Single-chip Type with Built-in FET Switching Regulator Series
Output 1.5A or Less High Efficiency
Step-down Switching Regulator
with Built-in Power MOSFET
No.09027EAT40
BD9153MUV
●Description
ROHM’s high efficiency dual step-down switching regulators and Linear Regulator Controller, BD9153MUV is a power supply
designed to produce a low voltage including 3.3,0.8 volts from 5.5/4.5 volts power supply line. Offers high efficiency with our
original pulse skip control technology and synchronous rectifier. Employs a current mode control system to provide faster
transient response to sudden change in load.
●Features
1) Offers fast transient response with current mode PWM control system.
2) Offers highly efficiency for all load range with synchronous rectifier (Pch/Nch FET) and SLLMTM (Simple Light Load Mode)
3) Incorporates Nch FET controller for Linear Regulator.
4) Incorporates reset function with 50ms counter.
5) Incorporates soft-start fanction, thermal protection and ULVO functions.
6) Incorporates short-current protection circuit with time delay function.
7) Incorporates shutdown function Icc=0µA(Typ.)
8) Employs small surface mount package : VQFN024V4040
●Applications
Power supply for LSI including DSP, Micro computer and ASIC
●Absolute Maximum Rating (Ta=25℃)
Parameter
Symbol
Vcc,PVcc Voltage
VCC,PVCC
FB1,FB2,FB3,VS Voltage
VFB1, VFB2, VFB3, VVS
SW1,SW2,ITH1,ITH2 Voltage
VSW1, VSW2, VITH1, V ITH2
EN,RST,DET,GATE Voltage
V EN, V RST, V DET, V GATE
Pd1
Pd2
Power Dissipation
Pd3
Pd4
Operating Temperature Range
Topr
Storage Temperature Range
Tstg
Maximum Junction Temperature
Tjmax
*1
*2
*3
*4
*5
Unit
V
V
V
V
W
W
W
W
℃
℃
℃
Pd should not be exceeded.
IC only
1-layer. mounted on a 74.2mm×74.2mm×1.6mm glass-epoxy board, occupied area by copper foil : 10.29mm2
4-layer. mounted on a 74.2mm×74.2mm×1.6mm glass-epoxy board, occupied area by copper foil : 10.29mm2 , in 1,4 layer, 5505mm2 in 2,3 layer
4-layer. mounted on a 74.2mm×74.2mm×1.6mm glass-epoxy board, occupied area by copper foil : 5505mm2, in each layers
●Operating Conditions (Ta=-40~+85℃)
Parameter
Vcc Voltage
EN Voltage
Output Voltage range
SW Average Output Current
*6
Limit
-0.3~+7*1
-0.3~+7
-0.3~+7
-0.3~+7
2
0.34*
0.69 *3
2.20 *4
3.56*5
-40~+85
-55~+150
+150
Symbol
VCC
VEN
VOUT1
VOUT2
VOUT3
ISW1
ISW2
Min.
4.5
0
1.8
0.8
0.8
-
Typ.
5.0
-
Max.
5.5
5.5
3.3
2.5
2.5
1.5*6
1.5*6
Unit
V
V
V
V
V
A
A
Pd should not be exceeded.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
1/18
2009.08 - Rev.A
Technical Note
BD9153MUV
●Electrical Characteristics
◎(Ta=25℃ VCC=5V, EN=VCC ,unless otherwise specified.)
Parameter
Standby Current
Bias Current
EN Low Voltage
EN High Voltage
EN Input Current
Oscillation Frequency
Pch FET ON Resistance
Nch FET ON Resistance
FB Reference Voltage
ITH sink curren1
ITH source current 1
ITH sink curren2
ITH source current 2
UVLO Threshold Voltage1
UVLO Release Voltage1
UVLO Threshold Voltage2
UVLO Release Voltage2
VS Discharge Resistance
Soft Start Time
Timer Latch Time
Output Short circuit
Threshold Voltage
RST Release Voltage
RST threshold Voltage
RST Delay
RST ON Reststance
GATE Source Current
GATE Sink Current
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Symbol
ISTB
ICC
VENL
VENH
IEN
FOSC
RONP1
RONP2
RONN1
RONN2
VFB1,2
VFB3
VFB3
ITHSI1
ITHSO1
ITHSI2
ITHSO2
VUVLOL1
VUVLOH1
VUVLOL2
VUVLOH2
RVS
TSS
TLATCH
VSCP1
VSCP2
VSCP3
VRST1
VRST2
TRST
RONRST
IGSO
IGSI
Min.
