Datasheet
Power Supply IC Series for TFT-LCD Panels
Automotive Panel Power Management IC
BM81810MUV-M
General Description
Features
◼AEC-Q100 Qualified(Note 1)
◼Alternative Synchronous Buck DC/DC converter or LDO
for VDD output
◼Synchronous Boost DC/DC converter for AVDD output
with integrated load switch.
◼VCOM amplifier with 7bit calibrator
◼Positive charge pump (Integrated diode, x2/x3) for VGH
output
◼Negative charge pump for VGL output
◼VGH and VCOM temperature compensation
◼Gate Pulse Modulation(GPM)
◼I2C Interface Output Voltage Setting Control Function
(Integrated EEPROM)
◼Switching frequency switching function
(525kHz, 1.05MHz, 2.1MHz)
◼Protection circuits
➢ Under-Voltage Lockout
➢ Thermal Shut Down
➢ Over-Current Protection
➢ Over-Voltage Protection
➢ Under Voltage Protection (Timer Latch type)
◼Input tolerant (SCL, SDA, EN, GSIN)
(Note1: Grade 2)
BM81810MUV-M is a power management IC for
TFT-LCD panels which are used in car navigation,
in-vehicle center panel, and instrument cluster.
This IC incorporates VCOM amplifier, Gate Pulse
Modulation (GPM) in addition to the power supply for
panel driver (SOURCE, GATE, and LOGIC power
supplies). Moreover, this IC has a built-in EEPROM for
sequence and output voltage setting retention.
Key Specifications
◼Input voltage range:
2.6V to 5.5V
◼AVDD Output voltage range:
5.0V to 17.0V
◼VGH Output voltage range:
8.0V to 35.0V
◼VGL Output voltage range:
-4.0V to -14.0V
◼VDD Output voltage range:
0.9V to 3.4V
◼VCOM Output current:
200 mA (Typ)
◼Switching Frequency:
525KHz, 1.05MHz, 2.1MHz
◼Operating temperature range:
-40°C to +105°C
◼Standby current:
2.0 μA (Typ)
Special Characteristics
◼AVDD output voltage accuracy:
◼Oscillator Frequency:
±2%
±10%
Package
Applications
W(Typ) x D(Typ) x H(Max)
VQFN32SV5050
TFT-LCD Panels which are used in car navigation,
in-vehicle center panel, and instrument cluster.
5.0mm x 5.0mm x 1.0mm
Typical Application Circuit (TOP VIEW)
R_NTC2
R_NTC3
WPN
R_NTC1
R_FLT
VIN
R_RE
GSOUT
VIN
Θ
R_PG
VGH
FAULT
C_VCP
RE
17 18 19 20 21 22 23 24
RST
SWB
L_SWB
C_VDD
EN
VCP
C_DRP1
D_VGL
CPP1
DRP
DRN
C_DRN
VGL
VCOM
9
SCL
2
3
VREG
1
4
5
6
7
C_VCOM
8
C_VGL
AVDD
SW
R_RST
VLSO
SDA
25 26 27 28 29 30 31 32
GSIN
10 11 12 13 14 15 16
VIN
C_VGH
CPP2
NTC
PG / LDSW
VDD
C_DRP2
AVDD
C_VINB
C_REG
(D_SW)
L_SW
VIN
C_VIN
C_AVD
C_LSO
Figure 1.
〇Product structure : Silicon integrated circuit
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 14 • 001
Application Circuit
〇This product has no designed protection against radioactive rays.
1/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Contents
General Description ........................................................................................................................................................................ 1
Key Specifications .......................................................................................................................................................................... 1
Special Characteristics ................................................................................................................................................................... 1
Applications .................................................................................................................................................................................... 1
Features.......................................................................................................................................................................................... 1
Package .......................................................................................................................................................................................... 1
Typical Application Circuit (TOP VIEW) .......................................................................................................................................... 1
Pin Configuration (TOP VIEW)........................................................................................................................................................ 3
Pin Descriptions .............................................................................................................................................................................. 3
Absolute Maximum Ratings ............................................................................................................................................................ 4
Thermal Resistance (Note 1)............................................................................................................................................................... 5
Recommended Operating Ratings (Ta=-40 °C to +105 °C) ............................................................................................................ 5
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V) ....................................................................... 6
Typical Performance Curves ......................................................................................................................................................... 10
Application Example 1 (when operated by EN control) ................................................................................................................. 25
Timing Chart1 ............................................................................................................................................................................... 27
Application Example 2 (when operated with EN= VCC condition) ................................................................................................ 29
Timing Chart2 ............................................................................................................................................................................... 29
Application Example 3 (using LDSW mode) ................................................................................................................................. 31
Timing Chart3 ............................................................................................................................................................................... 33
Serial communication ................................................................................................................................................................... 35
WPN Timing .................................................................................................................................................................................. 36
I2C Timing Diagram ...................................................................................................................................................................... 37
Automatic EEPROM Read Function at Start-up ........................................................................................................................... 38
EEPROM Parameter Setting ........................................................................................................................................................ 39
Register Map ................................................................................................................................................................................ 40
Command Table ............................................................................................................................................................................ 41
Check Sum ................................................................................................................................................................................... 45
Soft Start Time .............................................................................................................................................................................. 46
Block Diagram .............................................................................................................................................................................. 47
AVDD Block Function.................................................................................................................................................................... 48
VGH Block Function ..................................................................................................................................................................... 51
VGL Block Function ...................................................................................................................................................................... 54
VCOM Block Function .................................................................................................................................................................. 55
VDD Block Function ...................................................................................................................................................................... 56
GPM Block Function ..................................................................................................................................................................... 58
RESET Block Function ................................................................................................................................................................. 59
PG/LDSW Block Function ............................................................................................................................................................. 60
NTC Block Function ...................................................................................................................................................................... 61
EN Block Function ........................................................................................................................................................................ 61
VGH and VCOM temperature compensation ................................................................................................................................ 62
FAULT Block Function .................................................................................................................................................................. 63
Fail Register Function ................................................................................................................................................................... 63
Protection function explanation of POWER MANAGEMENT block .............................................................................................. 64
Double Register ............................................................................................................................................................................ 65
Data Refresh................................................................................................................................................................................. 65
PCB Layout Guide ........................................................................................................................................................................ 66
EMC Layout Guide ....................................................................................................................................................................... 67
I/O Equivalence Circuit ................................................................................................................................................................. 68
Operation Notes............................................................................................................................................................................ 71
Ordering Information ..................................................................................................................................................................... 73
Marking Diagram .......................................................................................................................................................................... 73
Physical Dimension, Tape and Reel Information ........................................................................................................................... 74
Revision History ............................................................................................................................................................................ 75
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
2/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Pin Configuration (TOP VIEW)
CPP2
VGH
GSOUT
RE
WPN
NTC
FAULT
PG/LDSW
(TOP VIEW)
PGNDB
EN
EXP-PAD
9
SWB
2
3
4
5
VREG
VIN
VLSO
PGND
VINB
1
6
7
VCP
CPP1
DRP
DRN
VGL
CGND
VCOM
NEG
8
AVDD
VDD
PAVDD
RST
SW
SCL
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
SDA
25 26 27 28 29 30 31 32
GSIN
Figure 2. Pin Configuration
Pin Descriptions
Pin
No.
Pin
Name
Pin
No
Pin
Name
Function
1
VINB
Buck DC/DC power supply input
17
CPP2
Built-in Positive charge pump switching Di
output 3
2
VREG
Inner power supply output
18
VGH
Positive charge pump feedback & Power Input
of Gate Pulse Modulation
3
VIN
Boost DC/DC load switch input
19
GSOUT
4
VLSO
Boost DC/DC load switch output
20
RE
5
PGND
Boost DC/DC ground
21
WPN
Active Low of EEPROM Writing protection.
