BD9775FV
TECHNICAL NOTE
Large Current External FET Controller Type Switching Regulator
Step-down,
High-efficiency
Switching Regulators
(Controller type)
BD9011EKN , BD9011KV , BD9775FV
■ BD9011EKN, BD9011KV
●Overview
The BD9011EKN/KV is a 2-ch synchronous controller with rectification switching for enhanced power management efficiency.
It supports a wide input range, enabling low power consumption ecodesign for an array of electronics.
●Features
1) Wide input voltage range: 3.9V to 30V
2) Precision voltage references: 0.8V±1%
3) FET direct drive
4) Rectification switching for increased efficiency
5) Variable frequency: 250k to 550kHz (external synchronization to 550kHz)
6) Built-in selected OFF latch and auto remove over current protection
7) Built-in independent power up/power down sequencing control
8) Make various application , step-down , step-up and step-up-down
9) Small footprint packages: HQFN36V, VQFP48C
●Applications
Car audio and navigation systems, CRTTV,LCDTV,PDPTV,STB,DVD,and PC systems,portable CD and DVD players,
etc.
●Absolute Maximum Ratings (Ta=25℃)
Parameter
EXTVCC Voltage
Symbol
EXTVCC
VCCCL1,2 Voltage
VCCCL1,2
CL1,2 Voltage
CL1,2
SW1,2 Voltage
SW1,2
Unit
Parameter
Symbol
34
*1
V
COMP1,2 Voltage
COMP1,2
34
*1
V
DET1,2 Voltage
DET1,2
V
RT、SYNC Voltage
RT、SYNC
Rating
34
34
*1
V
*1
V
VREG5
V
*2
BOOT1,2
40
BOOT1,2-SW1,2
Voltage
BOOT1,2-SW1,2
7
STB, EN1,2 Voltage
STB, EN1,2
VCC
V
VREG5,5A
VREG5,5A
7
V
VREG33
VREG33
VREG5
V
Operating
temperature
Storage temperature
SS1,2、FB1,2
SS1,2、FB1,2
VREG5
V
Junction temperature
V
Unit
0.875
(HQFN36V)
BOOT1,2 Voltage
*1
Rating
Power Dissipation
W
Pd
*2
1.1
(VQFP48C)
W
Topr
-40 to +105
℃
Tstg
-55 to +150
℃
Tj
+150
℃
*1 Regardless of the listed rating, do not exceed Pd in any circumstances.
*2 Mounted on a 70mm x 70mm x 0.8mm glass-epoxy board. De-rated at 7.44mW/℃(HQFN36V) or 8.8mW/℃(VQFP48C)
above 25℃.
Sep. 2008
●Operating conditions (Ta=25℃)
Parameter
Symbol
Min.
3.9
Typ.
Max.
Unit
*1 *2
12
30
V
Input voltage 1
EXTVCC
Input voltage 2
VCC
3.9 *1 *2
12
30
V
BOOT-SW voltage
BOOT-SW
4.5
5
VREG5
V
Carrier frequency
OSC
250
300
550
kHz
Synchronous frequency
SYNC
OSC
-
550
kHz
Synchronous pulse duty
Duty
40
50
60
%
Min OFF pulse
TMIN
-
100
-
nsec
★This product is not designed to provide resistance against radiation.
*1 After more than 4.5V, voltage range.
*2 In case of using less than 6V, Short to VCC, EXTVCC and VREG5.
●Electrical characteristics (Unless otherwise specified, Ta=25℃ VCC=12V STB=5V EN1,2=5V)
Parameter
Symbol
VIN bias current
Shutdown mode current
Limit
Unit
Conditions
Min.
Typ.
Max.