2
0.8
0.788
0.784
0.780
10
10
10
10
3.6
3.65
2.4
2.425
0.4
1.0
0.691
0.668
40
0.5
1.0
2/18
Limit
Typ.
0
600
GND
Vcc
2
1.0
0.17
0.17
0.13
0.13
0.8
0.8
0.8
18
18
18
18
3.8
3.9
2.5
2.55
40
0.8
2.0
0.4
0.4
0.4
0.720
0.696
50
140
1.5
5.0
Max.
10
1000
0.8
10
1.2
0.3
0.3
0.2
0.2
0.812
0.816
0.820
4.0
4.2
2.6
2.7
80
1.6
4.0
0.56
0.56
0.56
0.749
0.724
60
280
-
Unit
µA
µA
V
V
µA
MHz
Ω
Ω
Ω
Ω
V
V
V
µA
µA
µA
µA
V
V
V
V
Ω
ms
ms
V
V
V
V
V
ms
Ω
mA
mA
Condition
EN=0V
Standby Mode
Active Mode
EN=2V
Vcc=5V
Vcc=5V
Vcc=5V
Vcc=5V
±1.5%
±2.0%(Ta=25℃)
±2.5%(Ta=-40~+85℃)
VFB1=1.0V
VFB1=0.6V
VFB2=1.0V
VFB2=0.6V
Vcc=5→0V
Vcc=0→5V
Vcc=5→0V
Vcc=0→5V
Vcc=5V
SCP/TSD ON
FB1=0.8→0V
FB2=0.8→0V
FB3=0.8→0V
DET=0V→0.8V
DET=0.8V→0V
VFB3=0.6V , VGATE=2.5V
VFB3=1.0V , VGATE=2.5V
2009.08 - Rev.A
Technical Note
BD9153MUV
●Block Diagram, Application Circuit
4.0±0.1
PVCC
OUT1
Current
Comp
4.0±0.1
FB1
R
Gm Amp
D9153
Q
Sense/
Slope1
EN
SW1
Protect
S
Lot No.
Soft
Start1
Driver
1.0Max.
Logic
0.02 +0.03
-0.02
(0.22)
CLK1
VREF
24
12
13
18
0.75
0.5
UVLO2
CLK2
PVCC
SCP2
7
19
UVLO1
SCP/
TSD
OSC
6
2.4±0.1
1
PGND1
SCP1
S
C0.2 2.4±0.1
Current
Current
Comp
OUT2
R
Gm Amp
FB2
Sense/
Q
Protect
S
Soft
Start2
OUT2
SW2
+
Slope2
0.25 +0.05
-0.04
OUT1
+
ITH1
0.08 S
0.4±0.1
Current
Driver
CLK2
Logic
PGND2
ITH2
(Unit : mm)
Soft
Start1
Fig.1 BD9153MUV TOP View
OUT1
GATE
DET
FB3
SCP3
OUT3
VS
RST
SCP/TSD
UVLO1
ITH1
Timer
FB1
AGND
PGND1
Fig.2 BD9153MUV Block Diagram
●Pin No. & function table
Pin No. Pin name
Function
Pin No.