6
SW
Boost DC/DC switching pin
22
NTC
Slope setting pin for temperature compensation
of the VON and VCOM
7
PAVDD
Boost DC/DC output & output feedback
Power Input of DRN
23
FAULT
FAULT signal output
8
AVDD
Power Input of VCOM , DRP
24
PG/
LDSW
Power Good signal output or
Load SW of PAVDD.
9
NEG
Negative Input of VCOM Amplifier
25
GSIN
Input of Gate Pulse Modulation
10
VCOM
VCOM amplifier output
26
SDA
Serial clock data input (I2C)
11
CGND
Charge pump ground
27
SCL
Serial clock input (I2C)
12
VGL
Negative charge pump feedback
28
RST
Reset output
13
DRN
Negative charge pump driver pin
29
VDD
Buck DC/DC or LDO output feedback input
14
DRP
Positive charge pump driver pin
30
SWB
Buck DC/DC switching pin or LDO output pin
15
CPP1
Built-in Positive charge pump switching Di
output 1
31
PGNDB
16
VCP
Built-in Positive charge pump switching Di
output 2
32
EN
-
EXP
-PAD
Function
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
3/75
Output of Gate Pulse Modulation
Slope Setting Pin for Gate Pulse Modulation
Buck DC/DC ground
Enable input
Connect to Ground.
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Absolute Maximum Ratings
Parameter
Limits
Symbol
Unit
Min
Typ
Max
VIN, VINB
-0.3
-
+6.5
V
SWB
-0.3
-
VINB+0.3
V
VDD
-0.3
-
+6.5
V
AVDD, PAVDD, SW
-0.3
-
+19
V
VLSO
-0.3
-
+6.5
V
VCOM
-0.3
-
AVDD+0.3
V
DRP
-0.3
-
AVDD+0.3
V
DRN
-0.3
-
PAVDD+0.3
V
CPP1,CPP2,VCP
-0.3
-
+36
V
VGH,GSOUT,RE
-0.3
-
+36
V
VGL
-15
-
+0.3
V
VREG
-0.3
-
VIN+0.3
V
FAULT
-0.3
-
+6.5
V
PG/LDSW
-0.3
+19
V
RST, NTC
-0.3
-
VIN+0.3
V
NEG
-0.3
-
AVDD+0.3
V
SCL, SDA, EN, GSIN
-0.3
-
+6.5
V
WPN
-0.3
-
VIN+0.3
V
Maximum Junction temperature
Tjmax (Note 1)
-
-
+150
°C
Storage Temperature Range
Tstg
-55
-
+150
°C
Power Supply Voltage
Output Pin
Input Pin
Functional Pin Voltage
(Note 1) Junction temperature at storage time.
Caution : Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated
over the absolute maximum ratings.
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
4/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Thermal Resistance (Note 1)
Symbol
Parameter
Thermal Resistance (Typ)
1s(Note 3)
2s2p(Note 4)
Unit
VQFN32SV5050
Junction to Ambient
θJA
138.9
39.1
°C/W
Junction to Top Characterization Parameter(Note 2)
ΨJT
11
5
°C/W
(Note 1)Based on JESD51-2A(Still-Air).
(Note 2)The thermal characterization parameter
to report the difference between junction temperature and the temperature
at the top center of the outside surface of the component package.
(Note 3)Using a PCB board based on JESD51-3.
Layer Number of
Material
Board Size
Measurement Board
Single
FR-4
114.3mm x 76.2mm x 1.57mm
Top
Copper Pattern
Thickness
Footprints and Traces
70µm
(Note 4)Using
a PCB board based on JESD51-5, 7.
Layer Number of
Material
Board Size
Measurement Board
4 Layers
FR-4
Top
Thermal Via(Note 5)
Pitch
Diameter
114.3mm x 76.2mm x 1.6mmt
1.20mm
2 Internal Layers
Φ0.30mm
Bottom
Copper Pattern
Thickness
Copper Pattern
Thickness
Copper Pattern
Thickness
Footprints and Traces
70µm
74.2mm x 74.2mm
35µm
74.2mm x 74.2mm
70µm
(Note 5)
This thermal via connects with the copper pattern of all layers.
Recommended Operating Ratings (Ta=-40 °C to +105 °C)
Parameter
Symbol
Min
Typ
Max
Unit
VIN,VINB
2.6
-
5.5
V
ISWB
-
-
1.0
A
ISW
-
-
2.0
A
EN,GSIN,WPN
-0.1
-
+5.5
V
2 Line Serial Pin Voltage
SDA, SCL
-0.1
-
+5.5
V
2 Line Serial Frequency
FCLK
-
-
400
kHz
Operating Ambient Temperature
TA
-40
-
+105
°C
Operating Junction Temperature
TJ
-40
-
+125
°C
Power Supply Voltage
SWB Current
SW Current
Functional Pin Voltage
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
5/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V)
1. VDD regulator block (Alternative Buck converter or LDO)
Symbol
Parameter
Limits
Unit
Condition
Min
Typ
Max
VDD
0.9
-
3.4
V
50 mV step
Output Voltage Accuracy 1
VDD_R1
2.462
2.5
2.538
V
VDD=2.5 V setting
Output Voltage Accuracy 2
VDD_R2
-2.0
-
+2.0
%
VDD=2.5 V to 3.4 V setting
(Ta=-40 to +105 °C)
Output Voltage Accuracy 3
VDD_R3
-3.0
-
+3.0
%
VDD=0.9 V to 2.45 V
setting
(Ta=-40 to +105 °C)
Soft Start time
VDD_SS
0.85
1
1.15
msec
Output Voltage Range
Under-Voltage Protection voltage
VDD=1.2 V setting
VDD_UVP
VDD×0.7
VDD×0.8
VDD×0.9
V
SWB H Side ON Resistance
RONH_SWB
-
300
480
mΩ
DCDC mode
SWB L Side ON Resistance
RONL_SWB
-
300
480
mΩ
DCDC mode
SWB H Side ON Resistance
RON_SWB
-
1.0
2.0
Ω
LDO mode
SWB H Side Leak Current
IL_ SWBH
-
0
20
µA
(Ta=-40 to +105 °C)
SWB L Side Leak Current
IL_ SWBL
-
0
20
µA
(Ta=-40 to +105 °C)
Current Limit
ILMT_SWB1
1.0
1.7
2.7
A
Buck DCDC mode
Current Limit
ILMT_SWB2
0.3
0.5
0.7
A
Maximum Duty
DMAX_SWB
87
95
-
%
DISR_VDD
-
25
50
Ω
Discharge Resistance
LDO mode
Freq=1.05 MHz
(Freq=0.525 MHz:98%typ)
(Freq=2.10 MHz:87%typ)
2. Boost DC/DC converter block (AVDD)
Parameter
Symbol
Limits
Unit
Condition
Min
Typ
Max
AVDD
5.0
-
17.0
V
0.1 V step
Output Voltage Accuracy1
AVDD_R1
10.342
10.5
10.66
V
Output Voltage Accuracy2
AVDD_R2
10.29
10.5
10.71
V
AVDD=10.5 V setting
AVDD=10.5 V setting
(Ta=-40 to +105 °C)
Load Switch Soft Start time
LS_SS
1.7
2
2.3
msec
AVDD_SS
4.25
5
5.75
msec
Under-Voltage Protection voltage
AVDD_UVP
AVDD×0.7
AVDD×0.8
AVDD×0.9
V
Over-Voltage Protection voltage
AVDD_OVP
AVDD×1.03
AVDDx1.1
AVDD×1.2
V
SW H Side On Resistance
RON_SW
-
250
480
mΩ
SW L Side On Resistance
RON_SW
-
200
350
mΩ
SW H Side Leak Current
IL_SWH
-
0
20
µA
(Ta=-40 to +105 °C)
Output Voltage Range
Soft Start Time
SW L Side Leak Current
