiting OFF state. “VSYS_UVLO = 1” is necessary. Event Trigger Table 3-12. Conditions from OFF to READY state Conditions Next State (All must be satisfied per Event Trigger) 1) VSYS Voltage Up from 0 V or 2.7 V www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 VSYS_UVLO = 1 (VSYS > 3.0 V) READY 29/116 Notes VSYS Insertion or VSYS recovery from 2.7 V TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.2. READY to SNVS There are six event triggers for shifting from READY to SNVS as shown in Table 3-13. The event trigger of VSYS_UVLO, PMIC_ON_REQ, PWRON_B Short Push, and PWRON_B Long Push are configurable to be valid or invalid by TRANS_COND0 registers. VSYS_UVLO condition is valid with default setting. Table 3-13. Conditions from READY to SNVS Conditions (All must be satisfied per Event Trigger) Next State Notes VSYS_UVLO = 1 SNVS No other event is necessary. Valid with default setting 2) PMIC_ON_REQ VSYS_UVLO = 1 and PMIC_ON_REQ = 1 SNVS Invalid with default setting 3) PWRON_B Short Push VSYS_UVLO = 1 and PWRON_B = 0 ==> Short Push Detection SNVS Invalid with default setting 4) PWRON_B Long Push VSYS_UVLO = 1 and PWRON_B = 0 ==> Long Push Detection SNVS Invalid with default setting 5) Cold Reset Sequence VSYS_UVLO = 1 and Cold_Reset_flag = 1 SNVS On the way back to RUN state in Cold Reset sequence 6) VR Fault Recovery Attempt VSYS_UVLO = 1 and VR Fault Recovery SNVS Event Trigger 1) VSYS_UVLO 1) VSYS_UVLO The power state shifts to SNVS if VSYS_UVLO = 1 as shown in Figure 3-4. No other conditions are necessary. 3.0 V VSYS 0V VSYS_UVLO Power State OFF READY SNVS Figure 3-4. VSYS Condition for moving to SNVS 2) PMIC_ON_REQ The power state shifts to SNVS if PMIC_ON_REQ = 1 as shown in Figure 3-5. 3.0 V VSYS 0V VSYS_UVLO PMIC_ON_REQ Power State OFF READY SNVS Figure 3-5. PMIC_ON_REQ Condition for moving to SNVS www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 30/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV READY to SNVS – continued 3) PWRON_B Short Push The power state shifts to SNVS if PWRON_B Short Push is detected as shown in Figure 3-6. 3.2.5.2. 3.0 V VSYS 0V VSYS_UVLO PWRON_B Short Push is detected. Power State OFF READY SNVS Figure 3-6. PWRON_B Short Push Condition for moving to SNVS 4) PWRON_B Long Push The power state shifts to SNVS if PWRON_B Long Push is detected as shown in Figure 3-7. 3.0 V VSYS 0V VSYS_UVLO PWRON_B Long Push is detected. Power State OFF READY SNVS Figure 3-7. PWRON_B Long Push Condition for moving to SNVS 5) Cold Reset The power state shifts to SNVS if Cold_Reset_flag = 1 as shown in Figure 3-8. High VSYS_UVLO Cold Reset Event occurs Cold_Reset_flag (PMIC Internal Signal) Power State RUN PWROFF READY SNVS Figure 3-8. Cold Reset Condition for moving to SNVS www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 31/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.2. READY to SNVS – continued 6) VR Fault Recovery Attempt Please see 3.2.5.10. It is possible to use each four event triggers such as: VSYS_UVLO, PMIC_ON_REQ, PWRON_B Short Push and PWRON_B Long Push These triggers are configurable to use them respectively by D[3:0] in TRANS_COND0 register as shown in Table 3-14. Table 3-14. TRANS_COND0 - Transition Condition Select 0 Register Register Name TRANS_COND0 Bit R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address R/W C1_ VSYS_3P0_ ONLY_EN C1_ PMIC_ON_ REQ_EN C1_ SHORT_ PUSH_EN C1_ LONG_ PUSH_EN C0_ VSYS_3P0_ ONLY_EN C0_ PMIC_ON_ REQ_EN C0_ SHORT_ PUSH_EN C0_ LONG_ PUSH_EN 0x48 0x1F Name Function Initial Select only VSYS_UVLO = 1 as SNVS ==> RUN transition condition or not 0 = VSYS_UVLO = 1 is not used as the condition 1 = VSYS_UVLO = 1 is used as the condition 0 D[7] C1_VSYS_3P0_ONLY_EN D[6] C1_PMIC_ON_REQ_EN Select PMIC_ON_REQ as SNVS ==> RUN transition condition or not 0 = PMIC_ON_REQ is not used as the condition 1 = PMIC_ON_REQ is used as the condition 1 D[5] C1_SHORT_PUSH_EN Select PWRON_B Short Push as SNVS ==> RUN transition condition or not 0 = PWRON_B Short Push is not used as the condition 1 = PWRON_B Short Push is used as the condition 0 D[4] C1_LONG_PUSH_EN Select PWRON_B Long Push as SNVS ==> RUN transition condition or not 0 = PWRON_B Long Push is not used as the condition 1 = PWRON_B Long Push is used as the condition 0 D[3] C0_VSYS_3P0_ONLY_EN Select only VSYS_UVLO = 1 as READY ==> SNVS transition condition or not 0 = VSYS_UVLO = 1 is not used as the condition 1 = VSYS_UVLO = 1 is used as the condition 1 D[2] C0_PMIC_ON_REQ_EN Select PMIC_ON_REQ as READY ==> SNVS transition condition or not 0 = PMIC_ON_REQ is not used as the condition 1 = PMIC_ON_REQ is used as the condition 0 D[1] C0_SHORT_PUSH_EN Select PWRON_B Short Push as READY ==> SNVS transition condition or not 0 = PWRON_B Short Push is not used as the condition 1 = PWRON_B Short Push is used as the condition 0 D[0] C0_LONG_PUSH_EN Select PWRON_B Long Push as READY ==> SNVS transition condition or not 0 = PWRON_B Long Push is not used as the condition 1 = PWRON_B Long Push is used as the condition 0 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 32/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.3. SNVS to RUN There are six event triggers for shifting from SNVS to RUN as shown in Table 3-15. The event trigger of VSYS_UVLO=1 PMIC_ON_REQ, PWRON_B Short Push, and PWRON_B Long Push are configurable to be valid or invalid by TRANS_COND0 registers. PMIC_ON_REQ condition is valid with default setting. Table 3-15. Conditions from SNVS to RUN (Note) Conditions (All must be satisfied per Event Trigger) Next State Notes VSYS_UVLO = 1 RUN No other event is necessary. Invalid with default setting 2) PMIC_ON_REQ VSYS_UVLO = 1 and PMIC_ON_REQ = 1 RUN Valid with default setting 3) PWRON_B Short Push VSYS_UVLO = 1 and PWRON_B = 0 ==> Short Push Detection RUN Invalid with default setting 4) PWRON_B Long Push VSYS_UVLO = 1 and PWRON_B = 0 ==> Long Push Detection RUN Invalid with default setting 5) Cold Reset Sequence VSYS_UVLO = 1 and Cold_Reset_flag = 1 RUN On the way back to RUN state in Cold Reset sequence 6) VR Fault Recovery Attempt VSYS_UVLO = 1 and VR Fault Recovery RUN Event Trigger 1) VSYS_UVLO (Note) Die Temperature must be less than 150 ºC. 1) VSYS_UVLO The power state shifts to RUN if VSYS_UVLO = 1 as shown in Figure 3-9. No other condition is required. VSYS_UVLO Power State OFF READY SNVS RUN Figure 3-9. VSYS Condition for moving to RUN 2) PMIC_ON_REQ The power state shifts to RUN if PMIC_ON_REQ = 1 as shown in Figure 3-10. VSYS_UVLO PMIC_ON_REQ Power State OFF READY SNVS RUN Figure 3-10. PMIC_ON_REQ Condition for moving to RUN www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 33/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV SNVS to RUN – continued 3) PWRON_B Short Push 3.2.5.3. VSYS_UVLO PWRON_B Short Push is detected. Power State OFF READY SNVS RUN Figure 3-11. PWRON_B Short Push Condition for moving to RUN 4) PWRON_B Long Push The power state shifts to RUN if PWRON_B Long Push is detected as shown in Figure 3-12. VSYS_UVLO PWRON_B Long Push is detected. Power State OFF READY SNVS RUN Figure 3-12. PWRON_B Long Push Condition for moving to RUN 5) Cold Reset The power state shifts to RUN if Cold_Reset_flag = 1 as shown in Figure 3-13. High VSYS_UVLO Cold Reset Event occurs Cold_Reset_flag (PMIC Internal Signal) Power State RUN PWROFF READY SNVS RUN Figure 3-13. Cold Reset Condition for moving to RUN 6) VR Fault Recovery Attempt Please see 3.2.5.10. It is possible to use each four event triggers such as: VSYS_UVLO, PMIC_ON_REQ, PWRON_B Short Push and PWRON_B Long Push These triggers are configurable to use them respectively by D[7:4] in TRANS_COND0 register as shown in Table 3-14. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 34/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.4. RUN to IDLE Table 3-16 shows the conditions for shifting from RUN to IDLE. The details of PWRCTRL1 register were described in Table 3-17. Table 3-16. Conditions from RUN to IDLE (Note) Conditions (All must be satisfied) Event Trigger Next State Notes IDLE Register Write Operation PMIC_STBY_REQ = 0 Set IDLE_MODE (PWRCTRL1 register) = 1 PMIC_ON_REQ = 1 Set (reg) IDLE_MODE = 1 (Note) Die Temperature must be less than 150 ºC. VSY S_UVLO = 1. Table 3-17. PWRCTRL1 - Power Control 1 Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address PWRCTRL1 R/W - - - - - - - IDLE_ MODE 0x00 0x04 Bit D[0] 3.2.5.5. Event Trigger Set IDLE_MODE (PWRCTRL1 register) = 0 Name Function IDLE_MODE Initial Control power state transition between RUN and IDLE 0 = Exit IDLE and back to RUN, or indicates power state = except IDLE 1 = Enter IDLE from RUN, or indicates power state = IDLE Note : this bit automatically returns to 0 when power state enters PWROFF, EMG and SUSPEND. 0 IDLE to RUN Table 3-18 shows the conditions for shifting from IDLE to RUN. Table 3-18. Conditions from IDLE to RUN Conditions (Note) Next State (All must be satisfied) PMIC_STBY_REQ = 0 RUN PMIC_ON_REQ = 1 Set (reg) IDLE_MODE = 0 Notes Register Write Operation (Note) Die Temperature must be less than 150 ºC. VSY S_UVLO = 1. 3.2.5.6. Event Trigger PMIC_STBY_REQ RUN to SUSPEND Table 3-19 shows the conditions for shifting from RUN to SUSPEND. Table 3-19. Conditions from RUN to SUSPEND Conditions (Note) Next State (All must be satisfied) PMIC_STBY_REQ = 1 SUSPEND PMIC_ON_REQ = 1 Notes (Note) Die Temperature must be less than 150 ºC. VSY S_UVLO = 1. 3.2.5.7. Event Trigger PMIC_STBY_REQ SUSPEND to RUN Table 3-20 shows the conditions for shifting from SUSPEND to RUN. Table 3-20. Conditions from SUSPEND to RUN Conditions (Note) Next State (All must be satisfied) PMIC_STBY_REQ = 0 RUN PMIC_ON_REQ = 1 Notes (Note) Die Temperature must be less than 150 ºC. VSY S_UVLO = 1. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 35/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.8. IDLE to SUSPEND Table 3-21 shows the conditions for shifting from IDLE to SUSPEND. IDLE_MODE in PWRCTRL1 register automatically returns to 0. Table 3-21. Conditions from IDLE to SUSPEND Conditions (Note) Next State (All must be satisfied) PMIC_STBY_REQ = 1 SUSPEND PMIC_ON_REQ = 1 Event Trigger PMIC_STBY_REQ Notes (Note) Die Temperature must be less than 150 ºC. VSY S_UVLO = 1. 3.2.5.9. Emergency Shutdown There are four Emergency Shutdown events which are: Thermal Shutdown (Thermal Protection) OCP VR Fault VSYS_UVLO = 0 as shown in Table 3-22. Table 3-22. Conditions from SNVS, RUN, IDLE, SUSPEND, PWROFF to EMG Conditions Next State (All must be satisfied per Event Trigger) Event Trigger 1) Thermal Shutdown Die Temperature > 150 ºC EMG Any VR's OCP EMG Any VR's out of the target voltage EMG VSYS_UVLO = 0 EMG 2) OCP 3) VR Fault 4) VSYS_UVLO = 0 Notes Thermal Protection This protection is invalid at OFF, READY, and SNVS state The detail of VR Fault is described in 3.2.5.10. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 36/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.10. VR Fault BD71847AMWV has VR fault detection function which monitors all relevant VR’s of the system. The system is shut down when a monitored voltage rail goes out of the target voltage. Once the system has shut down, the system tries to boot up several times which is determined by RCVLMT[3:0] in RCVCFG register. Table 3-23 shows the VR fault threshold and monitoring conditions. Table 3-23. VR FAULT threshold and monitoring condition SNVS SUSPEND IDLE RUN Monitor Y/N Voltage Target Range Monitor Y/N Voltage Target Range Monitor Y/N Voltage Target Range Monitor Y/N Voltage Target Range LDO1 Y 80% < LDO1 Y 80% < LDO1 Y 80% < LDO1 Y 80% < LDO1 VDD_SNVS LDO2 Y 80% < LDO2 Y 80% < LDO2 Y 80% < LDO2 Y 80% < LDO2 VR3 VDD_SOC, VDDA_0V8, PHY_0V8 BUCK1 N - Y 80% < BUCK1 < 130% Y 80% < BUCK1 < 130% Y 80% < BUCK1 < 130% VR4 VDD_ARM BUCK2 N - N - Y 80% < BUCK2 < 130% Y 80% < BUCK2 < 130% VR5 - - - - - - - - - - VR6 - - - - - - - - - - VR7 VDD_GPU, VDD_VPU, VDD_DRAM BUCK5 N - N - Y 80% < BUCK5 < 130% Y 80% < BUCK5 < 130% VR8 VDDA_1V8, VDDA_DRAM LDO3 N - Y 80% < LDO3 Y 80% < LDO3 Y 80% < LDO3 VR9 VDD_PHY_0V9 LDO4 N - Y 80% < LDO4 Y 80% < LDO4 Y 80% < LDO4 VR10 NVCC_3V3 BUCK6 N - Y 80% < BUCK6 < 130% Y 80% < BUCK6 < 130% Y 80% < BUCK6 < 130% VR11 NVCC_1V8 BUCK7 N - Y 80% < BUCK7 < 130% Y 80% < BUCK7 < 130% Y 80% < BUCK7 < 130% VR12 NVCC_DRAM BUCK8 N - Y 80% < BUCK8 < 130% Y 80% < BUCK8 < 130% Y 80% < BUCK8 < 130% VR13 - LDO5 N - N - N - N - VR14 VDD_PHY_1V2 LDO6 N - Y 80% < LDO6 Y 80% < LDO6 Y 80% < LDO6 VR15 - - - - - - - - - - VR16 NVCC_SD MUXSW Not available - Not available - Not available - Not available - VR No. Function Rail Name VR1 NVCC_SNVS VR2 Y: VR output is monitored to trigger VR Fault Emergency Shutdown sequence. N: Not monitored at default (If the VR is turned ON by changing the register setting, its output is monitored for the VR Fault event trigger) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 37/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.10. VR Fault – continued BD71847AMWV monitors each rail. If a monitored VR goes out of the target voltage in a certain time, the system will shut down. When the system cannot shift to RUN state after Power ON sequence several times which is defined by RCVLMT[3:0] in RCVCFG register, the system stays at EMG state until INTLDO1P5_UVLO = 0. If a VR is turned OFF by VR control registers (BUCK1, BUCK2, BUCK5 to BUCK8 and LDO1 to LDO6), VR fault of that VR is masked. BD71847AMWV has VR individual masking registers as shown in Table 3-25, Table 3-26 and Table 3-27. This masking function is used for mainly debugging in development phase. Table 3-24. VRFAULTEN - VR FAULT ON/OFF Register: Debugging Purpose Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address VRFAULTEN R/W - - - - - - - VRFLTEN 0x01 0x21 Bit D[0] Name Function Initial VRFLTEN VR Fault enable bit 0 = VR Fault is disabled. 