0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD7185AGWL-E2

BD7185AGWL-E2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    80-UFBGA,CSPBGA

  • 描述:

    ICPWRMGMTLSIMOBILE50UCSP

  • 数据手册
  • 价格&库存
BD7185AGWL-E2 数据手册
Datasheet Power Management LSI for Mobile Phone BD7185AGWL Key Specifications  Input Voltage Range:  Output Voltage Range:  Switching Frequency:  OFF Current:  Operating Temperature Range: General Description The BD7185AGWL is an integrated Power Management LSI available in a small 80-pins 0.4mm-pitch 3.8mm-by3.8mm Wafer-level CSP package, which is designed to meet demands for space-constrained Smart phones. The device provides 5-Buck Converters. The device also includes 12 general-purpose LDOs providing a wide range of voltage and current capabilities. Package UCSP50L3C 2.6V to 5.5V 1.0V to 3.4V 2.0MHz(Typ) 0.3μA (Typ) -35℃ to +85℃ W(Typ) x D(Typ) x H(Max) 3.80mm x 3.80mm x 0.57mm All Buck Converters and LDOs are fully controllable by the I2C interface. The BD7185AGWL is very easy to use in any mobile platforms. Features  5-channel high-efficiency Buck Converters 2 (16-step adjustable VO by I C)  12-channel CMOS-type LDO (16-step adjustable VO by I2C)  LDO and Buck Converter power ON/OFF control by I2C interface or external pin.  Power ON/OFF sequence.  32.768kHz OSC and output buffer.  4-to-1 analog switch.  TCXO buffer.  SIM card I/F  I2C compatible Interface. 2  I C device address changeable by ADRS pin. (Device address is “1001011”,”1001100”)  Small and thin CSP package (3.8mm X 3.8mm height 0.57mm max) Applications  Smart Phones  Tablets  Mobile Router  Data Transmitter ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 1/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Absolute Maximum Ratings(Ta=25C) Parameter Maximum Supply Voltage 1 (VBATREF,VBAT, VIN1) Maximum Supply Voltage 2 (PBAT1,2,3,4,5) Maximum Supply Voltage 3 (VIN2 ) Symbol Rating Unit VBATMAX 7.0 V VPBATMAX 7.0 V VIN2MAX 4.2 V VINMAX1 7.0 V VINMAX2 DVDD + 0.3 V VINMAX3 VIN2MAX+ 0.3 V Maximum Input Voltage 1 (OUT1, OUT2, OUT3, OUT4, OUT5, OUT6, OUT7, OUT8, OUT9, OUT10, LX1, LX2, LX3, LX4, LX5, PSET, ADRS, EN_O7, PWRON, PWRHOLD, POR, TCXO_IN, (Note 1) OSC_IN, DVDD OSC_OUT, SIMRSTIN, SIMCLKIN, SIMIODBB, SIMIO) Maximum Input Voltage 2 (SDA, SCL) Maximum Input Voltage 3 (OUT11,12, REFC) (Note 2) Power Dissipation Pd 1.38 W Operating Temperature Range Topr -35 ~ +85 C Storage Temperature Range Tstg -55 ~ +125 C (Note 1) The DVDD Voltage must be under the Battery voltage VBAT, PBAT anytimes. (Note 2) This is an allowable loss of the ROHM evaluation board (54mm×62mm). .When a substrate is implemented, the allowable loss varies from the size and material of the substrate. Derate 1% per °C for temperatures higher than 25°C. Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Recommended Operating Conditions (Ta=25C) Parameter Symbol Range Unit VBAT Voltage VBAT 2.70 ~ 5.50 (Note3) PBAT Voltage VPBAT 2.70 ~ 5.50 (Note3) V V V VIN1 Voltage VIN1 2.70 ~ 5.50 (Note4) VIN2 Voltage VIN2 1.40 ~ 1.80 (Note5) V (Note 3) Whenever VBAT, PBAT, VIN1, or VIN2 falls below the LDO or SWREG output voltage, or below certain levels, LDO and SWREG output is not guaranteed to meet the published specifications. It is necessary to supply the same voltage to VBAT and PBAT. (Note 4) It is recommended to connect SWREG5 output to VIN1 to maximize efficiency. (Note 5) It is recommended to connect SWREG4 output to VIN2 to maximize efficiency. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 2/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Block Diagram 1uF VIN1 VIN1 1uF VIN1 Digital Power OUT1 VBAT 1uF VIN1 I2C Master 1uF VIN2 1uF connect to DVDD OUT1 VDD SDA DATA I2C IF SCL CLK I2C Address 1001011 (ADRS=L) 1001100 (ADRS=H) ADRS PSET PWRON PWRHOLD POR LDO1 POWER SEQUENCER 2.60V or 1.80V 300mA LDO2 PBAT1 1.20V LDO3 1A PGND1 PBAT2 LDO4 LX2 1.80V LDO5 500mA PGND2 LDO6 PBAT3 SWREG3 10uF LDO7 1.20V FB3 1uF for PLL OUT5 1uF OUT6 1uF for TCXO OUT7 1uF EN_O7 LDO8 PBAT4 OUT8 for 2.5V R/F 2.50V 150mA LX4 SWREG4 10uF LDO9 1.40V 1uF FB4 LDO10 1uF OUT10 for HKADC 2.80V 150mA PBAT5 10uF 2.2uH LDO11 SWREG5 LX5 1uF OUT11 for RX PLL 1.20V 150mA 3.20V PGND5 1.4A LDO12 FB5 2.2uF OUT12 for TX PLL 1.20V 150mA ASWIN1 ASWIN2 for LNA OUT9 2.80V 150mA 500mA PGND4 10uF OUT4 2.80V 50mA 500mA PGND3 SWREG5 Built in Bypass Mode Default=On Detect Voltage=3.35V (Refer to page61) 1uF 2.80V 150mA LX3 for SIM I/F OUT3 1.20V 150mA FB2 10uF 2.2uH 1uF 2.80V 300mA SWREG2 10uF 10uF 2.2uH 1.8V (PSET=L) 2.6V (PSET=H) for USB OUT2 1.80V 50mA FB1 10uF 2.2uH LDO1 Initial Output Voltage SWREG1 LX1 10uF 1uF 3.30V 50mA 10uF 2.2uH for I/O OUT1 2.2uF ASWOUT ASWIN3 ASWIN4 VDDTXCO connect to OUT7 0.1uF TCXO_IN TCXO TCXO Buffer 5pF TCXO_OUT GNDTCXO TCXO_OUT wakes up 530usec from EN_07=H VDDOSC connect to OUT1 0.1uF OSC_IN 32.768kHz OSC C32KOUT OSC_OUT GNDOSC SIMRSTIN SIMRSTOUT SIM CARD I/F SIMCLKIN SIMIODBB SIMCLKOUT SIMIO VBATREF REFC 80 balls REF GND GNDREF 0.1uF corner balls Figure 1. Block Diagram (Note1) Recommend Parts 1. Coil : SWREG2, SWREG3, SWREG4 → DFE201612R-H-2R2N ( TOKO ) SWREG1, SWREG5 → DFE252012R-H-2R2N ( TOKO) 2. X’tal : FC135 ( EPSON TOYOCOM ) CM7V-T1A ( MICRO CRYSTAL SWITZERLAND ) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 3/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Pin Configuration J OUT8 OUT9 OUT10 OUT1 GND OSC GND REF OUT12 H OUT4 OUT5 VIN1 VIN1 OSC_ OUT OSC_ IN REFC VIN2 OUT11 G OUT6 OUT7 VIN1 VIN1 C32K OUT VDD OSC VBAT REF ASW OUT OUT2 F GND TCXO VDD TCXO ASWIN 4 ASWIN 3 ASWIN 1 VBAT OUT3 E TCXO_ OUT TCXO_ IN EN_O7 ASWIN 2 SIMRST OUT SIMCLK OUT SIMIO GND D PBAT5 PBAT5 POR PWR HOLD SIMRST IN SIMCLK IN SIMIO BB DVDD C PGND5 PGND5 FB5 FB4 PSET ADRS SDA SCL LX1 B LX5 LX5 PBAT4 PBAT3 FB3 PBAT2 FB2 FB1 PGND1 LX4 PGND4 LX3 PGND3 LX2 PGND2 PBAT1 2 3 4 5 6 7 8 A 1 PWRON 9 Bottom View Figure 2. Pin Configuration ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 4/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Pin Description Ball No. PIN Name A/D I/O Diode Equivalent Circuit Eiqure Function + side - side Initial Condition Function (Note6) A1 TEST1 - - - Non connect pin (Open or connected to GND.) VBAT GND - A2 LX4 A O A Inductor Connection for SWREG4 PBAT4 PGND4 HiZ A3 PGND4 - - - Ground for SWREG4 PBAT4 GND - A4 LX3 A O A Inductor Connection for SWREG3 PBAT3 PGND3 HiZ A5 PGND3 - - - Ground for SWREG3 PBAT3 GND - A6 LX2 A O A Inductor Connection for SWREG2 PBAT2 PGND HiZ A7 PGND2 - - - Ground for SWREG2 PBAT2 GND - A8 PBAT1 - - - Power Supply for SWREG1 - PGND1 - A9 TEST2 - - - Non connect pin (Open or connected to GND) VBAT GND - B1 LX5 A O A Inductor Connection for SWREG5 PBAT5 PGND5 HiZ B2 LX5 A O A Inductor Connection for SWREG5 PBAT5 PGND5 HiZ B3 PBAT4 - - - Power Supply for SWREG4 - PGND4 - B4 PBAT3 - - - Power Supply for SWREG3 - PGND3 - B5 FB3 A I/O B Voltage Feed back pin for SWREG3 PBAT3 GND - B6 PBAT2 - - - Power Supply for SWREG2 - PGND2 - B7 FB2 A I/O B Voltage Feed back pin for SWREG2 PBAT2 GND - B8 FB1 A I/O B Voltage Feed back pin for SWREG1 PBAT1 GND - B9 PGND1 - - - Ground for SWREG1 PBAT1 GND - C1 PGND5 - - - Ground for SWREG5 PBAT5 GND - C2 PGND5 - - - Ground for SWREG5 PBAT5 GND - C3 FB5 A I/O B Voltage Feed back pin for SWREG5 PBAT5 GND - C4 FB4 A I/O B Voltage Feed back pin for SWREG4 PBAT4 GND - C5 PSET D I C LDO1 Initial voltage set pin (L=1.8V, H=2.6V) PBAT3 GND - Connect to GND C6 ADRS D I C Logic Selector PBAT4 GND - I2C Address 1001011 (ADRS=L) 1001100 (ADRS=H) C7 SDA D I D I2C data input VBAT GND - C8 SCL D I E I2C clock input VBAT GND - C9 LX1 A O A Inductor Connection for SWREG1 PBAT1 PGND1 HiZ (Note6) (Note 6) TEST1, TEST2, TEST3, TEST4, TEST5 and TEST6 are used for factory test mode. Please keep these pins open or connected to GND at all times. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 5/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Ball No. PIN Name A/D I/O Diode Equivalent Circuit Eiqure Function + side - side Initial Condition Function D1 PBAT5 - - - Power Supply for SWREG5 - PGND5 - D2 PBAT5 - - - Power Supply for SWREG5 - PGND5 - D3 POR D O F Power on reset signal output VBAT GND L D5 PWRHOLD D I G Power enable signal VBAT GND - D6 SIMRSTIN D I H SIM clock input from DBB VBAT GND - D7 SIMCLKIN D I H SIM reset input from DBB VBAT GND - D8 SIMIOBB D I/O I SIM data input / output from DBB VBAT GND - D9 DVDD - - - VDD for I2C block VBAT GND - E1 TCXO_OUT D O K TCXO_Buffer input frequency VDDTCXO GND L E2 TCXO_IN A I J TCXO_Buffer output frequency VBAT GND - E3 EN_07 D I L TCXO Buffer,SWREG4, LDO7,8,11,12 control VBAT GND Pull Down Pull down 1.5MΩ E4 PWRON D I L Start up signal input VBAT GND Pull Down Pull down 1.5MΩ E5 ASWIN2 A I M Analog SW input selector2 VBAT GND - E6 SIMRSTOUT D O N SIM CARD side reset output GND L E7 SIMCLKOUT D O N SIM CARD side clock output GND L E8 SIMIO D I/O I SIM CARD side data input/output VBAT GND Pull Up E9 GND - - - Ground Pin VBAT - - F1 GNDTCXO - - - Ground for TCXO Buffer VBAT GND - F2 VDDTCXO - - - Power Supply for TCXO Buffer - GND - F3 TEST5 - - - VBAT GND - (Note6) F4 TEST6 - - - VBAT GND - (Note6) F5 ASWIN4 A I M Analog SW input selector4 VBAT GND - F6 ASWIN3 A I M Analog SW input selector3 VBAT GND - F7 ASWIN1 A I M Analog SW input selector1 VBAT GND - F8 VBAT - - - Power Supply for IC - GND - F9 OUT3 A O O LDO3 output VBAT GND Non connect pin (Open or connected to GND.) Non connect pin (Open or connected to GND.) VBAT OUT3 VBAT OUT3 (Note7) Pull up 20KΩ to OUT1 Pull up 10KΩ to OUT3 (Note 6) TEST1, TEST2, TEST3, TEST4, TEST5 and TEST6 are used for factory test mode. Please keep these pins open or connected to GND at all times. (Note 7) POR needs a pull-up resistance in the PCB layout. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 6/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Ball No. PIN Name A/D I/O Diode Equivalent Circuit Eiqure Function + side - side Initial Condition G1 OUT6 A O P LDO6 output VIN1 GND - G2 OUT7 A O P LDO7 output VIN1 GND - G3 VIN1 - - - Power Supply input for LDO - GND - G4 VIN1 - - - Power Supply input for LDO VBAT GND - G5 C32KOUT A O Q 32.768kHz output VBAT GND - G6 VDDOSC - - - Power Supply for RTC Block - GND - G7 VBATREF - - - Power Supply for Reference Block - GND - G8 ASWOUT A O M Analog SW selector Output VBAT GND - G9 OUT2 A O O LDO2 output VBAT GND - H1 OUT4 A O P LDO4 output VIN1 GND - H2 OUT5 A O P LDO5 output VIN1 GND - H3 VIN1 - - - Power Supply input for LDO VBAT GND - H4 VIN1 - - - Power Supply input for LDO VBAT GND - H5 OSC_OUT A I/O R 32.768kHz crystal connect terminal - GND - H6 OSC_IN A I/O R 32.768kHz crystal connect terminal - GND - H7 REFC A O S Reference Voltage output VBAT GND - H8 VIN2 - - - Power Supply input for LDO VBAT GND - H9 OUT11 A O T LDO11 output VIN2 GND - VBAT GND - J1 TEST4 - - - Non connect pin (Open or connected to GND.) J2 OUT8 A O P LDO8 output VIN1 GND - J3 OUT9 A O P LDO9 output VIN1 GND - J4 OUT10 A O P LDO10 output VIN1 GND - J5 OUT1 A O P LDO1 output VIN1 GND - J6 GNDOSC - - - GND for RTC block VBAT - - J7 GNDREF - - - Ground for Reference Block VBAT - - J8 OUT12 A O T LDO12 output VIN2 GND - J9 TEST3 - - - Non connect pin (Open or connected to GND.) VBAT GND - Function (Note6) (Note6) (Note 6) TEST1, TEST2, TEST3, TEST4, TEST5 and TEST6 are used for factory test mode. Please keep these pins open or connected to GND at all times. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 7/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL I/O Equivalence Circuits Figure 3. I/O Equivalence Circuits ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 8/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Figure 4. I/O Equivalence Circuits ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 9/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL S Q VDDOSC VBAT R VBAT T VBAT OSC_IN REFC VIN2 VIN2 OSC_OUT Figure 5. I/O Equivalence Circuits ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 10/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Initial Output Voltage Summary Power Usage Example Supply Initial Output Voltage Max Load Adjustable Range SWREG1 CORE PBAT1 1.20V 1.0A ±50,100mV SWREG2 MEMORY PBAT2 1.80V 0.5A ±50,100mV SWREG3 ANALOG PBAT3 1.20V 0.5A ±50,100mV PBAT4 1.40V 0.5A ±50,100mV PBAT5 3.20V 1.4A ±50,100mV SWREG4 SWREG5 VIN2 power supply (efficiency improvement) VIN1 power supply (efficiency improvement) LDO1 I/O VIN1 2.60V / 1.80V (Note 8) 300mA ±50,100mV LDO2 USB VBAT 3.30V 50mA ±50,100mV LDO3 SIM I/F VBAT 1.80V 50mA ±50,100mV LDO4 Reserved VIN1 2.80V 300mA ±50,100mV LDO5 SYS PLL VIN1 1.20V 150mA ±50,100mV LDO6 Reserved VIN1 2.80V 150mA ±50,100mV LDO7 TCXO VIN1 2.80V 50mA ±50,100mV LDO8 2.5V R/F VIN1 2.50V 150mA ±50,100mV LDO9 LNA VIN1 2.80V 150mA ±50,100mV LDO10 HKADC VIN1 2.80V 150mA ±50,100mV LDO11 RX PLL VIN2 1.20V 150mA ±50,100mV LDO12 TX PLL VIN2 1.20V 150mA ±50,100mV (Note 8) Initial output voltage depends on PSET pin setting. SWREG Output Voltage Step Table SWREG1 SWREG2 SWREG3 SWREG4 SWREG5 1.00 1.00 1.00 1.00 1.20 1.05 1.05 1.05 1.05 1.40 1.10 1.10 1.10 1.10 1.70 1.15 1.15 1.15 1.15 1.75 1.20 1.20 1.20 1.20 1.80 1.25 1.25 1.25 1.25 1.85 1.30 1.30 1.30 1.30 1.90 1.35 1.35 1.35 3.00 Voltage step 1.35 [V] 1.40 1.40 1.40 1.40 3.05 1.45 1.45 1.45 1.45 3.10 1.50 1.50 1.50 1.50 3.15 1.70 1.70 1.70 1.70 3.20 1.75 1.75 1.75 1.75 3.25 1.80 1.80 1.80 1.80 3.30 1.85 1.85 1.85 1.85 3.35 1.90 1.90 1.90 1.90 3.40 Voltage step [V] LDO1 1.70 1.75 1.80 1.85 1.90 2.50 2.55 2.60 2.65 2.70 2.80 2.90 2.95 3.00 3.05 3.10 LDO2 2.55 2.60 2.65 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.20 3.25 3.30 3.35 3.40 LDO3 1.70 1.75 1.80 1.85 1.90 2.50 2.60 2.70 2.80 2.90 2.95 3.00 3.05 3.10 3.20 3.30 LDO4 1.10 1.20 1.30 1.70 1.80 1.90 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 3.00 LDO5 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.70 1.80 1.90 2.60 2.70 2.80 2.90 3.00 3.10 LDO6 1.10 1.20 1.30 1.70 1.80 1.90 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 3.00 ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. LDO7 1.10 1.20 1.30 1.70 1.80 1.90 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 3.00 LDO8 1.20 1.30 1.70 1.80 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 3.00 LDO9 1.10 1.20 1.30 1.70 1.80 1.90 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 3.00 LDO10 1.10 1.20 1.30 1.70 1.80 1.90 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 3.00 LDO11 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 LDO12 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 ○This product is not designed protection against radioactive rays 11/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Power On Sequence Figure 6. Power ON sequence (Start factor is PWRON) The short detection circuit is built in the SWREG1,2,3,4 and 5 outputs. When the output shorted state continued more than 100ms, the all LDO and SWREG will be OFF. If the LDO and SWREG are turned off by the external pin (EN_O7) or I2C command, the short detection circuit is not detected. The SWREG1, 2, 3, and 4 must be used external parts when not used SWREG’s output voltage. If it is not used the external parts in these SWREG, the short detector will detect when running the start up sequence. (It is possible when these SWREG turn off by the I2C command after start up sequence.) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 12/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Power Off Sequence Figure 7. Power OFF sequence ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 13/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (Current Consumption) (Unless otherwise specified, Ta=25C, VBAT=PBAT1, 2, 3, 4, 5=VIN1=VIN2=3.6V, DVDD=VDDOSC=OUT1) Parameter Symbol Min Typ Max Unit Condition μA All LDO=OFF All SWREG=OFF DVDD=0V PWRON=L PWRHOLD=L μA PWRON=H PWRHOLD=H LDO1,2,5=ON SWREG1,2,5=ON POR=H All SWREG=PFM/PWM auto mode All LDO,SWREG=No load 32kHz Buffer=ON μA PWRON=H PWRHOLD=H LDO1,2,3,4,5,7,8,9,10,11=ON SWREG1,2,3,4,5=ON POR=H All SWREG=PFM/PWM auto mode All LDO, SWREG=No load μA PWRON=H PWRHOLD=H LDO1,2,3,4,5,7,8,9,10,11,12=ON SWREG1,2,3,4,5=ON POR=H All SWREG=PFM/PWM auto mode All LDO, SWREG=No load Circuit Current VBAT Circuit Current 1 (OFF) VBAT Circuit Current 2 (Sleep) VBAT Circuit Current 3 (RX-ONLY) VBAT Circuit Current 4 (LTE Link) IQVB1 IQVB2 IQVB3 IQVB4 - - - - ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. 0.3 195 500 550 1.0 330 1000 1100 ○This product is not designed protection against radioactive rays 14/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (Logic Interface) (Unless otherwise specified, Ta=25C, VBAT=PBAT1, 2, 3, 4, 5=VIN1=VIN2=3.6V, DVDD=OUT1) Parameter Symbol Rating Min Typ Digital characteristics (Digital Pins: EN_O7, PWRON as NMOS input) Input "H" level 1.44 VIH1 Input "L" level V - 0.4 V 1.5 - MΩ - DVDD+0.3 V -0.3 - 0.3× DVDD V -1 0 1 μA - VIL1 VIL2 Unit - Pull Down Resistance RPD1 Digital characteristics (Digital Pins: SCL, SDA, PWRHOLD) 0.7× Input "H" level VIH2 DVDD Input "L" level Max Input leak current IIC2 Digital characteristics (Digital Pins: PSET, ADRS) VBAT+ 0.3 0.3× VBAT Input "H" level VIH3 0.7× VBAT - Input "L" level VIL3 -0.3 - Input leak current IIC3 -1 0 1 μA - - 0.4 0.4 V V Conditions PWRON, EN_O7 V V Digital characteristics (Digital Pins: SDA, POR) SDA Output “L” Level Voltage POR Output “L” Level Voltage VOL1 VOL2 IOL=6mA IOL=1mA Electrical Characteristics (32 kHz Buffer) (Unless otherwise specified, Ta=25C, VBAT=PBAT1, 2, 3, 4, 5=VIN1=VIN2=3.6V, DVDD=VDDOSC=OUT1) Rating Parameter Symbol Unit Conditions Min Typ Max Digital characteristics (Digital pins: C32KOUT) VOH_ C32KOUT 0.8× V IO=-2mA OUT1 32K Output High Level C32KOUT Output Low Level 32.768kHz Duty VOL_32K - - 0.2× OUT1 V DUTY 30 50 70 % ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. IO=2mA ○This product is not designed protection against radioactive rays 15/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (SWREG1) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min Typ Max Unit Condition VOSW1 1.164 1.200 1.236 V Initial value Io=100mA SWREG1 Output Voltage Output Current Efficiency VOSW10 VOSW11 VOSW12 VOSW13 IOSW1 ηSW1 Oscillating Frequency FOSC1 - 2.0 - MHz Vo=1.20V (PWM mode, Io=100mA) Output Inductance LSWREG1 1.5 2.2 - μH Ta= -35 to +85C Output Capacitance CSWREG1 4.7 10 - μF Ta= -35 to +85C, with SWREG's DC bias