IIN
-
5
10
mA
IST
-
0
10
μA
Feedback reference voltage
VOB
0.792
0.800
0.808
V
Feedback reference voltage
(Ta=-40 to 105℃)
VOB+
0.784
0.800
0.816
V
Open circuit voltage gain
Averr
-
46
-
dB
VO input bias current
IVo+
-
-
1
μA
HG high side ON resistance
HGhon
-
1.5
-
Ω
HG low side ON resistance
HGlon
-
1.0
-
Ω
LG high side ON resistance
LGhon
-
1.5
-
Ω
LG low side ON resistance
LGlon
-
0.5
-
Ω
Carrier frequency
FOSC
270
300
330
kHz
RT=100 kΩ
Synchronous frequency
Fsync
-
500
-
kHz
RT=100 kΩ,SYNC=500kHz
CL threshold voltage
Vswth
70
90
110
mV
CL threshold voltage
(Ta=-40 to 105℃)
Vswth+
67
90
113
mV
VREG5 output voltage
VREG5
4.8
5
5.2
V
IREF=6mA
VREG33 reference voltage
VREG33
3.0
3.3
3.6
V
IREG=6mA
VREG5 threshold voltage
VREG_UVLO
2.6
2.8
3.0
V
VREG:Sweep down
VREG5 hysteresis voltage
DVREG_UVLO
50
100
200
mV
VREG:Sweep up
ISS
6.5
10
13.5
μA
VSS=1V
14
μA
VSS=1V,Ta=-40 to 105℃
VSTB=0V
[Error Amp Block]
Ta=-40 to 105℃
※
[FET Driver Block]
[Oscillator]
[Over Current Protection Block]
Ta=-40 to 105℃
※
[VREG Block]
[Soft start block]
Charge current
Charge current
ISS+
6
10
(Ta=-40 to 105℃)
Note: Not all shipped products are subject to outgoing inspection.
2/29
※
●Reference data (Unless otherwise specified, Ta=25℃)
100
5.0V
90
5
80
80
70
1.8V
60
2.6V
3.3V
3.3V
1.2V
50
40
30
60
50
40
30
20
20
VIN=12V
10
Io=2A
10
0
1
2
OUTPUT CURRENT:Io[A]
6
3
9
12
15
18
21
INPUT VOLTAGE : VIN[V]
0.804
0.800
0.796
0.792
0.788
0.784
10
35
60
85
10
20
INPUT VOLTAGE:VIN[V]
330
100
90
80
70
110
AMBIENT TEMPERATURE : Ta[℃]
5.25
RT=100kΩ
320
310
300
290
280
270
-40
Fig.4 Reference voltage vs.
temperature characteristics
30
Fig.3 Circuit current
60
-15
1
0
OSILATING FREQUENCY : FOSC[kHz]
過電流検出電圧 : Vswth[mV]
0.808
-40
2
24
110
0.812
-40℃
3
Fig.2 Efficiency 2
Fig.1 Efficiency 1
0.816
25℃
105℃
4
0
0
0
REFERENCE VOLTAGE : VOB[V]
5.0V
70
EFFICIENCY[%]
EFFICIENCY[%]
6
90
CIRCUIT CURRENT[mA]
100
-15
10
35
60
85
110
-40
-15
10
35
60
85
110
AMBIENT TEMPERATURE : Ta[℃]
AMBIENT TEMPERATURE : Ta[℃]
Fig.5 Over current detection vs.
temperature characteristics
Fig.6 Frequency vs.
temperature characteristics
3.0
6
4.50
4.25
4.00
3.75
VREG33
3.50
2.5
5
VREG5
OUT PUT VOLTAGE : Vo[V]
4.75
OUT PUT VOLTAGE : Vo[V]
OUT PUT VOLTAGE : Vo[V]
5.00
5.0V
4
3
3.3V
2
3.00
-40
-15
10
35
60
85
110
LOFF=H
1.0
LOFF=L
0.0
0
0
AMBIENT TEMPERATURE : Ta[℃]
1.5
0.5
1
3.25
RCL=15mΩ
2.0
Fig.7 Internal Reg vs.