1 = VR Fault is enabled. This bit is used for debugging purpose.Please do not set 0x00 in normal operation. 1 Table 3-25. MVRFLTMASK0 - VR FAULT Mask 0 Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address MVRFLTMASK0 R/W MBUCK8_ VOUTOKH MBUCK8_ VOUTOKL MBUCK7_ VOUTOKH MBUCK7_ VOUTOKL MBUCK6_ VOUTOKH MBUCK6_ VOUTOKL MBUCK5_ VOUTOKH MBUCK5_ VOUTOKL 0x00 0x22 Bit Name D[7] MBUCK8_VOUTOKH D[6] MBUCK8_VOUTOKL Masking bit of BUCK8 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 D[5] MBUCK7_VOUTOKH Masking bit of BUCK7 130% threshold for target voltage 0 = monitoring 130% threshold 1 = masked 130% threshold 0 D[4] MBUCK7_VOUTOKL Masking bit of BUCK7 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 D[3] MBUCK6_VOUTOKH Masking bit of BUCK6 130% threshold for target voltage 0 = monitoring 130% threshold 1 = masked 130% threshold 0 D[2] MBUCK6_VOUTOKL Masking bit of BUCK6 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 D[1] MBUCK5_VOUTOKH Masking bit of BUCK5 130% threshold for target voltage 0 = monitoring 130% threshold 1 = masked 130% threshold 0 D[0] MBUCK5_VOUTOKL Masking bit of BUCK5 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Function Masking bit of BUCK8 130% threshold for target voltage 0 = monitoring 130% threshold 1 = masked 130% threshold 38/116 Initial 0 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.10. VR Fault – continued Table 3-26. MVRFLTMASK1 - VR FAULT Mask 1 Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address MVRFLTMASK1 R/W - - - - MBUCK2_ VOUTOKH MBUCK2_ VOUTOKL MBUCK1_ VOUTOKH MBUCK1_ VOUTOKL 0x00 0x23 Bit Name Function Masking bit of BUCK2 130% threshold for target voltage 0 = monitoring 130% threshold 1 = masked 130% threshold Initial D[3] MBUCK2_VOUTOKH D[2] MBUCK2_VOUTOKL Masking bit of BUCK2 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 D[1] MBUCK1_VOUTOKH Masking bit of BUCK1 130% threshold for target voltage 0 = monitoring 130% threshold 1 = masked 130% threshold 0 D[0] MBUCK1_VOUTOKL Masking bit of BUCK1 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 0 Table 3-27. MVRFLTMASK2 - VR FAULT Mask 2 Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address MVRFLTMASK2 R/W - - MLDO6_ VOUTOKL MLDO5_ VOUTOKL MLDO4_ VOUTOKL MLDO3_ VOUTOKL MLDO2_ VOUTOKL MLDO1_ VOUTOKL 0x00 0x24 Bit Name Function Initial D[5] MLDO6_VOUTOKL Masking bit of LDO6 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold D[4] MLDO5_VOUTOKL Masking bit of LDO5 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 D[3] MLDO4_VOUTOKL Masking bit of LDO4 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 D[2] MLDO3_VOUTOKL Masking bit of LDO3 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 D[1] MLDO2_VOUTOKL Masking bit of LDO2 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 D[0] MLDO1_VOUTOKL Masking bit of LDO1 80% threshold for target voltage 0 = monitoring 80% threshold 1 = masked 80% threshold 0 0 Following a VR Fault and an Emergency Shutdown sequence, BD71847AMWV stays in READY state for a programmed time which is specified by RCVDT[3:0] of RCVCFG register. Power ON sequence is then initiated once RCVDT[3:0] time has elapsed. To prevent an infinite loop of VR Fault induced power cycles, BD71847AMWV limits the number of attempts to recover the system by RCVLMT[3:0] of RCVCFG register when these failures occur. Once BD71847AMWV has attempted to recover from a VR Fault for a number of times which is specified by RCVLMT[3:0], the next VR Fault results in BD71847AMWV staying in EMG state until INTLDO1P5_UVLO = 0. The ability to reset RCVNUM register which tracks the number of VR Fault recovery attempts via I2C is supported. This will allow the SoC to reset this count value when needed. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 39/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.10. VR Fault – continued Table 3-28. RCVCFG - Recovery Configuration Register Register Name R/W RCVCFG R/W Bit D7 D6 D5 D4 D3 D2 RCVLMT[3:0] D1 D0 RCVDT[3:0] Name Initial Address 0x4C 0x25 Function Initial The limit number of attempts to recover the system after a VR Fault occurred. 0000 = No recovery. BD71847AMWV stays in EMG state until VSYS is triggered again. 0001 = 1 time 0010 = 2 times 0011 = 3 times 0100 = 4 times : 1110 = 14 times 1111 = No limit of attempts to recover RCVLMT[3:0] D[7:4] D[3:0] 0100 The duration time during which BD71847AMWV stays in READY state after a VR Fault event. BD71847AMWV remains in READY state for the duration programmed here then BD71847AMWV performs a Power ON sequence, if RCVLMT[3:0] is not 0x0 or 0xF and RCVLMT[3:0] is not equal to RCVNUM[3:0] of RCVNUM register. 0000 = 5 ms 0001 = 10 ms 0010 = 15 ms 0011 = 20 ms 0100 = 25 ms 0101 = 30 ms 0110 = 35 ms 0111 = 40 ms 1000 = 45 ms 1001 = 50 ms 1010 = 75 ms 1011 = 100 ms 1100 = 250 ms 1101 = 500 ms 1110 = 750 ms 1111 = 1500 ms RCVDT[3:0] 1100 Table 3-29. RCVNUM - Recovery Number Register Register Name R/W D7 D6 D5 D4 RCVNUM R/W - - - - Bit D[3:0] Name RCVNUM[3:0] www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D3 D2 D1 D0 RCVNUM[3:0] Function Address 0x00 0x26 Initial The number of attempts to recover the system after a VR Fault occurred. Once BD71847AMWV has attempted to recover from a power failure times which is indicated in RCVLMT[3:0] in RCVCFG register, the next failure shall result in BD71847AMWV staying in EMG state until VSYS is triggered again. When SoC writes RCVNUM register via I2C, then RCVNUM[3:0] is cleared to 0000. As a result, the tracking number of power failure recovery attempts is reset. Note : When RCVLMT[3:0] = 0xF (no limit of attempts to recover) and the number of attempt is over 0xF, RCVNUM[3:0] value is fixed to 0xF. 40/116 Initial 0000 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.10. VR Fault – continued VR Fault occurred and shutdown. ▼ VRs Power ON ▼ VR Fault occurred and shutdown. ▼ RCVLMT[3:0] 0 1 2 ▲ RCVDT[3:0] Increment by PMIC Power State Due to {RCVLMT == RCVNUM}, Power ON does not occur and ▽ PMIC keeps EMG state VR Fault occurred and shutdown. ▼ 2 RCVNUM[3:0] RVR_FAULT in RESETSRC Register Power ON ▼ 0 1 0 ▲ Set by PMIC RUN ▲ RCVDT[3:0] Increment by PMIC 1 0 ▲ ▲ Cleared by SoCSet by PMIC READY SNVS, RUN EMG RCVDT[3:0] 1 ▲ ▲ Cleared by SoCSet by PMIC READY SNVS, RUN EMG EMG Figure 3-14. Example of VR Fault and Recovery Sequence (RCVLMT[3:0] = 2) 3.2.5.11. EMG to OFF Table 3-30 shows the conditions for shifting from EMG to OFF. If INTLDO1P5_UVLO = 0 after entry to EMG, the power state immediately goes to OFF as shown in Figure 3-15. Event Trigger VSYS Voltage Low Table 3-30. Conditions from EMG to OFF Conditions Next State (All must be satisfied per Event Trigger) INTLDO1P5_UVLO = 0 Notes OFF 2.7V VSYS 0V 1.35V INTLDO1P5 0V VSYS_UVLO INTLDO1P5_UVLO Power State RUN EMG OFF 0V All VRs 0V Emergency Shutdown 0V Figure 3-15. EMG to OFF Power State Transition www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 41/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.12. EMG to READY Table 3-31 shows the conditions for shifting from EMG to READY. Basically, the power state can exit EMG when no emergency events are found as shown in Figure 3-14, Figure 3-16, and Figure 3-17. Event Trigger Table 3-31. Conditions from EMG to READY Conditions Next State (All must be satisfied per Event Trigger) Notes VSYS_UVLO = 1 1) No Emergency Event Die Temperature < 150 ºC READY No OCP No VR Fault VSYS_UVLO = 1 2) VR Fault Recovery Attempt Die Temperature < 150 ºC READY During VR Fault Recovery Attempt VSYS_UVLO Power State IDLE EMG READY 0V 0V All VRs Emergency Shutdown 0V Figure 3-16. EMG to READY Power State Transition (VSYS_UVLO) VSYS more than 3.0 V 150 ºC Die Temperature Power State IDLE EMG READY 0V All VRs 0V Emergency Shutdown 0V Figure 3-17. EMG to READY Power State Transition (Die Temperature) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 42/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.13. EMG_STAY Condition Table 3-32 shows the conditions for staying at EMG. Basically, the power state stays at EMG when emergency events are found as shown in Figure 3-14, Figure 3-16, and Figure 3-17. Note: In case of 3) VR Fault Recovery Failure in Table 3-32; in order to exit EMG, VSYS voltage must be less than 2.7V and then the power state goes to OFF. Table 3-32. Conditions for Stay at EMG Conditions Next State (All must be satisfied per Event Trigger) Event Trigger VSYS_UVLO = 0 1) VSYS < 2.7 V Notes EMG INTLDO1P5_UVLO = 1 2) Thermal Shutdown Die Temperature > 150 ºC EMG Thermal Protection INTLDO1P5_UVLO = 1 3) VR Fault Recovery Failure 3.2.5.14. VR Fault Recovery Attempt Failed EMG INTLDO1P5_UVLO = 1 Warm Reset Warm Reset is executed when the power state = RUN, IDLE and SUSPEND. Warm Reset set POR_B = L for 1 ms as shown in Figure 3-18. Please refer to the Table 3-9 for necessary register setting. Power State RUN, IDLE or SUSPEND WDOG_B POR_B 1 ms Figure 3-18. Warm Reset by WDOG_B www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 43/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.15. PWROFF Table 3-33 shows the conditions for shifting from RUN, IDLE, SUSPEND to PWROFF. When the power state is PWROFF, BD71847AMWV runs Power OFF sequence and VR’s are turned OFF in a defined sequential order. In the end of the sequence, the on-off state of C32K_OUT, RTC_RESET_B, LDO2 and LDO1 depends on the setting of TRANS_COND1 register as shown in Table 3-34. The summary is shown in Table 3-35. Table 3-33. Conditions from RUN, IDLE, SUSPEND to PWROFF Conditions Next State (All must be satisfied per Event Trigger) Event Trigger 1) PWRON_B Long Push Notes PWRON_B = 0 ==> Long Push Detection PWROFF COLD_RESET event WDOG_B = 0 PWROFF COLD_RESET event 3) Software Reset Write 1 to SWRESET in SWRESET register PWROFF COLD_RESET event 4) PMIC_ON_REQ PMIC_ON_REQ = 0 PWROFF 2) WDOG_B (Note) Die Temperature must be less than 150 ºC. VSY S_UVLO = 1. Table 3-34. TRANS_COND1 - Transition Condition Select 1 Register Register Name TRANS_COND1 Bit R/W D7 D6 D5 D4 PONT[3:0] R/W Name D3 D2 D1 D0 Initial Address PWRON_ POFF_TO_ READY WDOG_ POFF_TO_ READY SWRST_ POFF_TO_ READY ON_REQ_ POFF_TO_ READY 0xC0 0x20 Function Initial COLD RESET duration during which the BD71847AMWV stays in READY or SNVS in a COLD RESET event. The BD71847AMWV remains in READY or SNVS for the duration programmed here then BD71847AMWV performs a Power ON sequence. 0000 = 5 ms 0001 = 10 ms 0010 = 15 ms 0011 = 20 ms 0100 = 25 ms 0101 = 30 ms 0110 = 35 ms 0111 = 40 ms 1000 = 45 ms 1001 = 50 ms 1010 = 75 ms 1011 = 100 ms 1100 = 250 ms 1101 = 500 ms 1110 = 750 ms 1111 = 1500 ms D[7:4] PONT[3:0] D[3] PWRON_ POFF_TO_READY Set which power state to go after PWROFF triggered by PWRON_B Long Push 0 = to SNVS 1 = to READY 0 D[2] WDOG_ POFF_TO_READY Set which power state to go after PWROFF triggered by WDOG_B = 0 0 = to SNVS 1 = to READY 0 D[1] SWRST_ POFF_TO_READY Set which power state to go after PWROFF triggered by Software Reset 0 = to SNVS 1 = to READY 0 D[0] ON_REQ_ POFF_TO_READY Set which power state to go after PWROFF triggered by PMIC_ON_REQ = 0 0 = to SNVS 1 = to READY 0 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 44/116 1100 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV PWROFF – continued 3.2.5.15. more than 3.0 V VSYS VRs Power State PWROFF (Power Off Sequence) SNVS/ READY RUN/SNVS (Power On Sequence) SNVS/READY (POW_SUB[1:0]=11) PONT[3:0] in TRANS_COND1 register Figure 3-19. Cold Reset Duration Time set by PONT[3:0] Table 3-35. VR Summary After Power OFF Sequence PWROFF trigger PWRON_B Long Push WDOG_B = 0 Software Reset PMIC_ON_REQ = 0 PWRON_ POFF_TO_ READY WDOG_ POFF_TO_ READY SWRST_ POFF_TO_ READY ON_REQ_ POFF_TO_ READY C32K_ OUT RTC_ RESET_B LDO2 LDO1 0 - - - On High On On 1 - - - Off Low Off Off - 0 - - On High On On - 1 - - Off Low Off Off - - 0 - On High On On - - 1 - Off Low Off Off - - - 0 On High On On - - - 1 Off Low Off Off www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 45/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.16. PWROFF to READY After the completion of Power OFF sequence, the power state goes READY if the POFF_TO_READY = 1. This is in accordance with PWROFF trigger event in the TRANS_COND1 register. 3.2.5.17. PWROFF to SNVS After the completion of Power OFF sequence, the power state goes SNVS if the POFF_TO_READY = 0. This is in accordance with PWROFF trigger event in the TRANS_COND1 register. 