Programmable Output Voltage +3% V Io=100mA - 1.10 1.15 1.25 1.30 86 1000 - mA % Io=400mA, Vo=1.20V, VBAT=3.6V -3% Electrical Characteristics (SWREG2) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min Typ Max Unit Condition VOSW2 1.746 1.800 1.854 V Initial value Io=100mA +3% V Io=100mA 500 - mA % Io=200mA, Vo=1.80V, VBAT=3.6V SWREG2 Output Voltage Output Current Efficiency VOSW20 VOSW21 VOSW22 VOSW23 IOSW2 ηSW2 - 1.70 1.75 1.85 1.90 86 Oscillating Frequency FOSC2 - 2.0 - MHz Vo=1.80V (PWM mode, Io=100mA) Output Inductance LSWREG2 1.5 2.2 - μH Ta= -35 to +85C Output Capacitance CSWREG2 4.7 10 - μF Ta= -35 to +85C, with SWREG's DC bias Programmable Output Voltage -3% ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 16/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (SWREG3) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min Typ Max Unit Condition VOSW3 1.164 1.200 1.236 V Initial value Io=100mA +3% V Io=100mA 500 - mA % Io=200mA, Vo=1.20V, VBAT=3.6V SWREG3 Output Voltage Output Current Efficiency VOSW30 VOSW31 VOSW32 VOSW33 IOSW3 ηSW3 - 1.10 1.15 1.25 1.30 86 Oscillating Frequency FOSC3 - 2.0 - MHz Vo=1.20V (PWM mode, Io=100mA) Output Inductance LSWREG3 1.5 2.2 - μH Ta= -35 to +85C Output Capacitance CSWREG3 4.7 10 - μF Ta= -35 to +85C, with SWREG's DC bias Programmable Output Voltage -3% Electrical Characteristics (SWREG4) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min Typ Max Unit Condition VOSW4 1.358 1.400 1.442 V Initial value Io=100mA +3% V Io=100mA 500 - mA % Io=200mA, Vo=1.40V, VBAT=3.6V SWREG4 Output Voltage Output Current Efficiency VOSW40 VOSW41 VOSW42 VOSW43 IOSW4 ηSW4 - 1.50 1.45 1.35 1.30 87 Oscillating Frequency FOSC4 - 2.0 - MHz Vo=1.40V (PWM mode, Io=100mA) Output Inductance LSWREG4 1.5 2.2 - μH Ta= -35 to +85C Output Capacitance CSWREG4 4.7 10 - μF Ta= -35 to +85C, with SWREG's DC bias Programmable Output Voltage -3% ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 17/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (SWREG5) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min Typ Max Unit Condition VOSW5 3.104 3.200 3.296 V Initial value Io=100mA SWREG5 Output Voltage Output Current Efficiency VOSW50 VOSW51 VOSW52 VOSW53 IOSW5 ηSW5 Oscillating Frequency FOSC5 - 2.0 - MHz Vo=3.20V (PWM mode, Io=100mA) Output Inductance LSWREG5 1.5 2.2 - μH Ta= -35 to +85C Output Capacitance CSWREG5 4.7 10 - μF Ta= -35 to +85C, with SWREG's DC bias Programmable Output Voltage +3% V Io=100mA - 3.300 3.250 3.150 3.100 92 1400 - mA % Io=400mA, Vo=3.20V, VBAT=3.6V -3% ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 18/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO1) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition Output Voltage A VOM1A0 2.548 2.600 2.652 V Output Voltage B VOM1B0 1.764 1.800 1.836 V Output Current VOM1C - - 300 mA Dropout Voltage VOM1DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM1 ΔVLM1 VOM1A1 VOM1A2 VOM1A3 VOM1A4 VOM1B1 VOM1B2 VOM1B3 VOM1B4 - 2 20 2.70 2.65 2.55 2.50 1.90 1.85 1.75 1.70 - mV mV Io=50mA VIN1=2.7V(Vo=3.1V setting) VIN1=3V to 4.5V, Io=50mA Io=1mA ~ 300mA +2% V Io=50mA +2% V Io=50mA - ohm LDO1 Programmable Output Voltage A Programmable Output Voltage B Discharge Resistance RDCHG1 -2% -2% - 100 Ripple Rejection Ratio RRM1 - 60 - dB Output Capacitor COUT1 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. Initial setting, PSET=H Io=50mA Initial setting, PSET=L Io=50mA VBAT=4.2V+0.2Vpp fR=120Hz Io=50mA, Vo=2.60V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 19/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO2) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO2 Output Voltage VOM20 3.234 3.300 3.366 V Io=50mA Output Current VOM2C - - 50 mA Dropout Voltage VOM2DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM2 ΔVLM2 VOM21 VOM22 VOM23 VOM24 - 2 20 3.40 3.35 3.25 3.20 - mV mV Io=50mA VBAT=2.8V(Vo=3.4V setting) VBAT=3.6V to 4.5V, Io=50mA Io=1mA ~ 50mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG2 -2% - 100 Ripple Rejection Ratio RRM2 - 60 - dB Output Capacitor COUT2 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=120Hz Io=50mA, Vo=3.3V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 20/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO3) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO3 Output Voltage VOM30 1.764 1.800 1.836 V Io=50mA Output Current VOM3C - - 50 mA Dropout Voltage VOM3DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM3 ΔVLM3 VOM31 VOM32 VOM33 VOM34 - 2 20 1.90 1.85 1.75 1.70 - mV mV Io=50mA VBAT=2.8V(Vo=3.3V setting) VBAT=3.3V to 4.5V, Io=50mA Io=1mA ~ 50mA +2% V Io=50mA - ohm Programmable Output Voltage B Discharge Resistance RDCHG3 -2% - 100 Ripple Rejection Ratio RRM3 - 60 - dB VBAT=4.2V+0.2Vpp fR=120Hz Io=50mA, Vo=3.0V BW=20Hz to 20kHz Output Capacitor COUT3 0.47 1.0 - μF Ta=-35 to +85C, with LDO's DC bias ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 21/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO4) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO4 Output Voltage VOM40 2.744 2.800 2.856 V Io=50mA Output Current VOM4C - - 300 mA Dropout Voltage VOM4DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM4 ΔVLM4 VOM41 VOM42 VOM43 VOM44 - 2 20 2.90 2.85 2.75 2.70 - mV mV Io=50mA VIN1=2.7V(Vo=3.0V setting) VBAT=3.2V to 4.5V, Io=50mA Io=1mA ~ 300mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG4 -2% - 100 Ripple Rejection Ratio RRM4 - 60 - dB Output Capacitor COUT4 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=120Hz Io=50mA, Vo=2.80V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 22/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO5) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO5 Output Voltage VOM50 1.176 1.200 1.224 V Io=50mA Output Current VOM5C - - 150 mA Dropout Voltage VOM5DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM5 ΔVLM5 VOM51 VOM52 VOM53 VOM54 - 2 20 1.30 1.25 1.15 1.10 - mV mV Io=50mA VIN1=2.7V(Vo=3.1V setting) VIN1=3.0V to 4.5V, Io=50mA Io=1mA ~ 150mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG5 -2% - 100 Ripple Rejection Ratio RRM5 - 60 - dB Output Noise Level VON5 - 60 - μVrms Output Capacitor COUT5 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=10kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 23/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO6) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition ●LDO6 Output Voltage VOM60 2.744 2.800 2.856 V Io=50mA Output Current VOM6C - - 150 mA Dropout Voltage VOM6DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM6 ΔVLM6 - 2 20 - mV mV Io=50mA VIN1=2.7V(Vo=3.0V setting) VIN1=3.2~4.5V, Io=50mA Io=1mA ~ 150mA +2% V Io=50mA - ohm VOM61 Programmable Output Voltage VOM62 VOM63 2.90 -2% VOM64 Discharge Resistance RDCHG6 2.85 2.75 2.70 - 100 Ripple Rejection Ratio RRM6 - 60 - dB Output Noise Level VON6 - 60 - μVrms Output Capacitor COUT6 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=10kHz Io=50mA, Vo=1.20V BW=20Hz~20kHz Io=50mA, Vo=1.20V BW=20Hz~20kHz Ta=-35~85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 24/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO7) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO7 Output Voltage VOM70 2.744 2.800 2.856 V Io=50mA Output Current VOM7C - - 50 mA Dropout Voltage VOM7DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM7 ΔVLM7 VOM71 VOM72 VOM73 VOM74 - 2 20 2.90 2.85 2.75 2.70 - mV mV Io=50mA VIN1=2.7V(Vo=3.0V setting) VIN1=3.2V to 4.5V, Io=50mA Io=1mA ~ 50mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG7 -2% - 100 Ripple Rejection Ratio RRM7 - 60 - dB Output Noise Level VON7 - 60 - μVrms Output Capacitor COUT7 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=10kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 25/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO8) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO8 Output Voltage VOM80 2.45 2.50 2.55 V Io=50mA Output Current VOM8C - - 150 mA Dropout Voltage VOM8DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM8 ΔVLM8 VOM81 VOM82 VOM83 VOM84 - 2 20 2.60 2.55 2.45 2.40 - mV mV Io=50mA VIN1=2.7V(Vo=3.0V setting) VIN1=3.0V to 4.5V, Io=50mA Io=1mA to 150mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG8 -2% - 100 Ripple Rejection Ratio RRM8 - 60 - dB Output Noise Level VON8 - 60 - μVrms Output Capacitor COUT8 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=10kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 26/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO9) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO9 Output Voltage VOM90 2.744 2.800 2.856 V Io=50mA Output Current VOM9C - - 150 mA Dropout Voltage VOM9DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM9 ΔVLM9 VOM91 VOM92 VOM93 VOM94 - 2 20 2.90 2.85 2.75 2.70 - mV mV Io=50mA VIN1=2.7V(Vo=3.0V setting) VIN1=3.2V to 4.5V, Io=50mA Io=1mA ~ 150mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG9 -2% - 100 Ripple Rejection Ratio RRM9 - 60 - dB Output Noise Level VON9 - 60 - μVrms Output Capacitor COUT9 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=10kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 