temperature characteristics
5
10
15
20
INPUT VOLTAGE : VIN[V]
0
25
1
2
3
4
5
6
OUTPUT CURRENT: Io[A]
Fig.8 Line regulation
Fig.9 Load regulation
OUTPU T VOLTAGE : Vo[V]
6
50mV/div
5
VOUT
50mV/div
VOUT
4
105℃
3
25℃
2
-40℃
1
IOUT
0
0
2
4
INPUT VOLTAGE:V EN[V]
1A/div
6
Fig.10 EN threshold voltage
Fig.11 Load transient response 1
3/29
IOUT
1A/div
Fig.12 Load transient response 2
●Block diagram
(Parentheses indicate VQFP48C pin numbers)
EXTVCC
STB VCC
RT
SYNC
10
(25)
15
(33)
16
(34)
22
(41)
32
(7)
5V Reg
VREG5
3.3V Reg
24(44)
5(19)
B.G
17(35)
VCCCL2
31(5)
CL2
30(3)
BOOT2
29(2)
OUTH2
28(1)
SW2
27(48)
2.7V
25(46)
DGND2
26(47)
FB2
SS2
21(39)
Set
Set
DRV
Reset
Reset
TSD
UVLO
TSD
UVLO
Q
Reset Set
-
+
+
PW M
COMP
Slope
Slope
PW M
COMP
BOOT1
OUTH1
SW
1(13)
SW1
LOGIC
4(17)
VREG5A
3(15)
OUTL1
Q
Set Reset
UVLO
O
2(14)
DGND1
6(21)
8(23)
FB1
SS1
7(22)
COMP1
0.8V
0.8V
20(38)
VCCCL1
CL1
35(11)
Err Amp
Err Amp
33(8)
34(10)
36(12)
DRV
SW
19(37)
COMP2
OCP
LOGIC
LLM
OSC
OCP
VREG5
OUTL2
TSD
TSD
UVLO
VREG33
SYNC
Q
Q
Set
Reset
Sequence DET
Reset
Set
Sequence DET
0.56V
0.56V
18
(36)
14
(31)
12
(27)
DET2
LOFF
EN2
11
(26)
(30)
13
(29)
9
(24)
EN1 (GNDS) GND
DET1
Fig-13
●Pin configuration
●PIN function table
15 RT
Pin
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14 LOFF
14
LOFF
13 GND
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
RT
SYNC
LLM
DET2
SS2
COMP2
FB2
EXTVCC
-
VREG5
OUTL2
DGND2
SW2
OUTH2
BOOT2
CL2
VCCCL2
VCC
VCCCL1
CL1
BOOT1
OUTH1
24
23
SS2
VREG5
25
COMP2
OUTL2
26
FB2
DGND2
27
EXTVCC
SW2
BD9011EKN(HQFN36V)
22
21
20
19
OUTH2 28
18 DET2
BOOT2 29
17 LMM
CL2 30
16 SYNC
VCCCL2 31
VCC 32
VCCCL1 33
4
5
6
7
8
9
DET1
3
SS1
2
COMP1
1
FB1
10 STB
VREG33
OUTH1 36
VREG5A
11 EN1
OUTL1
BOOT1 35
DGND1
12 EN2
SW1
CL1 34
Fig-14
4/29
Pin name
Function
SW1
DGND1
OUTL1
VREG5A
VREG33
FB1
COMP1
SS1
DET1
STB
EN1
EN2
GND
High side FET source pin 1
Low side FET source pin 1
Low side FET gate drive pin 1
FET drive REG input
Reference input REG output
Error amp input 1
Error amp output 1
Soft start setting pin 1
FB detector output 1
Standby ON/OFF pin
Output 1ON/OFF pin
Output 2ON/OFFpin
Ground
Over current protection OFF latch
function ON/OFF pin
Switching frequency setting pin
External synchronous pulse input pin
Built-in pull-down resistor pin
FB detector output 2
Soft start setting pin 2
Error amp output 2
Error amp input 2
External power input pin
N.C.