3.2.5.18. PWRON_B Functionality The system has a button that can be used for triggering the system to power on or off. PWRON_B is an active-low input to BD71847AMWV. Timer circuitry measures the length of time the button is pressed. Then the timer detects short push and long push events. BD71847AMWV VSYS PWRON_B IRQ_B IRQ Control Short Push Debouncer Edge Detector Timer Long Push Power State Machine Power Button STAT_PWRON IN_MON PWRONCONFIG0 SHORTT PBDBNCT LONGT PWRONCONFIG1 Figure 3-20. Power Button Block Diagram Table 3-36. PWRONCONFIG0 - PWRON_B Configuration 0 Register Register Name R/W D7 D6 PWRONCONFIG0 R/W - - Bit D[5:4] D[3:0] D5 D4 SHORTT[3:0] www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D2 PBDBNCT[1:0] Name PBDBNCT[1:0] D3 D1 SHORTT[3:0] Function 46/116 Initial Address 0x16 0x27 Initial PWRON_B Input Pin Debounce Time 00 = 10 ms 01 = 30 ms(default) 10 = 60 ms 11 = 100 ms Short Push Timer : 0000 = 10 ms 0001 = 0.5 s 0010 = 1.0 s 0011 = 1.5 s 0100 = 2.0 s 0101 = 2.5 s 0110 = 3.0 s (default) 0111 = 3.5 s 1000 = 4.0 s 1001 = 4.5 s 1010 = 5.0 s 1011 = 5.5 s 1100 = 6.0 s 1101 = 6.5 s 1110 = 7.0 s 1111 = 7.5 s D0 01 0110 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.2.5.18. PWRON_B Functionality – continued Table 3-37. PWRONCONFIG1 - PWRON_B Configuration 1 Register Register Name R/W D7 D6 D5 D4 PWRONCONFIG1 R/W - - - - Bit D[3:0] Name LONGT[3:0] www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D3 D2 LONGT[3:0] Function Long Push Timer : 0000 = 10 ms (default) 0001 = 1 s 0010 = 2 s 0011 = 3 s 0100 = 4 s 0101 = 5 s 0110 = 6 s 0111 = 7 s 1000 = 8 s 1001 = 9 s 1010 = 10 s 1011 = 11 s 1100 = 12 s 1101 = 13 s 1110 = 14 s 1111 = 15 s 47/116 D1 D0 Initial Address 0x00 0x28 Initial 0000 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3. Power Sequence 3.3.1. Power ON Sequence Figure 3-21 shows an example when TRANS_COND0 = 0x48, which are: READY to SNVS condition: VSYS_UVLO = 1 SNVS to RUN condition: PMIC_ON_REQ Power State OFF READY SNVS RUN 3.0 V VSYS 0V INTLDO1P5 0V VSYS_UVLO (PMIC Internal) t0 LDO1 (1.8 V) (NVCC_SNVS) t1 LDO2 (0.8 V) (VDD_SNVS) RTC clock (PMIC Internal) S top RTC_RESET_B (PMIC -> SOC) C32K_OUT (PMIC -> SOC) t2 t3 S top PMIC_ON_REQ (SOC -> PMIC) PMIC internal ON signal Masked to L PMIC_STBY_REQ (SOC -> PMIC) Masked to L BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) t15 L t4 t5 LDO4 (0.9 V) (VDD_PHY_0V9) t7 BUCK2 (0.9 V) (VDD_ARM) LDO3 (1.8 V) (VDDA_1V8,VDDA_DRAM) t9 BUCK7 (1.8 V) (NVCC_1V8) t10 BUCK8 (1.1 V) (NVCC_DRAM) t11 BUCK6 (3.3 V) (NVCC_3V3) t12 LDO6 (1.2 V) (VDD_PHY_1V2) t13 POR_B (PMIC -> SOC) WDOG_B (SOC -> PMIC) t14 Masked to H LDO5 is turned on by Software LDO5 (3.3 V) Figure 3-21. Power ON Sequence www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 48/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV Power ON Sequence – continued Table 3-38. Power ON Sequence Timing Specification Symbol Description Min Typ 3.3.1. Max Unit t0 VSYS = 3.0 V to LDO1 Assert Delay 0 20 22 ms t1 LDO1 Assert to LDO2 Assert Delay 0 2.0 2.4 ms t2 LDO2 Assert to RTC_RESET_B De-assert Delay 0 10 12 ms t3 RTC_RESET_B De-assert to C32K_OUT Output Delay 0 40 90 μs t4 PMIC_ON_REQ Assert to BUCK1 Assert Delay 0 0.20 12.49 ms 0 2.0 2.4 ms 0 2.0 2.4 ms t5 t7 BUCK1 Assert to BUCK5 Assert Delay BUCK1 Assert to LDO4 Assert Delay LDO4 Assert to BUCK2 Assert Delay LDO4 Assert to LDO3 Assert Delay t9 LDO3 Assert to BUCK7 Assert Delay 0 2.0 2.4 ms t10 BUCK7 Assert to BUCK8 Assert Delay 0 2.0 2.4 ms t11 BUCK8 Assert to BUCK6 Assert Delay 0 2.0 2.4 ms t12 BUCK6 Assert to LDO6 Assert Delay 0 2.0 2.4 ms t13 LDO6 Assert to POR_B De-assert Delay 0 20 22 ms t14 POR_B De-assert to WDOG_B Internal Mask Disabled 0 10 12 ms t15 POR_B De-assert to PMIC_STBY_REQ Internal Mask Disabled 0 10 12 ms www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 49/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.2. Power OFF Sequence Figure 3-22 shows an example when triggered by PMIC_ON_REQ when ON_REQ_POFF_TO_READY = 0 in TRANS_COND1 register. Power State RUN PWROFF SNVS VSYS INTLDO1P5 VSYS_UVLO (PMIC Internal) H H RTC clock (PMIC Internal) PMIC_ON_REQ (SOC -> PMIC) PMIC_STBY_REQ (SOC -> PMIC) L WDOG_B (SOC -> PMIC) Masked to H POR_B (PMIC -> SOC) t0 LDO5 (3.3 V) t1 LDO6 (1.2 V) (VDD_PHY_1V2) t2 BUCK6 (3.3 V) (NVCC_3V3) t3 BUCK8 (1.1 V) (NVCC_DRAM) t4 BUCK7 (1.8 V) (NVCC_1V8) t5 LDO3 (1.8 V) (VDDA_1V8,VDDA_DRAM) t6 BUCK2 (0.9 V) (VDD_ARM) t7 LDO4 (0.9 V) (VDD_PHY_0V9) t8 BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) t9 BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) t10 C32K_OUT (PMIC -> SOC) RTC_RESET_B (PMIC -> SOC) H LDO2 (0.8 V) (VDD_SNVS) 0.8 V LDO1 (1.8 V) (NVCC_SNVS) 1.8 V Figure 3-22. Power OFF Sequence (To SNVS) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 50/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV Power OFF Sequence – continued Table 3-39. Power OFF Sequence Timing Specification (To SNVS) Symbol Description Min Typ 3.3.2. Max Unit t0 PMIC_ON_REQ De-assert to POR_B Assert Delay 0 120 200 μs t1 POR_B De-assert to LDO5 De-assert Delay 0 10 12 ms t2 LDO5 De-assert to LDO6 De-assert Delay 0 30 35 ms t3 LDO6 De-assert to BUCK6 De-assert Delay 0 10 12 ms t4 BUCK6 De-assert to BUCK8 De-assert Delay 0 10 12 ms t5 BUCK8 De-assert to BUCK7 De-assert Delay 0 10 12 ms t6 BUCK7 De-assert to LDO3 De-assert Delay 0 10 12 ms t7 LDO3 De-assert to BUCK2 De-assert Delay 0 10 12 ms t8 BUCK2 De-assert to LDO4 De-assert Delay 0 10 12 ms t9 LDO4 De-assert to BUCK5 De-assert Delay 0 10 12 ms t10 BUCK5 De-assert to BUCK1 De-assert Delay 0 10 12 ms www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 51/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.2. Power OFF Sequence – continued Figure 3-23 shows an example when triggered by PMIC_ON_REQ when ON_REQ_POFF_TO_READY = 1 in TRANS_COND1 register. Power State RUN PWROFF READY VSYS INTLDO1P5 VSYS_UVLO (PMIC Internal) H H RTC clock (PMIC Internal) PMIC_ON_REQ (SOC -> PMIC) PMIC_STBY_REQ (SOC -> PMIC) L WDOG_B (SOC -> PMIC) Masked to H POR_B (PMIC -> SOC) t0 LDO5 (3.3 V) t1 LDO6 (1.2 V) (VDD_PHY_1V2) t2 BUCK6 (3.3 V) (NVCC_3V3) t3 BUCK8 (1.1 V) (NVCC_DRAM) t4 BUCK7 (1.8 V) (NVCC_1V8) t5 LDO3 (1.8 V) (VDDA_1V8,VDDA_DRAM) t6 BUCK2 (0.9 V) (VDD_ARM) t7 LDO4 (0.9 V) (VDD_PHY_0V9) t8 BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) t9 BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) t10 t12 C32K_OUT (PMIC -> SOC) RTC_RESET_B (PMIC -> SOC) t11 t13 H LDO2 (0.8 V) (VDD_SNVS) 0.8 V LDO1 (1.8 V) (NVCC_SNVS) 1.8 V t14 Figure 3-23. Power OFF Sequence (To READY) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 52/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV Power OFF Sequence – continued Table 3-40. Power OFF Sequence Timing Specification (To READY) Symbol Description Min Typ 3.3.2. Max Unit t0 PMIC_ON_REQ De-assert to POR_B Assert Delay 0 120 200 μs t1 POR_B Assert to LDO5 De-assert Delay 0 10 12 ms t2 LDO5 De-assert to LDO6 De-assert Delay 0 30 35 ms t3 LDO6 De-assert to BUCK6 De-assert Delay 0 10 12 ms t4 BUCK6 De-assert to BUCK8 De-assert Delay 0 10 12 ms t5 BUCK8 De-assert to BUCK7 De-assert Delay 0 10 12 ms t6 BUCK7 De-assert to LDO3 De-assert Delay 0 10 12 ms t7 LDO3 De-assert to BUCK2 De-assert Delay 0 10 12 ms t8 BUCK2 De-assert to LDO4 De-assert Delay 0 10 12 ms t9 LDO4 De-assert to BUCK5 De-assert Delay 0 10 12 ms t10 BUCK5 De-assert to BUCK1 De-assert Delay 0 10 12 ms t11 BUCK1 De-assert to C32K_OUT Output Stop Delay 0 10 12 ms t12 C32K_OUT Output Stop to RTC_RESET_B Assert Delay 0 10 12 ms t13 RTC_RESET_B Assert to LDO2 De-assert Delay 0 10 12 ms t14 LDO2 De-assert to LDO1 De-assert Delay 0 10 12 ms www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 53/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.3. RUN to IDLE Power State RUN IDLE RTC clock (PMIC Internal) RTC_RESET_B (PMIC -> SOC) H C32K_OUT (PMIC -> SOC) PMIC_ON_REQ (SOC -> PMIC) PMIC_STBY_REQ (SOC -> PMIC) H L WDOG_B (SOC -> PMIC) H POR_B (PMIC -> SOC) H I2C Interface (SOC -> PMIC) LDO5 (3.3 V) LDO6 (1.2 V) (VDD_PHY_1V2) BUCK6 (3.3 V) (NVCC_3V3) BUCK8 (1.1 V) (NVCC_DRAM) BUCK7 (1.8 V) (NVCC_1V8) Write 1 to IDLE_MODE in PWRCTRL1 register 3.3 V 1.2 V 3.3 V 1.1 V 1.8 V LDO3 (1.8 V) 1.8 V (VDDA_1V8,VDDA_DRAM) Voltage specified by BUCK2_VOLT_RUN[6:0] 0.9 V BUCK2 (0.9 V) (VDD_ARM) LDO4 (0.9 V) (VDD_PHY_0V9) 0.9 V BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) 0.9 V BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) 0.8 V t0 Voltage specified by BUCK2_VOLT_IDLE[6:0] t1 LDO2 (0.8 V) (VDD_SNVS) 0.8 V LDO1 (1.8 V) (NVCC_SNVS) 1.8 V Voltage specified by BUCK1_VOLT_IDLE[6:0] Figure 3-24. RUN to IDLE Table 3-41. RUN to IDLE Timing Specification Description Min Symbol Typ Max Unit t0 End of I2C Access to BUCK2 Voltage Change Start 0 120 200 μs t1 BUCK2 to BUCK1 Voltage Change Delay 0 120 200 μs www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 54/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.4. IDLE to RUN Power State IDLE RUN RTC clock (PMIC Internal) RTC_RESET_B (PMIC -> SOC) H C32K_OUT (PMIC -> SOC) PMIC_ON_REQ (SOC -> PMIC) H PMIC_STBY_REQ (SOC -> PMIC) H WDOG_B (SOC -> PMIC) H POR_B (PMIC -> SOC) H I2C Interface (SOC -> PMIC) LDO5 (3.3 V) Write 0 to IDLE_MODE in PWRCTRL1 register 3.3 V LDO6 (1.2 V) (VDD_PHY_1V2) 1.2 V BUCK6 (3.3 V) (NVCC_3V3) 3.3 V BUCK8 (1.1 V) (NVCC_DRAM) 1.1 V BUCK7 (1.8 V) (NVCC_1V8) 1.8 V LDO3 (1.8 V) (VDDA_1V8,VDDA_DRAM) 1.8 V t1 BUCK2 (0.9 V) (VDD_ARM) LDO4 (0.9 V) (VDD_PHY_0V9) BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) 0.9V = Voltage specified by BUCK2_VOLT_RUN[6:0] Voltage specified by BUCK2_VOLT_IDLE[6:0] 0.9 V 0.9 V t0 Voltage specified by BUCK1_VOLT_IDLE[6:0] LDO2 (0.8 V) (VDD_SNVS) 0.8 V LDO1 (1.8 V) (NVCC_SNVS) 1.8 V 0.8V = Voltage specified by BUCK1_VOLT_RUN[6:0] Figure 3-25. IDLE to RUN Table 3-42. IDLE to RUN Timing Specification Description Min Symbol Typ Max Unit t0 End of I2C Access to BUCK1 Voltage Change Start 0 120 200 μs t1 BUCK1 to BUCK2 Voltage Change Delay 0 120 200 μs www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 55/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.5. RUN to SUSPEND Power State RUN SUSPEND RTC clock (PMIC Internal) RTC_RESET_B (PMIC -> SOC) H C32K_OUT (PMIC -> SOC) PMIC_ON_REQ (SOC -> PMIC) H PMIC_STBY_REQ (SOC -> PMIC) H WDO G_B (SOC -> PMIC) H POR_B (PMIC -> SOC) H LDO5 (3.3 V) 3.3 V LDO6 (1.2 V) (VDD_PHY_1V2) 1.2 V BUCK6 (3.3 V) (NVCC_3V3) 3.3 V BUCK8 (1.1 V) (NVCC_DRAM) 1.1 V BUCK7 (1.8 V) (NVCC_1V8) 1.8 V LDO3 (1.8 V) (VDDA_1V8,VDDA_DRAM) 1.8 V 0.9 V BUCK2 (0.9 V) (VDD_ARM) 0 V (OFF ) t0 LDO4 (0.9 V) (VDD_PHY_0V9) 0.9 V BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) 0.9 V BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) 0.8 V LDO2 (0.8 V) (VDD_SNVS) 0.8 V LDO1 (1.8 V) (NVCC_SNVS) 1.8 V t1 0 V (OFF ) Voltage specified by BUCK1_VOLT_SUSP[6:0] t2 Figure 3-26. RUN to SUSPEND Symbol Table 3-43. RUN to SUSPEND Timing Specification Description Min Typ Max Unit t0 PMIC_STBY_REQ High to BUCK2 De-assert Delay 0 120 200 μs t1 BUCK2 to BUCK5 Voltage Change Delay 0 10 12 ms t2 BUCK5 to BUCK1 Voltage Change Delay 0 10 12 ms www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 56/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.6. SUSPEND to RUN Power State SUSPEND RUN RTC clock (PMIC Internal) RTC_RESET_B (PMIC -> SOC) H C32K_OUT (PMIC -> SOC) PMIC_ON_REQ (SOC -> PMIC) H PMIC_STBY_REQ (SOC -> PMIC) H WDO G_B (SOC -> PMIC) H POR_B (PMIC -> SOC) H LDO5 (3.3 V) 3.3 V LDO6 (1.2 V) (VDD_PHY_1V2) 1.2 V BUCK6 (3.3 V) (NVCC_3V3) 3.3 V BUCK8 (1.1 V) (NVCC_DRAM) 1.1 V BUCK7 (1.8 V) (NVCC_1V8) 1.8 V LDO3 (1.8 V) (VDDA_1V8,VDDA_DRAM) BUCK2 (0.9 V) (VDD_ARM) 1.8 V LDO4 (0.9 V) (VDD_PHY_0V9) 0.9 V BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) t2 0.9 V 0 V (OFF ) t1 0 V (OFF ) 0.9 V t0 Voltage specified by BUCK1_VO LT_RUN[6:0] Voltage specified by BUCK1_VOLT_SUSP[6:0] LDO2 (0.8 V) (VDD_SNVS) 0.8 V LDO1 (1.8 V) (NVCC_SNVS) 1.8 V Figure 3-27. SUSPEND to RUN Symbol Table 3-44. SUSPEND to RUN Timing Specification Description Min Typ Max Unit t0 PMIC_STBY_REQ Low to BUCK1 Voltage Change Start 0 120 200 μs t1 BUCK1 to BUCK5 Voltage Change Delay 0 1.0 1.2 ms t2 BUCK5 to BUCK2 Voltage Change Delay 0 1.0 1.2 ms www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 57/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.7. IDLE to SUSPEND Power State IDLE SUSPEND RTC clock (PMIC Internal) RTC_RESET_B (PMIC -> SOC) H C32K_OUT (PMIC -> SOC) PMIC_ON_REQ (SOC -> PMIC) PMIC_STBY_REQ (SOC -> PMIC) H L IDLE_MODE in PWRCTRL1 (PMIC Internal) Automatically return to 0 when exiting IDLE WDOG_B (SOC -> PMIC) H POR_B (PMIC -> SOC) H LDO5 (3.3 V) LDO6 (1.2 V) (VDD_PHY_1V2) 3.3 V 1.2 V BUCK6 (3.3 V) (NVCC_3V3) 3.3 V BUCK8 (1.1 V) (NVCC_DRAM) 1.1 V BUCK7 (1.8 V) (NVCC_1V8) 1.8 V LDO3 (1.8 V) (VDDA_1V8,VDDA_DRAM) 1.8 V BUCK2 (0.9 V) (VDD_ARM) t0 Voltage specified by BUCK2_VOLT_IDLE[6:0] 0 V (OFF ) LDO4 (0.9 V) (VDD_PHY_0V9) 0.9 V BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) 0.9 V BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) t1 0 V (OFF ) Voltage specified by BUCK1_VOLT_IDLE[6:0] Voltage specified by BUCK1_VOLT_SUSP[6:0] t2 LDO2 (0.8 V) (VDD_SNVS) 0.8 V LDO1 (1.8 V) (NVCC_SNVS) 1.8 V Figure 3-28. IDLE to SUSPEND Symbol Table 3-45. IDLE to SUSPEND Timing Specification Description Min Typ Max Unit t0 PMIC_STBY_REQ High to BUCK2 De-assert Delay 0 120 200 μs t1 BUCK2 to BUCK5 Voltage Change Delay 0 10 12 ms t2 BUCK5 to BUCK1 Voltage Change Delay 0 10 12 ms www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 58/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.8. Emergency Shutdown Power State Any State except OFF and READY EMG VSYS INTLDO1P5 VSYS_UVLO (PMIC Internal) H H RTC clock (PMIC Internal) RTC_RESET_B (PMIC -> SOC) H C32K_OUT (PMIC -> SOC) Thermal S hutdown E vent occurs . Emergency Event When P ower S tat e = RUN, IDLE and SUS PE ND POR_B (PMIC -> SOC) When P ower S tat e = S NV S t0 LDO5 (3.3 V) LDO6 (1.2 V) (VDD_PHY_1V2) BUCK6 (3.3 V) (NVCC_3V3) BUCK8 (1.1 V) (NVCC_DRAM) BUCK7 (1.8 V) (NVCC_1V8) t1 LDO3 (1.8 V) (VDDA_1V8,VDDA_DRAM) BUCK2 (0.9 V) (VDD_ARM) LDO4 (0.9 V) (VDD_PHY_0V9) BUCK5 (0.9 V) (VDD_GPU,VDD_VPU,VDD_DRAM) BUCK1 (0.8 V) (VDD_SOC,VDDA_0V8,PHY_0V8) LDO2 (0.8 V) (VDD_SNVS) LDO1 (1.8 V) (NVCC_SNVS) Figure 3-29. Emergency Shutdown Symbol Table 3-46. Emergency Shutdown Timing Specification Description Min Typ t0 Emergency Event to POR_B Assert and All VRs Except BUCK7 De-assert Delay 0 t1 POR_B Assert to BUCK7 De-assert Delay 0 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 59/116 Max Unit 120 200 μs 30 