27/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO10) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO10 Output Voltage VOM100 2.744 2.800 2.856 V Io=50mA Output Current VOM10C - - 150 mA Dropout Voltage VOM10DP - 0.05 - V Input Voltage Stability Load Stability ΔVIM10 ΔVLM10 VOM101 VOM102 VOM103 VOM104 - 2 20 2.90 2.85 2.75 2.70 - mV mV Io=50mA VIN1=2.7V(Vo=3.0V setting) VIN1=3.2V to 4.5V, Io=50mA Io=1mA ~ 150mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG10 -2% - 100 Ripple Rejection Ratio RRM10 - 60 - dB Output Noise Level VON10 - 60 - μVrms Output Capacitor COUT10 0.47 1.0 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=10kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 28/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO11) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO11 Output Voltage VOM110 1.176 1.200 1.224 V Io=50mA Output Current VOM11C - - 150 mA Dropout Voltage VOM11DP - 0.03 - V Input Voltage Stability Load Stability ΔVIM11 ΔVLM11 VOM111 VOM112 VOM113 VOM114 - 2 20 1.30 1.25 1.15 1.10 - mV mV Io=50mA VIN2=1.2V(Vo=1.2V setting) VBAT=3.2V to 4.5V, Io=50mA Io=1mA ~ 150mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG11 -2% - 100 Ripple Rejection Ratio RRM11 - 70 - dB Output Noise Level VON11 - 60 - μVrms Output Capacitor COUT11 1.0 2.2 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=10kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 29/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (LDO12) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) Parameter Symbol Min. Typ. Max. Unit Condition LDO12 Output Voltage VOM120 1.176 1.200 1.224 V Io=50mA Output Current VOM12C - - 150 mA Dropout Voltage VOM12DP - 0.03 - V Input Voltage Stability Load Stability ΔVIM12 ΔVLM12 VOM121 VOM122 VOM123 VOM124 - 2 20 1.30 1.25 1.15 1.10 - mV mV Io=50mA VIN2=1.2V(Vo=1.2V setting) VBAT=3.2V to 4.5V, Io=50mA Io=1mA ~ 150mA +2% V Io=50mA - ohm Programmable Output Voltage Discharge Resistance RDCHG12 -2% - 100 Ripple Rejection Ratio RRM12 - 70 - dB Output Noise Level VON12 - 60 - μVrms Output Capacitor COUT12 1.0 2.2 - μF ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. VBAT=4.2V+0.2Vpp fR=10kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Io=50mA, Vo=1.20V BW=20Hz to 20kHz Ta=-35 to +85C, with LDO's DC bias ○This product is not designed protection against radioactive rays 30/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (SIMCARD interface) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V (FB5), VIN2=1.4V (FB4), DVDD=OUT1) Parameter Symbol SPEC Min Typ Max Unit Condition Digital Characteristics (Digital pin: SIMRSTIN) Input H Level VIHURST 0.7*OUT1 - - V Input L Level VILURST - - 0.2*OUT1 V Digital Characteristics (Digital pin: SIMCLKIN) Input H Level VIHUCLK 0.7*OUT1 - - V Input L Level VILUCLK - - 0.2*OUT1 V MAX Clock Frequency FSIMMAX - - 20 MHz Digital Characteristics (Digital pin: SIMIODBB) Pull-up Resistor RPUSIM 13 20 28 kΩ Input H Level VIHUDBB OUT1-0.6 - - V (Note 9) Input L Level VILUDBB - - 0.3 V (Note 10) Input H Current LINHSIM - - 20 µA SIMIODBB=OUT1 Input L Current LINLSIM - - 1 mA SIMIODBB=0.3V SIMIO=OPEN Output H Level VOHUDBB 0.7*OUT1 - - V IO=20µ A Output L Level VOLUDBB - - 0.4 V IIN=200µA, SIMIO=0V Timing Parameter (Cout=30pF, LDO1=LDO3=1.8V) SIMRSTOUT Rise/Fall Time SIMCLKOUT Rise/Fall Time SIMIO Rise/Fall Time SIMIODBB Rise/Fall Time (Note 11) TIMRST - - 18 nsec TIMCLK - - 18 nsec TIMIO - - 1.0 µsec TIMIODB - - 1.2 µsec (Note 9) Input H level is defined as the voltage at which the output (SIMIODBB/SIMIO) voltage equals 0.5V (Note 10) Input L level is defined as the voltage at which the output (SIMIODBB/SIMIO) voltage exceeds the input (SIMIO/SIMIODBB) voltage by 100mV. (Note 11) Timing Parameter specifications are guaranteed by design, but were not production tested. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 31/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (SIMCARD Interface) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V (FB5), VIN2=1.4V (FB4), DVDD=OUT1) Parameter SPEC Symbol Min Typ Max Unit Condition Digital Characteristics (Digital pin: SIMRSTOUT) Output H Level VOHURSTOUT 0.8*OUT3 - - V IO=200μA Output L Level VOLURSTOUT - - 0.4 V IIN=200μA Digital Characteristics (Digital pin: SIMCLKOUT) Output H Level VOHUCLKOUT 0.8*OUT3 - - V IO=200μA Output L Level VOLUCLKOUT - - 0.4 V IIN=200μA RPUIO 6.5 10 14 kΩ Input H Level VIHUIMIO 0.7*OUT3 - - V (Note 9) Input L Level VILUIMIO 0 - 0.3 V (Note 10) Input H Current LINHIO - - 20 µA SIMIO = OUT3 Input L Current LINLIO - - 1 mA SIMIO = 0.3V Output H Level VOHUIMIO 0.8*OUT3 - - V IO=20μA Output L Level VOLUIMIO - - 0.4 V IIN=200μA, SIMIODBB=0V Digital Characteristics (Digital pin: SIMIO) Pull-up Resistor (Note 9) Input H level is defined as the voltage at which the output (SIMIODBB/SIMIO) voltage equals 0.5V (Note 10) Input L level is defined as the voltage at which the output (SIMIODBB/SIMIO) voltage exceeds the input (SIMIO/SIMIODBB) voltage by 100mV. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 32/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (4ch Analog SW) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1) SPEC Parameter Symbol Unit Condition Min Typ Max 4ch Analog SW Input Selector Input Range VINSW 0 2.2 V ASWIN1 ASWIN2 ASWIN3 IINSW 1 µA ASWIN4 Input leak current when OFF or not selected Between ASWIN1 ASWIN2 ASWIN3 ANASW_EN=’1’ RONSW 100 200 Ω ASWIN4 VINSW=1.0V and ASWOUT ON resistance when selected Electrical Characteristics (CLOCK DRIVER) (Unless otherwise specified, Ta=25C, VBAT=PBAT*=3.6V, VIN1=3.2V(FB5), VIN2=1.4V(FB4), DVDD=OUT1, VDDTCXO=OUT7) Parameter CLOCK DRIVER TCXO_IN Input Frequency 1 TCXO_IN Input Frequency 2 TCXO_IN Input Range TCXO_OUT Output Frequency1 TCXO_OUT Output Frequency 2 Output Pulse Width 1 Output Pulse Width 2 Output Rise Time Output Fall Time Symbol Min Typ Max Unit FTHRU1 - 19.2 - MHz FTHRU2 - 26.0 - MHz VPPCD 0.6 - 1.2 Vpp FOUT1 18.2 19.2 20.2 MHz FOUT2 25.0 26.0 27.0 MHz TLWCD1 20 20 13 13 - - 6 6 ns ns ns ns ns ns THWCD1 TLWCD2 THWCD2 TRCD TFCD ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. Condition Low level CL=10pF High level CL=10pF Low level CL=10pF High level CL=10pF Tr CL=10pF Tf CL=10pF ○This product is not designed protection against radioactive rays 33/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Electrical Characteristics (I2C AC Characteristics) Characteristics Symbol Min Max Unit CLK Clock Frequency fCLK 0 400 kHz CLK Clock “LOW” Time tLOW 1.3 - μs CLK Clock “HIGH” Time tHIGH 0.6 - μs Bus Free Time tBUF 1.3 - μs Start Condition Hold Time tHD.STA 0.6 - μs Start Condition Setup Time tSU.STA 0.6 - μs Data Input Hold Time tHD.DAT 0 - ns Data Input Setup Time tSU.DAT 100 - ns Stop Condition Setup Time tSU.STO 0.6 - μs tF tHIGH tLOW tR CLK tSU.STA tHD.STA tSU.STO tHD.DAT tSU.DAT DATA (INPUT) tBUF Figure 8. Bus Timing 1 CLK DATA (INPUT) DO tWR Write data input Acknowledg e output Start condition Stop condition Figure. 9 Bus Timing 2 ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 34/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL I2C Bus Interface The I2C-compatible synchronous serial interface provides access to programmable functions and registers on the device. This protocol uses a two-wire interface for bi-directional communication between the LSI’s connected to the bus. The two interface lines are the Serial Data Line(DATA), and the Serial Clock Line(CLK). These lines should be connected to the power supply DVDD by a pull-up resistor, and remain high even when the bus is idle. 1. Start and Stop Conditions When CLK is high, pulling DATA low produces a start condition and pulling DATA high produces a stop condition. Every instruction is started when a start condition occurs and terminated when a stop condition occurs. During read, a stop condition causes read to terminate and the chip enters the standby state. During write, a stop condition causes the fetching of write data to terminate, after which writing starts automatically. When writing is completed, the chip enters the standby state. Two or more start conditions cannot be entered consecutively. tSU.STA tHD.STA tSU.STO CLK DATA Start condition Stop condition Figure. 10. Start and Stop Conditions 2. Modifying Data Data on the DATA input can be modified while CLK is low. When CLK is high, modification of the DATA input is interpreted as a start or stop condition. tSU.DAT tHD.DAT CLK DATA Modify data Modify data Figure 11. Modifying Data ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 35/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL 3. Acknowledge Data is transmitted and received in 8-bit units. The receiver sends an acknowledge signal by outputting a low on DATA in the 9th clock cycle, indicating that it has received data normally. The transmitter releases the bus in the 9th clock cycle to receive an acknowledge signal. During write, the chip is always the receiver so that it outputs an acknowledge signal each time it has received eight bits of data. During read, the chip outputs an acknowledge signal after it receives an address following a start condition. Then, it outputs read data and releases the bus to wait for an acknowledge signal from the master. When it detects an acknowledge signal, it outputs data at the next address if it does not detect a stop condition. If the chip does not detect an acknowledge signal, it stops read operation, and subsequently enters the standby state when a stop condition occurs. If the chip does not detect an acknowledge signal nor a stop condition, it keeps the bus released. 