0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BD9153MUV-E2

BD9153MUV-E2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    VFQFN24_EP

  • 描述:

    IC REG TRPL BCK/LINEAR 24VQFN

  • 数据手册
  • 价格&库存
BD9153MUV-E2 数据手册
Single-chip Type with Built-in FET Switching Regulator Series Output 1.5A or Less High Efficiency Step-down Switching Regulator with Built-in Power MOSFET No.09027EAT40 BD9153MUV ●Description ROHM’s high efficiency dual step-down switching regulators and Linear Regulator Controller, BD9153MUV is a power supply designed to produce a low voltage including 3.3,0.8 volts from 5.5/4.5 volts power supply line. Offers high efficiency with our original pulse skip control technology and synchronous rectifier. Employs a current mode control system to provide faster transient response to sudden change in load. ●Features 1) Offers fast transient response with current mode PWM control system. 2) Offers highly efficiency for all load range with synchronous rectifier (Pch/Nch FET) and SLLMTM (Simple Light Load Mode) 3) Incorporates Nch FET controller for Linear Regulator. 4) Incorporates reset function with 50ms counter. 5) Incorporates soft-start fanction, thermal protection and ULVO functions. 6) Incorporates short-current protection circuit with time delay function. 7) Incorporates shutdown function Icc=0µA(Typ.) 8) Employs small surface mount package : VQFN024V4040 ●Applications Power supply for LSI including DSP, Micro computer and ASIC ●Absolute Maximum Rating (Ta=25℃) Parameter Symbol Vcc,PVcc Voltage VCC,PVCC FB1,FB2,FB3,VS Voltage VFB1, VFB2, VFB3, VVS SW1,SW2,ITH1,ITH2 Voltage VSW1, VSW2, VITH1, V ITH2 EN,RST,DET,GATE Voltage V EN, V RST, V DET, V GATE Pd1 Pd2 Power Dissipation Pd3 Pd4 Operating Temperature Range Topr Storage Temperature Range Tstg Maximum Junction Temperature Tjmax *1 *2 *3 *4 *5 Unit V V V V W W W W ℃ ℃ ℃ Pd should not be exceeded. IC only 1-layer. mounted on a 74.2mm×74.2mm×1.6mm glass-epoxy board, occupied area by copper foil : 10.29mm2 4-layer. mounted on a 74.2mm×74.2mm×1.6mm glass-epoxy board, occupied area by copper foil : 10.29mm2 , in 1,4 layer, 5505mm2 in 2,3 layer 4-layer. mounted on a 74.2mm×74.2mm×1.6mm glass-epoxy board, occupied area by copper foil : 5505mm2, in each layers ●Operating Conditions (Ta=-40~+85℃) Parameter Vcc Voltage EN Voltage Output Voltage range SW Average Output Current *6 Limit -0.3~+7*1 -0.3~+7 -0.3~+7 -0.3~+7 2 0.34* 0.69 *3 2.20 *4 3.56*5 -40~+85 -55~+150 +150 Symbol VCC VEN VOUT1 VOUT2 VOUT3 ISW1 ISW2 Min. 4.5 0 1.8 0.8 0.8 - Typ. 5.0 - Max. 5.5 5.5 3.3 2.5 2.5 1.5*6 1.5*6 Unit V V V V V A A Pd should not be exceeded. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 1/18 2009.08 - Rev.A Technical Note BD9153MUV ●Electrical Characteristics ◎(Ta=25℃ VCC=5V, EN=VCC ,unless otherwise specified.) Parameter Standby Current Bias Current EN Low Voltage EN High Voltage EN Input Current Oscillation Frequency Pch FET ON Resistance Nch FET ON Resistance FB Reference Voltage ITH sink curren1 ITH source current 1 ITH sink curren2 ITH source current 2 UVLO Threshold Voltage1 UVLO Release Voltage1 UVLO Threshold Voltage2 UVLO Release Voltage2 VS Discharge Resistance Soft Start Time Timer Latch Time Output Short circuit Threshold Voltage RST Release Voltage RST threshold Voltage RST Delay RST ON Reststance GATE Source Current GATE Sink Current www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. Symbol ISTB ICC VENL VENH IEN FOSC RONP1 RONP2 RONN1 RONN2 VFB1,2 VFB3 VFB3 ITHSI1 ITHSO1 ITHSI2 ITHSO2 VUVLOL1 VUVLOH1 VUVLOL2 VUVLOH2 RVS TSS TLATCH VSCP1 VSCP2 VSCP3 VRST1 VRST2 TRST RONRST IGSO IGSI Min. 2 0.8 0.788 0.784 0.780 10 10 10 10 3.6 3.65 2.4 2.425 0.4 1.0 0.691 0.668 40 0.5 1.0 2/18 Limit Typ. 0 600 GND Vcc 2 1.0 0.17 0.17 0.13 0.13 0.8 0.8 0.8 18 18 18 18 3.8 3.9 2.5 2.55 40 0.8 2.0 0.4 0.4 0.4 0.720 0.696 50 140 1.5 5.0 Max. 10 1000 0.8 10 1.2 0.3 0.3 0.2 0.2 0.812 0.816 0.820 4.0 4.2 2.6 2.7 80 1.6 4.0 0.56 0.56 0.56 0.749 0.724 60 280 - Unit µA µA V V µA MHz Ω Ω Ω Ω V V V µA µA µA µA V V V V Ω ms ms V V V V V ms Ω mA mA Condition EN=0V Standby Mode Active Mode EN=2V Vcc=5V Vcc=5V Vcc=5V Vcc=5V ±1.5% ±2.0%(Ta=25℃) ±2.5%(Ta=-40~+85℃) VFB1=1.0V VFB1=0.6V VFB2=1.0V VFB2=0.6V Vcc=5→0V Vcc=0→5V Vcc=5→0V Vcc=0→5V Vcc=5V SCP/TSD ON FB1=0.8→0V FB2=0.8→0V FB3=0.8→0V DET=0V→0.8V DET=0.8V→0V VFB3=0.6V , VGATE=2.5V VFB3=1.0V , VGATE=2.5V 2009.08 - Rev.A Technical Note BD9153MUV ●Block Diagram, Application Circuit 4.0±0.1 PVCC OUT1 Current Comp 4.0±0.1 FB1 R Gm Amp D9153 Q Sense/ Slope1 EN SW1 Protect S Lot No. Soft Start1 Driver 1.0Max. Logic 0.02 +0.03 -0.02 (0.22) CLK1 VREF 24 12 13 18 0.75 0.5 UVLO2 CLK2 PVCC SCP2 7 19 UVLO1 SCP/ TSD OSC 6 2.4±0.1 1 PGND1 SCP1 S C0.2 2.4±0.1 Current Current Comp OUT2 R Gm Amp FB2 Sense/ Q Protect S Soft Start2 OUT2 SW2 + Slope2 0.25 +0.05 -0.04 OUT1 + ITH1 0.08 S 0.4±0.1 Current Driver CLK2 Logic PGND2 ITH2 (Unit : mm) Soft Start1 Fig.1 BD9153MUV TOP View OUT1 GATE DET FB3 SCP3 OUT3 VS RST SCP/TSD UVLO1 ITH1 Timer FB1 AGND PGND1 Fig.2 BD9153MUV Block Diagram ●Pin No. & function table Pin No. Pin name Function Pin No. Pin name 1 PGND2 Nch FET Source pin (2CH) 13 GATE 2 PVCC2 Pch FET Source pin (2CH) 14 FB3 Function Gate drive pin Output Voltage3 detector pin 3 PVCC2 Pch FET Source pin (2CH) 15 AVCC 4 PVCC1 Pch FET Source pin (1CH) 16 DET Voltage detector pin 5 PVCC1 Pch FET Source pin (1CH) 17 RST RST signal output pin 6 PGND1 Nch FET Source pin (1CH) 18 AGND 7 PGND1 Nch FET Source pin (1CH) 19 ITH2 8 SW1 SW pin (1ch) 20 FB2 Output Voltage2 detector pin 9 SW1 SW pin (1ch) 21 EN Enable pin (High Active) 10 VS Discharge function pin 22 SW2 11 FB1 Output Voltage1 detector pin 23 SW2 12 ITH1 GmAmp1output pin 24 PGND2 www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 3/18 AVCC power supply input pin Ground GmAmp2 output pin SW pin (2ch) SW pin (2ch) Nch FET Source pin (2ch) 2009.08 - Rev.A Technical Note BD9153MUV ●Characteristics data【BD9153MUV】 3.0 【VOUT1=3.3V】 2.5 2.0 【VOUT2=1.2V】 1.5 1.0 0.5 【VOUT1=3.3V】 3.5 3.0 2.5 2.0 1.5 VCC=5V 【VOUT2=1.2V】 Ta=25℃ Io=0A 1.0 0.5 0.0 0.0 0 1 2 3 4 INPUT VOLTAGE:VCC[V] 1 Fig.3 VCC – VOUT1,VOUT2 VCC=5V Io=0A -20 0 20 40 60 TEMPERATURE:Ta[℃] 1.0 0.5 90 80 1.20 1.18 VCC=5V Io=0A 70 60 【VOUT1=3.3V】 50 40 【VOUT2=1.2V】 30 VCC=5V Ta=25℃ 20 10 -40 -20 0 20 40 60 TEMPERATURE:Ta[℃] 0 80 10 100 1000 OUTPUT CURRENT:IOUT[mA] Fig. 7 Ta-VOUT2 250 225 0.6 0.4 VCC=5V 1.1 ON RESISTANCE:RON[mΩ] FREQUENCY:FOSC[MHz] 0.8 10000 Fig.8 Efficiency 1.2 1.0 4 Fig.5 IOUT - VOUT 【VOUT2=1.2V設定】 【VOUT2=1.2V 】 Fig. 6 Ta-VOUT1 0.2 1 2 3 OUTPUT CURRENT:IOUT [A] 100 1.23 80 1.2 VCC=5V Ta=25℃ 【VOUT2=1.2V】 0 1.15 -40 1.5 5 EFFICIENCY:η[%] OUTPUT VOLTAGE:VOUT[V] OUTPUT VOLTAGE:VOUT[V] 3.25 3.20 FREQUENCY:FOSC[MHz] 2 3 4 EN VOLTAGE:VEN[V] 1.25 3.30 2.0 Fig.4 VEN - VOUT 3.40 3.35 2.5 0.0 0 5 【VOUT1=3.3V】 【VOUT1=3.3V】 3.0 OUTPUT VOLTAGE:VOUT[V] Ta=25℃ Io=1.5A OUTPUT VOLTAGE:VOUT[V] OUTPUT VOLTAGE:VOUT[V] 3.5 4.0 3.5 1 0.9 Ta=25℃ VCC=5V 200 PMOS 175 150 125 NMOS 100 75 50 25 0.8 0.0 -40 -20 0 20 40 60 0 4.5 80 TEMPERATURE:Ta[℃] 4.75 5 5.25 INPUT VOLTAGE:VCC[V] Fig.9 Ta- Fosc 5.5 -40 Fig.10 VCC-Fosc 0 20 40 60 80 TEMPERATURE:Ta[℃] 100 Fig.11 Ta – RONN, RONP 600 2.0 CIRCUIT CURRENT:ICC[μA] 1.8 1.6 EN VOLTAGE:VEN[V] -20 1.4 1.2 1.0 0.8 0.6 VCC=5V 0.4 VCC=5V,Ta=25℃ 500 EN 400 VOUT1 300 VOUT1 200 VOUT2 VCC=5V 100 0.2 VOUT3 0 0.0 -40 -20 0 20 40 60 TEMPERATURE:Ta[℃] Fig.12 Ta-EN www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 80 EN1=E2 -40 -20 0 20 40 60 VOUT2 VCC=5.0V Ta=25℃ 80 TEMPERATURE:Ta[℃] Fig.13 Ta-Icc 4/18 Fig.14 Soft start wave form (Io1=0mA, Io2=0mA, Io3=0mA) 2009.08 - Rev.A Technical Note BD9153MUV EN SW1 SW1 VOUT1 VOUT2 VOUT1 VCC=5.0V Ta=25℃ VOUT3 VOUT1 VCC=5.0V,Vout1=3.3V Ta=25℃ VCC=5.0V,Vout1=3.3V Ta=25℃ Fig.16 SW1 wave form (Io1=0mA) Fig.15 Soft start wave form (Io1=1.5A, Io2=1.5A, Io3=1.0A) Fig.17 SW1 wave form (Io1=1.5A) SW2 SW2 VOUT1 VOUT2 VOUT2 IOUT1 VCC=5.0V,Vout2=1.2V Ta=25℃ VCC=5.0V,Vout2=1.2V Ta=25℃ VCC=5.0V,Vout1=3.3V Ta=25℃ Fig.19 SW2 wave form (Io2=1.5A) Fig.18 SW2 wave form (Io2=0mA) Fig.20 VOUT1 transient responce (Io10.5A→1.5A / 10usec) VOUT1 VOUT2 VOUT2 IOUT1 IOUT2 IOUT2 VCC=5.0V,Vout1=3.3V Ta=25℃ VCC=5.0V,Vout2=1.2V Ta=25℃ Fig.21 VOUT1 transient responce (Io11.5A→0.5A/ 10usec) Fig.22 VOUT2 transient responce (Io20.5A→1.5A/ 10usec) VOUT3 VOUT3 IOUT3 IOUT3 VCC=5.0V,Vout3=2.5V Ta=25℃ Fig.24 VOUT3 transient responce (Io30.5A→1A/ 10usec) www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. VCC=5.0V,Vout2=1.2V Ta=25℃ Fig.23 VOUT2 transient responce (Io21.5A→0.5A/ 10usec) VCC=5.0V,Vout3=2.5V Ta=25℃ Fig.25 VOUT3 transient responce (Io3500mA→1A/ 10usec) 5/18 2009.08 - Rev.A Technical Note BD9153MUV ●Information on advantages Advantage 1:Offers fast transient response with current mode control system. BD9153MUV (Load response IO=1.5A→0.5A / usec) BD9153MUV (Load response IO=0.5A→1.5A / usec) VOUT1 