Pin name
1
PGND2
Nch FET Source pin (2CH)
13
GATE
2
PVCC2
Pch FET Source pin (2CH)
14
FB3
Function
Gate drive pin
Output Voltage3 detector pin
3
PVCC2
Pch FET Source pin (2CH)
15
AVCC
4
PVCC1
Pch FET Source pin (1CH)
16
DET
Voltage detector pin
5
PVCC1
Pch FET Source pin (1CH)
17
RST
RST signal output pin
6
PGND1
Nch FET Source pin (1CH)
18
AGND
7
PGND1
Nch FET Source pin (1CH)
19
ITH2
8
SW1
SW pin (1ch)
20
FB2
Output Voltage2 detector pin
9
SW1
SW pin (1ch)
21
EN
Enable pin (High Active)
10
VS
Discharge function pin
22
SW2
11
FB1
Output Voltage1 detector pin
23
SW2
12
ITH1
GmAmp1output pin
24
PGND2
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
3/18
AVCC power supply input pin
Ground
GmAmp2 output pin
SW pin (2ch)
SW pin (2ch)
Nch FET Source pin (2ch)
2009.08 - Rev.A
Technical Note
BD9153MUV
●Characteristics data【BD9153MUV】
3.0
【VOUT1=3.3V】
2.5
2.0
【VOUT2=1.2V】
1.5
1.0
0.5
【VOUT1=3.3V】
3.5
3.0
2.5
2.0
1.5
VCC=5V
【VOUT2=1.2V】
Ta=25℃
Io=0A
1.0
0.5
0.0
0.0
0
1
2
3
4
INPUT VOLTAGE:VCC[V]
1
Fig.3 VCC – VOUT1,VOUT2
VCC=5V
Io=0A
-20
0
20
40
60
TEMPERATURE:Ta[℃]
1.0
0.5
90
80
1.20
1.18
VCC=5V
Io=0A
70
60
【VOUT1=3.3V】
50
40
【VOUT2=1.2V】
30
VCC=5V
Ta=25℃
20
10
-40
-20
0
20
40
60
TEMPERATURE:Ta[℃]
0
80
10
100
1000
OUTPUT CURRENT:IOUT[mA]
Fig. 7 Ta-VOUT2
250
225
0.6
0.4
VCC=5V
1.1
ON RESISTANCE:RON[mΩ]
FREQUENCY:FOSC[MHz]
0.8
10000
Fig.8 Efficiency
1.2
1.0
4
Fig.5 IOUT - VOUT
【VOUT2=1.2V設定】
【VOUT2=1.2V
】
Fig. 6 Ta-VOUT1
0.2
1
2
3
OUTPUT CURRENT:IOUT [A]
100
1.23
80
1.2
VCC=5V
Ta=25℃
【VOUT2=1.2V】
0
1.15
-40
1.5
5
EFFICIENCY:η[%]
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
3.25
3.20
FREQUENCY:FOSC[MHz]
2
3
4
EN VOLTAGE:VEN[V]
1.25
3.30
2.0
Fig.4 VEN - VOUT
3.40
3.35
2.5
0.0
0
5
【VOUT1=3.3V】
【VOUT1=3.3V】
3.0
OUTPUT VOLTAGE:VOUT[V]
Ta=25℃
Io=1.5A
OUTPUT VOLTAGE:VOUT[V]
OUTPUT VOLTAGE:VOUT[V]
3.5
4.0
3.5
1
0.9
Ta=25℃
VCC=5V
200
PMOS
175
150
125
NMOS
100
75
50
25
0.8
0.0
-40
-20
0
20
40
60
0
4.5
80
TEMPERATURE:Ta[℃]
4.75
5
5.25
INPUT VOLTAGE:VCC[V]
Fig.9 Ta- Fosc
5.5
-40
Fig.10 VCC-Fosc
0
20
40
60
80
TEMPERATURE:Ta[℃]
100
Fig.11 Ta – RONN, RONP
600
2.0
CIRCUIT CURRENT:ICC[μA]
1.8
1.6
EN VOLTAGE:VEN[V]
-20
1.4
1.2
1.0
0.8
0.6
VCC=5V
0.4
VCC=5V,Ta=25℃
500
EN
400
VOUT1
300
VOUT1
200
VOUT2
VCC=5V
100
0.2
VOUT3
0
0.0
-40
-20
0
20
40
60
TEMPERATURE:Ta[℃]
Fig.12 Ta-EN
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
80
EN1=E2
-40
-20
0
20
40
60
VOUT2
VCC=5.0V
Ta=25℃
80
TEMPERATURE:Ta[℃]
Fig.13 Ta-Icc
4/18
Fig.14 Soft start wave form
(Io1=0mA, Io2=0mA, Io3=0mA)
2009.08 - Rev.A
Technical Note
BD9153MUV
EN
SW1
SW1
VOUT1
VOUT2
VOUT1
VCC=5.0V
Ta=25℃
VOUT3
VOUT1
VCC=5.0V,Vout1=3.3V
Ta=25℃
VCC=5.0V,Vout1=3.3V
Ta=25℃
Fig.16 SW1 wave form
(Io1=0mA)
Fig.15 Soft start wave form
(Io1=1.5A, Io2=1.5A, Io3=1.0A)
Fig.17 SW1 wave form
(Io1=1.5A)
SW2
SW2
VOUT1
VOUT2
VOUT2
IOUT1
VCC=5.0V,Vout2=1.2V
Ta=25℃
VCC=5.0V,Vout2=1.2V
Ta=25℃
VCC=5.0V,Vout1=3.3V
Ta=25℃
Fig.19 SW2 wave form
(Io2=1.5A)
Fig.18 SW2 wave form
(Io2=0mA)