1 CLK 9 8 DATA DATA Start condition Acknowledge output Figure 12. Acknowledge 4. Device Addressing After a start condition occurs, a 7-bit device address and a 1-bit read/write instruction code are input into the chip The upper seven bits are called the device address, which must always be “1001011” (ADRS=L) or “1001100” (ADRS=H). (R/W : READ/WRITE) indicates a read instruction when set to 1 and a write instruction when The least significant bit set to 0. An instruction is not executed if the device address does not match the specified value. Read/write instruction code Device address 1 0 0 1 0 MSB 1 1 R/W LSB Figure 13. Device Addressing (Device address is “ 1001011” or "1001100".) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 36/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL 5. Write operation In order to write to a specified address, input a device address, R/W(=0), a word address, and write data after a start condition. When a stop condition is entered, the chip automatically enters standby state. Address increment is acknowledged only whenever INC bit is ‘0’. S T A R T D A TA LIN E W R I T E D E V IC E AD D R E S S WORD AD D R E SS L R A C S B WK M S B W R IT E D AT A W WW W W W W 0 6 5 4 3 2 1 0 x x x x x x x 0 D D D D D D D D 7 6 5 4 3 2 1 0 A C K AD D R E S S increment L A S C B K I M NS C B S T O P Figure 14. Write Operation S T A R T DATA LINE DEVICE ADDRES S W R I T E x x x x x x x 0 M S B WORD ADDRESS(n) WRITE DATA(n) D D D D D D D D 7 6 5 4 3 2 1 0 W WW W W W W 0 6 5 4 3 2 1 0 L R A I C N S B WK C A C K WRITE DATA(n+m) WRITE DATA(n+1) D D D D D D D D 7 6 5 4 3 2 1 0 A C K ADDRESS increment S T O P D D D D D D 5 4 3 2 1 0 A C K ADDRESS increment A C K ADDRESS increment Figure 15. Address Increment ON S T A R T DATA LINE DEVICE ADDRESS W R I T E x x x x x x x 0 M S B WORD ADDRESS(n) WRITE DATA(n) WRITE DATA(n) W WW W W W W 1 6 5 4 3 2 1 0 D D D D D D D D 7 6 5 4 3 2 1 0 D D D D D D D D 7 6 5 4 3 2 1 0 L R A I C N S B WK C A C K A C K S T O P WRITE DATA(n) D D D D D D 5 4 3 2 1 0 A C K A C K Figure 16. Address Increment OFF The rollover function of the LSI can be accessed when address increment is ON. Input a device address, R / W  0  , a word address n  , and write data n  after a start condition, in the same way as for a write byte. Input write data n  1 immediately afterwards, without entering a stop condition, and while checking that the acknowledge signal is asserted 0  . When the last address (14H) is reached, the word address is rolled over to the first address (00H) of the page.. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 37/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Write operation example (Auto Increment OFF) (Write to Address 00h, Data 32h) When writing to a single address, follow the sequence below. START => DEVICE ADDRESS+WRITE => WORD ADDRESS => DATA => STOP At this time, the Auto increment bit (=INC) can be either ‘H’ or ‘L’. START STOP CLK 1 1 1 Device Address = "1001111" 0 0 0 0 0 0 0 0 0 1 Word Address = "0000000" 1 0 0 1 ACK=OK 1 ACK=OK 0 INC=OFF 0 ACK=OK 1 WRITE DATA 0 Data = "00110010" Figure 17. Write Operation Example (Auto Increment OFF) Write operation example (Auto Increment ON) (Write to Address 01h, Data 04h; Address 02h, Data A0h; Address 03h, Data 6Eh; Address 04h, Data 0Fh) When writing to multiple addresses follow the sequence below. START => DEVICE ADDRESS+WRITE => WORD ADDRESS => DATA => DATA => DATA => DATA => STOP At this time, the Auto increment bit (=INC) needs to be ‘L’. When writing the Word address, write the first address from which you want to start writing. ACK=OK ACK=OK INC=ON ACK=OK WRITE ACK=OK ACK=OK ACK=OK Figure 18. Write Operation Example (Auto Increment ON) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 38/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Read operation example (Auto Increment ON) (Read from Address 01h, 02h, 03h, 04h, 05h) To read from Address 01h, you must first dummy write to Address 01h. At this time, the Auto increment bit (=INC) needs to be ‘L’. When finished reading, you must end by returning an ACK=NG(‘H’), and then stop. The read sequence would be as shown below. START => DEVICE ADDRESS+WRITE => WORD ADDRESS => STOP => START => DEVICE ADDRESS+READ => DATA READ + ACK OK => DATA READ + ACK OK => DATA READ + ACK OK => DATA READ + ACK OK => DATA READ + ACK NG => STOP ACK=OK INC=ON ACK=OK WRITE ACK=OK ACK=OK ACK=OK READ ACK=NG ACK=OK ACK=OK Figure 19. Read Operation Example (Auto Increment ON) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 39/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Register Map (LDO and SWREG control) Address Register name R/W INIT D7 D6 D5 D4 D3 D2 D1 D0 00h LDOCNT1 R/W 1Bh LDO8ON LDO7ON LDO6ON LDO5ON LDO4ON LDO3ON LDO2ON LDO1ON 01h LDOCNT2 R/W 00h - - - - LDO12ON LDO11ON LDO10ON LDO9ON 02h SWREGCNT R/W 13h - - - SWREG5ON SWREG4ON SWREG3ON SWREG2ON SWREG1ON DXh 03h LDOADJ1 R/W LDO2ADJ [3:0] LDO1ADJ [3:0] 04h LDOADJ2 R/W C2h LDO4ADJ [3:0] LDO3ADJ [3:0] 05h LDOADJ3 R/W C4h LDO6ADJ [3:0] LDO5ADJ [3:0] 06h LDOADJ4 R/W 6Ch LDO8ADJ [3:0] LDO7ADJ [3:0] 07h LDOADJ5 R/W CCh LDO10ADJ [3:0] LDO9ADJ [3:0] (Note12) 08h LDOADJ6 R/W 44h 09h SWREGADJ1 R/W D4h - SWREG2ADJ [3:0] LDO12ADJ [2:0] - SWREG1ADJ [3:0] LDO11ADJ [2:0] 0Ah SWREGADJ2 R/W 84h SWREG4ADJ [3:0] SWREG3ADJ [3:0] 0Bh SWREGADJ3 R/W 0Bh - - - - 0Ch ENLD_DIS R/W 00h - - - - - - SWREG5ADJ [3:0] - ENLD7_DIS 0Dh LDOPD1_DIS R/W 00h LDO8PD_DIS LDO7PD_DIS LDO6PD_DIS LDO5PD_DIS LDO4PD_DIS LDO3PD_DIS LDO2PD_DIS LDO1PD_DIS LDO11PD_ DIS SWREG3PD _DIS LDO10PD_ DIS SWREG2PD _DIS SWREG1PD_ DIS 0Eh LDOPD2_DIS R/W 00h - - - - 0Fh SWREGPD_ DIS R/W 00h - - - SWREG5PD_ DIS LDO12PD_ DIS SWREG4PD _DIS 10h ANASW_CNT R/W 00h - - - - - ANASW_EN 11h TCXO_CNT R/W 50h - - - 12h OSC_CNT R/W 03h - - - - - SWREG4 PWM SWREG3 PWM - TCXO_MASK 2:0] - 13h SWREGPWM R/W 00h - - - SWREG5 PWM 14h SW5BYPASS R/W 01h - reserved Reserved (Note13) (Note13) BYPASS_DIS LDO9PD_DIS ANASW_SEL[1:0] TCXO_EN TCXO_SEL C32KOUT_ EN SWREG2 PWM SWREG1 PWM OSC_EN VINDET5ADJ[2:0] (Note 12) The initial value is determined by PSET pin condition. (Note 13) Please always write “0” to reserved registers when in use. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 40/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 00h : LDOCNT1 Register (Read/Write) Address (Index) Register Name R/W 00h LDOCNT1 R/W Initial Value 1Bh Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 LDO8ON LDO7ON LDO6ON LDO5ON LDO4ON LDO3ON LDO2ON LDO1ON 0 0 0 1 1 0 1 1 LDO7 is controlled by EN_O7 pin by deafult. Bit0: LDO1ON LDO1 Power ON/OFF control “0”: OFF “1”: ON (Initial state) Bit1: LDO2ON LDO2 Power ON/OFF control “0”: OFF “1”: ON (Initial state) Bit2: LDO3ON LDO3 Power ON/OFF control “0”: OFF (Initial state) “1”: ON Bit3: LDO4ON LDO4 Power ON/OFF control “0”: OFF “1”: ON (Initial state) Bit4: LDO5ON LDO5 Power ON/OFF control “0”: OFF “1”: ON (Initial state) Bit5: LDO6ON LDO6 Power ON/OFF control “0”: OFF (Initial state) “1”: ON Bit6: LDO7ON LDO7 Power ON/OFF control “0”: OFF (Initial state) “1”: ON LDO7 is controllable by this register only when ENLD7_DIS register (addr 0Ch D[0]) = ‘1’. Bit7: LDO8ON LDO8 Power ON/OFF control “0”: OFF (Initial state) “1”: ON ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 41/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 01h : LDOCNT2 Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 Bit4 01h LDOCNT2 R/W - - - - 00h 0 0 0 0 Initial Value Bit0: LDO9ON LDO9 Power ON/OFF control “0”: OFF (Initial state) “1”: ON Bit1: LDO10ON LDO10 Power ON/OFF control “0”: OFF (Initial state) “1”: ON Bit2: LDO11ON LDO11 Power ON/OFF control “0”: OFF (Initial state) “1”: ON Bit3: LDO12ON LDO12 Power ON/OFF control “0”: OFF (Initial state) “1”: ON Bit3 Bit2 Bit1 Bit0 LDO12ON LDO11ON LDO10ON LDO9ON 0 0 0 0 Whenever SWREG4 is used to power LDO11 and LDO12 via VIN2, SWREG4 must be turned ON at least 250µs before LDO11 and LDO12 are turned ON. SWREG4=ON Wait for 250us or more LDO11, 12=ON An opposite sequence is followed for turning LDO11 and LDO12 OFF. LDO11 and LDO12 must be turned OFF before turning OFF SWREG4. LDO11, 12=OFF No wait needed SWREG4=OFF Whenever SWREG4 is used to power LDO11 and LDO12 via VIN2, SWREG4 must be turned ON at least 250µs before LDO11 and LDO12 are turned ON. SWREG4=ON Wait for 250us or more ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 42/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 02h : SWREGCNT Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 02h SWREGCNT R/W - - - 13h 0 0 0 Initial Value Bit4 Bit2 Bit1 Bit0 SWREG5 SWREG4 SWREG3 SWREG2 SWREG1 ON ON ON ON ON Bit0: SWREG1ON SWREG1 Power ON/OFF control “0”: OFF “1”: ON (Initial state) Bit1: SWREG2ON SWREG2 Power ON/OFF control “0”: OFF “1”: ON (Initial state) Bit2: SWREG3ON SWREG3 Power