AVDD=10.5 V setting
5 ms setting
IL_SWL
-
0
20
µA
(Ta=-40 to +105 °C)
Current Limit
ILMT_SW
2.0
4.0
6.0
A
AVDD OCP=2 A setting
Current Limit
ILMT_SW
1.0
2.0
2.5
A
AVDD OCP=1 A setting
Load Switch ON Resistance
RON_LS
-
200
350
mΩ
DMAX_SW
83
90
-
%
DISR_AVDD
-
25
50
Ω
Maximum Duty
Discharge Resistance
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
6/75
Freq=1.05 MHz
(Freq=0.525 MHz:95%typ)
(Freq=2.10 MHz:80%typ)
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V) – continued
3. VCOM amplifier block (VCOM)
Parameter
Output Voltage Range1
Output Voltage Range2
Output Voltage Range3
Output Voltage Range4
Limits
Symbol
Min
0.5x
VCOM_HOT
AVDD
- 4.0
VCOM
VCOM_COLD
HOT
- 0.63
VCOM
VCOM_CAL
HOT
- 0.63
VCOM_RNG 0.2xAVDD
Calibration Resolution
Integral Non-Linearity Error
(INL)
Differential Non-Linearity Error
(DNL)
Output Current Ability
(Source)
Output Current Ability (Sink)
Load Stability
Slew Rate
Typ
0.5x
AVDD
-
Max
0.5x
AVDD
+ 4.0
VCOM
HOT
-
VCOM
HOT
+0.63V
0.7x AVDD
VCOM
HOT
Unit
Condition
V
40 mV step
V
10 mV step
V
10 mV step
V
RES_CAL
-
7
-
Bit
INL_CAL
-1
-
+1
LSB
DNLCAL
-1
-
+1
LSB
ISOURCE
-
200
-
mA
ISINK
-
200
-
mA
VLOAD
-
10
70
mV
SR
30
60
80
V/µsec
Io=-15 mA to +15 mA
4. Positive charge pump block (VGH)
Parameter
Symbol
Limits
Unit
Typ
Max
V
0.2 V step
V
0.2 V step
*Max = 35 V
Output Voltage Range 1
VGH_HOT
8.0
-
Output Voltage Range 2
VGH_COLD
VGH
HOT
-
Output Voltage Accuracy 1
VGH_R1
17.46
18
35
VGH
HOT
+15V
18.54
Output Voltage Accuracy 2
VGH_R2
17.1
18
18.9
V
Soft Start time
VGH_SS
4.25
5
5.75
msec
VGH_UVP
VGH×0.7
VGH×0.8
VGH×0.9
V
DRP H Side On Resistance
RON_DRPH
-
10
20
Ω
DRP L Side On Resistance
RON_DRPL
-
10
20
Ω
AVDD-CPP1 On Resistance
RON_CPP1
-
10
20
Ω
CPP1-VCP On Resistance
RON_CPP2
-
10
20
Ω
VCP-CPP2 On Resistance
RON_CPP3
-
10
20
Ω
CPP2-VGH On Resistance
RON_CPP4
-
10
20
Ω
Discharge Resistance
DISR_VGH
-
150
300
Ω
Under-Voltage Protection voltage
Condition
Min
V
VGH=18 V setting
VGH=18 V setting
(Ta=-40 to +105 °C)
VGH=18 V setting
5. Negative charge pump block (VGL)
Parameter
Symbol
Limits
Unit
Condition
Min
Typ
Max
VGL
-14.0
-
-4.0
V
0.1 V step
Output Voltage Accuracy 1
VGL_R1
-6.18
-6
-5.82
V
Output Voltage Accuracy 2
VGL_R2
-6.3
-6
-5.7
V
VGL=-6.0 V setting
VGL=-6.0 V setting
(Ta=-40 to +105 °C)
Soft Start time
VGL_SS
4.25
5
5.75
msec
Output Voltage Range
VGL_UVP
VGL×0.7
VGL×0.8
VGL×0.9
V
DRN H Side On Resistance
RON_DRNH
-
10
20
Ω
DRN L Side On Resistance
RON_DRNN
-
10
20
Ω
DISR_VGL
-
250
500
Ω
Under-Voltage Protection voltage
Discharge Resistance
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
7/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V) – continued
6. Temperature compensation block (NTC)
Symbol
Parameter
Limits
Min
Typ
Max
Unit
NTC HOT Voltage
VNTC_H
0.475
0.5
0.525
V
NTC COLD Voltage
VNTC_H
1.1875
1.25
1.3125
V
INTC
36
40
44
µA
RES_NTC
-
4
-
Bit
NTC Current
NTC Resolution
Condition
7. Gate Pulse Modulation block (GPM)
Symbol
Parameter
Limits
Unit
Condition
Min
Typ
Max
RON_GPMH
-
15
30
Ω
RON_GPML
-
30
-
Ω
GPM Propagation Delay1
T_GPM1
-
0.1
0.3
µsec
No Capacitive Load
0.1 µS setting
GPM Propagation Delay2
T_GPM2
-
0.5
1.0
µsec
No Capacitive Load
0.5 µS setting
GPM Propagation Delay3
T_GPM3
-
1.0
1.75
µsec
No Capacitive Load
1.0 µS setting
GPM Propagation Delay4
T_GPM4
-
1.5
2.5
µsec
No Capacitive Load
1.5 µS setting
RGSIN
70
100
130
kΩ
GSIN Input High Voltage
VGSINH
1.5
-
-
V
GSIN Input Low Voltage
VGSINL
-
-
0.6
V
GPM High Switch On
Resistance
GPM Low Switch On
Resistance
GSIN Pull Down Resistance
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
8/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V) – continued
8. Overall (Entire device)
Symbol
Parameter
Limits
Unit
Condition
Min
Typ
Max
VREG
2.15
2.3
2.45
V
ΔV
-
20
100
mV
Oscillating Frequency 1
FOSC1
475
525
575
KHz
Oscillating Frequency 2
FOSC2
950
1050
1150
KHz
Oscillating Frequency 3
FOSC3
1900
2100
2300
KHz
UVLO release voltage
VUVLO1
2.5
2.55
2.6
V
UVLO detection voltage
VUVLO2
2.0
2.1
2.2
V
VHYS_UVL
-
0.45
-
V
VRST
0.6
*
3.3
V
0.1 V step
VRST_R1
1.9
2.0
2.1
V
VRST=2.0 V setting
VHYS_RST
-
0.1
-
V
T_Delay2
0
-
40
msec
IL
-
0
10
µA
RON_O
-
1
2
kΩ
VSDA
-
-
0.4
V
VIH
1.5
-
-
V
Inside Regulator Voltage
VREG Output Voltage
Load Stability
IVREG=5 mA
Oscillator Block
Under Voltage Lock Out (UVLO) Circuit
Hysteresis
Reset Circuit Block
Reset Voltage Range
Reset Voltage Accuracy
Hysteresis
Reset Delay time Range
FAULT/ PG / RST Signal Output Block
Output Off Leak Current
Output On Resistance
Control Signal Block1 SDA, SCL, WPN
Minimum Output Voltage
H Level Input Voltage
L Level Input Voltage
ISDA=3 mA
VIL
-
-
0.6
V
RWPN
70
100
130
kΩ
REN_L
280
400
520
kΩ
EN=Low
REN_H
420
600
780
kΩ
EN=High
H Level Input Voltage
VENH
1.5
-
-
V
L Level Input Voltage
VENL
-
-
0.6
V
Standby Current1
ISTB1
-
2.0
5.0
µA
EN=GND
Standby Current2
ISTB2
-
-
20
µA
EN=GND
(Ta=-40 to +105 °C)
Consumption Current
ICC1
-
2.0
5.0
mA
EN=VIN, No switching
Unit
Condition
WPN Pull Down Resistance
Control Signal Block2 EN
Pull-Down Resistance Value
Overall
9. EEPROM
Parameter
Symbol
Limits
Min
Typ
Max
Rewritable cycle
Cyc
100
-
-
Times
Programmable time
Twr
-
-
50
msec
Data hold years
DHY
20
-
-
Years
.www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
9/75
TJ VGH, changing the application contracture to following make is possible. In this
case please set Register08h (Function Select) of the EEPROM to "1".