Fig.20 VOUT1 transient responce
(Io10.5A→1.5A / 10usec)
VOUT1
VOUT2
VOUT2
IOUT1
IOUT2
IOUT2
VCC=5.0V,Vout1=3.3V
Ta=25℃
VCC=5.0V,Vout2=1.2V
Ta=25℃
Fig.21 VOUT1 transient responce
(Io11.5A→0.5A/ 10usec)
Fig.22 VOUT2 transient responce
(Io20.5A→1.5A/ 10usec)
VOUT3
VOUT3
IOUT3
IOUT3
VCC=5.0V,Vout3=2.5V
Ta=25℃
Fig.24 VOUT3 transient responce
(Io30.5A→1A/ 10usec)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
VCC=5.0V,Vout2=1.2V
Ta=25℃
Fig.23 VOUT2 transient responce
(Io21.5A→0.5A/ 10usec)
VCC=5.0V,Vout3=2.5V
Ta=25℃
Fig.25 VOUT3 transient responce
(Io3500mA→1A/ 10usec)
5/18
2009.08 - Rev.A
Technical Note
BD9153MUV
●Information on advantages
Advantage 1:Offers fast transient response with current mode control system.
BD9153MUV (Load response IO=1.5A→0.5A / usec)
BD9153MUV (Load response IO=0.5A→1.5A / usec)
VOUT1
VOUT1
Io1
Io1
Fig.26
Advantage 2: Offers high efficiency for all load range.
・For lighter load:
Utilizes the current mode control mode called SLLM for lighter load, which reduces various dissipation such as switching
dissipation (PSW), gate charge/discharge dissipation, ESR dissipation of output capacitor (PESR) and on-resistance
dissipation (PRON) that may otherwise cause degradation in efficiency for lighter load.
Achieves efficiency improvement for lighter load.
・For heavier load:
Utilizes the synchronous rectifying mode and the low on-resistance MOS FETs incorporated as power transistor.
Achieves efficiency improvement for heavier load.
100
Efficiency η[%]
ON resistance of Highside MOS FET : 170mΩ(Typ.)
ON resistance of Lowside MOS FET : 130mΩ(Typ.)
SLLMTM
②
50
①
PWM
①inprovement by SLLM system
②improvement by synchronous rectifier
0
0.001
0.01
0.1
Output current Io[A]
1
Offers high efficiency for all load range with the improvements mentioned above.
Fig.27 Efficiency
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
6/18
2009.08 - Rev.A
Technical Note
BD9153MUV
Advantage 3:・Supplied in smaller package due to small-sized power MOS FET incorporated.
・Output capacitor Co required for current mode control: 22μF ceramic capacitor
・Inductance L required for the operating frequency of 1 MHz: 2.2μH inductor
・Incorporates FET + Boot strap diode
Reduces a mounting area required.
R5
Cfb
R6
R9
CITH2
RITH2
L2
R4
CO2
AGND
ITH2
RST
COUT2
COUT1
M1
DET
AVCC
FB3 GATE
ITH1
FB2
FB1
EN
VS
SW2
SW
1
SW2
SW1
CIN1
50mm
R2
RITH2
RITH1
R1
L1
CO1
PGND1
R4
R3
R8
CITH1
R9
R2
R1
PGND2 PVCC2 PVCC2 PVCC1 PVCC1 PGND1
R5 C1 R6
COUT3
CIN2
CIN2
RITH1 CITH1
M1
PGND2
R3
50mm
CO3
R7
CIN1
R8
R7
Fig.28
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
7/18
2009.08 - Rev.A
Technical Note
BD9153MUV
●Operation
BD9153MUV is a synchronous rectifying step-down switching regulator that achieves faster transient response by employing
current mode PWM control system. It utilizes switching operation in PWM (Pulse Width Modulation) mode for heavier load,
while it utilizes SLLM (Simple Light Load Mode) operation for lighter load to improve efficiency.