VOUT1 Io1 Io1 Fig.26 Advantage 2: Offers high efficiency for all load range. ・For lighter load: Utilizes the current mode control mode called SLLM for lighter load, which reduces various dissipation such as switching dissipation (PSW), gate charge/discharge dissipation, ESR dissipation of output capacitor (PESR) and on-resistance dissipation (PRON) that may otherwise cause degradation in efficiency for lighter load. Achieves efficiency improvement for lighter load. ・For heavier load: Utilizes the synchronous rectifying mode and the low on-resistance MOS FETs incorporated as power transistor. Achieves efficiency improvement for heavier load. 100 Efficiency η[%] ON resistance of Highside MOS FET : 170mΩ(Typ.) ON resistance of Lowside MOS FET : 130mΩ(Typ.) SLLMTM ② 50 ① PWM ①inprovement by SLLM system ②improvement by synchronous rectifier 0 0.001 0.01 0.1 Output current Io[A] 1 Offers high efficiency for all load range with the improvements mentioned above. Fig.27 Efficiency www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 6/18 2009.08 - Rev.A Technical Note BD9153MUV Advantage 3:・Supplied in smaller package due to small-sized power MOS FET incorporated. ・Output capacitor Co required for current mode control: 22μF ceramic capacitor ・Inductance L required for the operating frequency of 1 MHz: 2.2μH inductor ・Incorporates FET + Boot strap diode Reduces a mounting area required. R5 Cfb R6 R9 CITH2 RITH2 L2 R4 CO2 AGND ITH2 RST COUT2 COUT1 M1 DET AVCC FB3 GATE ITH1 FB2 FB1 EN VS SW2 SW 1 SW2 SW1 CIN1 50mm R2 RITH2 RITH1 R1 L1 CO1 PGND1 R4 R3 R8 CITH1 R9 R2 R1 PGND2 PVCC2 PVCC2 PVCC1 PVCC1 PGND1 R5 C1 R6 COUT3 CIN2 CIN2 RITH1 CITH1 M1 PGND2 R3 50mm CO3 R7 CIN1 R8 R7 Fig.28 www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 7/18 2009.08 - Rev.A Technical Note BD9153MUV ●Operation BD9153MUV is a synchronous rectifying step-down switching regulator that achieves faster transient response by employing current mode PWM control system. It utilizes switching operation in PWM (Pulse Width Modulation) mode for heavier load, while it utilizes SLLM (Simple Light Load Mode) operation for lighter load to improve efficiency. ○Synchronous rectifier It does not require the power to be dissipated by a rectifier externally connected to a conventional DC/DC converter IC, and its P.N junction shoot-through protection circuit limits the shoot-through current during operation, by which the power dissipation of the set is reduced. ○Current mode PWM control Synthesizes a PWM control signal with a inductor current feedback loop added to the voltage feedback. ・PWM (Pulse Width Modulation) control The oscillation frequency for PWM is 1 MHz. SET signal form OSC turns ON a highside MOS FET (while a lowside MOS FET is turned OFF), and an inductor current IL increases. The current comparator (Current Comp) receives two signals, a current feedback control signal (SENSE: Voltage converted from IL) and a voltage feedback control signal (FB), and