R_NTC2
R_NTC3
WPN
R_NTC1
VIN
R_RE
R_FLT
GSOUT
Θ
VGH
FAULT
C_VCP
RE
17 18 19 20 21 22 23 24
C_VDD
EN
CPP1
C_DRP1
D_VGL
DRP
DRN
C_DRN
VGL
VCOM
9
SWB
L_SWB
1
3
VREG
2
4
5
6
SW
SCL
RST
VLSO
SDA
R_RST
VCP
25 26 27 28 29 30 31 32
GSIN
10 11 12 13 14 15 16
VIN
C_VGH
CPP2
NTC
PG / LDSW
VDD
C_DRP2
7
AVDD
PAVDD
C_VINB
C_VGL
C_VCOM
8
AVDD
M_LDSW
C_REG
VIN
L_SW
C_VIN
R_LDSW
C_LSO
C_GD
C_PAV
C_LDSW
C_AVD
R_LSGATE LDSW
(D_SW)
Figure 67. Application Circuit
(Function Select = LDSW)
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
31/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Application Example 3 (using LDSW mode) - continued
Application circuit components list
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)
Value
Parts name
Min
(Note 1)
Typ
Max
Unit
Company
Parts Number
Comment
C_VIN
10
10 x 2
-
μF
MURATA
GRT21BC81A106KE01
C_VINB
4.7
10
-
μF
MURATA
GRT21BC81A106KE01
C_REG
0.047
0.1
0.47
μF
MURATA
GRT188R71H104KE13
No need @ VDD LDO
mode
C_LSO
10
10 x 2
-
μF
MURATA
GRT21BC81A106KE01
C_PAVD
5.0
10 x 2
10 x 5
μF
MURATA
GRT31CC81E106KE01
See p.49 in detail.
C_AVD
2.2
4.7
10
μF
MURATA
GRT31CC81E475KE01
See p.49 in detail.
L_SW
-
4.7
-
μH
TDK
LTF5022T-4R7N2R0-H
See p.49 in detail.
D_SW
-
-
-
-
ROHM
(RB060M-30DD)
Please insert D_SW when
improving the efficiency is
necessary.
M_LDSW
-
-
-
-
ROHM
RTR030P02FHA
R_LDSW
-
100
-
kΩ
ROHM
MCR03
C_LDSW
-
0.47
-
μF
MURATA
GRT21BR71H474KE01
C_GD
-
33
-
nF
MURATA
GRT155R71H333KE01
R_LSGATE
-
100
-
kΩ
ROHM
MCR03
C_VDD
10
10 x 2
47
μF
MURATA
GRT21BC81A106KE01
L_SWB
-
4.7
-
μH
TDK
LTF5022T-4R7N2R0-H
C_VCOM
-
-
-
μF
MURATA
-
C_VGL
0.47
1.0
4.7
μF
MURATA
GRT21BC81E105KE13
C_DRN
-
0.1
-
μF
MURATA
GRT188R71H104KE13
-
ROHM
RB558WFH
C_VGH
0.47
2.2
4.7
μF
MURATA
GRT21BC8YA225KE13
C_CPP1
-
0.1
-
μF
MURATA
GRT188R71H104KE13
C_VCP
-
1.0
-
μF
MURATA
GRT188C81E105KE13
C_CPP2
-
0.1
-
μF
MURATA
GRT188R71H104KE13
D_VGL
-
R_RE
0.2
2.0
-
kΩ
ROHM
MCR03
R_NTC1
-
4.7
-
kΩ
ROHM
MCR03
R_NTC2
-
33
-
kΩ
ROHM
MCR03
R_NTC3
-
10
-
kΩ
MURATA
NCU18XH103F6SRB
R_FLT
47
100
200
kΩ
ROHM
MCR03
R_RST
47
100
200
kΩ
ROHM
MCR03
(Note 1)Please set in consideration of temperature properties and DC bias properties not to become less than the minimum.
Please consider it based on enough evaluations with the actual model.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
32/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Timing Chart3
Start-up Sequence (when operated with LDSW function)
Vcc UVLO release
Vcc=2.55V
(Inner logic, reset EEPROM)
VIN,
VINB
Enable=L⇒H
EN
VREG
EEROM
EEPROM
Auto Read
Discharge
0~5ms
Discharge
1ms
(when VDD=1.2V)
VDD
VDD
90%
Soft Start time
5ms (when 10.5V is set)
delay1
(0~300ms)
AVDD
load
SW ON
AVDD
PAVDD
VIN
level
VGL
VGL
Soft Start time
5ms (when -6V is set)
VCOM ⇒
Start up by following to
AVDD voltage
VCOM
Soft Start time
5ms (when 18V is set)
VGH
AVDD
level
delay3
(0~40ms)
EEPROM Register
Data write-able zone
GSOUT
delay4
(0~40ms)
RST
delay2
(0~40ms)
Reset monitor is setting VDD.
LDSW
FAULT
Figure 68. Start-Up Sequence Diagram (when operated with LDSW Function)
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
33/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Timing Chart3 - continued
OFF Sequence (when operated with LDSW function)
Vcc UVLO detect Vcc=2.1V
(Inner logic, reset EEPROM)
VIN,
VINB
VREG
EEROM
Discharge
Enable=H⇒L
EN
delay5
(0~10ms)
VDD
Discharge
VDD
AVDD
Discharge
AVDD
VGL
VGL Hi-Z
VGL
Discharge
VCOM
Discharge
VCOM
VGH Hi-Z
VGH
Discharge
VGH
EEPROM Register
Data write-able zone
GSOUT
RST
LDSW
FAULT
Figure 69. OFF Sequence Diagram (when operated with LDSW Function)
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
34/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Serial communication
This IC has two device-address-differential EEPROM installed and data is send or received to/from EEPROM using 2-line serial
interface (SCL, SDA). Communication format for data sending or receiving to/from each EEPROM is shown below.
EEPROM I2C Format for DVR (VCOM calibrator)
Device address
Write
operation
Start
Read
operation
Start
R/W
ACK
0
0
R/W
ACK
1
0
DATA
ACK
STOP
1
0
1
0
0
1
1
1
1
1
1
Device address
D6
D5
D4
D3
D6
D5
D4
D3
D2
D1
D0
P
D1
D0
X
DATA
0
ACK
STOP
0
1
1
D2
1
When Device Address = 1001111(R/W) is selected, Data is Read or Write EEPROM for DVR(VCOM calibrator).
During Write mode
•When P=1, the sending data is written only to Register.
•When WPN=Low and P=0, the sending data is written only to Register.
•When WPN=High and P=0, the sending data is written both to Register and EEPROM.
During Read mode
The last bit of received data is “Don’t care”.
“D6” is ± select bit: 0 = “+”, 1=”-” from VCOM(HOT) value.
[D5:D0] are voltage band from VCOM(HOT).
The voltage band is calculated; 10mV x [D5:D0],
For example,
[D6:D0,P] = 82h(D6=1, [D5:D0]=1’d, P=0) ••• VCOM = VCOM(HOT) – 1 x 10mV;
[D6:D0,P] = 7Eh(D6=0, [D5:D0]=63’d, P=0) ••• VCOM = VCOM(HOT) + 63 x 10mV;
Sequence of DVR side EEPROM during Read/Write mode is shown in below chart.
Figure 70
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
Figure 71
35/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Serial communication - continued
EEPROM I2C Format for Power Management IC (PMIC)
Write
operation
Read
operation
Start
Start
1
1
Device address
0 0 0 0
Device address
0 0 0 0 0
0
R/W ACK
0
0
0
R/W ACK
0
0
0
Register Address
00h ~ 0Dh, 10h, 11h
Register Address
00h ~ 0Dh, 10h, 11h
ACK
ACK Repeated
Start
0
ACK
N-bytes Data
0
1
0
Device Address
0 0 0 0
0
ACK
0
1
0
N-bytes Data
ACK
1
Stop
Stop
Device Address of BM81810MUV-M is 1000 000x.
Multi write is possible until Register 00h to 0Dh.