○Synchronous rectifier
It does not require the power to be dissipated by a rectifier externally connected to a conventional DC/DC converter IC, and
its P.N junction shoot-through protection circuit limits the shoot-through current during operation, by which the power
dissipation of the set is reduced.
○Current mode PWM control
Synthesizes a PWM control signal with a inductor current feedback loop added to the voltage feedback.
・PWM (Pulse Width Modulation) control
The oscillation frequency for PWM is 1 MHz. SET signal form OSC turns ON a highside MOS FET (while a lowside MOS
FET is turned OFF), and an inductor current IL increases. The current comparator (Current Comp) receives two signals,
a current feedback control signal (SENSE: Voltage converted from IL) and a voltage feedback control signal (FB), and
issues a RESET signal if both input signals are identical to each other, and turns OFF the highside MOS FET (while a
lowside MOS FET is turned ON) for the rest of the fixed period. The PWM control repeat this operation.
TM
・SLLM (Simple Light Load Mode) control
When the control mode is shifted from PWM for heavier load to the one for lighter load or vise versa, the switching pulse is
designed to turn OFF with the device held operated in normal PWM control loop, which allows linear operation without
voltage drop or deterioration in transient response during the mode switching from light load to heavy load or vise versa.
Although the PWM control loop continues to operate with a SET signal from OSC and a RESET signal from Current Comp,
it is so designed that the RESET signal is held issued if shifted to the light load mode, with which the switching is tuned
OFF and the switching pulses are thinned out under control. Activating the switching intermittently reduces the switching
dissipation and improves the efficiency.
SENSE
Current
Comp
RESET
VOUT
Level
Shift
R Q
FB
SET
Gm Amp.
ITH
S
IL
Driver
Logic
VOUT
SW
Load
OSC
Fig.29 Diagram of current mode PWM control
SENSE
PVCC
SENSE
PVCC
Current
Comp
SET
FB
GND
Current
Comp
SET
FB
GND
GND
RESET
GND
RESET
GND
SW
IL
SW
GND
IL(AVE)
IL
0A
VOUT(AVE)
VOUT
VOUT
VOUT(AVE)
Not switching
Fig.31 SLLM
Fig.30 PWM switching timing chart
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
8/18
TM
switching timing chart
2009.08 - Rev.A
Technical Note
BD9153MUV
●Description of operations
・Soft-start function
EN terminal shifted to “High” activates a soft-starter to gradually establish the output voltage with the current limited during
startup, by which it is possible to prevent an overshoot of output voltage and an inrush current.
・Shutdown function
With EN terminal shifted to “Low”, the device turns to Standby Mode, and all the function blocks including reference
voltage circuit, internal oscillator and drivers are turned to OFF. Circuit current during standby is 0µA (Typ.).
・RST function
If DET voltage over 0.72V(Typ.), RST terminal shifted to “High” after 50ms(Typ.) delay. And the hysteresis width of 24mV
(Typ.) is provided to prevent output chattering.
・UVLO function
Detects whether the input voltage sufficient to secure the output voltage of BU9153MUV is supplied. And the hysteresis
width of 100mV (UVLO1 Typ.) ,50mV(UVLO2 Typ.) is provided to prevent output chattering. Each the outputs have UVLO.
It is possible to set output sequence easy.
4.5V detect (RST Release voltage ×6.25)
3.9V detect (UVLO Release voltage 1)
2.55V detect (UVLO Release voltage2)
4.35V (RST Threshold Voltage ×6.25)
3.8V (UVLO Threshold Voltage 1)
VCC=EN
2.5V (UVLO Threshold Voltage 2)
3.3V Output (DC/DC 1)
2.5V Output (LDO)
1.2V Output (DC/DC 2)
VS discharge ON
RST
Output
Natural discharge
0.8ms Soft-start
50ms
(RST Delay)
RST
Fig.32 Soft-start, Shutdown, RST Delay, UVLO, timing chart
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
9/18
2009.08 - Rev.A
Technical Note
BD9153MUV
・Short-current protection circuit with time delay function
Turns OFF the output to protect the IC from breakdown when the incorporated current limiter is activated continuously for
the fixed time(TLATCH) or more. The output thus held tuned OFF may be recovered by restarting EN or by re-unlocking
UVLO.