FET drive REG output
Low side FET gate drive pin 2
Low side FET source pin 2
High side FET source pin 2
Hi side FET gate drive pin 2
OUTH2 driver power pin
Over current detector setting pin 2
Over current detection VCC2
Input power pin
Over current detection VCC1
Over current detector setting pin 1
OUTH1 driver power pin
High side FET gate drive pin 1
●Pin configuration
●Pin function table
DET2
LLM
SYNC
RT
N.C
LOFF
GNDS
GND
N.C
EN2
EN1
STB
BD9011KV(VQFP48C)
36
35
34
33
32
31
30
29
28
27
26
25
24 DET1
SS2 37
23 SS1
COMP2 38
FB2 39
22 COMP1
N.C 40
21 FB1
EXTVCC 41
20 N.C
N.C 42
19 VREG33
N.C 43
18 N.C
17 VREG5A
VREG5 44
16 N.C
N.C 45
OUTL2 46
15 OUTL1
DGND2 47
14 DGND1
13 SW1
1
2
3
4
5
6
7
8
9
10
11
12
OUTH2
BOOT2
CL2
N.C
VCCCL2
N.C
VCC
VCCCL1
N.C
CL1
BOOT1
OUTH1
SW2 48
Fig-15
●Block functional descriptions
Pin
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Pin name
Function
OUTH2
BOOT2
CL2
N.C
VCCCL2
N.C
VCC
VCCCL1
N.C
CL1
BOOT1
OUTH1
SW1
DGND1
OUTL1
N.C
VREG5A
N.C
VREG33
N.C
FB1
COMP1
SS1
DET1
STB
EN1
EN2
N.C
GND
GNDS
High side FET gate drive pin 2
OUTH2 driver power pin
Over current detection pin 2
Non-connect (unused) pin
Over current detection VCC2
Non-connect (unused) pin
Input power pin
Over current detection CC1
Non-connect (unused) pin
Over current detection setting pin 1
OUTH1 driver power pin
High side FET gate drive pin 1
High side FET source pin 1
Low side FET source pin 1
Low side FET gate drive pin 1
Non-connect (unused) pin
FET drive REG input
Non-connect (unused) pin
Reference input REG output
Non-connect (unused) pin
Error amp input 1
Error amp output 1
Soft start setting pin 1
FB detector output 1
Standby ON/OFF pin
Output 1 ON/OFF pin
Output 2 ON/OFF pin
Non-connect (unused) pin
Ground
Sense ground
Over current protection OFF latch
function ON/OFF pin
Non-connect (unused) pin
Switching frequency setting pin
External synchronous pulse input pin
Built-in pull-down resistor pin
FB detector output 2
Soft start setting pin 2
Error amp output 2
Error amp input 2
Non-connect (unused) pin
External power input pin
Non-connect (unused) pin
Non-connect (unused) pin
FET drive REG output
Non-connect (unused) pin
Low side FET gate drive pin 2
Low side FET source pin 2
High side FET source pin 2
31
LOFF
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
N.C
RT
SYNC
LLM
DET2
SS2
COMP2
FB2
N.C
EXTVCC
N.C
N.C
VREG5
N.C
OUTL2
DGND2
SW2
・Error amp
The error amp compares output feedback voltage to the 0.8V reference voltage and provides the comparison result as COMP voltage, which is
used to determine the switching Duty. COMP voltage is limited to the SS voltage, since soft start at power up is based on SS pin voltage.
・Oscillator (OSC)
Oscillation frequency is determined by the switching frequency pin (RT) in this block. The frequency can be set between 250kHz and 550kHz.
・ SLOPE
The SLOPE block uses the clock produced by the oscillator to generate a triangular wave, and sends the wave to the PWM comparator.
・PWM COMP
The PWM comparator determines switching Duty by comparing the COMP voltage, output from the error amp, with the triangular wave from the
SLOPE block. Switching duty is limited to a percentage of the internal maximum duty, and thus cannot be 100% of the maximum.
・Reference voltage (5Vreg,33Vreg)
This block generates the internal reference voltages: 5V and 3.3V.
・External synchronization (SYNC)
Determines the switching frequency, based on the external pulse applied.
・Over current protection (OCP)
Over current protection is activated when the VCCCL-CL voltage reaches or exceeds 90mV. When over current protection is active, Duty is low,
and output voltage also decreases. When LOFF=L, the output voltage has fallen to 70% or below and output is latched OFF. The OFF latch
mode ends when the latch is set to STB, EN.
・Sequence control (Sequence DET)
Compares FB voltage with reference voltage (0.56V) and outputs the result as DET.
・Protection circuits (UVLO/TSD)
The UVLO lock out function is activated when VREG falls to about 2.8V, while TSD turns outputs OFF when the chip temperature reaches or
exceeds 150℃. Output is restored when temperature falls back below the threshold value.