35 ms TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.9. Warm Reset I2C Write Access for SWRESET = 1 STOP SDA D0 ACK SCL t1 POR_B t0 Figure 3-30. Warm Reset (SWRESET) Table 3-47. Warm Reset (SWRESET) Timing Specification Description Min Typ Symbol Unit - - 1.0 μs 0.95 1.00 1.05 ms Table 3-48. Warm Reset (WDOG_B) Timing Specification Description Min Typ Max Unit t0 SCL rising to POR_B assert delay t1 POR_B assert duration time WDOG_B Max t0 Including debounce time = 100μs t1 POR_B Figure 3-31. Warm Reset (WDOG_B) Symbol t0 WDOG_B falling to POR_B assert delay 100 110 120 μs t1 POR_B assert duration time 0.95 1.00 1.05 ms t0 PWRON_B t1 POR_B Figure 3-32. Warm Reset (PWRON_B Long Push) Symbol Table 3-49. Warm Reset (PWRON_B Long Push) Timing Specification Description Min Typ t0 PWRON_B falling to POR_B assert delay t1 POR_B assert duration time www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Max Unit PBDBNCT[1:0] in PWRONCONFIG0 + LONGT[3:0] in PWRONCONFIG1 -50 PBDBNCT[1:0] in PWRONCONFIG0 + LONGT[3:0] in PWRONCONFIG1 PBDBNCT[1:0] in PWRONCONFIG0 + LONGT[3:0] in PWRONCONFIG1 +50 ms 0.95 1.00 1.05 ms 60/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 3.3.10.Reset Source Indicators The BD71847AMWV has RESETSRC register which is intended to store the cause of a shutdown or reset, the firmware reads this data on the next startup. Depending on the cause of a shutdown or reset, the only bit of RESETSRC register is 1. Table 3-50. RESETSRC - Reset Source Indicator Register Register Name RESETSRC R/W R/W D7 RPWRON Bit Name D[7] RPWRON D[6] D6 RWDOG D5 RSWRST D4 D3 RPMIC_ON_ RVSYS_2P7 REQ D2 D1 D0 Initial Address RTEMP ROCP RVR_FAULT 0x00 0x29 Function Initial 0 = Default 1 = Previous shutdown was due to the PWRON_B Long Push Cold Reset (Write-1-clear bit) 0 RWDOG 0 = Default 1 = Previous shutdown was due to the WDOG_B Cold Reset (Write-1-clear bit) 0 D[5] RSWRST 0 = Default 1 = Previous shutdown was due to the Software Cold Reset (Write-1-clear bit) 0 D[4] RPMIC_ON_REQ 0 = Default 1 = Previous shutdown was due to the PMIC_ON_REQ = 0 (Write-1-clear bit) 0 D[3] RVSYS_2P7 0 = Default 1 = Previous shutdown was due to the Emergency VSYS < 2.7V (Write-1-clear bit) 0 D[2] RTEMP 0 = Default 1 = Previous shutdown was due to the Emergency Thermal Shutdown (Write-1-clear bit) 0 D[1] ROCP 0 = Default 1 = Previous shutdown was due to the Emergency OCP (Write-1-clear bit) 0 D[0] RVR_FAULT 0 = Default 1 = Previous shutdown was due to the Emergency VR Fault (Write-1-clear bit) 0 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 61/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 4. I2C and Interrupt 4.1. I2C Bus Interface 4.1.1. I2C Bus Interface Overview I2C access is not permitted when the power state = READY. DVDD DVDD [Internal Logic Circuit] I2C slave controller DVDD SCL Spike Filter DVDD SDA Spike Filter GND Figure 4-1. I2C (Slave) Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 62/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 4.1.2. I2C Bus Interface Electrical Characteristics Table 4-1. I2C Bus Interface DC Electrical Characteristics (Unless otherwise specified, Ta=+25°C, VSYS=5.0 V, DVDD=1.8 V) Limit Parameter Symbol Min Typ Max Digital pin characteristics – Input (SCL) SCL VIH_SCL Input "H" Level SCL VIL_SCL Input "L" Level SCL VIHYS_SCL Input Hysteresis SCL IOFF1_SCL Input Leak Current(Input=0 V) SCL IOFF2_SCL Input Leak Current(Input=5.5 V) Digital pin characteristics – Input (SDA) SDA VIH_SDA Input "H" Level SDA VIL_SDA Input "L" Level SDA VIHYS_SDA Input Hysteresis SDA IOFF1_SDA Input Leak Current(Input=0 V) SDA IOFF2_SDA Input Leak Current(Input=5.5 V) Digital pin characteristics - Output (SDA) SDA VOL_SDA Output "L" Level Voltage Output Off Leak Current(Input=0 IOFF3_SDA V) Output Off Leak IOFF4_SDA Current(Input=5.5 V) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 DVDD x 0.7 - -0.3 - 0.1 - - V -1 - +1 μA -1 - +1 μA DVDD x 0.7 - -0.3 - 0.1 - - V -1 - +1 μA -1 - +1 μA - - 0.4 V -1 - +1 μA -1 - +1 μA 63/116 DVDD + 0.3 DVDD x 0.3 Unit DVDD + 0.3 DVDD x 0.3 Condition V V V V IOL=6mA TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV I2C Bus Interface Electrical Characteristics – continued Table 4-2. I2C Bus Interface AC Timing - Fast Mode (Unless otherwise specified, Ta=+25°C, VSYS=5.0 V, DVDD=1.8 V) Fast mode Fast mode plus Parameter Symbol Min Typ Max Min Typ Max 4.1.2. I2C_CLK Clock Frequency Hold Time START Condition LOW Period of I2C_CLK Clock Unit fSCL 0 - 400 0 - 1000 kHz tHD_STA tLOW 0.60 1.3 - - 0.26 0.5 - - μs μs tHIGH 0.60 - - 0.26 - - μs tSU_STA 0.60 - - 0.26 - - μs HIGH Period of I2C_CLK Clock Set-up Time for a Repeated START Condition Data Hold Time tHD_DAT 0 - - 0 - - ns Data Set-up Time Set-up Time for STOP Condition tSU_DAT tSU_STO 100 0.60 - - 50 0.26 - - ns μs Fall Time of I2C_DATA Signal tF 20 300 - - 120 ns Capacitive Load for Each Bus Line Pulse Width of Spikes that are Suppressed by the Input Filter Bus Free Time CB - - 400 - - 550 pF tSP 0 - 50 0 - 50 ns tBUF 1.3 - - 0.5 - - μs tVD_DAT tVD_ACK - - 0.90 0.90 - - 0.45 0.45 μs μs Data Valid Time Data Valid Acknowledge Time tF tR tSU_DAT 70% SDA 30% tF 70% SCL tVD_DAT tHD_DAT 30% tHD_STA 1 / fSCL tLOW tR S tHIGH tBUF 70% SDA 30% tSU_STA SCL tHD_STA tSP tSU_STO tVD_ACK 70% 30% Sr P S Figure 4-2. I2C Bus Interface AC Timing www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 64/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 4.1.3. Device Addressing Table 4-3. I2C_DEV - I2C Device Address Indicator Register Register Name R/W D7 D6 D5 D4 D3 D2 I2C_DEV R - - - - - - Bit D[1:0] Name 00 = I2C 7 bit Device Address 01 = I2C 7 bit Device Address 10 = I2C 7 bit Device Address 11 = I2C 7 bit Device Address 0 1 0 0 0 0 0 1 0 0 1 0x03 0x02 Initial 11 R/W R/W LSB 0 0 1 0 1 0 MSB 1 Address LSB MSB 1 Initial Read / Write instruction bit MSB 1 I2C_DEV_ADRS[1:0] = 0x48 = 0x49 = 0x4A = 0x4B I2C Device Address 0 D0 Function I2C_DEV_ADRS[1:0] 1 D1 R/W LSB 0 0 1 0 1 MSB 1 R/W a LSB I2C Device Address is decided by OTP setting. Figure 4-3. I2C Device Addressing www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 65/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 4.1.4. Write / Read Operation Write single register S 7-bit Device Address W Ack 8-bit Data (Reg. Address) Ack 8-bit Data (Write Data) Ack 8-bit Data (Write Data #1) Ack 8-bit Data (Write Data #1) Ack Ack 8-bit Data (Write Data #N) Ack P Write multiple registers (Address Auto-Increment) S 7-bit Device Address W Ack 8-bit Data (Reg. Address) Ack 8-bit Data (Write Data #2) Ack 8-bit Data (Write Data #3) Ack Ack 8-bit Data (Reg. Address) Ack Sr 7-bit Device Address R Ack 8-bit Data (Read Data) NAck Sr 7-bit Device Address R Ack 8-bit Data (Read Data #1) Ack Ack 8-bit Data NAck (Read Data #N) P Read single register S 7-bit Device Address W P Read multiple registers (Address Auto-Increment) S 7-bit Device Address W Ack 8-bit Data (Reg. Address) Ack 8-bit Data (Read Data #2) Ack 8-bit Data (Read Data #3) Ack S Start Condition Sr Repeat Start Condition W Write (= Low) R Read (= High) Ack Acknowledge (= Low, driven by I2C Slave) P P Stop Condition Ack Acknowledge (= Low, driven by I2C Master) NAck Not Acknowledge (= High, driven by I2C Master) Figure 4-4. I2C Write / Read Operation www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 66/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 4.2. Interrupt 4.2.1. Interrupt Overview IRQ Event PWRON PWRON_S PWRON_L WDOG SWRST ON_REQ STBY_REQ Write 1 Clear Table 4-4. Interrupt Event Definition PWRON_B Pin Level Changed PWRON_B Short Push Detection PWRON_B Long Push Detection WDOG_B Pin Level Changed Written 1 to SWRESET in SWRESET Register PMIC_ON_REQ Pin Level Changed PMIC_STBY_REQ Pin Level Changed Mask bit from MIRQ register IRQ_B RN D Q IRQ Event CP to IRQ register Figure 4-5. IRQ_B Architecture Block Diagram Table 4-5. IRQ_B Electrical Characteristics (Unless otherwise specified, Ta=+25°C, VSYS=5.0 V, DVDD=1.8 V) Limit Parameter Symbol Min Typ Max Output "L" Level Voltage VOL_IRQB DVDD x 0.2 Output Off Leak Current IOLK_IRQB -1 +1 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 67/116 Unit Condition V μA IOL=3 mA Sink TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 4.2.1. Interrupt Overview – continued Table 4-6. IRQ - Interrupt Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address IRQ R/W - SWRST PWRON_S PWRON_L PWRON WDOG ON_REQ STBY_REQ 0x00 0x2B Bit Name Function Initial 0 = SWRESET in SWRESET register is not written 1 1 = SWRESET in SWRESET register is written 1 This bit is a write-1-to-clear bit. 0 D[6] SWRST D[5] PWRON_S 0 = PWRON_B Short Push not detected 1 = PWRON_B Short Push detected This bit is a write-1-to-clear bit. 0 D[4] PWRON_L 0 = PWRON_B Long Push not detected 1 = PWRON_B Long Push detected This bit is a write-1-to-clear bit. 0 D[3] PWRON 0 = PWRON_B level change not generated 1 = PWRON_B level change generated This bit is a write-1-to-clear bit. 0 D[2] WDOG 0 = WDOG_B level change not generated 1 = WDOG_B level change generated This bit is a write-1-to-clear bit. 0 D[1] ON_REQ 0 = PMIC_ON_REQ level change not generated 1 = PMIC_ON_REQ level change generated This bit is a write-1-to-clear bit. 0 D[0] STBY_REQ 0 = PMIC_STBY_REQ level change not generated 1 = PMIC_STBY_REQ level change generated This bit is a write-1-to-clear bit. 0 Table 4-7. MIRQ – IRQ Mask Register Register Name R/W D7 D6 MIRQ R/W - MSWRST Bit D5 D4 MPWRON_ MPWRON_ S L Name D3 D2 D1 D0 Initial Address MPWRON MWDOG MON_REQ MSTBY_ REQ 0x7F 0x2A Function Initial D[6] MSWRST 0 = No Mask 1 = Mask Interrupt D[5] MPWRON_S 0 = No Mask 1 = Mask Interrupt 1 D[4] MPWRON_L 0 = No Mask 1 = Mask Interrupt 1 D[3] MPWRON 0 = No Mask 1 = Mask Interrupt 1 D[2] MWDOG 0 = No Mask 1 = Mask Interrupt 1 D[1] MON_REQ 0 = No Mask 1 = Mask Interrupt 1 D[0] MSTBY_REQ 0 = No Mask 1 = Mask Interrupt 1 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 68/116 1 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 4.2.1. Interrupt Overview – continued Table 4-8. IN_MON - Input Port Monitor Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address IN_MON R - - - - STAT_ PWRON STAT_ WDOG STAT_ ON_REQ STAT_ STBY_REQ 0x00 0x2C Bit Name D[3] STAT_PWRON D[2] STAT_WDOG D[1] STAT_ON_REQ D[0] STAT_STBY_REQ www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Function Initial 0 = PWRON_B level is 0 1 = PWRON_B level is 1 0 0 = WDOG_B level is 0 1 = WDOG_B level is 1 0 0 = PMIC_ON_REQ level is 0 1 = PMIC_ON_REQ level is 1 0 0 = PMIC_STBY_REQ level is 0 1 = PMIC_STBY_REQ level is 1 0 69/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5. Power Rails 5.1. Output Voltage Range Table 5-1. Output Voltage Range1 Data [Hex] BUCK1 BUCK2 - - BUCK5 BUCK6 BUCK7 BUCK8 LDO1 LDO5 LDO6 1.80 0.90 0.90 (Note 1) 3.10 1.90 1.00 1.90 1.00 0.82 3.20 2.00 1.10 2.00 1.10 0.83 3.30 2.10 1.20 2.10 0.84 2.20 1.30 2.20 1.30 1.905 0.85 2.30 1.40 2.30 1.40 1.20 1.950 0.86 2.40 1.50 2.40 1.50 1.35 1.995 0.87 2.50 1.60 2.50 1.60 0.78 0.88 2.60 1.70 2.60 1.70 0.79 0.89 2.70 1.80 2.70 1.80 0.80 0.90 2.80 2.80 0.70 0.70 3.00 1.605 0.80 3.00 01 0.71 0.71 0.80 3.10 1.695 0.81 02 0.72 0.72 3.20 1.755 03 0.73 0.73 1.00 3.30 1.800 (Note 1) (Note 1) 04 0.74 0.74 1.05 1.845 05 0.75 0.75 1.10 06 0.76 0.76 07 0.77 0.77 08 0.78 09 0.79 (Note 1) LDO4 1.80 0.70 0A LDO3 (Note 1) 00 0.80 LDO2 0.90 (Note 1) 0.90 0B 0.81 0.81 0.91 2.90 2.90 0C 0.82 0.82 0.92 3.00 3.00 0D 0.83 0.83 0.93 3.10 3.10 0E 0.84 0.84 0.94 3.20 3.20 0F 0.85 0.85 0.95 3.30 10 0.86 0.86 0.96 11 0.87 0.87 0.97 12 0.88 0.88 0.98 13 0.89 0.89 0.99 14 0.90 15 0.91 0.91 1.01 16 0.92 0.92 1.02 17 0.93 0.93 1.03 18 0.94 0.94 1.04 19 0.95 0.95 1.05 1A 0.96 0.96 1.06 1B 0.97 0.97 1.07 1C 0.98 0.98 1.08 1D 0.99 0.99 1.09 1E 1.00 1.00 1F 1.01 1.01 0.90 - 1.20 (Note 1) 3.30 (Note 1) 1.00 (Note 1) 1.10 (Note 1) 1.11 (Note 1) initial voltage(run mode) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 70/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.1. Output Voltage Range – continued Table 5-2. Output Voltage Range2 Data [Hex] BUCK1 BUCK2 - - BUCK5 BUCK6 BUCK7 BUCK8 LDO1 20 1.02 1.02 1.12 1.60 21 1.03 1.03 1.13 1.70 22 1.04 1.04 1.14 23 1.05 1.05 1.15 24 1.06 1.06 1.16 25 1.07 1.07 1.17 26 1.08 1.08 1.18 27 1.09 1.09 1.19 28 1.10 1.10 1.20 29 1.11 1.11 1.21 2A 1.12 1.12 1.22 2B 1.13 1.13 1.23 2C 1.14 1.14 1.24 2D 1.15 1.15 1.25 2E 1.16 1.16 1.26 2F 1.17 1.17 1.27 30 1.18 1.18 1.28 31 1.19 1.19 1.29 32 1.20 1.20 1.30 33 1.21 1.21 1.31 34 1.22 1.22 1.32 35 1.23 1.23 1.33 36 1.24 1.24 1.34 37 1.25 1.25 1.35 38 1.26 1.26 1.36 39 1.27 1.27 1.37 3A 1.28 1.28 1.38 3B 1.29 1.29 1.39 3C 1.30 1.30 1.40 LDO2 LDO3 LDO4 LDO5 LDO6 - 0.80 (Note 1) 1.80 (Note 1) 1.90 3D 3E 3F (Note 1) initial voltage(run mode) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 71/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2. Details of Buck 5.2.1. BUCK1 5.2.1.1. BUCK1 Block Diagram VSYS INT LDO 1P5 BUCK1_VIN OCP V RE F V oltage set ting OSC DAC BUCK1_LX - Soft Start Switch Control LBK 1 COB K1 + P GND (EX P-P AD) EN BUCK1_FB Discharge Resistor V R Controller EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-1. BUCK1 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 72/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.1.2. BUCK1 Electrical Characteristics Table 5-3. BUCK1 Electrical Characteristics (Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V) Parameter Symbol Limit Unit Condition Min Typ Max VO_BK1 0.791 0.800 0.809 V Vo = 0.8 V Io = 200 mA, PWM fix Mode VORG_BK1 0.7 - 1.3 V 10 mV step IQ_BK1 - 15 - µA Vo = 0.8 V Io = 0 mA, Auto mode Maximum Output Current IOMAX_BK1 3000 - - mA Over Current Protection IOCP_BK1 4500 - - mA Peak current of inductor ΔVLDR_BK1 -1 0 +1 % Io = 1 mA to Iomax, PWM fix Mode ηBK1_1mA - 80 - % Io = 1 mA, Vo = 0.8 V ηBK1_500mA - 84 - % Io = 500 mA, Vo = 0.8 V ηBK1_max - 70 - % Io = Iomax, Vo = 0.8 V Oscillating Frequency fSW_BK1 - 2 - MHz Start up Time tST_BK1 - 144 500 µs Discharge Resistance R D_BK1 - 100 - Ω DVRFBK1_L - 80 - % DVRFBK1_LHYS - 10 - % DVRBK1_H - 130 - % DVRFBK1_HHYS - 20 - % LBK1 - 0.47 - μH C OBK1 22 44 100 μF Output Voltage Programmable Output Voltage Range Quiescent Current DC Output Voltage Load Regulation Efficiency Low Side VR Fault Detect Level Low Side VR Fault Detect Hysteresis High Side VR Fault Detect Level High Side VR Fault Detect Hysteresis Output Inductance Output Capacitance (Note 1) PWM fix mode, Io = 0 mA During EN to 90 % of nominal Voltage, BUCK1_RAMPRATE_RUN[1:0] = 01 Vo = 0.8 V (FB = Sweep down) VR fault detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 Vo = 0.8 V (FB = Sweep up) Power good detect level / Vo x 100 (VR fault detect level - release level) / Vo x 100 (Note 2) (Note 2) Effective capacitance with BUCK's DC bias Max value is limited by ramp rate. ramp rate 1.25 mV, 2.5 mV, 5 mV : 100 µF ramp rate 10 mV : 50 µF (Note 1) For Buck- DCDC converters, (minimum Over Current Protection Current – ½ inductor ripple current) is the maximum output current. (Note 2) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 73/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.1.3. BUCK1 Control Table 5-4. BUCK1_CTRL - BUCK1 Control Register Register Name BUCK1_CTRL R/W R/W Bit D[7:6] D7 D6 BUCK1_RAMPRATE [1:0] D5 - D4 D3 D2 - BUCK1_ PWM_FIX - Name D1 D0 BUCK1_SEL BUCK1_EN Initial Address 0x40 0x05 Function BUCK1_RAMPRATE[1:0] Initial BUCK1 DVS ramp rate 00 = 10 mV/μs 01 = 5 mV/μs 10 = 2.5 mV/μs 11 = 1.25 mV/μs Note : When BUCK1 voltage starts up from 0V, the ramp rate is fixed 5mV/μs, regardless of the value of BUCK1_RAMPRATE[1:0]. 