ON/OFF control “0”: OFF (Initial state) “1”: ON Bit3: SWREG4ON SWREG4 Power ON/OFF control “0”: OFF (Initial state) “1”: ON Bit4: SWREG5ON SWREG5 Power ON/OFF control “0”: OFF “1”: ON (Initial state) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. Bit3 1 0 0 1 1 ○This product is not designed protection against radioactive rays 43/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 03h : LDOADJ1 Register (Read/Write) Address (Index) Register Name R/W 03h LDOADJ1 R/W Initial Value DXh Bit7 Bit6 Bit5 Bit4 Bit3 LDO2ADJ[3:0] 1 1 0 Bit2 Bit1 Bit0 LDO1ADJ[3:0] 1 X X X X Bit[3:0]: LDO1ADJ[3:0] LDO1 output voltage control “0000”: 1.70V “0001”: 1.75V “0010”: 1.80V (Initial state when PSET=’L’) “0011”: 1.85V “0100”: 1.90V “0101”: 2.50V “0110”: 2.55V “0111”: 2.60V (Initial state when PSET=’H’) “1000”: 2.65V “1001”: 2.70V “1010”: 2.80V “1011”: 2.90V “1100”: 2.95V “1101”: 3.00V “1110”: 3.05V “1111”: 3.10V Bit[7:4]: LDO2ADJ[3:0] LDO2 output voltage control “0000”: 2.55V “0001”: 2.60V “0010”: 2.65V “0011”: 2.75V “0100”: 2.80V “0101”: 2.85V “0110”: 2.90V “0111”: 2.95V “1000”: 3.00V “1001”: 3.05V “1010”: 3.10V “1011”: 3.20V “1100”: 3.25V “1101”: 3.30V (Initial state) “1110”: 3.35V “1111”: 3.40V ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 44/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 04h : LDOADJ2 Register (Read/Write) Address (Index) Register Name R/W 04h LDOADJ2 R/W Initial Value C2h Bit7 Bit6 Bit5 Bit4 Bit3 LDO4ADJ[3:0] 1 1 0 Bit2 Bit1 Bit0 LDO3ADJ[3:0] 0 0 0 1 0 Bit[3:0]: LDO3ADJ[3:0] LDO3 output voltage control “0000”: 1.70V “0001”: 1.75V “0010”: 1.80V (Initial state) “0011”: 1.85V “0100”: 1.90V “0101”: 2.50V “0110”: 2.60V “0111”: 2.70V “1000”: 2.80V “1001”: 2.90V “1010”: 2.95V “1011”: 3.00V “1100”: 3.05V “1101”: 3.10V “1110”: 3.20V “1111”: 3.30V Bit[7:4]: LDO4ADJ[3:0] LDO4 output voltage control “0000”: 1.10V “0001”: 1.20V “0010”: 1.30V “0011”: 1.70V “0100”: 1.80V “0101”: 1.90V “0110”: 2.50V “0111”: 2.55V “1000”: 2.60V “1001”: 2.65V “1010”: 2.70V “1011”: 2.75V “1100”: 2.80V (Initial state) “1101”: 2.85V “1110”: 2.90V “1111”: 3.00V ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 45/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 05h : LDOADJ3 Register (Read/Write) Address (Index) Register Name R/W 05h LDOADJ3 R/W Initial Value C4h Bit7 Bit6 Bit5 Bit4 Bit3 LDO6ADJ[3:0] 1 1 0 Bit2 Bit1 Bit0 LDO5ADJ[3:0] 0 0 1 0 0 Bit[3:0]: LDO5ADJ[3:0] LDO5 output voltage control “0000”: 1.00V “0001”: 1.05V “0010”: 1.10V “0011”: 1.15V “0100”: 1.20V (Initial state) “0101”: 1.25V “0110”: 1.30V “0111”: 1.70V “1000”: 1.80V “1001”: 1.90V “1010”: 2.60V “1011”: 2.70V “1100”: 2.80V “1101”: 2.90V “1110”: 3.00V “1111”: 3.10V Bit[7:4]: LDO6ADJ[3:0] LDO6 output voltage control “0000”: 1.10V “0001”: 1.20V “0010”: 1.30V “0011”: 1.70V “0100”: 1.80V “0101”: 1.90V “0110”: 2.50V “0111”: 2.55V “1000”: 2.60V “1001”: 2.65V “1010”: 2.70V “1011”: 2.75V “1100”: 2.80V (Initial state) “1101”: 2.85V “1110”: 2.90V “1111”: 3.00V ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 46/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 06h : LDOADJ4 Register (Read/Write) Address (Index) Register Name R/W 06h LDOADJ4 R/W Initial Value 6Ch Bit7 Bit6 Bit5 Bit4 Bit3 LDO8ADJ[3:0] 0 1 1 Bit2 Bit1 Bit0 LDO7ADJ[3:0] 0 1 1 0 0 Bit[3:0]: LDO7ADJ[3:0] LDO7 output voltage control “0000”: 1.10V “0001”: 1.20V “0010”: 1.30V “0011”: 1.70V “0100”: 1.80V “0101”: 1.90V “0110”: 2.50V “0111”: 2.55V “1000”: 2.60V “1001”: 2.65V “1010”: 2.70V “1011”: 2.75V “1100”: 2.80V (Initial state) “1101”: 2.85V “1110”: 2.90V “1111”: 3.00V Bit[7:4]: LDO8ADJ[3:0] LDO8 output voltage control “0000”: 1.20V “0001”: 1.30V “0010”: 1.70V “0011”: 1.80V “0100”: 2.40V “0101”: 2.45V “0110”: 2.50V (Initial state) “0111”: 2.55V “1000”: 2.60V “1001”: 2.65V “1010”: 2.70V “1011”: 2.75V “1100”: 2.80V “1101”: 2.85V “1110”: 2.90V “1111”: 3.00V ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 47/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 07h : LDOADJ5 Register (Read/Write) Address (Index) Register Name R/W 07h LDOADJ5 R/W Initial Value CCh Bit7 Bit6 Bit5 Bit4 Bit3 LDO10ADJ[3:0] 1 1 0 Bit2 Bit1 Bit0 LDO9ADJ[3:0] 0 1 1 0 0 Bit[3:0]: LDO9ADJ[3:0] LDO9 output voltage control “0000”: 1.10V “0001”: 1.20V “0010”: 1.30V “0011”: 1.70V “0100”: 1.80V “0101”: 1.90V “0110”: 2.50V “0111”: 2.55V “1000”: 2.60V “1001”: 2.65V “1010”: 2.70V “1011”: 2.75V “1100”: 2.80V (Initial state) “1101”: 2.85V “1110”: 2.90V “1111”: 3.00V Bit[7:4]: LDO10ADJ[3:0] LDO10 output voltage control “0000”: 1.10V “0001”: 1.20V “0010”: 1.30V “0011”: 1.70V “0100”: 1.80V “0101”: 1.90V “0110”: 2.50V “0111”: 2.55V “1000”: 2.60V “1001”: 2.65V “1010”: 2.70V “1011”: 2.75V “1100”: 2.80V (Initial state) “1101”: 2.85V “1110”: 2.90V “1111”: 3.00V ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 48/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL LDOADJ6 Register (Read/Write) Address (Index) Register Name R/W Bit7 08h LDOADJ6 R/W - 44h 0 Initial Value Bit6 Bit5 Bit4 LDO12ADJ[2:0] 1 0 Bit3 Bit2 0 0 Bit1 Bit0 LDO11ADJ[2:0] 1 0 0 Bit[3:0]: LDO11ADJ[3:0] LDO11 output voltage control “000”: 1.00V “001”: 1.05V “010”: 1.10V “011”: 1.15V “100”: 1.20V (Initial state) “101”: 1.25V “110”: 1.30V “111”: 1.35V Bit[7:4]: LDO12ADJ[3:0] LDO12 output voltage control “000”: 1.00V “001”: 1.05V “010”: 1.10V “011”: 1.15V “100”: 1.20V (Initial state) “101”: 1.25V “110”: 1.30V “111”: 1.35V ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 49/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 09h : SWREGADJ1 Register (Read/Write) Address (Index) Register Name R/W 09h SWREGADJ1 R/W Initial Value D2h Bit7 Bit6 Bit5 Bit4 Bit3 SWREG2ADJ[3:0] 1 1 0 Bit2 Bit1 Bit0 SWREG1ADJ[3:0] 1 0 1 0 0 Bit[3:0]: SWREG1ADJ[3:0] SWREG1 output voltage control “0000”: 1.00V “0001”: 1.05V “0010”: 1.10V “0011”: 1.15V “0100”: 1.20V (Initial state) “0101”: 1.25V “0110”: 1.30V “0111”: 1.35V “1000”: 1.40V “1001”: 1.45V “1010”: 1.50V “1011”: 1.70V “1100”: 1.75V “1101”: 1.80V “1110”: 1.85V “1111”: 1.90V Bit[7:4]: SWREG2ADJ[3:0] SWREG2 output voltage control “0000”: 1.00V “0001”: 1.05V “0010”: 1.10V “0011”: 1.15V “0100”: 1.20V “0101”: 1.25V “0110”: 1.30V “0111”: 1.35V “1000”: 1.40V “1001”: 1.45V “1010”: 1.50V “1011”: 1.70V “1100”: 1.75V “1101”: 1.80V (Initial state) “1110”: 1.85V “1111”: 1.90V ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 50/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 0Ah : SWREGADJ2 Register (Read/Write) Address (Index) Register Name R/W 0Ah SWREGADJ2 R/W Initial Value 84h Bit7 Bit6 Bit5 Bit4 Bit3 SWREG4ADJ[3:0] 1 0 0 Bit2 Bit1 Bit0 SWREG3ADJ[3:0] 0 0 1 0 0 Bit[3:0]: SWREG3ADJ[3:0] SWREG3 output voltage control “0000”: 1.00V “0001”: 1.05V “0010”: 1.10V “0011”: 1.15V “0100”: 1.20V (Initial state) “0101”: 1.25V “0110”: 1.30V “0111”: 1.35V “1000”: 1.40V “1001”: 1.45V “1010”: 1.50V “1011”: 1.70V “1100”: 1.75V “1101”: 1.80V “1110”: 1.85V “1111”: 1.90V Bit[7:4]: SWREG4ADJ[3:0] SWREG4 output voltage control “0000”: 1.00V “0001”: 1.05V “0010”: 1.10V “0011”: 1.15V “0100”: 1.20V “0101”: 1.25V “0110”: 1.30V “0111”: 1.35V “1000”: 1.40V (Initial state) “1001”: 1.45V “1010”: 1.50V “1011”: 1.70V “1100”: 1.75V “1101”: 1.80V “1110”: 1.85V “1111”: 1.90V When this output is used to power LDO11 or LDO12 via VIN2, the output must be set to meet the minimum input voltage condition. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 51/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 0Bh : SWREGADJ3 Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 Bit4 0Bh SWREGADJ3 R/W - - - - 0Bh 0 0 0 0 Initial Value Bit3 Bit2 Bit1 Bit0 SWREG5ADJ[3:0] 1 0 1 1 Bit[3:0]: SWREG5ADJ[3:0] SWREG5 output voltage control “0000”: 1.20V “0001”: 1.40V “0010”: 1.70V “0011”: 1.75V “0100”: 1.80V “0101”: 1.85V “0110”: 1.90V “0111”: 3.00V “1000”: 3.05V “1001”: 3.10V “1010”: 3.15V “1011”: 3.20V (Initial state) “1100”: 3.25V “1101”: 3.30V “1110”: 3.35V “1111”: 3.40V When this output is used to power LDO1, LDO4, LDO6, LDO7, LDO8, LDO9, and LDO10 via VIN1, the output must be set to meet the minimum input voltage condition. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 52/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 0Ch : ENLD_DIS Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Ch ENLD_DIS R/W - - - - - - - ENLD7_DIS 00h 0 0 0 0 0 0 0 0 Initial Value Bit [0]: ENLD7_DIS EN_O7 external control pin disable register “0” : EN_O7 control enabled (Initial State) “1” : LDO7 controlled by LDO7ON register ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 53/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 0Dh : LDOPD1_DIS Register (Read/Write) Address (Index) Register Name R/W 0Dh LDOPD1_DIS R/W Initial Value 00h Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 LDO8PD_ LDO7PD_ LDO6PD_ LDO5PD_ LDO4PD_ LDO3PD_ LDO2PD_ LDO1PD_ DIS DIS DIS DIS DIS DIS DIS DIS 0 0 0 0 Bit0: LDO1PD_DIS LDO1 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit1: LDO2PD_DIS LDO2 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit2: LDO3PD_DIS LDO3 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit3: LDO4PD_DIS LDO4 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit4: LDO5PD_DIS LDO5 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit5: LDO6PD_DIS LDO6 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit6: LDO7PD_DIS LDO7 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit7: LDO8PD_DIS LDO8 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. 