issues a RESET signal if both input signals are identical to each other, and turns OFF the highside MOS FET (while a lowside MOS FET is turned ON) for the rest of the fixed period. The PWM control repeat this operation. TM ・SLLM (Simple Light Load Mode) control When the control mode is shifted from PWM for heavier load to the one for lighter load or vise versa, the switching pulse is designed to turn OFF with the device held operated in normal PWM control loop, which allows linear operation without voltage drop or deterioration in transient response during the mode switching from light load to heavy load or vise versa. Although the PWM control loop continues to operate with a SET signal from OSC and a RESET signal from Current Comp, it is so designed that the RESET signal is held issued if shifted to the light load mode, with which the switching is tuned OFF and the switching pulses are thinned out under control. Activating the switching intermittently reduces the switching dissipation and improves the efficiency. SENSE Current Comp RESET VOUT Level Shift R Q FB SET Gm Amp. ITH S IL Driver Logic VOUT SW Load OSC Fig.29 Diagram of current mode PWM control SENSE PVCC SENSE PVCC Current Comp SET FB GND Current Comp SET FB GND GND RESET GND RESET GND SW IL SW GND IL(AVE) IL 0A VOUT(AVE) VOUT VOUT VOUT(AVE) Not switching Fig.31 SLLM Fig.30 PWM switching timing chart www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 8/18 TM switching timing chart 2009.08 - Rev.A Technical Note BD9153MUV ●Description of operations ・Soft-start function EN terminal shifted to “High” activates a soft-starter to gradually establish the output voltage with the current limited during startup, by which it is possible to prevent an overshoot of output voltage and an inrush current. ・Shutdown function With EN terminal shifted to “Low”, the device turns to Standby Mode, and all the function blocks including reference voltage circuit, internal oscillator and drivers are turned to OFF. Circuit current during standby is 0µA (Typ.). ・RST function If DET voltage over 0.72V(Typ.), RST terminal shifted to “High” after 50ms(Typ.) delay. And the hysteresis width of 24mV (Typ.) is provided to prevent output chattering. ・UVLO function Detects whether the input voltage sufficient to secure the output voltage of BU9153MUV is supplied. And the hysteresis width of 100mV (UVLO1 Typ.) ,50mV(UVLO2 Typ.) is provided to prevent output chattering. Each the outputs have UVLO. It is possible to set output sequence easy. 4.5V detect (RST Release voltage ×6.25) 3.9V detect (UVLO Release voltage 1) 2.55V detect (UVLO Release voltage2) 4.35V (RST Threshold Voltage ×6.25) 3.8V (UVLO Threshold Voltage 1) VCC=EN 2.5V (UVLO Threshold Voltage 2) 3.3V Output (DC/DC 1) 2.5V Output (LDO) 1.2V Output (DC/DC 2) VS discharge ON RST Output Natural discharge 0.8ms Soft-start 50ms (RST Delay) RST Fig.32 Soft-start, Shutdown, RST Delay, UVLO, timing chart