01 0 – AUTO PWM/PFM mode VR adjusts the operating mode (PFM/PWM) automatically based on the load current to maximize power efficiency. 1 – Forced PWM Mode VR operates in PWM mode only. 0 D[3] BUCK1_PWM_FIX D[1] BUCK1_SEL BUCK1 control select bit 0 = BUCK1 ON/OFF is controlled by state machine. 1 = BUCK1 ON/OFF is controlled by D[0] on this register. 0 BUCK1_EN BUCK1 control bit with condition of D[1] 0 = BUCK1 OFF 1 = BUCK1 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. When system is in SNVS, BUCK1_SEL = 1 and BUCK1_EN = 1, BUCK1 voltage is specified by BUCK1_VOLT_SUSP register. 0 D[0] Table 5-5. BUCK1_VOLT_RUN - BUCK1 Voltage (RUN) Register Register Name R/W D7 BUCK1_VOLT_RUN R/W - Bit D[6:0] D6 D5 D4 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D2 D1 BUCK1_VOLT_RUN[6:0] Name BUCK1_VOLT_RUN[6:0] D3 Function BUCK1 voltage when Power State = RUN 0x00 = 0.70 V 0x01 = 0.71 V 0x02 = 0.72 V 0x04 = 0.74 V 0x05 = 0.75 V 0x06 = 0.76 V 0x08 = 0.78 V 0x09 = 0.79 V 0x0A = 0.80V(initial) 0x0B = 0.81 V 0x0C = 0.82 V 0x0D = 0.83 V 0x0F = 0.85 V 0x10 = 0.86 V 0x11 = 0.87 V 0x13 = 0.89 V 0x14 = 0.90 V 0x15 = 0.91 V 0x16 = 0.92 V 0x17 = 0.93 V 0x19 = 0.95 V 0x1A = 0.96 V 0x1B = 0.97 V 0x1D = 0.99 V 0x1E = 1.00 V 0x1F = 1.01 V 0x21 = 1.03 V 0x22 = 1.04 V 0x23 = 1.05 V 0x25 = 1.07 V 0x26 = 1.08 V 0x27 = 1.09 V 0x29 = 1.11 V 0x2A = 1.12 V 0x2B = 1.13 V 0x2D = 1.15 V 0x2E = 1.16 V 0x2F = 1.17 V 0x31 = 1.19 V 0x32 = 1.20 V 0x33 = 1.21 V 0x35 = 1.23 V 0x36 = 1.24 V 0x37 = 1.25 V 0x39 = 1.27 V 0x3A = 1.28 V 0x3B = 1.29 V 0x3D-0x7F = reserved 74/116 D0 Initial Address 0x0A 0x0D Initial 0x03 = 0.73 V 0x07 = 0.77 V 0x0E = 0.84 V 0x12 = 0.88 V 0x18 = 0.94 V 0x1C = 0.98 V 0x20 = 1.02 V 0x24 = 1.06 V 0x28 = 1.10 V 0x2C = 1.14 V 0x30 = 1.18 V 0x34 = 1.22 V 0x38 = 1.26 V 0x3C = 1.30 V 0001010 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.1.3. BUCK1 Control – continued Table 5-6. BUCK1_VOLT_IDLE - BUCK1 Voltage (IDLE) Register Register Name R/W D7 BUCK1_VOLT_IDLE R/W - Bit D[6:0] D6 D5 D4 D3 D2 D1 D0 BUCK1_VOLT_IDLE[6:0] Name Initial Address 0x0A 0x0E Function BUCK1_VOLT_IDLE[6:0] Initial BUCK1 voltage when Power State = IDLE 0x00 = 0.70 V 0x01 = 0.71 V 0x02 = 0.72 V 0x04 = 0.74 V 0x05 = 0.75 V 0x06 = 0.76 V 0x08 = 0.78 V 0x09 = 0.79 V 0x0A = 0.80 V(initial) 0x0B = 0.81 V 0x0C = 0.82 V 0x0D = 0.83 V 0x0F = 0.85 V 0x10 = 0.86 V 0x11 = 0.87 V 0x13 = 0.89 V 0x14 = 0.90 V 0x15 = 0.91 V 0x16 = 0.92 V 0x17 = 0.93 V 0x19 = 0.95 V 0x1A = 0.96 V 0x1B = 0.97 V 0x1D = 0.99 V 0x1E = 1.00 V 0x1F = 1.01 V 0x21 = 1.03 V 0x22 = 1.04 V 0x23 = 1.05 V 0x25 = 1.07 V 0x26 = 1.08 V 0x27 = 1.09 V 0x29 = 1.11 V 0x2A = 1.12 V 0x2B = 1.13 V 0x2D = 1.15 V 0x2E = 1.16 V 0x2F = 1.17 V 0x31 = 1.19 V 0x32 = 1.20 V 0x33 = 1.21 V 0x35 = 1.23 V 0x36 = 1.24 V 0x37 = 1.25 V 0x39 = 1.27 V 0x3A = 1.28 V 0x3B = 1.29 V 0x3D-0x7F = reserved 0x03 = 0.73 V 0x07 = 0.77 V 0x0E = 0.84 V 0x12 = 0.88 V 0x18 = 0.94 V 0x1C = 0.98 V 0x20 = 1.02 V 0x24 = 1.06 V 0x28 = 1.10 V 0x2C = 1.14 V 0x30 = 1.18 V 0x34 = 1.22 V 0x38 = 1.26 V 0x3C = 1.30 V 0001010 Table 5-7. BUCK1_VOLT_SUSP - BUCK1 Voltage (SUSPEND) Register Register Name R/W D7 BUCK1_VOLT_SUSP R/W - Bit D[6:0] D6 D5 D4 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D2 D1 BUCK1_VOLT_SUSP[6:0] Name BUCK1_VOLT_SUSP[6:0] D3 Function BUCK1 voltage when Power State = SUSPEND 0x00 = 0.70 V 0x01 = 0.71 V 0x02 = 0.72 V 0x04 = 0.74 V 0x05 = 0.75 V 0x06 = 0.76 V 0x08 = 0.78 V 0x09 = 0.79 V 0x0A = 0.80V(initial) 0x0B = 0.81 V 0x0C = 0.82 V 0x0D = 0.83 V 0x0F = 0.85 V 0x10 = 0.86 V 0x11 = 0.87 V 0x13 = 0.89 V 0x14 = 0.90 V 0x15 = 0.91 V 0x16 = 0.92 V 0x17 = 0.93 V 0x19 = 0.95 V 0x1A = 0.96 V 0x1B = 0.97 V 0x1D = 0.99 V 0x1E = 1.00 V 0x1F = 1.01 V 0x21 = 1.03 V 0x22 = 1.04 V 0x23 = 1.05 V 0x25 = 1.07 V 0x26 = 1.08 V 0x27 = 1.09 V 0x29 = 1.11 V 0x2A = 1.12 V 0x2B = 1.13 V 0x2D = 1.15 V 0x2E = 1.16 V 0x2F = 1.17 V 0x31 = 1.19 V 0x32 = 1.20 V 0x33 = 1.21 V 0x35 = 1.23 V 0x36 = 1.24 V 0x37 = 1.25 V 0x39 = 1.27 V 0x3A = 1.28 V 0x3B = 1.29 V 0x3D-0x7F = reserved 75/116 D0 Initial Address 0x0A 0x0F Initial 0x03 = 0.73 V 0x07 = 0.77 V 0x0E = 0.84 V 0x12 = 0.88 V 0x18 = 0.94 V 0x1C = 0.98 V 0x20 = 1.02 V 0x24 = 1.06 V 0x28 = 1.10 V 0x2C = 1.14 V 0x30 = 1.18 V 0x34 = 1.22 V 0x38 = 1.26 V 0x3C = 1.30 V 0001010 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.2. BUCK2 5.2.2.1. BUCK2 Block Diagram VSYS INT LDO 1P5 BUCK2_VIN OCP V RE F V oltage set ting OSC DAC BUCK2_LX - Soft Start Switch Control LBK 2 COB K2 + P GND (EX P-P AD) EN BUCK2_FB Discharge Resistor V R Controller EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-2. BUCK2 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 76/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.2.2. BUCK2 Electrical Characteristics Table 5-8. BUCK2 Electrical Characteristics (Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V) Parameter Symbol Limit Unit Condition Min Typ Max VO_BK2 0.89 0.90 0.91 V Vo = 0.9 V Io = 200 mA, PWM fix Mode VORG_BK2 0.7 - 1.3 V 10 mV step IQ_BK2 - 15 - µA Vo = 0.9 V Io = 0 mA, Auto mode Maximum Output Current IOMAX_BK2 3000 - - mA Over Current Protection IOCP_BK2 4500 - - mA Peak current of inductor ΔVLDR_BK2 -1 0 +1 % Io = 1 mA to Iomax, PWM fix Mode ηBK2_1mA - 79 - % Io = 1 mA, Vo = 0.9 V ηBK2_500mA - 84 - % Io = 500 mA, Vo = 0.9 V ηBK2_max - 71 - % Io = Iomax, Vo = 0.9 V Oscillating Frequency fSW_BK2 - 2 - MHz Start up Time tST_BK2 - 162 500 µs Discharge Resistance RD_BK2 - 100 - Ω D VRFBK2_L - 80 - % DVRFBK2_LHYS - 10 - % D VRBK2_H - 130 - % Vo = 0.9 V (FB = Sweep up) Power good detect level / Vo x 100 DVRFBK2_HHYS - 20 - % (VR fault detect level - release level) / Vo x 100 LBK2 - 0.47 - μH COBK2 22 44 100 μF Output Voltage Programmable Output Voltage Range Quiescent Current DC Output Voltage Load Regulation Efficiency Low Side VR Fault Detect Level Low Side VR Fault Detect Hysteresis High Side VR Fault Detect Level High Side VR Fault Detect Hysteresis Output Inductance Output Capacitance (Note 1) PWM fix mode, Io = 0 mA During EN to 90 % of nominal Voltage, BUCK2_RAMPRATE_RUN[1:0] = 01 Vo = 0.9 V (FB = Sweep down) VR fault detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 (Note 2) (Note 2) Effective capacitance with BUCK's DC bias Max value is limited by ramp rate. ramp rate 1.25 mV, 2.5 mV, 5 mV : 100 µF ramp rate 10 mV : 50 µF (Note 1) For Buck- DCDC converters, (minimum Over Current Protection Current – ½ inductor ripple current) is the maximum output current. (Note 2) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 77/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.2.3. BUCK2 Control Table 5-9. BUCK2_CTRL - BUCK2 Control Register Register Name R/W BUCK2_CTRL R/W Bit D[7:6] D7 D6 BUCK2_RAMPRATE[1:0] D5 D4 - - D3 BUCK2_ PWM_FIX Name D2 - D1 D0 BUCK2_SEL BUCK2_EN Initial Address 0x40 0x06 Function BUCK2_RAMPRATE[1:0] Initial BUCK2 DVS ramp rate 00 = 10 mV/μs 01 = 5 mV/μs 10 = 2.5 mV/μs 11 = 1.25 mV/μs Note : When BUCK2 voltage starts up from 0V, the ramp rate is fixed 5mV/μs, regardless of the value of BUCK2_RAMPRATE[1:0]. 01 0 – AUTO PWM/PFM mode VR adjusts the operating mode (PFM/PWM) automatically based on the load current to maximize power efficiency. 1 – Forced PWM Mode VR operates in PWM mode only. 0 D[3] BUCK2_PWM_FIX D[1] BUCK2_SEL BUCK2 control select bit 0 = BUCK2 ON/OFF is controlled by state machine. 1 = BUCK2 ON/OFF is controlled by D[0] on this register. 0 BUCK2_EN BUCK2 control bit with condition of D[1] 0 = BUCK2 OFF 1 = BUCK2 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. When system is in SNVS or SUSPEND, BUCK2_SEL = 1 and BUCK2_EN = 1, BUCK2 voltage is specified by BUCK2_VOLT_IDLE register. 0 D[0] Table 5-10. BUCK2_VOLT_RUN - BUCK2 Voltage (RUN) Register Register Name R/W D7 BUCK2_VOLT_RUN R/W - Bit D[6:0] D6 D5 D4 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D2 D1 BUCK2_VOLT_RUN[6:0] Name BUCK2_VOLT_RUN[6:0] D3 Function BUCK2 voltage when Power State = RUN 0x00 = 0.70 V 0x01 = 0.71 V 0x02 = 0.72 V 0x04 = 0.74 V 0x05 = 0.75 V 0x06 = 0.76 V 0x08 = 0.78 V 0x09 = 0.79 V 0x0A = 0.80 V 0x0C = 0.82 V 0x0D = 0.83 V 0x0E = 0.84 V 0x10 = 0.86 V 0x11 = 0.87 V 0x12 = 0.88 V 0x14 = 0.90 V (initial) 0x15 = 0.91 V 0x16 = 0.92 V 0x17 = 0.93 V 0x19 = 0.95 V 0x1A = 0.96 V 0x1B = 0.97 V 0x1D = 0.99 V 0x1E = 1.00 V 0x1F = 1.01 V 0x21 = 1.03 V 0x22 = 1.04 V 0x23 = 1.05 V 0x25 = 1.07 V 0x26 = 1.08 V 0x27 = 1.09 V 0x29 = 1.11 V 0x2A = 1.12 V 0x2B = 1.13 V 0x2D = 1.15 V 0x2E = 1.16 V 0x2F = 1.17 V 0x31 = 1.19 V 0x32 = 1.20 V 0x33 = 1.21 V 0x35 = 1.23 V 0x36 = 1.24 V 0x37 = 1.25 V 0x39 = 1.27 V 0x3A = 1.28 V 0x3B = 1.29 V 0x3D-0x7F = reserved 78/116 D0 Initial Address 0x14 0x10 Initial 0x03 = 0.73 V 0x07 = 0.77 V 0x0B = 0.81 V 0x0F = 0.85 V 0x13 = 0.89 V 0x18 = 0.94 V 0x1C = 0.98 V 0x20 = 1.02 V 0x24 = 1.06 V 0x28 = 1.10 V 0x2C = 1.14 V 0x30 = 1.18 V 0x34 = 1.22 V 0x38 = 1.26 V 0x3C = 1.30 V 0010100 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.2.3. BUCK2 Control – continued Table 5-11. BUCK2_VOLT_IDLE - BUCK2 Voltage (IDLE) Register Register Name R/W D7 BUCK2_VOLT_IDLE R/W - Bit D[6:0] D6 D5 D4 Name BUCK2_VOLT_IDLE[6:0] www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D3 D2 D1 BUCK2_VOLT_IDLE[6:0] Function BUCK2 voltage when Power State = IDLE 0x00 = 0.70 V 0x01 = 0.71 V 0x02 = 0.72 V 0x04 = 0.74 V 0x05 = 0.75 V 0x06 = 0.76 V 0x08 = 0.78 V 0x09 = 0.79 V 0x0A = 0.80V(initial) 0x0B = 0.81 V 0x0C = 0.82 V 0x0D = 0.83 V 0x0F = 0.85 V 0x10 = 0.86 V 0x11 = 0.87 V 0x13 = 0.89 V 0x14 = 0.90 V 0x15 = 0.91 V 0x16 = 0.92 V 0x17 = 0.93 V 0x19 = 0.95 V 0x1A = 0.96 V 0x1B = 0.97 V 0x1D = 0.99 V 0x1E = 1.00 V 0x1F = 1.01 V 0x21 = 1.03 V 0x22 = 1.04 V 0x23 = 1.05 V 0x25 = 1.07 V 0x26 = 1.08 V 0x27 = 1.09 V 0x29 = 1.11 V 0x2A = 1.12 V 0x2B = 1.13 V 0x2D = 1.15 V 0x2E = 1.16 V 0x2F = 1.17 V 0x31 = 1.19 V 0x32 = 1.20 V 0x33 = 1.21 V 0x35 = 1.23 V 0x36 = 1.24 V 0x37 = 1.25 V 0x39 = 1.27 V 0x3A = 1.28 V 0x3B = 1.29 V 0x3D-0x7F = reserved 79/116 D0 Initial Address 0x0A 0x11 Initial 0x03 = 0.73 V 0x07 = 0.77 V 0x0E = 0.84 V 0x12 = 0.88 V 0x18 = 0.94 V 0x1C = 0.98 V 0x20 = 1.02 V 0x24 = 1.06 V 0x28 = 1.10 V 0x2C = 1.14 V 0x30 = 1.18 V 0x34 = 1.22 V 0x38 = 1.26 V 0x3C = 1.30 V 0001010 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.3. BUCK5 5.2.3.1. BUCK5 Block Diagram VSYS INT LDO 1P5 BUCK5_VIN OCP V RE F V oltage set ting OSC DAC BUCK5_LX - Soft Start Switch Control LBK 5 COB K5 + P GND (EX P-P AD) EN BUCK5_FB Discharge Resistor V R Controller EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-3. BUCK5 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 80/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.3.2. BUCK5 Electrical Characteristics Table 5-12. BUCK5 Electrical Characteristics (Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V) Parameter Symbol Limit Unit Condition Min Typ Max VO_BK5 0.89 0.90 0.91 V VORG_BK5 0.70 - 1.35 V IQ_BK5 - 15 - µA Maximum Output Current IOMAX_BK5 3000 - - mA Over Current Protection IOCP_BK5 4500 - - mA Peak current of inductor(Note 1) ΔVLDR_BK5 -1 0 +1 % Io = 1 mA to Iomax, PWM fix Mode ηBK5_1mA - 79 - % Io = 1 mA, Vo = 0.9 V ηBK5_500mA - 84 - % Io = 500 mA, Vo = 0.9 V ηBK5_max - 71 - % Io = Iomax, Vo = 0.9 V Oscillating Frequency fSW_BK5 - 2 - MHz Start up Time tST_BK5 - 162 500 µs Discharge Resistance RD_BK5 - 100 - Ω DVRFBK5_L - 80 - % DVRFBK5_LHYS - 10 - % DVRBK5_H - 130 - % DVRFBK5_HHYS - 20 - % LBK5 - 0.47 - μH (Note 2) COBK5 22 44 100 μF (Note 2) Effective capacitance with BUCK's DC bias Output Voltage Programmable Output Voltage Range Quiescent Current DC Output Voltage Load Regulation Efficiency Low Side VR Fault Detect Level Low Side VR Fault Detect Hysteresis High Side VR Fault Detect Level High Side VR Fault Detect Hysteresis Output Inductance Output Capacitance Vo = 0.9 V Io = 200 mA, PWM fix Mode 0.70 V, 0.80 V, 0.90 V, 1.00 V, 1.05 V, 1.10 V, 1.20 V, 1.35 V Vo = 0.9 V Io = 0 mA, Auto mode PWM fix mode, Io = 0 mA During EN to 90 % of nominal Voltage Vo = 0.9 V (FB = Sweep down) VR fault detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 Vo = 0.9 V (FB = Sweep up) Power good detect level / Vo x 100 (VR fault detect level - release level) / Vo x 100 (Note 1) For Buck- DCDC converters, (minimum Over Current Protection Current – ½ inductor ripple current) is the maximum output current. (Note 2) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 81/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.3.3. BUCK5 Control Table 5-13. BUCK5_CTRL - BUCK5 Control Register Register Name R/W D7 D6 D5 D4 BUCK5_CTRL R/W - - - - Bit D3 BUCK5_PW M_FIX Name D2 - D1 D0 BUCK5_SEL BUCK5_EN Initial Address 0x00 0x09 Function Initial 0 – AUTO PWM/PFM mode VR adjusts the operating mode (PFM/PWM) automatically based on the load current to maximize power efficiency. 