5/29
●Application circuit example (Parentheses indicate VQFP48C pin numbers)
VIN(12V)
100uF
36
35
34
33
32
31
30
29
28
(12)
(11)
(10)
(8)
(7)
(5)
(3)
(2)
(1)
CL1
VCC
VCCCL2
CL2
BOOT2
OUTH1
OUTL1
OUTL2
25(46)
4(17)
VREG5A
VREG5
24(44)
5(19)
VREG33
6(21)
FB1
7(22)
COMP1
8(23)
SS1
9(24)
DET1
STB
0.1uF
(SLF12565:TDK)
0.1
uF
EXTVCC
22(41)
FB2
21(39)
COMP2
20(38)
19(37)
SS2
DET2
10
11
12
13
14
15
16
17
18
(25)
(26)
(27)
(29)
(31)
(33)
(34)
(35)
(36)
10uH
Vo(3.3V/3A)
RB051
L-40
220uF
(OS コン)
47kΩ
1uF
23
LLM
39kΩ
26(47)
DGND1
SYNC
13kΩ
DGND2
2(14)
3(15)
RT
1uF
27(48)
LOFF
1uF
SW2
GND
(OS コン)
SW1
EN2
220uF
1(13)
RB160
VA-40
OUTH2
EN1
RB051
L-40
SP8K2
VCCCL1
0.1
uF
10uH
100Ω
1nF
BOOT1
RB160
VA-40
15000pF
uF
1nF
(SLF12565:TDK)
68kΩ
15mΩ
10
Ω
0.33
100Ω
SP8K2
Vo(5V/3A)
15mΩ
0.33uF
15kΩ
39kΩ
15000pF
0.1uF
100kΩ
Fig-16A(Step-Down:Cout=OS Capacitor)
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
VIN(12V)
100uF
1kΩ
30
29
28
(5)
(3)
(2)
(1)
VCCCL1
VCC
VCCCL2
CL2
BOOT2
1(13)
SW1
2(14)
DGND1
3(15)
4(17)
5(19)
VREG33
6(21)
FB1
7(22)
COMP1
8(23)
0.1uF
9(24)
RB160
VA-40
OUTH2
SW2
27(48)
DGND2
26(47)
OUTL1
OUTL2
25(46)
VREG5A
VREG5
24(44)
23
SS1
EXTVCC
22(41)
FB2
21(39)
COMP2
20(38)
19(37)
LLM
10000pF
31
(7)
OUTH1
330pF
12kΩ
32
(8)
SYNC
1uF
33
RT
1uF
34
(10)
LOFF
(C2012JB
0J106K
:TDK)
35
(11)
GND
30uF
36
(12)
EN2
15kΩ
150Ω
SP8K2
CL1
RB051
L-40
3300pF
100Ω
1nF
BOOT1
RB160
VA-40
0.1
uF
10uH
uF
1nF
EN1
Vo(1.8V/2A)
23mΩ
10
Ω
0.33
100Ω
SP8K2
(SLF10145:TDK)
23mΩ
SS2
DET2
10
11
12
13
14
15
16
17
18
(25)
(26)
(27)
(29)
(31)
(33)
(34)
(35)
(36)
DET1
STB
(SLF10145:TDK)
0.1
uF
10uH
Vo(2.5V/2A)
RB051
L-40
30uF
1uF
43
kΩ
(C2012JB
0J106K
:TDK)
1000pF
510Ω
0.33uF
330pF
20kΩ
3.3kΩ 3300pF
0.1uF
100kΩ
Fig-16B(Step-Down:Cout=Ceramic Capacitor)
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
6/29
VIN(12V)
100uF
0.33
100Ω
uF
*REGSPIC
100Ω
1nF
33
32
31
30
29
28
(8)
(7)
(5)
(3)
(2)
(1)
4(17)
VREG5A
5(19)
VREG33
6(21)
FB1
7(22)
COMP1
9(24)
VCC
VCCCL2
DGND2
26(47)
OUTL2
25(46)
VREG5
SS1
24(44)
22(41)
FB2
21(39)
COMP2
20(38)
SS2
DET2
11
12
13
14
15
16
17
18
(25)
(26)
(27)
(29)
(31)
(33)
(34)
(35)
(36)
Vo(12V/1A)
Co2
EXTVCC
10
DET1
STB
(SLF12565:TDK)
L2
27uH Do3
0.1
uF
1uF
91
kΩ
220
uF
RB051
L-40
23
LLM
8(23)
0.1uF
CL1
OUTL1
27(48)
SYNC
10kΩ
DGND1
SW2
RT
1000pF
2(14)
3(15)
OUTH2
LOFF
1uF
SW1
GND
1uF
1(13)
RB160
VA-40
EN2
5.1kΩ
22000pF
34
(10)
OUTH1
680
kΩ
