0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD86120EFJ-E2

BD86120EFJ-E2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    HTSOPJ8_150MIL_EP

  • 描述:

    IC REG BUCK ADJ 5A 8HTSOP-J

  • 数据手册
  • 价格&库存
BD86120EFJ-E2 数据手册
Datasheet 4.5V to 18V, 5A 1ch Synchronous Buck Converter BD86120EFJ ●Description The BD86120EFJ is synchronous buck converters. The device integrates power MOSFETS that provide a each maximums current output current continuous load current over a wide operating input voltage of 4.5V to 18V. Current mode operation provides fast transient response and easy phase compensation. The output power MOSFETs using P-type MOSEFT (HI side) and N-type MOSEFT (LOW side), then this device don’t need boot capacitor. The BD86120EFJ is HTSOP-J8 standard packages. ●Features  Input voltage range: 4.5V to 18.0V  Reference voltage 0.8V ± 1%  Average output Current: 5A(Max.)  Switching frequency: 550kHz(Typ.)  Pch FET ON resistance: 50mΩ(Typ.)  Nch FET ON resistance: 35mΩ(Typ.)  Standby current: 1μA (Typ.)  Operating temperature range: -40℃ to +85℃  Cycle by cycle over current protection(OCP)  Thermal shutdown (TSD)  Under voltage lock out(UVLO)  Short circuit protection(SCP)  Over voltage protection(OVP)  Fixed soft start 5msec ●Applications ■ LCD TVs ■ Set top boxes ■ DVD/Blu-ray players/recorders ■ Broadband Network and Communication Interface ■ Amusement, other W(Typ.) x D(Typ.) x H(Max.) 4.90mm x 6.00mm x 1.00mm ●Package HTSOP-J8 (TOP VIEW) PGND 1 8 SW VIN 2 7 SW EN 3 6 COMP AGND 4 5 FB Figure 2. Pin configuration ●Typical Application BD86120EFJ VIN C1 L SW PGND C2 R2 FB EN R3 COMP AGND R1 C3 Figure 1. Application Circuit ○Product structure:Silicon monolithic integrated circuit www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・14・001 ○This product is not designed protection against radioactive rays. 1/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●Block Diagram EN VREG OSC OVP SCP OCP UVLO IBIAS VIN TSD S LOGIC ERR FB SW SLOPE PWM R COMP PGND SoftStart AGND Figure 3. Block diagram ●Pin Description No. Symbol Description 1 PGND 2 VIN Input voltage supply pin. 3 EN Enable input control. Active high. 4 AGND 5 FB 6 COMP 7 SW Switch node connection between high-side Pch FET and Low-side Nch FET. 8 SW Switch node connection between high-side Pch FET and Low-side Nch FET. Thermal Pad Back side Power Ground pin. Power ground return for switching circuit. Analog Ground pin. Electrically needs to be connected to PGND. Converter feedback input. Connect to output voltage with feedback resistor divider. Error amplifier output, and input to the output switch current comparator. External loop compensation pin. Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Must be connected to AGND. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 2/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●Absolute maximum ratings (Ta=25℃) Parameter Symbol Ratings Unit Input supply voltage VIN 20 V SW terminal voltage VSW 20 V SW terminal voltage (10ns transient) VSW (AC) 22 V EN terminal voltage VEN 20 V Power dissipation Pd 3760* mW Operating temperature Topr -40~+85 ℃ Storage temperature Tstg -55~+150 ℃ Tjmax 150 ℃ VLVPINS 7 V Maximum Junction temperature FB, COMP terminal voltage * Condition 70mm×70mm, thickness 1.6mm, and 4 layer glass epoxy substrates Operating at higher than Ta=25℃, 30.08mW shall be reduced per 1℃ ●Operating ratings Parameter Symbol Ratings Min. Typ. Max. Unit Input supply voltage VIN 4.5 - 18.0 V Output current IOUT - - 5.0 A VRANGE VIN×0.068* - VIN×0.8 V Output voltage range * VIN×0.068 ≧ 0.8 [V] www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 3/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●Electrical characteristics (Unless otherwise noted Ta=25℃, VIN=12V, VEN = 3V) Parameter Symbol Limits Min. Typ. Max. UNIT Condition VIN supply current (operating) IQ_active - 1.5 2.5 mA VFB= 0.75V, VEN= 5V VIN supply current (standby) IQ_stby - 1.0 10.0 μA VEN = 0V Reference voltage (VREF) VFB 0.792 0.800 0.808 V FB-COMP Short (Voltage follower) FB input bias current IFB - 0 2 μA Oscillation frequency fOSC 500 550 600 kHz High side FET ON resistance RONH - 50 - mΩ VIN= 12V , ISW = -1A Low side FET ON resistance RONL - 35 - mΩ VIN= 12V , ISW = -1A SW leak current ILSW - 0 5 μA VIN= 18V , VSW = 18V Switch Current Limit ILIMIT 5.5 - - A Min_duty - - 6.8 % VUVLO 3.8 4.1 4.4 V VUVLOHYS - 0.3 - V EN terminal H threshold voltage VENH 2.0 - - V EN terminal L threshold voltage VENL - - 0.8 V Soft Start Time TSS 3.0 5.0 7.0 msec Min duty UVLO voltage UVLO hysteresis ● ● VIN Sweep up VFB :FB terminal voltage, VEN :EN terminal voltage, Current capability should not exceed Pd. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 4/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●Typical Performance Curves (Reference data) 110 100 Vout = 5.0V 90 100 80 90 80 Vout = 3.3V 60 Tc[℃] Efficiency [%] 70 50 40 Vout = 1.2V VIN=12V L=4.7µH Cout=44µF 10 60 50 30 20 70 40 30 0 20 0.01 0.1 1 10 0 1 2 ILOAD[A] Figure 4. Efficiency SW 4 Figure 5. TC-ILOAD (VIN=12V, Vout=3.3V, L=4.7µH, Cout=44µF) [20mV/div] Vout(AC) [5V/div] SW [20mV/div] [5V/div] T - Time - 1usec/div T - Time - 1usec/div Figure 6. Vout Ripple Figure 7. Vout Ripple (VIN=12V, Vout=3.3V, L=4.7µH, Cout=44µF, Iout=0A) (VIN=12V, Vout=3.3V, L=4.7µH, Cout=44µF, Iout=5A) www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 5 ILOAD[A] (VIN=12V, L=3.3/4.7/4.7µH(Vout=1.2/3.3/5.0V), Cout=44µF) Vout(AC) 3 5/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ 3.40 3.40 3.38 3.38 3.36 3.36 3.34 3.34 3.32 3.32 Vout [V] Vout [V] ●Typical Performance Curves (Reference data) (continued) 3.30 3.28 3.30 3.28 3.26 3.26 3.24 3.24 3.22 3.22 3.20 3.20 0 1 2 3 4 4 5 6 8 ILOAD [A] 10 12 14 16 18 80 100 VIN [V] Figure 8. Load regulation Figure 9. Line regulation (VIN=12V, Vout=3.3V, L=4.7µH, Cout=44µF) (Vout=3.3V, L=4.7µH, Cout=44µF, Iout=0A) 3.40 610 3.38 3.36 3.34 570 Vout [V] Frequency [kHz] 590 550 530 3.32 3.30 3.28 3.26 3.24 510 3.22 490 3.20 4 6 8 10 12 14 16 18 -40 VIN [V] -20 0 20 40 60 Ta [℃] Figure 10. Frequency Figure 11. Vout-Temperature (Vout=3.3V, L=4.7µH, Cout=44µF, Iout=0A) (Vin=12V, Vout=3.3V, L=4.7µH, Cout=44µF, Iout=0A) www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 6/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●Typical Performance Curves (Reference data) (continued) EN [5V/div] EN [5V/div] Vout [2V/div] Vout [2V/div] SW [10V/div] SW [10V/div] T - Time – 200msec/div T - Time – 1msec/div Figure 12. Start up wave form Figure 13. Off wave form (Vin=12V, Vout=3.3V, L=4.7µH, Cout=44µF, Iout=0A) (Vin=12V, Vout=3.3V, L=4.7µH, Cout=44µF, Iout=0A) Δ=+64mV Δ=-88mV Vout(AC) [50mV/div] Vout [5V/div] SW [20V/div] IL [5A/div] Iout [2A/div] T - Time - 200usec/div T - Time - 100usec/div Figure 14. Transient response Figure 15. OCP function (Vin=12V, Vout=3.3V, L=4.7µH, Cout=44µF, Iout=2A) (Vin=12V, Vout=3.3V, L=4.7µH, Cout=44µF, Vout is short to GND) www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 7/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●Functional descriptions 1 Enable control The device can be controlled ON/OFF by EN terminal voltage. An internal circuit starts when VEN reaches 2.0V. When standing up of VIN is too steep (1msec or less), a defective start might be caused according to the state of Pascon between GND substrate pattern and power supply-when the terminal EN is short-circuited to the terminal VIN and it is used. VEN EN terminal VENH VENL 0 VO Output setting voltage 0 TSS Figure 16. ON/OFF transition wave form in EN controlling www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 8/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ 2 Protection function Protection circuit is effective for destruction prevention due to accident so that avoid using under continuous protection operation. 2-1 Short Circuit protection function (SCP) The FB terminal voltage is compared with internal reference voltage VREF. If FB terminal voltage falls below VSCP (= VREF - 240mV) and the state continues, output changes to low voltage and the state is fixed. During soft start, the FB terminal voltage is compared with internal soft start slope Table 1 output short circuit protection function EN terminal Short Circuit Protection function FB terminal <VSCP >VENH VENH <VOVP > RUP||RDW V OUT A (a) Gain [dB] R UP C RUP FB R DW - GBW(b) COMP 0 + R CMP 0.8V PHASE -90 C CMP F FCRS 0 -90° PHASE MARGIN -180° -180 F Figure 26. Figure 25. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 15/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●I/O equivalence circuit(s) 5.FB 7,8.SW VIN VIN FB 20kΩ 10kΩ SW 10kΩ AGND PGND 3.EN 6.COMP VREG VIN VIN 2kΩ EN 0.5kΩ 250kΩ 2kΩ COMP 0.5kΩ 725kΩ AGND AGND Figure 27. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 16/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●Notes for use 1) Absolute maximum ratings Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated. 2) GND potential Ensure a minimum GND pin potential in all operating conditions. 