1 – Forced PWM Mode VR operates in PWM mode only. 0 D[3] BUCK5_PWM_FIX D[1] BUCK5_SEL BUCK5 control select bit 0 = BUCK5 ON/OFF is controlled by state machine. 1 = BUCK5 ON/OFF is controlled by D[0] on this register. 0 BUCK5_EN BUCK5 control bit with condition of D[1] 0 = BUCK5 OFF 1 = BUCK5 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[0] Table 5-14. BUCK5_VOLT - BUCK5 Voltage Register Register Name R/W BUCK5_VOLT R/W D7 D6 BUCK5_ VOLT_SEL[1:0] Bit Name D[7:6] BUCK5_VOLT_SEL[1:0] D[2:0] BUCK5_VOLT[2:0] www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D5 D4 D3 - - - D2 D1 BUCK5_VOLT[2:0] Function Initial Address 0x02 0x14 Initial Select the BUCK5 voltage range set by D[2:0]. 00 = 0.70 V to 1.35 V 01 = 0.55 V to 0.90 V 10 = 0.675 V to 1.325 V 11 = reserved 00 BUCK5 voltage If D[7:6]=00 000 = 0.70 V 001 = 0.80 V 010 = 0.90 V (Initial) 011 = 1.00 V 100 = 1.05 V 101 = 1.10 V 110 = 1.20 V 111 = 1.35 V If D[7:6]=01 000 = 0.55 V 001 = 0.60 V 010 = 0.65 V 011 = 0.70 V 100 = 0.75 V 101 = 0.80 V 110 = 0.85 V 111 = 0.90 V If D[7:6]=10 000 = 0.675 V 001 = 0.775 V 010 = 0.875 V 011 = 0.975 V 100 = 1.025 V 101 = 1.075 V 110 = 1.175 V 111 = 1.325 V 82/116 D0 010 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.4. BUCK6 5.2.4.1. BUCK6 Block Diagram VSYS INT LDO 1P5 BUCK6_VIN OCP V RE F V oltage set ting OSC DAC BUCK6_LX - Soft Start Switch Control LBK 6 COB K6 + P GND (EX P-P AD) EN BUCK6_FB Discharge Resistor V R Controller EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-4. BUCK6 Block Diagram BUCK6 can be configured to the highest output voltage up to 3.3V. There is no concern for subharmonic oscillations even at 50% or higher switching duty cycle as the Buck regulator adopts hysteretic topology. However, there might be consideration required for the input and output voltage headroom as described in the “Headroom for BUCK6” section in the “5.2.4.2. BUCK6 Electrical Characteristics” of this datasheet. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 83/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.4.2. BUCK6 Electrical Characteristics Table 5-15. BUCK6 Electrical Characteristics (Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V) Parameter Symbol Limit Unit Condition Min Typ Max VO_BK6 3.267 3.300 3.333 V Vo=3.3 V Io = 200 mA, PWM fix Mode VORG_BK6 2.6 - 3.3 V 100 mV step IQ_BK6 - 9 - µA Vo=3.3 V Io=0 mA, Auto mode Maximum Output Current IOMAX_BK6 3000 - - mA Over Current Protection IOCP_BK6 4500 - - mA Peak current of inductor(Note 1) ΔVLDR_BK6 -1 0 +1 % Io=1 mA to Iomax, PWM fix Mode ηBK6_1mA - 93 - % Io = 1 mA, Vo=3.3 V ηBK6_500mA - 95 - % Io = 500 mA, Vo=3.3 V ηBK6_max - 88 - % Io = Iomax, Vo=3.3 V Oscillating Frequency fSW_BK6 - 1.5 - MHz Start up Time tST_BK6 - 240 500 µs Discharge Resistance RD_BK6 - 100 - Ω DVRFBK6_L - 80 - % DVRFBK6_LHYS - 10 - % DVRBK6_H - 130 - % DVRFBK6_HHYS - 20 - % LBK6 - 1 - μH COBK6 15.4 44 100 μF Output Voltage Programmable Output Voltage Range Quiescent Current DC Output Voltage Load Regulation Efficiency Low Side VR Fault Detect Level Low Side VR Fault Detect Hysteresis High Side VR Fault Detect Level High Side VR Fault Detect Hysteresis Output Inductance Output Capacitance PWM fix mode, Io = 0 mA During EN to 90 % of nominal Voltage Vo = 3.3 V (FB = Sweep down) VR fault detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 Vo = 3.3 V (FB = Sweep up) Power good detect level / Vo x 100 (VR fault detect level - release level) / Vo x 100 (Note 2) (Note 2) Effective capacitance with BUCK's DC bias (Note 1) For Buck- DCDC converters, (minimum Over Current Protection Current – ½ inductor ripple current) is the maximum output current. (Note 2) This part value range need to be guaranteed over the operating surrounding temperature. Headroom for BUCK6 BUCK6 cannot maintain output voltage when the input voltage is close to the output voltage. The headroom voltage is determined by output current and the impedance from VSYS to BUCK6 output including the inductor parasitic impedance (DCR). The PMIC internal impedance from BUCK6_VIN to BUCK6_LX is 121 mΩ at the worst case. Please calculate total impedance using this value, and secure enough headroom for VSYS according to the output current and voltage. (Example – ROHM Evaluation Board case) Vo = 3.3V setting: VO VSYS to BUCK6_VIN impedance of the EVB = 3 mΩ: RVIN BUCK6_LX to inductor impedance of the EVB = 6 mΩ: RLX Inductor parasitic impedance (DCR) = 45 mΩ: RIND PMIC internal impedance from BUCK6_VIN to BUCK6_LX = 121 mΩ: RPMIC Total impedance = 175 mΩ: RTOTAL=RVIN+RLX+RIND+RPMIC Headroom = RTOTAL x Output Current Output current Required minimum VSYS voltage 1.0 A 3.475 V 2.0 A 3.650 V 3.0 A 3.825 V www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 84/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.4.3. BUCK6 Control Table 5-16. BUCK6_CTRL - BUCK6 Control Register Register Name R/W D7 D6 D5 D4 BUCK6_CTRL R/W - - - - Bit D3 BUCK6_PW M_FIX Name D2 - D1 D0 BUCK6_SEL BUCK6_EN Initial Address 0x00 0x0A Function Initial 0 – AUTO PWM/PFM mode VR adjusts the operating mode (PFM/PWM) automatically based on the load current to maximize power efficiency. 1 – Forced PWM Mode VR operates in PWM mode only. 0 D[3] BUCK6_PWM_FIX D[1] BUCK6_SEL BUCK6 control select bit 0 = BUCK6 ON/OFF is controlled by state machine. 1 = BUCK6 ON/OFF is controlled by D[0] on this register. 0 BUCK6_EN BUCK6 control bit with condition of D[1] 0 = BUCK6 OFF 1 = BUCK6 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[0] Table 5-17. BUCK6_VOLT - BUCK6 Voltage Register Register Name R/W D7 BUCK6_VOLT R/W - D6 BUCK6_ VOLT_SEL Bit Name D[6] BUCK6_VOLT_SEL D[1:0] BUCK6_VOLT[1:0] D5 D4 D3 D2 - - - - D1 D0 BUCK6_VOLT[1:0] Function Select the BUCK6 voltage range set by D[6]. 0 =3.0 V to 3.3 V 1 = 2.6 V to 2.9 V Initial Address 0x03 0x15 Initial Note: Changing BUCK6 voltage value is not allowed when BUCK6 is still ON. In the case where this register value is changed, BUCK6 should be turned OFF. BUCK6 voltage If D[6]=0 00 = 3.0 V 01 = 3.1 V 10 = 3.2 V 11 = 3.3 V(Initial) If D[6]=1 00 = 2.6 V 01 = 2.7 V 10 = 2.8 V 11 = 2.9 V 0 11 Note: Changing BUCK6 voltage value is not allowed when BUCK6 is still ON. In the case where this register value is changed, BUCK6 should be turned OFF. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 85/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.5. BUCK7 5.2.5.1. BUCK7 Block Diagram VSYS INT LDO 1P5 BUCK7_VIN OCP V RE F V oltage set ting OSC DAC BUCK7_LX - Soft Start Switch Control LBK 7 COB K7 + P GND (EX P-P AD) EN BUCK7_FB Discharge Resistor V R Controller EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-5. BUCK7 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 86/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.5.2. BUCK7 Electrical Characteristics Table 5-18. BUCK7 Electrical Characteristics (Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V) Parameter Symbol Limit Unit Condition Min Typ Max VO_BK7 1.782 1.800 1.818 V VORG_BK7 1.605 - 1.995 V IQ_BK7 - 15 - µA Maximum Output Current IOMAX_BK7 1500 - - mA Over Current Protection IOCP_BK7 3000 - - mA Peak current of inductor(Note 1) ΔVLDR_BK7 -1 0 +1 % Io = 1 mA to Iomax, PWM fix Mode ηBK7_1mA - 85 - % Io = 1 mA, Vo=1.8 V ηBK7_500mA - 89 - % Io = 500 mA, Vo=1.8 V ηBK7_max - 85 - % Io = Iomax, Vo=1.8 V Oscillating Frequency fSW_BK7 - 2 - MHz Start up Time tST_BK7 - 220 500 µs Discharge Resistance RD_BK7 - 100 - Ω DVRFBK7_L - 80 - % DVRFBK7_LHYS - 10 - % DVRBK7_H - 130 - % DVRFBK7_HHYS - 20 - % LBK7 - 0.47 - μH COBK7 11 22 100 μF Output Voltage Programmable Output Voltage Range Quiescent Current DC Output Voltage Load Regulation Efficiency Low Side VR Fault Detect Level Low Side VR Fault Detect Hysteresis High Side VR Fault Detect Level High Side VR Fault Detect Hysteresis Output Inductance Output Capacitance Vo = 1.8 V Io = 200 mA, PWM fix Mode 1.605 V, 1.695 V, 1.755 V, 1.800 V, 1.845 V, 1.905 V, 1.950 V, 1.995 V Vo = 1.8 V Io = 0 mA, Auto mode PWM fix mode, Io = 0 mA During EN to 90 % of nominal Voltage Vo = 1.8 V (FB = Sweep down) VR fault detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 Vo = 1.8 V (FB = Sweep up) Power good detect level / Vo x 100 (VR fault detect level - release level) / Vo x 100 (Note 2) (Note 2) Effective capacitance with BUCK's DC bias (Note 1) For Buck- DCDC converters, (minimum Over Current Protection Current – ½ inductor ripple current) is the maximum output current. (Note 2) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 87/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.5.3. BUCK7 Control Table 5-19. BUCK7_CTRL - BUCK7 Control Register Register Name R/W D7 D6 D5 D4 BUCK7_CTRL R/W - - - - Bit D3 BUCK7_PW M_FIX Name D2 - D1 D0 BUCK7_SEL BUCK7_EN Initial Address 0x00 0x0B Function Initial 0 – AUTO PWM/PFM mode VR adjusts the operating mode (PFM/PWM) automatically based on the load current to maximize power efficiency. 1 – Forced PWM Mode VR operates in PWM mode only. 0 D[3] BUCK7_PWM_FIX D[1] BUCK7_SEL BUCK7 control select bit 0 = BUCK7 ON/OFF is controlled by state machine. 1 = BUCK7 ON/OFF is controlled by D[0] on this register. 0 BUCK7_EN BUCK7 control bit with condition of D[1] 0 = BUCK7 OFF 1 = BUCK7 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[0] Table 5-20. BUCK7_VOLT - BUCK7 Voltage Register Register Name R/W D7 D6 D5 D4 D3 BUCK7_VOLT R/W - - - - - Bit D[2:0] Name BUCK7_VOLT[2:0] D2 D1 D0 BUCK7_VOLT[2:0] Function Initial Address 0x03 0x16 Initial BUCK7 voltage 000 = 1.605 V 001 = 1.695 V 010 = 1.755 V 011 = 1.800 V (Initial) 100 = 1.845 V 101 = 1.905 V 110 = 1.950 V 111 = 1.995 V 011 Note: Changing BUCK7 voltage value is not allowed when BUCK7 is still ON. In the case where this register value is changed, BUCK7 should be turned OFF. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 88/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.6. BUCK8 5.2.6.1. BUCK8 Block Diagram VSYS INT LDO 1P5 BUCK8_VI N OCP V RE F V oltage set ting OSC DAC BUCK8_LX - Soft Start Switch Control LBK 8 COB K8 + P GND (EX P-P AD) EN BUCK8_FB Discharge Resistor V R Controller EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-6. BUCK8 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 89/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.6.2. BUCK8 Electrical Characteristics Table 5-21. BUCK8 Electrical Characteristics (Unless otherwise specified, Ta=+25 °C, VSYS=5.0 V) Parameter Symbol Limit Unit Condition Min Typ Max VO_BK8 1.089 1.100 1.111 V Vo = 1.1 V Io = 200 mA, PWM fix Mode VORG_BK8 0.8 - 1.4 V 10 mV step IQ_BK8 - 15 - µA Vo = 1.1 V Io = 0 mA, Auto mode Maximum Output Current IOMAX_BK8 3000 - - mA Over Current Protection IOCP_BK8 4500 - - mA Peak current of inductor (note 1) ΔVLDR_BK8 -1 0 +1 % Io = 1 mA to Iomax, PWM fix Mode ηBK8_1mA - 82 - % Io = 1 mA, Vo=1.1 V ηBK8_500mA - 86 - % Io = 500 mA, Vo=1.1 V ηBK8_max - 75 - % Io = Iomax, Vo=1.1 V Oscillating Frequency fSW_BK8 - 2 - MHz Start up Time tST_BK8 - 200 500 µs Discharge Resistance RD_BK8 - 100 - Ω DVRFBK8_L - 80 - % DVRFBK8_LHYS - 10 - % DVRBK8_H - 130 - % DVRFBK8_HHYS - 20 - % LBK8 - 0.47 - μH COBK8 22 44 100 μF Output Voltage Programmable Output Voltage Range Quiescent Current DC Output Voltage Load Regulation Efficiency Low Side VR Fault Detect Level Low Side VR Fault Detect Hysteresis High Side VR Fault Detect Level High Side VR Fault Detect Hysteresis Output Inductance Output Capacitance PWM fix mode, Io = 0 mA During EN to 90 % of nominal Voltage Vo = 1.1 V (FB = Sweep down) VR fault detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 Vo = 1.1 V (FB = Sweep up) Power good detect level / Vo x 100 (VR fault detect level - release level) / Vo x 100 (Note 2) (Note 2) Effective capacitance with BUCK's DC bias (Note 1) For Buck- DCDC converters, (minimum Over Current Protection Current – ½ inductor ripple current) is the maximum output current. (Note 2) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 90/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.2.6.3. BUCK8 Control Table 5-22. BUCK8_CTRL - BUCK8 Control Register Register Name R/W D7 D6 D5 D4 BUCK8_CTRL R/W - - - - Bit D3 BUCK8_PW M_FIX Name D2 - D1 D0 BUCK8_SEL BUCK8_EN Initial Address 0x00 0x0C Function Initial 0 – AUTO PWM/PFM mode VR adjusts the operating mode (PFM/PWM) automatically based on the load current to maximize power efficiency. 1 – Forced PWM Mode VR operates in PWM mode only. 0 D[3] BUCK8_PWM_FIX D[1] BUCK8_SEL BUCK8 control select bit 0 = BUCK8 ON/OFF is controlled by state machine. 