23.5kΩ
35
(11)
VCCCL1
1uF
220uF
1000pF
36
(12)
BOOT1
RSS
065N03
EN1
Co1
TM
SP8K2
1nF
CL2
RB051L-40
10mΩ
10
Ω
BOOT2
Vo(24V/1A)
10mΩ
L1 (SLF12565:TDK)
27uH
3300pF
10kΩ
0.33uF
1000pF
6.2kΩ
4.7kΩ
19(37)
22000pF
0.1uF
*
100kΩ
REGSPICTM is
Trade Mark of RHOM
Fig-16C(Step-Down:Low Input Voltage)
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
VIN(5V)
100uF
4700pF
3.3kΩ
30
29
28
(5)
(3)
(2)
(1)
CL1
VCC
VCCCL2
CL2
BOOT2
OUTH1
1(13)
SW1
2(14)
DGND1
3(15)
OUTL1
4(17)
VREG5A
5(19)
VREG33
6(21)
FB1
7(22)
COMP1
8(23)
0.1uF
9(24)
SW2
27(48)
DGND2
26(47)
OUTL2
25(46)
VREG5
24(44)
23
SS1
EXTVCC
22(41)
FB2
21(39)
COMP2
20(38)
SS2
DET2
10
11
12
13
14
15
16
17
18
(25)
(26)
(27)
(29)
(31)
(33)
(34)
(35)
(36)
DET1
STB
RB160
VA-40
0.1uF
OUTH2
LLM
100pF
12kΩ
31
(7)
SYNC
1uF
32
(8)
RT
1uF
33
LOFF
100Ω
34
(10)
GND
(セラコン)
35
(11)
EN2
30uF
36
VCCCL1
0.1uF
SP8K2
EN1
15kΩ
100Ω
1nF
(12)
BOOT1
RB160
VA-40
RB051
L-40
3300pF
uF
1nF
(SLF10145:TDK)
6.8uH
23mΩ
10
Ω
0.33
100Ω
SP8K2
Vo(1.8V/2A)
23mΩ
(SLF10145:TDK)
6.8uH
Vo(2.5V/2A)
RB051
L-40
30uF
(セラコン)
1uF
1000pF
300Ω
0.33uF
33pF
19(37)
43
kΩ
20kΩ
10kΩ
2200pF
0.1uF
100kΩ
Fig-16D(Step-Up:and Step-Up-Down)
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.
Please verify and confirm using practical applications.
7/29
●Application component selection
(1) Setting the output L value
The coil value significantly influences the output ripple current.
Thus, as seen in equation (5), the larger the coil, and the higher
the switching frequency, the lower the drop in ripple current.
ΔIL
Fig-17
ΔIL =
(VCC-VOUT)×VOUT
L×VCC×f
[A]・・・
(5)
VCC
IL
The optimal output ripple current setting is 30% of maximum current.
ΔIL = 0.3×IOUTmax.[A]・・・(6)
VOUT
L
Co
L=
Fig-18
(VCC-VOUT)×VOUT
ΔIL×VCC×f
(ΔIL:output ripple current
Output ripple current
[H]・・・
(7)
f:switching frequency)
※Outputting a current in excess of the coil current rating will cause magnetic saturation of the coil and decrease
efficiency.
Please establish sufficient margin to ensure that peak current does not exceed the coil current rating.
※Use low resistance (DCR, ACR) coils to minimize coil loss and increase efficiency.
(2) Setting the output capacitor Co value
Select the output capacitor with the highest value for ripple voltage (VPP) tolerance and maximum drop voltage
(at rapid load change). The following equation is used to determine the output ripple voltage.