EN
Output Short circuit
Threshold Voltage
OUT1
Output OFF
Latch
OUT2
OUT3
IL Limit
Io1
Io2
Io3
t2Terminal A (at resistor side), or
GND>Terminal B (at transistor side); and
○if GND>Terminal B (at NPN transistor side),
a parasitic NPN transistor is activated by N-layer of other element adjacent to the above-mentioned parasitic diode.
The structure of the IC inevitably forms parasitic elements, the activation of which may cause interference among circuits,
and/or malfunctions contributing to breakdown. It is therefore requested to take care not to use the device in such
manner that the voltage lower than GND (at P-substrate) may be applied to the input terminal, which may result in
activation of parasitic elements.
Resistor
Transistor (NPN)
Pin A
EN
C
B
Pin B
E
Pin A
N
P
+
N
P
P
N
+
N
P substrate
P+
Parasitic
element
P
P
C
+
N
E
P substrate
GND
Parasitic element
B
N
GND
Parasitic element
GND
GND
Parasitic
element
Other adjacent elements
Fig.44 Simplified structure of monorisic IC
7. Ground wiring pattern
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the
small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
8 . Selection of inductor
It is recommended to use an inductor with a series resistance element (DCR) 0.15Ω or less. Note that use of a high DCR
inductor will cause an inductor loss, resulting in decreased output voltage. Should this condition continue for a specified
period (soft start time + timer latch time), output short circuit protection will be activated and output will be latched OFF.
When using an inductor over 0.15Ω, be careful to ensure adequate margins for variation between external devices and
BU9153MUV, including transient as well as static characteristics.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
17/18
2009.08 - Rev.A
Technical Note
BD9153MUV
●Ordering part number
B
D
9
Part No.
1
5
3
M
Part No.
U
V
-
E
2
Packaging and forming specification
Package
MUV: VQFN24V4040
E2: Embossed tape and reel
(VQFN24V4040)
VQFN024V4040
4.0±0.1
4.0±0.1
1.0MAX
2.4±0.1
0.4±0.1
7
12
19
18
0.5
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
6
24
0.75
E2
2.4±0.1
1
2500pcs
(0.22)
+0.03
0.02 -0.02
S
C0.2
Embossed carrier tape
Quantity
Direction
of feed
1PIN MARK
0.08 S
Tape
13
+0.05
0.25 -0.04
1pin
(Unit : mm)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Reel
18/18
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2009.08 - Rev.A
Datasheet
Notice
Precaution on using ROHM Products
1.
Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you
(Note 1)
, transport
intend to use our Products in devices requiring extremely high reliability (such as medical equipment
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific
Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN
USA
EU
CHINA
CLASSⅢ
CLASSⅡb
CLASSⅢ
CLASSⅢ
CLASSⅣ
CLASSⅢ
2.
ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3.
Our Products are designed and manufactured for use under standard conditions and not under any special or
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any
special or extraordinary environments or conditions. If you intend to use our Products under any special or
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of
product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning
residue after soldering
[h] Use of the Products in places subject to dew condensation
4.
The Products are not subject to radiation-proof design.
5.
Please verify and confirm characteristics of the final or mounted products in using the Products.
6.
In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7.
De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual
ambient temperature.
8.
Confirm that operation temperature is within the specified range described in the product specification.
9.
ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1.
When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2.
In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the
ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Notice - GE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.002
Datasheet
Precautions Regarding Application Examples and External Circuits
1.
If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2.
You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1.
Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2.
Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3.
Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4.
Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
QR code printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,
please consult with ROHM representative in case of export.
Precaution Regarding Intellectual Property Rights
1.
All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable
for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2.
No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the information contained in this document.
Other Precaution
1.
This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2.
The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3.
In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4.
The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
Notice - GE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.002
Datasheet
General Precaution
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.
ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s
representative.
3.
The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or
concerning such information.
Notice – WE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.001