1 = BUCK8 ON/OFF is controlled by D[0] on this register. 0 BUCK8_EN BUCK8 control bit with condition of D[1] 0 = BUCK8 OFF 1 = BUCK8 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[0] Table 5-23. BUCK8_VOLT - BUCK8 Voltage Register Register Name R/W D7 BUCK8_VOLT R/W - Bit D[6:0] D6 D5 D4 D3 www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 D1 BUCK8_VOLT[6:0] Name BUCK8_VOLT[6:0] D2 Function BUCK8 voltage 0x00 = 0.80 V 0x01 = 0.81 V 0x04 = 0.84 V 0x05 = 0.85 V 0x08 = 0.88 V 0x09 = 0.89 V 0x0C = 0.92 V 0x0D = 0.93 V 0x10 = 0.96 V 0x11 = 0.97 V 0x14 = 1.00 V 0x15 = 1.01 V 0x18 = 1.04 V 0x19 = 1.05 V 0x1C = 1.08 V 0x1D = 1.09 V 0x1E = 1.10 V (initial) 0x1F = 1.11 V 0x20 = 1.12 V 0x23 = 1.15 V 0x24 = 1.16 V 0x27 = 1.19 V 0x28 = 1.20 V 0x2B = 1.23 V 0x2C = 1.24 V 0x2F = 1.27 V 0x30 = 1.28 V 0x33 = 1.31 V 0x34 = 1.32 V 0x37 = 1.35 V 0x38 = 1.36 V 0x3B = 1.39 V 0x3C = 1.40 V 0x3D-0x7F = reserved 91/116 D0 Initial Address 0x1E 0x17 Initial 0x02 = 0.82 V 0x06 = 0.86 V 0x0A = 0.90 V 0x0E = 0.94 V 0x12 = 0.98 V 0x16 = 1.02 V 0x1A = 1.06 V 0x03 = 0.83 V 0x07 = 0.87 V 0x0B = 0.91 V 0x0F = 0.95 V 0x13 = 0.99 V 0x17 = 1.03 V 0x1B = 1.07 V 0x21 = 1.13 V 0x25 = 1.17 V 0x29 = 1.21 V 0x2D = 1.25 V 0x31 = 1.29 V 0x35 = 1.33 V 0x39 = 1.37 V 0x22 = 1.14 V 0x26 = 1.18 V 0x2A = 1.22 V 0x2E = 1.26 V 0x32 = 1.30 V 0x36 = 1.34 V 0x3A = 1.38 V 0011110 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3. Details of LDO 5.3.1. LDO1 5.3.1.1. LDO1 Block Diagram OCP VSYS VSYS V RE F DAC V oltage set ting - Soft Start + LDO1_VO UT COLDO1 EN Discharge V R Controller Resistor EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-7. LDO1 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 92/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.1.2. LDO1 Electrical Characteristics Table 5-24. LDO1 Electrical Characteristics (Unless otherwise specified, Ta = +25°C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 1.8 V setting) Limit Parameter Symbol Unit Condition Min Typ Max VO=1.8 V setting Output Voltage VO_LDO1 1.782 1.800 1.818 V Io=1 mA Output Voltage Range 1 VORG_LDO1_1 1.600 - 1.900 V 100 mV step Output Voltage Range 2 VORG_LDO1_2 3.000 - 3.300 V 100 mV step Maximum Output Current IOMAX_LDO1 10 - - mA Over Current Protection IOCP_LDO1 20 - - mA IQ_LDO1 - 6 - µA ΔVODP_LDO1 - 40 - mV tST_LDO1 - 440 1000 µs DC Output Voltage Load Regulation ΔVLDR_LDO1 - 10 20 mV Io=1 mA to Iomax DC Output Voltage Line Regulation ΔVLNR_LDO1 - 2 5 mV VSYS = 4.5 V to 5.5 V, Io=Iomax Discharge Resistance RDIS_LDO1 - 100 200 Ω VR Fault Detect Level DVRFLDO1 - 80 - % DVRFLDO1_HYS - 10 - % Ripple Rejection Ratio RRLDO1 - 60 - dB VSYS = 5.0 V, IO=Iomax/2 VR = -20 dBV, fR=100 Hz BW=20 Hz to 20 kHz Output Capacitance COLDO1 0.5 1.0 5.0 μF (Note 1) Effective capacitance with LDO's DC bias Quiescent Current Dropout Voltage Start up Time VR Fault Detect Hysteresis Io=0 mA Io = Iomax VSYS=3.2 V, VO=3.3 V setting Io=0 mA, During EN to 90 % of nominal Voltage Output = Sweep down Power good detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 (Note 1) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 93/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.1.3. LDO1 Control Table 5-25. LDO1_VOLT - LDO1 Voltage Register Register Name LDO1_VOLT R/W R/W D7 LDO1_SEL D6 D5 D4 D3 D2 LDO1_EN LDO1_VOL T_SEL - - - D1 D0 Initial Address LDO1_VOLT[1:0] 0x22 0x18 Bit Name D[7] LDO1_SEL LDO1 control select bit 0 = LDO1 ON/OFF is controlled by state machine. 1 = LDO1 ON/OFF is controlled by D[6] on this register. 0 LDO1_EN LDO1 control bit with condition of D[7] 0 = LDO1 OFF 1 = LDO1 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[6] D[5] LDO1_VOLT_SEL Function Initial Select the LDO1 voltage range set by D[1:0]. 0 = 3.0 V to 3.3 V 1 = 1.6 V to 1.9 V 1 Note: Changing LDO1 voltage value is not allowed when LDO1 is still ON. In the case where this register value is changed, LDO1 should be turned OFF. D[1:0] LDO1_VOLT[1:0] LDO1 voltage If D[5]=0, 00 = 3.0 V 01 = 3.1 V 10 = 3.2 V 11 = 3.3 V If D[5]=1, 00 = 1.6 V 01 = 1.7 V 10 = 1.8 V (Initial) 11 = 1.9 V 10 Note: Changing LDO1 voltage value is not allowed when LDO1 is still ON. In the case where this register value is changed, LDO1 should be turned OFF. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 94/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.2. LDO2 5.3.2.1. LDO2 Block Diagram OCP VSYS VSYS V RE F DAC V oltage set ting - Soft Start + LDO2_VO UT COLDO2 EN Discharge V R Controller Resistor EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-8. LDO2 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 95/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.2.2. LDO2 Electrical Characteristics Table 5-26. LDO2 Electrical Characteristics (Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 0.8 V setting) Limit Parameter Symbol Unit Min Typ Max Condition VO_LDO2 0.785 0.800 0.815 V VO=0.8 V setting Io=1 mA Output Voltage Range VORG_LDO2 0.800 - 0.900 V 100 mV step Maximum Output Current IOMAX_LDO2 10 - - mA Over Current Protection IOCP_LDO2 20 - - mA Quiescent Current IQ_LDO2 - 6 - µA Io = 0 mA Start up Time tST_LDO2 - 370 1000 µs Io = 0 mA, During EN to 90 % of nominal Voltage DC Output Voltage Load Regulation ΔVLDR_LDO2 - 10 20 mV Io = 1 mA to Iomax DC Output Voltage Line Regulation ΔVLNR_LDO2 - 2 5 mV VSYS = 4.5 V to 5.5 V, Io = Iomax Discharge Resistance RDIS_LDO2 - 100 200 Ω VR Fault Detect Level DVRFLDO2 - 80 - % DVRFLDO2_HYS - 10 - % Ripple Rejection Ratio RRLDO2 - 60 - dB VSYS = 5.0 V, IO=Iomax/2 VR = -20 dBV, fR=100 Hz BW=20 Hz to 20 kHz Output Capacitance COLDO2 0.5 1.0 5.0 μF (Note 1) Effective capacitance with LDO's DC bias Output Voltage VR Fault Detect Hysteresis Output = Sweep down Power good detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 (Note 1) This part value range need to be guaranteed over the operating surrounding temperature. 5.3.2.3. LDO2 Control Table 5-27. LDO2_VOLT - LDO2 Voltage Register Register Name LDO2_VOLT R/W R/W D7 LDO2_SEL D6 D5 D4 D3 D2 D1 D0 Initial Address LDO2_EN LDO2_VOL T_SEL - - - - - 0x20 0x19 Bit Name D[7] LDO2_SEL LDO2 control select bit 0 = LDO2 ON/OFF is controlled by state machine. 1 = LDO2 ON/OFF is controlled by D[6] on this register. 0 LDO2_EN LDO2 control bit with condition of D[7] 0 = LDO2 OFF 1 = LDO2 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[6] D[5] LDO2_VOLT_SEL Function Initial Select the LDO2 voltage. 0 = 0.9V 1 = 0.8V (initial) 1 Note: Changing LDO2 voltage value is not allowed when LDO2 is still ON. In the case where this register value is changed, LDO2 should be turned OFF. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 96/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.3. LDO3 5.3.3.1. LDO3 Block Diagram OCP Note : The source of LDO3 is VSYS when BUCK6 is OFF. The source of LDO3 is VIN_3P3 when BUCK6 is ON. The changing of the source is automatic. VSYS VSYS V RE F VIN_3P3 DAC BUCK6 V oltage set ting - Soft Start + LDO3_VOUT COLDO3 EN Discharge V R Controller Resistor EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-9. LDO3 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 97/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.3.2. LDO3 Electrical Characteristics Table 5-28. LDO3 Electrical Characteristics (Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 1.8 V setting) Limit Parameter Symbol Unit Min Typ Max Condition VO_LDO3 1.782 1.800 1.818 V VO=1.8 V setting Io=1 mA Output Voltage Range VORG_LDO3 1.800 - 3.300 V 100 mV step Maximum Output Current IOMAX_LDO3 300 - - mA Over Current Protection IOCP_LDO3 390 - - mA IQ_LDO3 - 9 - µA ΔVODP_LDO3 - 450 - mV tST_LDO3 - 310 1000 µs DC Output Voltage Load Regulation ΔVLDR_LDO3 - 10 20 mV Io = 1 mA to Iomax DC Output Voltage Line Regulation ΔVLNR_LDO3 - 2 5 mV VSYS = 4.5 V to 5.5 V, Io = 50 mA Discharge Resistance RDIS_LDO3 - 100 200 Ω VR Fault Detect Level DVRFLDO3 - 80 - % DVRFLDO3_HYS - 10 - % Ripple Rejection Ratio RRLDO3 - 60 - dB VSYS = 5.0 V, IO=Iomax/2 VR = -20 dBV, fR=100 Hz BW=20 Hz to 20 kHz Output Capacitance COLDO3 1.1 2.2 22.0 μF (Note 1) Effective capacitance with LDO's DC bias Output Voltage Quiescent Current Dropout Voltage Start up Time VR Fault Detect Hysteresis Io = 0 mA Io = Iomax VIN_3P3 = 1.7 V, VO = 1.8V setting Io = 0 mA, During EN to 90 % of nominal Voltage Output = Sweep down Power good detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 (Note 1) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 98/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.3.3. LDO3 Control Table 5-29. LDO3_VOLT - LDO3 Voltage Register Register Name R/W D7 D6 D5 D4 LDO3_VOLT R/W LDO3_SEL LDO3_EN - - D3 D2 D1 D0 LDO3_VOLT[3:0] Address 0x00 0x1A Bit Name D[7] LDO3_SEL LDO3 control select bit 0 = LDO3 ON/OFF is controlled by state machine. 1 = LDO3 ON/OFF is controlled by D[6] on this register. 0 LDO3_EN LDO3 control bit with condition of D[7] 0 = LDO3 OFF 1 = LDO3 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[6] D[3:0] Function Initial LDO3_VOLT[3:0] Initial LDO3 voltage 0x0 = 1.8 V (Initial) 0x1 = 1.9 V 0x2 = 2.0 V 0x3 = 2.1 V 0x4 = 2.2 V 0x5 = 2.3 V 0x6 = 2.4 V 0x7 = 2.5 V 0x8 = 2.6 V 0x9 = 2.7 V 0xA = 2.8 V 0xB = 2.9 V 0xC = 3.0 V 0xD = 3.1 V 0xE = 3.2 V 0xF = 3.3 V 0000 Note: Changing LDO3 voltage value is not allowed when LDO3 is still ON. In the case where this register value is changed, LDO3 should be turned OFF. It is recommended that the VIN_3P3 pin is connected to BUCK6. LDO3 power source is switched from the VSYS pin to the VIN_3P3 pin after BUCK6 is turned on. On the other hand, LDO3 power source is switched from the VIN_3P3 pin to the VSYS pin when BUCK6 is turned off. It takes 3 ms to complete this switching operation. Therefore, actual BUCK6 turn-off is delayed as shown in Figure 5-10. BUCK6_SEL BUCK6_EN 3 ms Low BUCK6 0V LDO3 Source BUCK6 VSYS Figure 5-10. LDO3 Voltage Source Switching www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 99/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.4. LDO4 5.3.4.1. LDO4 Block Diagram Note : The source of LDO4 is VSYS when BUCK7 is OFF. The source of LDO4 is VIN_1P8_1 when BUCK7 is ON. The changing of the source is automatic. VSYS OCP VSYS BUCK7 VIN_1P8_1 V RE F DAC V oltage set ting - Soft Start + LDO4_VOUT COLDO4 EN Discharge V R Controller Resistor EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-11. LDO4 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 100/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.4.2. LDO4 Electrical Characteristics Table 5-30. LDO4 Electrical Characteristics (Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 0.9 V setting) Limit Parameter Symbol Unit Min Typ Max Condition VO_LDO4 0.885 0.900 0.915 V VO=0.9 V setting Io=1 mA Output Voltage Range VORG_LDO4 0.900 - 1.800 V 100 mV step Maximum Output Current IOMAX_LDO4 250 - - mA Over Current Protection IOCP_LDO4 325 - - mA IQ_LDO4 - 9 - µA ΔVODP_LDO4 - 450 - mV tST_LDO4 - 400 1000 µs DC Output Voltage Load Regulation ΔVLDR_LDO4 - 10 20 mV Io = 1 mA to Iomax DC Output Voltage Line Regulation ΔVLNR_LDO4 - 2 5 mV VSYS = 4.5 V to 5.5 V, Io = 50 mA Discharge Resistance RDIS_LDO4 - 100 200 Ω VR Fault Detect Level DVRFLDO4 - 80 - % DVRFLDO4_HYS - 10 - % Ripple Rejection Ratio RRLDO4 - 60 - dB VSYS = 5.0 V, IO=Iomax/2 VR = -20 dBV, fR=100 Hz BW=20 Hz to 20 kHz Output Capacitance COLDO4 1.1 2.2 22.0 μF (Note 1) Effective capacitance with LDO's DC bias Output Voltage Quiescent Current Dropout Voltage Start up Time VR Fault Detect Hysteresis Io = 0 mA Io = Iomax VIN_V1P8_1 = 1.7 V, VO = 1.8 V setting Io = 0 mA, During EN to 90 % of nominal Voltage Output = Sweep down Power good detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 (Note 1) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 101/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.4.3. LDO4 Control Table 5-31. LDO4_VOLT - LDO4 Voltage Register Register Name R/W D7 D6 D5 D4 LDO4_VOLT R/W LDO4_SEL LDO4_EN - - D3 D2 D1 D0 LDO4_VOLT[3:0] Address 0x00 0x1B Bit Name D[7] LDO4_SEL LDO4 control select bit 0 = LDO4 ON/OFF is controlled by state machine. 1 = LDO4 ON/OFF is controlled by D[6] on this register. 