Vo
ΔIL
Step down
ΔVPP = ΔIL × RESR +
1
×
Co
×
f
Vcc
[V]
Note: f:switching frequency
Be sure to keep the output Co setting within the allowable ripple voltage range.
※Please allow sufficient output voltage margin in establishing the capacitor rating. Note that low-ESR capacitors enable
lower output ripple voltage.
Also, to meet the requirement for setting the output startup time parameter within the soft start time range, please factor
in the conditions described in the capacitance equation (9) for output capacitors, below.
Co ≦
TSS × (Limit – IOUT)
Tss: soft start time
・・・ (9)
VOUT
ILimit:over current detection value(2/16)reference
Note: less than optimal capacitance values may cause problems at startup.
(3) Input capacitor selection
VIN
Cin
VOUT
L
Co
The input capacitor serves to lower the output impedance of the power
source connected to the input pin (VCC). Increased power supply output
impedance can cause input voltage (VCC) instability, and may negatively
impact oscillation and ripple rejection characteristics. Therefore, be
certain to establish an input capacitor in close proximity to the VCC and
GND pins. Select a low-ESR capacitor with the required ripple current
capacity and the capability to withstand temperature changes without
wide tolerance fluctuations. The ripple current IRMSS is determined
using equation (10).
IRMS = IOUT ×
Fig-19
Input capacitor
VOUT(VCC - VOUT)
[A]・・・
(10)
VCC
Also, be certain to ascertain the operating temperature, load range and
MOSFET conditions for the application in which the capacitor will be used,
since capacitor performance is heavily dependent on the application’s
input power characteristics, substrate wiring and MOSFET gate drain
capacity.
8/29
(4) Feedback resistor design
Please refer to the following equation in determining the proper feedback resistance. The recommended setting is in a range
between 10kΩ and 330kΩ. Resistance less than 10kΩ risks decreased power efficiency, while setting the resistance value
higher than 330kΩ will result in an internal error amp input bias current of 0.2uA increasing the offset voltage.
Vo
Internal ref. 0.8V
Vo =
R8
R8 +R9
R9
× 0.8 [V] ・・・(11)
FB
R9
Fig-20
(5) Setting switching frequency
The triangular wave switching frequency can be set by connecting a resistor to the RT 15(33) pin. The RT sets the frequency
by adjusting the charge/discharge current in relation to the internal capacitor. Refer to the figure below in determining proper
RT resistance, noting that the recommended resistance setting is between 50kΩ and 130kΩ. Settings outside this range
may render the switching function inoperable, and proper operation of the controller overall cannot be guaranteed when
unsupported resistance values are used.
550
周波数 [ kHz ]
500
450
400
350
300
250
50
60
70
80
90
RT [ kΩ]
100
110
120
130
Fig-21 RT vs. switching frequency
(6) Setting the soft start delay
The soft start function is necessary to prevent an inrush of coil current and output voltage overshoot at startup. The figure
below shows the relation between soft start delay time and capacitance, which can be calculated using equation (12) at right.
DELAY TIME[ms]
10
1
0.8V(typ.)×CSS
TSS =
[sec]・・・(12)
ISS(10μA Typ.)
0.1
0.01
0.001
0.01
0.1
SS CAPACITANCE[uF]
Fig-22 SS capacitance vs. delay time
Recommended capacitance values are between 0.01uF and 0.1uF. Capacitance lower than 0.01uF may generate output
overshoots. Please use high accuracy components (such as X5R) when implementing sequential startups involving other
power sources. Be sure to test the actual devices and applications to be used, since the soft start time varies, depending on
input voltage, output voltage and capacitance, coils and other characteristics.
9/29
(7) Setting over current detection values
The current limit value(ILimit)is determined by the resistance of the RCL established between CL and VCCCL.
VCCCL
VIN
Over current detection point
IL
RCL
CL
IL
Vo
ILimit =
L
Fig-23
90m
RCL
[A]・・・(13)
Fig-24
There are 2 current limit function (ON/OFF control type and OFF latch type) toggled by LOFF pin.
・LOFF=L (0