EN
WPN
Start-up( 0Ch[7] )
PMIC ( 00h to 0Dh)
Output Function
1
Low
Low
-
-
Shutdown
2
High
Low
-
Register
Active
3
High
High
0*
Register &
EEPROM
Shutdown
4
High
High
1
Register &
EEPROM
Active
* In the mass production shipment process, please write Start-up ( 0Ch[7] ) to "1" in EEPROM.
The following are the settings if you want to send the Data by I2C.
Device Address?
1000_0000
Receive register address
Read
Yes
No
Write
Restart?
Device Address
1000_0001
Input data to register
Output register data
Low
WPN
High
Write data to EEPROM
End process
Figure 72
WPN Timing
WPN is normally fixed as Low.
In case of writing to EEPROM, WPN is set to High, and the timing will be as below.
Because the maximum of the auto-read time from EEPROM is 5ms, please between EN signal and I2C input than 5ms.
Also, because the maximum of writing time to EEPROM is 50ms, please between I2C STOP signal and EN falling signal
than 50ms.
VIN
EEPROM Data
Auto Read
> 5msec
EEPROM Write Time
> 50msec
EN
WPN
SCL
SDA
tSU;WPN
> 0usec
S
T
A
R
T
Device
Address
A
C
K
Register
Address
A
C
K
DATA
A
C
K
DATA
A
C
K
・・・・・
DATA
A
C
K
S
T
O
P
tHD;WPN
> 10usec
Figure 73
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
36/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
I2C Timing Diagram
tR
tHIGH
tF
70%
SCL
30%
tLOW
tHD: STA
tSU; DAT
tPD
tHD; DAT
70%
SDA
(IN)
30%
tBUF
tDH
70%
SDA
( OUT)
30%
70%
SCL
tHD; STA
tSU; STA
tSU; STO
70%
SDA
30%
tl
S
S: START Bit
P: STOP Bit
P
Figure 74. I2C Timing Diagram
Timing standard values
Parameter
SCL frequency
SCL high time
SCL low time
Rise Time
Fall Time
Start condition hold time
Start condition setup time
SDA hold time
SDA setup time
Acknowledge delay time
Acknowledge hold time
Stop condition setup time
Bus release time
Noise spike width
Symbol
fSCL
tHIGH
tLOW
tR
tF
tHD;STA
tSU;STA
tHD;DAT
tSU;DAT
tPD
tDH
tSU;STO
tBUF
Tl
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
Min
4.0
4.7
4.0
4.7
0
200
4.0
4.7
-
NORMAL MODE
Typ
Max
Min
FAST MODE
Typ
Max
100
1.0
0.3
0.9
-
0.6
1.2
0.6
0.6
0
100
0.6
1.2
-
0.1
0.1
400
0.3
0.3
0.9
-
0.1
0.1
37/75
Unit
kHz
μs
μs
μs
μs
μs
μs
ns
ns
μs
μs
μs
μs
μs
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Automatic EEPROM Read Function at Start-up
Upon BM81810MUV-M start-up, a reset signal is generated and each register is initialized.
After VREG activation is finished, data which is stored in the EEPROM is copied to the registers.
The automatic EEPROM read function at start-up is further explained by the flow chart below.
VREG ACTIVE
EEPROM READ
TRANSFER DATA
REGISTER
NO
CHECK
SUM
NG
OK
3times
NG?
YES
START OPERATION
SHUT DOWN
Figure 75. Automatic EEPROM Read Function at Start-up
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
38/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
EEPROM Parameter Setting
■EEPRO M / Main Re giste r Map ( de vic e addre ss : 1 0 0 0 0 0 0 x )
Device Address: 1000000x (PMIC)
Register
Address
Bits
00h
8
AVDD Output voltage
0.1V [5.0V to 17.0V]
AVDD Output voltage setting
01h
8
VGH(HOT) Output voltage
0.2V [8.0V to 35.0V]
VGH(HOT) Output voltage setting
02h
8
03h
Function
ΔVGH(COLD) Voltage [6:0]
Resolution
0.2V [VGH(HOT) + 15V]
VGH NTC Enalbe [7]
0:Disable, 1:Enable
8
VGL Output voltage
0.1V [-14.0V to -4.0V]
04h
8
VCOM(HOT) Output voltage
05h
8
06h
8
ΔVCOM(COLD) Voltage [6:0]
08h
8
8
8
0.05V [0.9V to 3.4V]
VDD Output voltage setting
VDD mode select [6]
0 : DC/DC, 1 : LDO
Select VDD operation mode DC/DC or LDO
Reset Voltage [4:0]
Reset monitor select [5]
0Bh
0Ch
8
8
See P.56 page.
0.1V [0.6V to 3.3V]
0:VDD, 1:VIN
GPM input delay [7:6]
00: 0.1usec, 01: 0.5usec, 10: 1.0usec, 11: 1.5usec
Discharge time [2:0]
Delay1 time [6:3]
1msec [0 to 5msec]
[0 to 300msec]
0: PG, 1: LDSW
select VDD Phase
Reset voltage setting
Select monitor pin of reset function
GPM input propagation delay time setting
Pre-discharge time setting
Load sw itch of AVDD start-up delay time setting
24pin function select
Delay2 time [2:0]
DoubleReg [3]
5msec [0 to 30msec, 40msec]
0: Disable, 1: Enable
Reset start delay time setting
Double Register Function
Delay3 time [6:4]
5msec [0 to 30msec, 40msec]
VGL or VGH start-up delay time setting
Delay4 time [2:0]
8
10mV [VCOM(HOT) - 0.63V]
0:Disable, 1:Enable
DataRef [7]
0Ah
VCOM(HOT) Output voltage setting
VDD Output voltage [5:0]
Function Select [7]
09h
40mV [0.5xAVDD ±4.0V]
VGL Output voltage setting
VCOM NTC Enalbe [7]
VDD Phase [7]
07h
Comments
AR_Time [3]
Delay5 time [6:4]
VGH Discharge enable [7]
0: Disable, 1: Enable
5msec [0 to 30msec, 40msec]
0: 0.5sec, 1: 1.0sec
2msec [0 to 10msec]
0: Enable, 1: Disable
AVDD Coil[1:0]
See p.49 page.
AVDD SW Slew Rate [3:2]
See p.48 page.
AVDD SS time [5:4]
5msec [5msec to 20msec]
Data Refresh Function
GPM start delay time setting
Data Refresh Time
VDD stop delay time setting
VGH Discharge function enable
select AVDD Coil indactance
4step slew rate setting
(11:fast → 00:slow)
AVDD softstart time setting
AVDD OCP Select [6]
AVDD COMP [7]
0: 2A, 1: 1A
See p.49 page.
AVDD Frequecy [1:0]
00:2.1MHz, 01:1.05MHz, 10:525KHz, 11:525KHz
Seletc AVDD switching frequency
VDD Frequecy [3:2]
00:2.1MHz, 01:1.05MHz, 10:525KHz, 11:525KHz
Select VDD switching frequency
Select VGH and VGL switching
frequency. Choose only "00".
Select VGH charge pump mode
VGH / VGL Frequecy [5:4]
VGH mode select [6]
start-up bit [7]
AVDD Freqency
( 00: x1, 01: --, 10: --, 11: -- )
0: x3 mode, 1: x2 or x4 mode
AVDD OCP min value select
AVDD phase compensation setting
0:Disable, 1:Enable
Device Address: 1001111x (VCOM)
Register
Address
Bits
-
7
Function
VCOM Calibrator
Resolution
+/- 0.01V [ VCOM +/- 0.63V]
Comments
VCOM Calibrator
When Start-up bit(REG0Ch[7]) is ”1”, below Register cannot be modified.
VGH NTC Enable
VCOM NTC Enable
VDD mode select
Function select
VGH mode select
REG02h[7]
REG05h[7]
REG06h[6]
REG08h[7]
REG0Ch[6]
To change those Register setting, start-up bit(REG0Ch[7]) should be in ”0”.