0 LDO4_EN LDO4 control bit with condition of D[7] 0 = LDO4 OFF 1 = LDO4 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[6] D[3:0] Function Initial LDO4_VOLT[3:0] Initial LDO4 voltage 0x0 = 0.9 V (Initial) 0x1 = 1.0 V 0x2 = 1.1 V 0x3 = 1.2 V 0x4 = 1.3 V 0x5 = 1.4 V 0x6 = 1.5 V 0x7 = 1.6 V 0x8 = 1.7 V 0x9 = 1.8 V 0xA = 1.8 V 0xB = 1.8 V 0xC = 1.8 V 0xD= 1.8 V 0xE = 1.8 V 0xF = 1.8 V 0000 Note: Changing LDO4 voltage value is not allowed when LDO4 is still ON. In the case where this register value is changed, LDO4 should be turned OFF. It is recommended that the VIN_1P8_1 pin is connected to BUCK7. LDO4 power source is switched from the VSYS pin to the VIN_1P8_1 pin after BUCK7 is turned on. On the other hand, LDO4 power source is switched from the VIN_1P8_1 pin to the VSYS pin when BUCK7 is turned off. It takes 3 ms to complete this switching operation. Therefore, actual BUCK7 turn-off is delayed as shown in Figure 5-12. BUCK7_SEL BUCK7_EN 3 ms Low BUCK7 0V LDO4 Source BUCK7 VSYS Figure 5-12. LDO4 Voltage Source Switching www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 102/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.5. LDO5 5.3.5.1. LDO5 Block Diagram OCP VSYS VSYS V RE F DAC V oltage set ting - Soft Start + LDO5_VO UT COLDO5 EN Discharge V R Controller Resistor EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-13. LDO5 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 103/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.5.2. LDO5 Electrical Characteristics Table 5-32. LDO5 Electrical Characteristics (Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 3.3 V setting) Limit Parameter Symbol Unit Min Typ Max Condition VO_LDO5 3.267 3.300 3.333 V VO=3.3 V setting Io=1 mA Output Voltage Range VORG_LDO5 0.800 - 3.300 V 100 mV step Maximum Output Current IOMAX_LDO5 300 - - mA Over Current Protection IOCP_LDO5 340 - - mA IQ_LDO5 - 9 - µA ΔVODP_LDO5 - 250 - mV tST_LDO5 - 530 1000 µs DC Output Voltage Load Regulation ΔVLDR_LDO5 - 10 20 mV Io = 1 mA to Iomax DC Output Voltage Line Regulation ΔVLNR_LDO5 - 2 5 mV VSYS = 4.5 V to 5.5 V, Io = 50 mA Discharge Resistance RDIS_LDO5 - 100 200 Ω VR Fault Detect Level DVRFLDO5 - 80 - % DVRFLDO5_HYS - 10 - % Ripple Rejection Ratio RRLDO5 - 60 - dB VSYS = 5.0 V, IO=Iomax/2 VR = -20 dBV, fR=100 Hz BW=20 Hz to 20 kHz Output Capacitance COLDO5 1.1 2.2 22.0 μF (Note 1) Effective capacitance with LDO's DC bias Output Voltage Quiescent Current Dropout Voltage Start up Time VR Fault Detect Hysteresis Io = 0 mA Io = Iomax VSYS = 3.2 V, VO = 3.3 V setting Io = 0 mA, During EN to 90 % of nominal Voltage Output = Sweep down Power good detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 (Note 1) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 104/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.5.3. LDO5 Control Table 5-33. LDO5_VOLT - LDO5 Voltage Register Register Name LDO5_VOLT R/W R/W D7 LDO5_SEL D6 D5 D4 LDO5_EN LDO5_VOL T_SEL - D3 D2 D1 D0 LDO5_VOLT[3:0] Address 0x8F 0x1C Bit Name D[7] LDO5_SEL LDO5 control select bit 0 = LDO5 ON/OFF is controlled by state machine. 1 = LDO5 ON/OFF is controlled by D[6] on this register. 1 LDO5_EN LDO5 control bit with condition of D[7] 0 = LDO5 OFF 1 = LDO5 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[6] D[5] LDO5_VOLT_SEL Function Initial Initial Select the LDO5 voltage range set by D[1:0]. 0 = 1.8 V to 3.3 V 1 = 0.8 V to 2.3 V 0 Note: Changing LDO5 voltage value is not allowed when LDO5 is still ON. In the case where this register value is changed, LDO5 should be turned OFF. D[3:0] LDO5_VOLT[3:0] LDO5 voltage if D[5]=0, 0x0 = 1.8 V 0x1 = 1.9 V 0x4 = 2.2 V 0x5 = 2.3 V 0x8 = 2.6 V 0x9 = 2.7 V 0xC = 3.0 V 0xD= 3.1 V 0x2 = 2.0 V 0x6 = 2.4 V 0xA = 2.8 V 0xE = 3.2 V 0x3 = 2.1 V 0x7 = 2.5 V 0xB = 2.9 V 0xF = 3.3 V(initial) if D[5]=1, 0x0 = 0.8 V 0x4 = 1.2 V 0x8 = 1.6 V 0xC = 2.0 V 0x2 = 1.0 V 0x6 = 1.4 V 0xA = 1.8 V 0xE = 2.2 V 0x3 = 1.1 V 0x7 = 1.5 V 0xB = 1.9 V 0xF = 2.3 V 1111 0x1 = 0.9 V 0x5 = 1.3 V 0x9 = 1.7 V 0xD= 2.1 V Note: Changing LDO5 voltage value is not allowed when LDO5 is still ON. In the case where this register value is changed, LDO5 should be turned OFF. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 105/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.6. LDO6 5.3.6.1. LDO6 Block Diagram OCP BUCK7(1.8V) VIN_1P8_1 V RE F DAC V oltage set ting - Soft Start + LDO6_VO UT COLDO6 EN Discharge V R Controller Resistor EN GND P GND (EX P-P AD) V R Fault S ignal VR Fault Detector Figure 5-14. LDO6 Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 106/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.6.2. LDO6 Electrical Characteristics Table 5-34. LDO6 Electrical Characteristics (Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_1 = 1.8 V, Vo = 1.2 V setting) Limit Parameter Symbol Unit Min Typ Max Condition VO_LDO6 1.185 1.200 1.215 V VO=1.2 V setting Io=1 mA Output Voltage Range VORG_LDO6 0.900 - 1.800 V 100 mV step Maximum Output Current IOMAX_LDO6 300 - - mA Over Current Protection IOCP_LDO6 340 - - mA IQ_LDO6 - 9 - µA ΔVODP_LDO6 - 450 - mV tST_LDO6 - 400 1000 µs DC Output Voltage Load Regulation ΔVLDR_LDO6 - 10 20 mV Io = 1 mA to Iomax DC Output Voltage Line Regulation ΔVLNR_LDO6 - 2 5 mV VSYS = 4.5 V to 5.5 V, Io = 50 mA Discharge Resistance RDIS_LDO6 - 100 200 Ω VR Fault Detect Level DVRFLDO6 - 80 - % DVRFLDO6_HYS - 10 - % Ripple Rejection Ratio RRLDO6 - 60 - dB VSYS = 5.0 V, IO=Iomax/2 VR = -20 dBV, fR=100 Hz BW=20 Hz to 20 kHz Output Capacitance COLDO6 1.1 2.2 22.0 μF (Note 1) Effective capacitance with LDO's DC bias Output Voltage Quiescent Current Dropout Voltage Start up Time VR Fault Detect Hysteresis Io = 0 mA Io = Iomax VIN_V1P8_1 = 1.7 V, VO = 1.8 V setting Io = 0 mA, During EN to 90 % of nominal Voltage Output = Sweep down Power good detect level / Vo x 100 (VR fault release level - detect level) / Vo x 100 (Note 1) This part value range need to be guaranteed over the operating surrounding temperature. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 107/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.3.6.3. LDO6 Control Table 5-35. LDO6_VOLT - LDO6 Voltage Register Register Name R/W D7 D6 D5 D4 LDO6_VOLT R/W LDO6_SEL LDO6_EN - - D3 D2 D1 D0 LDO6_VOLT[3:0] Address 0x03 0x1D Bit Name D[7] LDO6_SEL LDO6 control select bit 0 = LDO6 ON/OFF is controlled by state machine. 1 = LDO6 ON/OFF is controlled by D[6] on this register. 0 LDO6_EN LDO6 control bit with condition of D[7] 0 = LDO6 OFF 1 = LDO6 ON This bit returns to 0 at the beginning of PWROFF sequence or emergency shutdown. 0 D[6] D[3:0] LDO6_VOLT[3:0] Function Initial Initial LDO6 voltage 0x0 = 0.9 V 0x1 = 1.0 V 0x2 = 1.1 V 0x3 = 1.2 V (initial) 0x4 = 1.3 V 0x5 = 1.4 V 0x6 = 1.5 V 0x7 = 1.6 V 0x8 = 1.7 V 0x9 = 1.8 V 0xA = 1.8 V 0xB = 1.8 V 0xC = 1.8 V 0xD= 1.8 V 0xE = 1.8 V 0xF = 1.8 V 0011 Note: Changing LDO6 voltage value is not allowed when LDO6 is still ON. In the case where this register value is changed, LDO6 should be turned OFF. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 108/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.4. MUXSW MUX Switch is for SD card power. 5.4.1. MUXSW Block Diagram BUCK7 VIN_1P8_2 BUCK6 DVDD VIN_3P3 SD_VSELECT MUX Switch Controller MUXSW_VOUT COMUX SW MUXSW_EN DISCHARGE RESISTOR P GND (EX P-P AD) Figure 5-15. MUXSW Block Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 109/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 5.4.2. MUXSW Electrical Characteristics Table 5-36. MUXSW Electrical Characteristics (Unless otherwise specified, Ta = +25 °C, VSYS = 5.0 V, VIN_3P3 = 3.3 V, VIN_1P8_2 = 1.8 V, Vo = 3.3 V setting) Parameter Limit Symbol Min Typ Max Unit Condition VIN_3P3 Input Voltage VIN_3P3 - 3.300 - V Switch ON Resistance(3.3 V mode) RON_3P3 - - 500 mΩ VIN_1P8_2 Input Voltage VIN_1P8 - 1.800 - V Switch ON Resistance(1.8 V mode) RON_1P8 - - 500 mΩ Maximum Output Current IOMAX_MUX 150 - - mA Discharge Resistance RDIS_MUX - 30 50 Ω VIN_1P8_2=0 V, VIN_3P3=0 V, IO=-10 mA CO_MUX 11 22 33 μF (Note 1) Effective capacitance with Output voltage Output Capacitance SD_VSELECT=0 V, VIN_3P3>3.2 V SD_VSELECT=DVDD, VIN_1P8_2>1.7 V (Note 1) This part value range need to be guaranteed over the operating surrounding temperature. Table 5-37. SD_VSELECT Electrical Characteristics (Unless otherwise specified, Ta=25°C, DVDD=1.8 V) Parameter Limit Symbol Input "H" Level VIHSDV Input "L" Level VILSDV Unit Min DVDD x 0.75 Typ Max - - V - - DVDD x 0.25 V t1 Condition t2 SD_VSELECT 3.30 V tf tr 3.30 V MUXSW_VOUT 3.15 V 1.89 V 1.80 V Figure 5-16. MUXSW Sequence Table 5-38. MUXSW Sequence Timing Description Min Typ Symbol t1 Unit - ms - - ms - 1 ms 1 ms 2 - (Note 1) 2 - SD_VSELCT High Time t2 Max (Note 1) tf SD_VSELCT Low Time Transition Time 3.3 V to 1.8 V tr Transition Time 1.8 V to 3.3 V (Note 1) t 1 and t 2 need ov er 2ms. Table 5-39. MUXSW_EN - MUXSW Enable Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address MUXSW_EN R/W - - - - - - - MUXSW_EN 0x01 0x30 Bit Name D[0] MUXSW_EN www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Function MUXSW control bit 0 = MUXSW OFF 1 = MUXSW ON 110/116 Initial 1 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 6. 32.768 kHz Crystal Oscillator Driver 6.1. 32.768 kHz Crystal Oscillator Driver Block Diagram INTLDO1P5 VDD_V1P5 VDD_V1P5 XOUT 32.768kHz Crystal CONTROLLER XIN Counter Oscillator Driver DVDD VDD_V1P5 1/375 divider M U X C32K_OUT OUT32K_EN 12MHz Figure 6-1. 32.768 kHz Crystal Oscillator Driver Block Diagram Table 6-1. C32K_OUT Control Register Register Name R/W D7 D6 D5 D4 D3 D2 D1 D0 Initial Address OUT32K R/W - - - - - - - OUT32K_EN 0x01 0x2E Bit D[0] Name Function Initial 0 = Disable (C32K_OUT is Low level) 1 = Enable OUT32K_EN 1 At the beginning of power-on, the C32K_OUT pin output clock is generated from the 12 MHz internal oscillator; the clock frequency is equal to 12 MHz / 375. If an external 32.768 kHz crystal is present, the C32K_OUT pin output clock’s clock source is switched from the internal oscillator to the crystal clock after 3000 crystal clock cycles, i.e., it is assumed that the crystal clock is stable by then. 6.2. 32.768 kHz Crystal Oscillator Driver Electrical Characteristics Table 6-2. 32.768 kHz Crystal Oscillator Driver Electrical Characteristics (Unless otherwise specified, Ta = +25°C, VSYS = 5.0 V, DVDD = 1.8 V) Limit Parameter Symbol Min Typ Max Unit Condition Output Frequency fRTCLK - 32.768 - kHz With external crystal Output Duty Cycle DRTCLK 40 50 60 % Output H Level Voltage VOH32K DVDD x 0.8 - - V IOH = -1 mA Output L Level Voltage VOL32K - - 0.4 V IOL = 1 mA (Note) The f ollowing 32.768 kHz cry stal is recommended. ST3215SB32768H5HPWAA (KY OCERA: C L=12.5pF) www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 111/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 7. Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Recommended Operating Conditions The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics. 6. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 7. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 112/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 7. Operational Notes – continued 8. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. 9. Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. 10. Regarding the Input Pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B C E Pin A N P+ P N N P+ N Parasitic Elements N P+ N P N P+ B N C E Parasitic Elements P Substrate P Substrate GND Parasitic Elements Pin B B GND GND Parasitic Elements GND N Region close-by Figure 7-1. Example of Monolithic IC Structure 11. Ceramic Capacitor When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. 12. Thermal Shutdown Circuit(TSD) This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage. 13. Over Current Protection Circuit (OCP) This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit. www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 113/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 8. Ordering Information B D 7 1 8 4 7 A Part Number 9. M W V - Package MWV: UQFN56BV7070 E2 Packaging and forming specification E2: Embossed tape and reel Marking Diagram UQFN56BV7070 (TOP VIEW) Part Number Marking ROHM LOT Number BD71847A Pin 1 Mark Figure 9-1. Marking Diagram www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 114/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 10. Physical Dimension and Packing Information Package Name www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 UQFN56BV7070 115/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 BD71847AMWV 11. Revision History 04.Mar.2019 Revision Number 001 12.Nov.2019 002 16.Mar.2020 003 Date www.rohm.com © 2019 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Description First Release p.41 Added INTLDO1P5 and INTLDO1P5_UVLO signals and corrected VSYS_UVLO signal in Figure 3-15. p.65 Clarified explanation of I2C slave address. p.83 Added the description about subharmonic for BUCK6. p.84 Changed the minimum value of Output Capacitor from 22 µF to 15.4 µF. p.84 Corrected grammar about headroom of BUCK6. p.73,77,81,84,87,90 Corrected typos (VR Fault parameter name of BUCK1, 2, 5, 6, 7 and 8. Symbol of VR Fault of BUCK8.). p.1,18 Changed maximum operating temperature to 105 °C. p.73,77,81,84,87,90,93,96,98,101,104,107,110 Deleted temperature condition of parts. Added note about parts temperature. 116/116 TSZ02201-0Q2Q0A500610-1-2 16.Mar.2020 Rev.003 Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.004 Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl 2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.004 Datasheet General Precaution 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales representative. 3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccuracy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001
BD71847AMWV-E2 价格&库存

很抱歉,暂时无法提供与“BD71847AMWV-E2”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BD71847AMWV-E2
    •  国内价格 香港价格
    • 1+53.788571+6.47192
    • 10+45.1061610+5.42724
    • 50+39.8934650+4.80004
    • 100+35.53597100+4.27574
    • 500+35.49524500+4.27084
    • 1000+35.397501000+4.25908

    库存:1250

    BD71847AMWV-E2
    •  国内价格
    • 1+12.53340
    • 100+10.81080
    • 750+10.29600
    • 1500+9.80100

    库存:1514

    BD71847AMWV-E2
    •  国内价格 香港价格
    • 1+48.313101+5.81311
    • 10+32.2140810+3.87605
    • 100+23.10442100+2.77996
    • 500+19.21801500+2.31234

    库存:24466

    BD71847AMWV-E2
      •  国内价格
      • 1+33.07466
      • 10+32.89826
      • 50+32.28087
      • 100+32.19267

      库存:163

      BD71847AMWV-E2
        •  国内价格 香港价格
        • 1+53.788571+6.47192
        • 10+45.1061610+5.42724
        • 50+39.8934650+4.80004
        • 100+35.53597100+4.27574
        • 500+35.49524500+4.27084
        • 1000+35.397501000+4.25908

        库存:575

        BD71847AMWV-E2
          •  国内价格
          • 1+19.22400
          • 10+16.64280
          • 30+15.03360
          • 100+12.16080
          • 500+11.41560
          • 1500+11.09160

          库存:3772

          BD71847AMWV-E2
            •  国内价格
            • 1+32.71680

            库存:7