0 0 0 0 ○This product is not designed protection against radioactive rays 54/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 0Eh : LDOPD2_DIS Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 Bit4 0Eh LDOPD2_DIS R/W - - - - 00h 0 0 0 0 Initial Value Bit3 Bit1 Bit0 LDO12PD_LDO11PD_ LDO10PD_ LDO9PD_ DIS DIS DIS DIS Bit0: LDO9PD_DIS LDO9 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit1: LDO10PD_DIS LDO10 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit2: LDO11PD_DIS LDO11 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit3: LDO12PD_DIS LDO12 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. Bit2 0 0 0 0 ○This product is not designed protection against radioactive rays 55/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 0Fh : SWREGPD_DIS Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 0Fh SWREGPD_DIS R/W - - - 00h 0 0 0 Initial Value Bit4 Bit3 Bit2 Bit0 SWREG5PDSWREG4PDSWREG3PDSWREG2PDSWREG1PD _DIS _DIS _DIS _DIS _DIS 0 0 0 Bit0: SWREG1PD_DIS SWREG1 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit1: SWREG2PD_DIS SWREG2 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit2: SWREG3PD_DIS SWREG3 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit3: SWREG4PD_DIS SWREG4 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled Bit4: SWREG5PD_DIS SWREG5 Discharge resistor ON/OFF control “0”: Discharge enabled (Initial state) “1”: Discharge disabled ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. Bit1 0 0 ○This product is not designed protection against radioactive rays 56/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 10h : ANASW_CNT Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 10h ANASW_CNT R/W - - - - - ANASW_E N 00h 0 0 0 0 0 0 Initial Value Bit1 Bit0 ANASW_SEL[1:0] 0 0 Bit[1:0]: ANASW_SEL[1:0] Analog Switch input select control “00”: ASWIN1 select (Initial state) “01”: ASWIN2 select “10”: ASWIN3 select “11”: ASWIN4 select Bit2: ANASW_EN Analog Switch ON/OFF control “0”: Fixed ‘L’ output (Initial state) “1”: Output enabled ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 57/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 11h : TCXO_CNT Register (Read/Write) Address (Index) Register Name R/W Bit7 11h TCXO_CNT R/W - 40h 0 Initial Value Bit6 Bit5 Bit4 TCXO_MASK[2:0] 1 0 1 Bit3 Bit2 - - 0 0 Bit1 Bit0 TCXO_EN TCXO_SEL 0 1 Bit[0]: TCXO_SEL TCXO buffer control select “0”: LDO7 ON/OFF synchronous control (Initial state) LDO7=OFF: TCXO=OFF LDO7=ON: TCXO=ON “1”: TCXO_EN register control mode Bit[1]: TCXO_EN TCXO buffer ON/OFF register control “0”: Buffer OFF (Initial state) “1”: Buffer ON The TCXO buffer control follows the control table shown below. TCXO_SEL TCXO_EN ENLD7_DIS EN_O7 LDO7ON TCXO buffer register register register pin register control 0 * 0 0 * OFF 0 * 0 1 * ON 0 * 1 * 0 OFF 0 * 1 * 1 ON 1 0 * * * OFF 1 1 * * * ON Bit[6:4]: TCXO_MASK TCXO buffer output mask length control “000”: 30us “001”: 120us “010”: 220us “011”: 310us “100”: 410us “101”: 530us (Initial state) “110”: 620us “111”: 720us ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 58/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 12h : OSC_CNT Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 12h OSC_CNT R/W - - - - - - 03h 0 0 0 0 0 0 Initial Value Bit1 Bit0 C32KOUT OSC_EN _EN 1 1 Bit[0]: OSC_EN OSC ON/OFF control “0”: Oscillation OFF “1”: Oscillation ON (Initial state) Bit[1]: C32KOUT_EN C32KOUT buffer output control “0”: Buffer OFF “1”: Buffer ON (Initial state) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 59/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 13h : SWREGPWM Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 13h SWREGPWM R/W - - - 00h 0 0 0 Initial Value Bit4 Bit3 Bit1 Bit0 SWREG5 SWREG4 SWREG3 SWREG2 SWREG1 PWM PWM PWM PWM PWM 0 Bit0: SWREG1PWM SWREG1 PWM fixed mode enable control “0”: PFM/PWM auto mode (Initial state) “1”: PWM fixed mode Bit1: SWREG2PWM SWREG2 PWM fixed mode enable control “0”: PFM/PWM auto mode (Initial state) “1”: PWM fixed mode Bit2: SWREG3PWM SWREG3 PWM fixed mode enable control “0”: PFM/PWM auto mode (Initial state) “1”: PWM fixed mode Bit3: SWREG4PWM SWREG4 PWM fixed mode enable control “0”: PFM/PWM auto mode (Initial state) “1”: PWM fixed mode Bit4: SWREG5PWM SWREG5 PWM fixed mode enable control “0”: PFM/PWM auto mode (Initial state) “1”: PWM fixed mode ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. Bit2 0 0 0 0 ○This product is not designed protection against radioactive rays 60/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Address 14h : SW5BYPASS Register (Read/Write) Address (Index) Register Name R/W Bit7 Bit6 Bit5 Bit4 Bit3 14h SW5BYPASS R/W - reserved reserved BYPASS_ DIS - 01h 0 0 0 0 0 Initial Value Bit2 Bit1 Bit0 VINDET5ADJ[2:0] 0 0 1 Bit[2:0]: VINDET5ADJ[2:0] SWREG5 VBAT Bypass mode detect level “000”: 3.30V “001”: 3.35V (Initial state) “010”: 3.40V “011”: 3.45V “100”: 3.50V “101”: 3.55V “110”: 3.60V “111”: 3.65V Bit4: BYPASS_DIS SWREG5 VBAT Bypass mode control “0”: Bypass mode enable (Initial state) “1”: Bypass mode disable Please always write “0” to reserved registers when in use. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 61/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Typical Characteristics 100 100 90 90 80 80 PFM Mode PWM Mode 70 70 60 60 Efficie ncy [% ] Efficiency [%] PFM Mode PWM Mode 50 40 30 50 40 30 VBAT=3.6V VBAT=3.6V 20 Ta=25°C 20 Ta=25°C Output Voltage = 1.8V Output Voltage = 1.2V 10 10 0 0 0.1 1 10 100 1000 0.1 1 Output Current [mA] 100 1000 Figure 20. Efficiency vs Output Current Figure 21. Efficiency vs Output Current (SWREG1 Efficiency) (SWREG2 Efficiency) 100 100 90 90 80 PFM Mode 80 PFM Mode PWM Mode PWM Mode 70 70 60 60 Efficie ncy [% ] Efficiency [%] 10 Outpu t C urren t [mA] 50 40 30 50 40 30 VBAT=3.6V VBAT=3.6V 20 Ta=25°C 20 Ta=25°C Output Voltage = 1.4V Output Voltage = 1.2V 10 10 0 0 0.1 1 10 100 1000 Output Current [mA] 0.1 1 10 100 Figure 22. Efficiency vs Output Current Figure 23. Efficiency vs Output Current (SWREG3 Efficiency) (SWRE4 Efficiency) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. 1000 Outpu t C urren t [mA] ○This product is not designed protection against radioactive rays 62/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Typical Characteristics 100 90 PFM Mode PWM Mode 80 Efficiency [%] 70 60 50 40 30 VBAT=3.6V Ta=25°C 20 Output Voltage = 3.2V 10 0 0.1 1 10 100 1000 10000 Output Current [mA] Figure 24. Efficiency vs Output Current 1.30 1. 90 1.28 1. 88 1.26 1. 86 1.24 1. 84 Outpu t Vol ta ge [V] Output Voltage [V] (SWRE5 Efficiency) 1.22 1.20 1.18 PFM Mode PWM Mode 1. 82 1. 80 1. 78 1.16 1. 76 1.14 1. 74 1.12 1. 72 PFM Mode PWM Mode 1. 70 1.10 0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 200 250 300 350 400 Figure 25. Output Voltage vs Output Current Figure 26. Output Voltage vs Output Current (SWREG1 Load Regulation) (SWREG2 Load Regulation) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. 450 500 Ou tp ut C urre nt [mA] Output Current [mA] ○This product is not designed protection against radioactive rays 63/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL 1.30 1. 50 1.28 1. 48 1.26 1. 46 1.24 1. 44 Outpu t Vol ta ge [V] Output Voltage [V] Typical Characteristics 1.22 1.20 1.18 PFM Mode PWM Mode 1. 42 1. 40 1. 38 1.16 1. 36 1.14 1. 34 1.12 1. 32 1.10 PFM Mode PWM Mode 1. 30 0 100 200 300 400 500 600 700 800 900 1000 Output Current [mA] 0 100 200 300 400 500 Ou tp ut C urre nt [mA] Figure 27. Output Voltage vs Output Current Figure 28. Output Voltage vs Output Current (SWREG4 Load Regulation) (SWREG3 Load Regulation) 3. 30 3. 28 3. 26 Outpu t Vol ta ge [V] 3. 24 3. 22 3. 20 PFM Mode PWM Mode 3. 18 3. 16 3. 14 3. 12 3. 10 0 200 400 600 800 1000 1200 1400 Output Curre nt [mA] Figure 29. Output Voltage vs Output Current (SWREG5 Load Regulation) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 64/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL 2. 70 3.4 2. 68 3. 38 2. 66 3. 36 2. 64 3. 34 Outpu t Vol ta ge [V] Outpu t Vol ta ge [V] Typical Characteristics 2. 62 2. 60 2. 58 2. 56 3. 32 3.3 3. 28 3. 26 VBAT=3.6V VBAT=3.6V 2. 54 3. 24 Ta=25°C 2. 52 Ta=25°C VIN1(SWREG5=3.2V)+LDO VBAT+LDO 3. 22 2. 50 3.2 0 50 100 15 0 20 0 2 50 3 00 0 10 20 Figure 30. Output Voltage vs Output Current (LDO1 Load Regulation) 40 50 Figure 31. Output Voltage vs Output Current (LDO2 Load Regulation) 1. 90 2.9 1. 88 2. 88 1. 86 2. 86 1. 84 2. 84 Outpu t Vol ta ge [V] Outpu t Vol ta ge [V] 30 Outp ut C urren t [mA] Output Cur rent [mA] 1. 82 1. 80 1. 78 1. 76 2. 82 2.8 2. 78 2. 76 VBAT=3.6V VBAT=3.6V 1. 74 2. 74 Ta=25°C 1. 72 VBAT+LDOVBAT=3.6V Ta=25°C VIN1(SWREG5=3.2V)+LDO 2. 72 1. 70 2.7 0 10 20 30 40 50 Figure 32. Output Voltage vs Output Current (LDO3 Load Regulation) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. 0 50 100 150 200 250 300 Output Curre nt [mA] Ou tput Curre nt [mA] Figure 33. Output Voltage vs Output Current (LDO4 Load Regulation) ○This product is not designed protection against radioactive rays 65/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL 1. 