After changing the register value, set the Start-up bit(REG0Ch[7]) to “1” again to start up with the changed setting.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
39/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Register Map
Device Address : 1000000x (PMIC)
Register
Address
D7
D6
D5
D4
00h
01h
02h
D3
D2
D1
D0
Default
AVDD Output Voltage
68h
VGH HOT Output Voltage
59h
VGH
NTC Enable
⊿VGH COLD Voltage
83h
03h
VGL Output Voltage
3Bh
04h
VCOM HOT Output Voltage
80h
05h
06h
07h
08h
VCOM
NTC Enable
VDD
VDD
Phase Select
MODE
GPM
Input Delay
Function
Select
⊿VCOM COLD Votlage
99h
VDD Output Voltage
Reset
Monitor Select
20h
Reset Voltage
Delay1 time
04h
Discharge time
09h
09h
Data Refresh
Delay3 time
DoubleReg
Delay2 time
13h
0Ah
VGH
Discharge Enable
Delayt5 time
AR_Time
Delay4 time
87h
0Bh
AVDD
COMP
Start-up
Bit
0Ch
AVDD
OCP Select
VGH
mode select
AVDD
SS Time
VGH/VGL
Frequency
AVDD
SW Slew Rate
VDD
Frequency
0Dh
10h
AVDD
Coil Select
AVDD
Frequency
3Ch
05h
60h
Check Sum
AVDD UVP
VDD UVP
VGH UVP
VGL UVP
Double
Register Error
AVDD OCP
TSD
Check sum
Error
00h
Device Address : 1001111x (VCOM)
Register
Address
D6
D5
-
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
D4
D3
D2
VCOM Calibration Voltage
40/75
D1
D0
P
Default
P
80h
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Register Map - continued
Command Table
Regitser Address
00h
DATA
(HEX)
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
0Eh
0Fh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
1Eh
1Fh
20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2Ch
2Dh
2Eh
2Fh
30h
31h
32h
33h
34h
35h
36h
37h
38h
39h
3Ah
3Bh
3Ch
3Dh
3Eh
3Fh
40h
41h
42h
43h
44h
45h
46h
47h
48h
49h
4Ah
4Bh
4Ch
4Dh
4Eh
4Fh
50h
51h
52h
53h
54h
55h
56h
57h
58h
59h
5Ah
5Bh
5Ch
5Dh
5Eh
5Fh
60h
61h
62h
63h
64h
65h
66h
67h
68h
69h
6Ah
6Bh
6Ch
6Dh
6Eh
6Fh
70h
71h
72h
73h
74h
75h
76h
77h
78h
79h
7Ah
7Bh
7Ch
7Dh
7Eh
7Fh
AVDD
Output
Voltage
[7:0]
02h
01h
VGH HOT
VGH
⊿VGH COLD
Output
NTC Enable
Voltage
Voltage
[7]
[6:0]
[7:0]
8.0 V
5.0 V
5.1 V
5.2 V
5.3 V
5.4 V
5.5 V
5.6 V
5.7 V
5.8 V
5.9 V
6.0 V
6.1 V
6.2 V
6.3 V
6.4 V
6.5 V
6.6 V
6.7 V
6.8 V
6.9 V
7.0 V
7.1 V
7.2 V
7.3 V
7.4 V
7.5 V
7.6 V
7.7 V
7.8 V
7.9 V
8.0 V
8.1 V
8.2 V
8.3 V
8.4 V
8.5 V
8.6 V
8.7 V
8.8 V
8.9 V
9.0 V
9.1 V
9.2 V
9.3 V
9.4 V
9.5 V
9.6 V
9.7 V
9.8 V
9.9 V
10.0 V
10.1 V
10.2 V
10.3 V
10.4 V
10.5 V
10.6 V
10.7 V
10.8 V
10.9 V
11.0 V
11.1 V
11.2 V
11.3 V
11.4 V
11.5 V
11.6 V
11.7 V
11.8 V
11.9 V
12.0 V
12.1 V
12.2 V
12.3 V
12.4 V
12.5 V
12.6 V
12.7 V
12.8 V
03h
8.2 V
8.4 V
8.6 V
8.8 V
9.0 V
9.2 V
9.4 V
9.6 V
9.8 V
10.0 V
10.2 V
10.4 V
10.6 V
10.8 V
11.0 V
11.2 V
11.4 V
11.6 V
11.8 V
12.0 V
12.2 V
12.4 V
12.6 V
12.8 V
13.0 V
13.2 V
13.4 V
13.6 V
13.8 V
14.0 V
14.2 V
14.4 V
14.6 V
14.8 V
15.0 V
15.2 V
15.4 V
15.6 V
15.8 V
16.0 V
16.2 V
16.4 V
16.6 V
16.8 V
17.0 V
17.2 V
17.4 V
17.6 V
17.8 V
18.0 V
18.2 V
18.4 V
18.6 V
18.8 V
19.0 V
19.2 V
19.4 V
19.6 V
19.8 V
20.0 V
20.2 V
20.4 V
20.6 V
20.8 V
21.0 V
21.2 V
21.4 V
21.6 V
21.8 V
22.0 V
22.2 V
22.4 V
22.6 V
22.8 V
23.0 V
23.2 V
23.4 V
23.6 V
23.8 V
24.0 V
24.2 V
24.4 V
24.6 V
24.8 V
25.0 V
25.2 V
25.4 V
25.6 V
Disable
VGL
Output
Voltage
[7:0]
05h
04h
VCOM HOT
VCOM
Output
NTC Enable
Voltage
[7]
[7:0]
06h
⊿VCOM
COLD
Voltage
[6:0]
+0.0V
AVDD/2
-0.00V
+0.2V
+0.4V
+0.6V
+0.8V
+1.0V
+1.2V
+1.4V
+1.6V
+1.8V
+2.0V
+2.2V
+2.4V
+2.6V
+2.8V
+3.0V
+3.2V
+3.4V
+3.6V
+3.8V
+4.0V
+4.2V
+4.4V
+4.6V
+4.8V
+5.0V
+5.2V
+5.4V
+5.6V
+5.8V
+6.0V
+6.2V
+6.4V
+6.6V
+6.8V
+7.0V
+7.2V
+7.4V
+7.6V
+7.8V
+8.0V
+8.2V
+8.4V
+8.6V
+8.8V
+9.0V
+9.2V
+9.4V
+9.6V
+9.8V
+10.0V
+10.2V
+10.4V
+10.6V
+10.8V
+11.0V
+11.2V
+11.4V
+11.6V
+11.8V
+12.0V
+12.2V
+12.4V
+12.6V
+12.8V
+13.0V
+13.2V
+13.4V
+13.6V
+13.8V
+14.0V
+14.2V
+14.4V
+14.6V
+14.8V
AVDD/2 +0.04V
-0.01V
-0.02V
-0.03V
-0.04V
-0.05V
-0.06V
-0.07V
-0.08V
-0.09V
-0.10V
-0.11V
-0.12V
-0.13V
-0.14V
-0.15V
-0.16V
-0.17V
-0.18V
-0.19V
-0.20V
-0.21V
-0.22V
-0.23V
-0.24V
-0.25V
-0.26V
-0.27V
-0.28V
-0.29V
-0.30V
-0.31V
-0.32V
-0.33V
-0.34V
-0.35V
-0.36V
-0.37V
-0.38V
-0.39V
-0.40V
-0.41V
-0.42V
-0.43V
-0.44V
-0.45V
-0.46V
-0.47V
-0.48V
-0.49V
-0.50V
-0.51V
-0.52V
-0.53V
-0.54V
-0.55V
-0.56V
-0.57V
-0.58V
-0.59V
-0.60V
-0.61V
-0.62V
-0.63V
-0.64V
-0.65V
-0.66V
-0.67V
-0.68V
-0.69V
-0.70V
-0.71V
-0.72V
-0.73V
-0.74V
-0.75V
-0.76V
-0.77V
-0.78V
-0.79V
-0.80V