3) Setting of heat Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions. 4) Pin short and mistake fitting Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC. Shorts between output pins or between output pins and the power supply and GND pins caused by the presence of a foreign object may result in damage to the IC. 5) Actions in strong magnetic field Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction. 6) Testing on application boards When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process. 7) Ground wiring patterns When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring patterns of any external components. 8) Regarding input pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements. For example, when the resistors and transistors are connected to the pins as shown in Figure 26. , a parasitic diode or a transistor operates by inverting the pin voltage and GND voltage. The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements such as by the application of voltages lower than the GND (P substrate) voltage to input and output pins. Resistor Transistor (NPN) B ~ ~ B E ~ ~ C (Pin B) (Pin B) ~ ~ (Pin A) GND N N P P P+ N N N N (Pin A) P substrate Parasitic elements GND Parasitic elements P+ ~ ~ P+ Parasitic elements E GND N P P+ C Parasitic elements GND GND Figure 28. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 Example of a Simple Monolithic IC Architecture 17/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ 9) Overcurrent protection circuits An overcurrent protection circuit designed according to the output current is incorporated for the prevention of IC damage that may result in the event of load shorting. This protection circuit is effective in preventing damage due to sudden and unexpected accidents. However, the IC should not be used in applications characterized by the continuous operation or transitioning of the protection circuits. At the time of thermal designing, keep in mind that the current capacity has negative characteristics to temperatures. 10) Thermal shutdown circuit (TSD) This IC incorporates a built-in TSD circuit for the protection from thermal destruction. The IC should be used within the specified power dissipation range. However, in the event that the IC continues to be operated in excess of its power dissipation limits, the attendant rise in the chip's junction temperature Tj will trigger the TSD circuit to turn off all output power elements. Operation of the TSD circuit presumes that the IC's absolute maximum ratings have been exceeded. Application designs should never make use of the TSD circuit. 11) EN control speed Chattering happens if standing lowering speed is slow when standing of EN pin is lowered. The reverse current in which the input side and the pressure operation are done from the output side is generated when chattering operates with the output voltage remained, and there is a case to destruction. Please set to stand within 100µs when you control ON/OFF by the EN signal. Status of this document The Japanese version of this document is formal specification. A customer may use this translation version only for a reference to help reading the formal version. If there are any differences in translation version of this document formal version takes priority www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 18/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●Power Dissipation HTSOP-J8 Package On 70  70  1.6 mm glass epoxy PCB (1) 1-layer board (Backside copper foil area 0 mm 0 mm) (2) 2-layer board (Backside copper foil area 15 mm  15 mm) (3) 2-layer board (Backside copper foil area 70 mm  70 mm) (4) 4-layer board (Backside copper foil area 70 mm  70 mm) ●Ordering Information B D 8 6 1 2 0 Part Number E F J - Package EFJ: HTSOP-J8 E2 Packaging and forming specification E2: Embossed tape and reel ●Physical Dimension Tape and Reel Information HTSOP-J8 +6° 4° −4° (2.4) 3.9±0.1 6.0±0.2 8 7 6 5 1 1.05±0.2 (3.2) 0.65±0.15 4.9±0.1 (MAX 5.25 include BURR) Tape Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 2 3 4 1PIN MARK +0.05 0.17 -0.03 1.0MAX 0.545 S 0.08±0.08 0.85±0.05 1.27 +0.05 0.42 -0.04 0.08 M 0.08 S 1pin (Unit : mm) Reel Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. ●Marking Diagram(s)(TOP VIEW) HTSOP-J8(TOP VIEW) Part Number Marking D 8 6 1 2 0 LOT Number 1PIN MARK www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 19/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001 Datasheet BD86120EFJ ●History Date Revision 07.Sep.2012 001 Changes New Release www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 20/20 TSZ02201-0J2J0D100300-1-2 07.Sep.2012 Rev.001
BD86120EFJ-E2 价格&库存

很抱歉,暂时无法提供与“BD86120EFJ-E2”相匹配的价格&库存,您可以联系我们找货

免费人工找货