30 2. 90 1. 28 2. 88 1. 26 2. 86 1. 24 2. 84 Outpu t Vol ta ge [V] Outpu t Vol ta ge [V] Typical Characteristics 1. 22 1. 20 1. 18 1. 16 2. 82 2. 80 2. 78 2. 76 VBAT=3.6V VBAT=3.6V Ta=25 ℃ VIN1(SWREG5=3.2V)+LDO Ta=25°C 1. 14 VBAT=3.6V 2. 74 VIN1(SWREG5=3.2V)+LDO 1. 12 Ta=25°C VBAT+LDO 2. 72 1. 10 2. 70 0 30 60 90 120 150 0 30 Ou tp ut C urre nt [mA] Figure 34. Output Voltage vs Output Current (LDO5 Load Regulation) 90 120 150 Figure 35. Output Voltage vs Output Current (LDO6 Load Regulation) 2. 90 2. 60 2. 88 2. 58 2. 86 2. 56 2. 84 2. 54 Outpu t Vol ta ge [V] Outpu t Vol ta ge [V] 60 Ou tp ut C urre nt [mA] 2. 82 2. 80 2. 78 2. 52 2. 50 2. 48 2. 46 2. 76 VBAT=3.6V 2. 74 VBAT=3.6V 2. 44 Ta=25°C VBAT+LDO 2. 72 Ta=25°C VIN1(SWREG5=3.2V)+LDO 2. 42 2. 40 2. 70 0 10 20 30 40 0 50 60 90 120 150 Figure 37. Output Voltage vs Output Current (LDO8 Load Regulation) Figure 36. Output Voltage vs Output Current (LDO7 Load Regulation) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. 30 Ou tp ut C urre nt [mA] Outpu t Cu rrent [mA] ○This product is not designed protection against radioactive rays 66/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL 2. 90 2. 90 2. 88 2. 88 2. 86 2. 86 2. 84 2. 84 Outpu t Vol ta ge [V] Outpu t Vol ta ge [V] Typical Characteristics 2. 82 2. 80 2. 78 2. 76 2. 82 2. 80 2. 78 2. 76 VBAT=3.6V 2. 74 VBAT=3.6V 2. 74 Ta=25°C VIN1(SWREG5=3.2V)+LDO 2. 72 Ta=25°C VIN1(SWREG5=3.2V)+LDO 2. 72 2. 70 2. 70 0 30 60 90 120 150 0 30 Ou tp ut C urre nt [mA] Figure 38. Output Voltage vs Output Current (LDO9 Load Regulation) 90 120 150 Figure 39. Output Voltage vs Output Current (LDO10 Load Regulation) 1. 30 1. 30 1. 28 1. 28 1. 26 1. 26 1. 24 1. 24 Outpu t Vol ta ge [V] Outpu t Vol ta ge [V] 60 Outpu t Cu rren t [mA] 1. 22 1. 20 1. 18 1. 16 1. 22 1. 20 1. 18 1. 16 VBAT=3.6V 1. 14 VBAT=3.6V 1. 14 Ta=25°C VIN2(SWREG4=1.4V)+LDO 1. 12 Ta=25°C VIN2(SWREG4=1.4V)+LDO 1. 12 1. 10 1. 10 0 30 60 90 120 150 0 Ou tp ut C urre nt [mA] 60 90 120 150 Ou tp ut C urre nt [mA] Figure 40. Output Voltage vs Output Current (LDO11 Load Regulation) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. 30 Figure 41. Output Voltage vs Output Current (LDO12 Load Regulation) ○This product is not designed protection against radioactive rays 67/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL PCB Layout Guidelines To achieve the best efficiency, stability, and regulation, it is necessary to meet following rules. 1) Bypass Capacitor (CPBAT) should be placed as close as possible to the IC pins. 2) Bypass Capacitor (CPBAT) should be connected by TOP Layer. (It is better not used via) 3) The inductor (L) and output capacitor (Cout) should be also placed to near side. 4) The Feed Back line of buck converter (FB) is wired as short as possible. 5) It is better don't place the GND cupper trace under the chip Inductor for reducing the effective of noise 6) To further reduce the noise interference on sensitive nodes use the ground plane layout. When you connect to the GND plane, please reduce the impedance using VIA plurality of contacts. Figure 42. Schematic & PCB Layout Ideal Image (DCDC) 7) To keep the good stability, don't placed GND trace under the Crystal. Please keep the distance between the Crystal and noisy device. Please be as short as possible the distance of crystal and BD7185AGWL because it is a sensitive device. 8) This device includes the noisy block. (Buck converter, SIM interface, 32 KHz oscillator) There is a possibility that these noises affect the other electric components of the mobile instruments. Please check thoroughly with your set about the effect of noise. The good PCB artwork reduces the effective of noise. To prevent it from BD7185AGWL, please consider to use metal can shielding or chip bead. Shield VDDOSC 0.1uF . X’tal OSC_IN _ Don’t fill the copper trace. OSC_OUT GNDOSC Figure 43. Schematic & PCB Layout Image (X’tal) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 68/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL PCB Layout (Evaluation Board Layout) CL4 L4 CL3 L3 CL2 L2 CL1 CL5 L5 CB1 CDVDD L1 CB5 COUT3 COUT6 COUT2 COUT4 COUT12 COUT1 COUT11 CRERFC COUT9 COUT10 COUT8 1. Bypass Capacitor (CBx) should be placed as close as possible to the IC Pins. 2. The LX Line is wired as short as possible. Figure 44. PCB Layout Image (Top Layer) Figure 45. PCB Layout Image (Mid1 Layer) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 69/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL GND DVDD GND 1. Isolate the crystal from anything else. And do not Placed GND trace planes beneath the crystal. Figure 46. PCB Layout Image (Mid2 Layer) GND GND 1. Isolate the crystal from anything else. And don't Placed GND trace planes beneath the crystal. Figure 47. PCB Layout Image (Mid3 Layer) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 70/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL GND GND 1. Isolate the crystal from anything else. And don't Placed GND trace planes beneath the crystal. Figure 48. PCB Layout Image (Mid4 Layer) . 1. Bypass Capacitor (CBx) should be placed as close as possible to the IC Pins. . 2. XOSC, COSCIN and COSCOUT is BOTTOM Layer. It’s shielded by GND and influence of a noise is carried out to minimization. And do not Placed GND trace planes beneath the crystal. CB3 CB4 CB2 COUT7 COUT5 CVIN1 XOSC CVDDOSC COSCOUT COSCIN CVBATREF Figure 49. PCB Layout Image (Mid4 Layer) ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 71/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Ordering Information B D 7 1 8 5 A G Part Number W L - Package GWL: UCSP50L3C E2 Packaging and forming specification E2: Embossed tape and reel Figure 50. Ordering Information Physical Dimension Tape and Reel Information UCSP50L3C BD7185AGWL 1PINMARK MARK 1PIN Lot LotNo. No. 3.8±0.05 5 0 . 0 ± 8 . 3 D71801 D7185A 3.8±0.05 3.8±0.05 0.1±0.05 0.57MAX 5 0 X .0 A M ±7 1 5 .0 .0 SS 0.06 0.06 SS 0.3±0.05 5 0 .0 ± 3 . 0 80-φ0 .20±0 .05 80-φ0.20±0.05 0.05 0 .05 AB AA AB JJ HH GG FF EE DD CC BB AA P=0.4×8 BB 8 × 4 . 0 = P 11 22 33 44 55 66 77 88 99 0.3±0 .05 0.3±0.05 P=0.4×8 P=0.4×8 < Tape and Reel Information> Tape Embossed carrier tape Quantity Direction of Feed 2500pcs E2 The direction is the pin 1 of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand. 1234 1234 Reel ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. 1234 1234 1pin 1234 1234 Direction of feed ○This product is not designed protection against radioactive rays 72/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply terminals. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However, pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground due to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below ground will not cause the IC and the system to malfunction by examining carefully all relevant factors and conditions such as motor characteristics, supply voltage, operating frequency and PCB wiring to name a few. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a 54mm x 62mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 73/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Operational Notes – continued 11. Unused Input Terminals Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input terminals should be connected to the power supply or ground line. 12. Regarding the Input Pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Figure 50. Example of monolithic IC structure 13. Ceramic Capacitor When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. 14. Area of Safe Operation (ASO) Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation (ASO). 15. Thermal Shutdown Circuit(TSD) This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage. 16. Over Current Protection Circuit (OCP) This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit. ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 74/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet BD7185AGWL Revision History Date Revision Changes 2014.04.11 001 New release ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2014 ROHM Co., Ltd. All rights reserved. ○This product is not designed protection against radioactive rays 75/75 TSZ02201-0Q4Q0AB00010-1-2 8.Apr.2014 Rev.001 Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice – GE © 2013 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.: 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice – GE © 2013 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2014 ROHM Co., Ltd. All rights reserved. Rev.001
BD7185AGWL-E2 价格&库存

很抱歉,暂时无法提供与“BD7185AGWL-E2”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BD7185AGWL-E2
  •  国内价格
  • 626+45.67192
  • 1250+44.29482

库存:1207

BD7185AGWL-E2
  •  国内价格
  • 2+47.07939
  • 626+45.67192
  • 1250+44.29482

库存:1207

BD7185AGWL-E2
    •  国内价格 香港价格
    • 1+20.818791+2.48822
    • 10+20.2530210+2.42060
    • 50+19.8676350+2.37454
    • 100+19.49045100+2.32946
    • 500+19.40026500+2.31868
    • 1000+19.359261000+2.31378

    库存:50

    BD7185AGWL-E2
    •  国内价格 香港价格
    • 1+72.786201+8.69927
    • 10+48.9493510+5.85033
    • 25+42.7325125+5.10731
    • 100+35.70735100+4.26768

    库存:101