-0.81V
-0.82V
-0.83V
-0.84V
-0.85V
-0.86V
-0.87V
-0.88V
-0.89V
-0.90V
-0.91V
-0.92V
-0.93V
-0.94V
-0.95V
-0.96V
-0.97V
-0.98V
-0.99V
-1.00V
-1.01V
-1.02V
-1.03V
-1.04V
-1.05V
-1.06V
-1.07V
-1.08V
-1.09V
-1.10V
-1.11V
-1.12V
-1.13V
-1.14V
-1.15V
-1.16V
-1.17V
-1.18V
-1.19V
-1.20V
-1.21V
-1.22V
-1.23V
-1.24V
-1.25V
-1.26V
-1.27V
+15.0V
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
AVDD/2 +0.08V
AVDD/2 +0.12V
AVDD/2 +0.16V
AVDD/2 +0.20V
AVDD/2 +0.24V
AVDD/2 +0.28V
AVDD/2 +0.32V
AVDD/2 +0.36V
AVDD/2 +0.40V
AVDD/2 +0.44V
AVDD/2 +0.48V
AVDD/2 +0.52V
AVDD/2 +0.56V
AVDD/2 +0.60V
AVDD/2 +0.64V
AVDD/2 +0.68V
AVDD/2 +0.72V
-4.0 V
AVDD/2 +0.76V
AVDD/2 +0.80V
AVDD/2 +0.84V
AVDD/2 +0.88V
AVDD/2 +0.92V
AVDD/2 +0.96V
AVDD/2 +1.00V
AVDD/2 +1.04V
AVDD/2 +1.08V
AVDD/2 +1.12V
AVDD/2 +1.16V
AVDD/2 +1.20V
AVDD/2 +1.24V
AVDD/2 +1.28V
AVDD/2 +1.32V
AVDD/2 +1.36V
AVDD/2 +1.40V
AVDD/2 +1.44V
AVDD/2 +1.48V
AVDD/2 +1.52V
AVDD/2 +1.56V
-4.1 V
-4.2 V
-4.3 V
-4.4 V
-4.5 V
-4.6 V
-4.7 V
-4.8 V
-4.9 V
-5.0 V
-5.1 V
-5.2 V
-5.3 V
-5.4 V
-5.5 V
-5.6 V
-5.7 V
-5.8 V
-5.9 V
-6.0 V
-6.1 V
-6.2 V
-6.3 V
-6.4 V
-6.5 V
-6.6 V
-6.7 V
-6.8 V
-6.9 V
-7.0 V
-7.1 V
-7.2 V
-7.3 V
-7.4 V
-7.5 V
-7.6 V
-7.7 V
-7.8 V
-7.9 V
-8.0 V
-8.1 V
-8.2 V
-8.3 V
-8.4 V
-8.5 V
-8.6 V
-8.7 V
-8.8 V
-8.9 V
-9.0 V
-9.1 V
-9.2 V
-9.3 V
-9.4 V
-9.5 V
-9.6 V
-9.7 V
-9.8 V
-9.9 V
-10.0 V
-10.1 V
-10.2 V
-10.3 V
-10.4 V
-10.5 V
-10.6 V
-10.7 V
-10.8 V
-10.9 V
-11.0 V
-11.1 V
-11.2 V
-11.3 V
-11.4 V
-11.5 V
-11.6 V
-11.7 V
-11.8 V
-11.9 V
-12.0 V
-12.1 V
-12.2 V
-12.3 V
-12.4 V
-12.5 V
-12.6 V
-12.7 V
-12.8 V
AVDD/2 +1.60V
AVDD/2 +1.64V
AVDD/2 +1.68V
AVDD/2 +1.72V
AVDD/2 +1.76V
AVDD/2 +1.80V
AVDD/2 +1.84V
AVDD/2 +1.88V
AVDD/2 +1.92V
AVDD/2 +1.96V
AVDD/2 +2.00V
AVDD/2 +2.04V
AVDD/2 +2.08V
AVDD/2 +2.12V
AVDD/2 +2.16V
AVDD/2 +2.20V
AVDD/2 +2.24V
AVDD/2 +2.28V
AVDD/2 +2.32V
AVDD/2 +2.36V
AVDD/2 +2.40V
AVDD/2 +2.44V
AVDD/2 +2.48V
AVDD/2 +2.52V
AVDD/2 +2.56V
AVDD/2 +2.60V
AVDD/2 +2.64V
AVDD/2 +2.68V
AVDD/2 +2.72V
AVDD/2 +2.76V
AVDD/2 +2.80V
AVDD/2 +2.84V
AVDD/2 +2.88V
AVDD/2 +2.92V
AVDD/2 +2.96V
AVDD/2 +3.00V
AVDD/2 +3.04V
AVDD/2 +3.08V
AVDD/2 +3.12V
AVDD/2 +3.16V
AVDD/2 +3.20V
AVDD/2 +3.24V
AVDD/2 +3.28V
AVDD/2 +3.32V
AVDD/2 +3.36V
AVDD/2 +3.40V
AVDD/2 +3.44V
AVDD/2 +3.48V
AVDD/2 +3.52V
AVDD/2 +3.56V
AVDD/2 +3.60V
AVDD/2 +3.64V
AVDD/2 +3.68V
AVDD/2 +3.72V
AVDD/2 +3.76V
AVDD/2 +3.80V
AVDD/2 +3.84V
AVDD/2 +3.88V
AVDD/2 +3.92V
AVDD/2 +3.96V
AVDD/2 +4.00V
AVDD/2 +4.04V
AVDD/2 +4.08V
AVDD/2 +4.12V
AVDD/2 +4.16V
AVDD/2 +4.20V
AVDD/2 +4.24V
AVDD/2 +4.28V
AVDD/2 +4.32V
AVDD/2 +4.36V
AVDD/2 +4.40V
AVDD/2 +4.44V
AVDD/2 +4.48V
AVDD/2 +4.52V
AVDD/2 +4.56V
AVDD/2 +4.60V
AVDD/2 +4.64V
AVDD/2 +4.68V
AVDD/2 +4.72V
AVDD/2 +4.76V
AVDD/2 +4.80V
AVDD/2 +4.84V
AVDD/2 +4.88V
AVDD/2 +4.92V
AVDD/2 +4.96V
AVDD/2 +5.00V
AVDD/2 +5.04V
AVDD/2 +5.08V
Disable
VDD
Phase
[7]
VDD
MODE
[6]
DC/DC
07h
VDD
Output
Voltage
[5:0]
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
GPM
Input
Delay
[7:6]
08h
Reset
Monitor
Selecet
[5]
VDD
Reset
Voltage
[4:0]
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
Function
Select
[7]
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Delay1
time
[6:3]
0 msec
Discharge
time
[2:0]
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
5 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
10 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
15 msec
0 msec
1 msec
2 msec
3 msec
4 msec
3.3 V
5 msec
0.1 usec
VIN
3.40 V
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
20 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
25 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
30 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
35 msec
0 msec
1 msec
2 msec
3 msec
4 msec
3.3 V
5 msec
VD_Phase_
Set 1
41/75
LDO
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.40 V
VDD
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Disable
40 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
60 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
80 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
100 msec
0 msec
1 msec
2 msec
3 msec
4 msec
3.3 V
5 msec
0.5 usec
VIN
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
150 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
200 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
250 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