www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 9/18 2009.08 - Rev.A Technical Note BD9153MUV ・Short-current protection circuit with time delay function Turns OFF the output to protect the IC from breakdown when the incorporated current limiter is activated continuously for the fixed time(TLATCH) or more. The output thus held tuned OFF may be recovered by restarting EN or by re-unlocking UVLO. EN Output Short circuit Threshold Voltage OUT1 Output OFF Latch OUT2 OUT3 IL Limit Io1 Io2 Io3 t2Terminal A (at resistor side), or GND>Terminal B (at transistor side); and ○if GND>Terminal B (at NPN transistor side), a parasitic NPN transistor is activated by N-layer of other element adjacent to the above-mentioned parasitic diode. The structure of the IC inevitably forms parasitic elements, the activation of which may cause interference among circuits, and/or malfunctions contributing to breakdown. It is therefore requested to take care not to use the device in such manner that the voltage lower than GND (at P-substrate) may be applied to the input terminal, which may result in activation of parasitic elements. Resistor Transistor (NPN) Pin A EN C B Pin B E Pin A N P + N P P N + N P substrate P+ Parasitic element P P C + N E P substrate GND Parasitic element B N GND Parasitic element GND GND Parasitic element Other adjacent elements Fig.44 Simplified structure of monorisic IC 7. Ground wiring pattern If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well. 8 . Selection of inductor It is recommended to use an inductor with a series resistance element (DCR) 0.15Ω or less. Note that use of a high DCR inductor will cause an inductor loss, resulting in decreased output voltage. Should this condition continue for a specified period (soft start time + timer latch time), output short circuit protection will be activated and output will be latched OFF. When using an inductor over 0.15Ω, be careful to ensure adequate margins for variation between external devices and BU9153MUV, including transient as well as static characteristics. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 17/18 2009.08 - Rev.A Technical Note BD9153MUV ●Ordering part number B D 9 Part No. 1 5 3 M Part No. U V - E 2 Packaging and forming specification Package MUV: VQFN24V4040 E2: Embossed tape and reel (VQFN24V4040) VQFN024V4040 4.0±0.1 4.0±0.1 1.0MAX 2.4±0.1 0.4±0.1 7 12 19 18 0.5 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 6 24 0.75 E2 2.4±0.1 1 2500pcs (0.22) +0.03 0.02 -0.02 S C0.2 Embossed carrier tape Quantity Direction of feed 1PIN MARK 0.08 S Tape 13 +0.05 0.25 -0.04 1pin (Unit : mm) www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. Reel 18/18 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2009.08 - Rev.A Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.: 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2014 ROHM Co., Ltd. All rights reserved. Rev.001
BD9153MUV-E2 价格&库存

很抱歉,暂时无法提供与“BD9153MUV-E2”相匹配的价格&库存,您可以联系我们找货

免费人工找货