300 msec
0 msec
1 msec
2 msec
3 msec
4 msec
3.3 V
5 msec
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Command Table - continued
Regitser Address
00h
DATA
(HEX)
80h
81h
82h
83h
84h
85h
86h
87h
88h
89h
8Ah
8Bh
8Ch
8Dh
8Eh
8Fh
90h
91h
92h
93h
94h
95h
96h
97h
98h
99h
9Ah
9Bh
9Ch
9Dh
9Eh
9Fh
A0h
A1h
A2h
A3h
A4h
A5h
A6h
A7h
A8h
A9h
AAh
ABh
ACh
ADh
AEh
AFh
B0h
B1h
B2h
B3h
B4h
B5h
B6h
B7h
B8h
B9h
BAh
BBh
BCh
BDh
BEh
BFh
C0h
C1h
C2h
C3h
C4h
C5h
C6h
C7h
C8h
C9h
CAh
CBh
CCh
CDh
CEh
CFh
D0h
D1h
D2h
D3h
D4h
D5h
D6h
D7h
D8h
D9h
DAh
DBh
DCh
DDh
DEh
DFh
E0h
E1h
E2h
E3h
E4h
E5h
E6h
E7h
E8h
E9h
EAh
EBh
ECh
EDh
EEh
EFh
F0h
F1h
F2h
F3h
F4h
F5h
F6h
F7h
F8h
F9h
FAh
FBh
FCh
FDh
FEh
FFh
AVDD
Output
Voltage
[7:0]
12.9
13.0
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14.0
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
15.0
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16.0
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
02h
01h
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
03h
VGH HOT
VGH
⊿VGH COLD
Output
NTC Enable
Voltage
Voltage
[7]
[6:0]
[7:0]
25.8
26.0
26.2
26.4
26.6
26.8
27.0
27.2
27.4
27.6
27.8
28.0
28.2
28.4
28.6
28.8
29.0
29.2
29.4
29.6
29.8
30.0
30.2
30.4
30.6
30.8
31.0
31.2
31.4
31.6
31.8
32.0
32.2
32.4
32.6
32.8
33.0
33.2
33.4
33.6
33.8
34.0
34.2
34.4
34.6
34.8
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
+0.0V
Enable
+0.2V
+0.4V
+0.6V
+0.8V
+1.0V
+1.2V
+1.4V
+1.6V
+1.8V
+2.0V
+2.2V
+2.4V
+2.6V
+2.8V
+3.0V
+3.2V
+3.4V
+3.6V
+3.8V
+4.0V
+4.2V
+4.4V
+4.6V
+4.8V
+5.0V
+5.2V
+5.4V
+5.6V
+5.8V
+6.0V
+6.2V
+6.4V
+6.6V
+6.8V
+7.0V
+7.2V
+7.4V
+7.6V
+7.8V
+8.0V
+8.2V
+8.4V
+8.6V
+8.8V
+9.0V
+9.2V
+9.4V
+9.6V
+9.8V
+10.0V
+10.2V
+10.4V
+10.6V
+10.8V
+11.0V
+11.2V
+11.4V
+11.6V
+11.8V
+12.0V
+12.2V
+12.4V
+12.6V
+12.8V
+13.0V
+13.2V
+13.4V
+13.6V
+13.8V
+14.0V
+14.2V
+14.4V
+14.6V
+14.8V
VGL
Output
Voltage
[7:0]
-12.9
-13.0
-13.1
-13.2
-13.3
-13.4
-13.5
-13.6
-13.7
-13.8
-13.9
V
V
V
V
V
V
V
V
V
V
V
VCOM HOT
VCOM
Output
NTC Enable
Voltage
[7]
[7:0]
AVDD/2
-0.00V
-0.01V
-0.02V
-0.03V
-0.04V
-0.05V
-0.06V
-0.07V
-0.08V
-0.09V
-0.10V
-0.11V
-0.12V
-0.13V
-0.14V
-0.15V
-0.16V
-0.17V
-0.18V
-0.19V
-0.20V
-0.21V
-0.22V
-0.23V
-0.24V
-0.25V
-0.26V
-0.27V
-0.28V
-0.29V
-0.30V
-0.31V
-0.32V
-0.33V
-0.34V
-0.35V
-0.36V
-0.37V
-0.38V
-0.39V
-0.40V
-0.41V
-0.42V
-0.43V
-0.44V
-0.45V
-0.46V
-0.47V
-0.48V
-0.49V
-0.50V
-0.51V
-0.52V
-0.53V
-0.54V
-0.55V
-0.56V
-0.57V
-0.58V
-0.59V
-0.60V
-0.61V
-0.62V
-0.63V
-0.64V
-0.65V
-0.66V
-0.67V
-0.68V
-0.69V
-0.70V
-0.71V
-0.72V
-0.73V
-0.74V
-0.75V
-0.76V
-0.77V
-0.78V
-0.79V
-0.80V
-0.81V
-0.82V
-0.83V
-0.84V
-0.85V
-0.86V
-0.87V
-0.88V
-0.89V
-0.90V
-0.91V
-0.92V
-0.93V
-0.94V
-0.95V
-0.96V
-0.97V
-0.98V
-0.99V
-1.00V
-1.01V
-1.02V
-1.03V
-1.04V
-1.05V
-1.06V
-1.07V
-1.08V
-1.09V
-1.10V
-1.11V
-1.12V
-1.13V
-1.14V
-1.15V
-1.16V
-1.17V
-1.18V
-1.19V
-1.20V
-1.21V
-1.22V
-1.23V
-1.24V
-1.25V
-1.26V
-1.27V
AVDD/2 -0.08V
AVDD/2 -0.12V
AVDD/2 -0.16V
AVDD/2 -0.20V
AVDD/2 -0.24V
AVDD/2 -0.28V
AVDD/2 -0.32V
AVDD/2 -0.36V
AVDD/2 -0.40V
AVDD/2 -0.44V
AVDD/2 -0.48V
AVDD/2 -0.52V
AVDD/2 -0.56V
AVDD/2 -0.60V
AVDD/2 -0.64V
AVDD/2 -0.68V
AVDD/2 -0.72V
AVDD/2 -0.76V
AVDD/2 -0.80V
AVDD/2 -0.84V
AVDD/2 -0.88V
AVDD/2 -0.92V
AVDD/2 -0.96V
AVDD/2 -1.00V
AVDD/2 -1.04V
AVDD/2 -1.08V
AVDD/2 -1.12V
AVDD/2 -1.16V
AVDD/2 -1.20V
AVDD/2 -1.24V
AVDD/2 -1.28V
AVDD/2 -1.32V
AVDD/2 -1.36V
AVDD/2 -1.40V
AVDD/2 -1.44V
AVDD/2 -1.48V
AVDD/2 -1.52V
AVDD/2 -1.56V
AVDD/2 -1.60V
AVDD/2 -1.64V
AVDD/2 -1.68V
AVDD/2 -1.72V
AVDD/2 -1.76V
AVDD/2 -1.80V
AVDD/2 -1.84V
AVDD/2 -1.88V
AVDD/2 -1.92V
AVDD/2 -1.96V
AVDD/2 -2.00V
AVDD/2 -2.04V
AVDD/2 -2.08V
AVDD/2 -2.12V
AVDD/2 -2.16V
AVDD/2 -2.20V
AVDD/2 -2.24V
AVDD/2 -2.28V
AVDD/2 -2.32V
AVDD/2 -2.36V
AVDD/2 -2.40V
AVDD/2 -2.44V
AVDD/2 -2.48V
AVDD/2 -2.52V
AVDD/2 -2.56V
AVDD/2 -2.60V
AVDD/2 -2.64V
AVDD/2 -2.68V
AVDD/2 -2.72V
-14.0 V
AVDD/2 -2.76V
AVDD/2 -2.80V
AVDD/2 -2.84V
AVDD/2 -2.88V
AVDD/2 -2.92V
AVDD/2 -2.96V
AVDD/2 -3.04V
AVDD/2 -3.08V
AVDD/2 -3.12V
AVDD/2 -3.16V
AVDD/2 -3.20V
AVDD/2 -3.24V
AVDD/2 -3.28V
AVDD/2 -3.32V
AVDD/2 -3.36V
AVDD/2 -3.40V
AVDD/2 -3.44V
35.0 V
AVDD/2 -3.48V
AVDD/2 -3.52V
AVDD/2 -3.56V
AVDD/2 -3.60V
AVDD/2 -3.64V
AVDD/2 -3.68V
AVDD/2 -3.72V
AVDD/2 -3.76V
AVDD/2 -3.80V
AVDD/2 -3.84V
AVDD/2 -3.88V
AVDD/2 -3.92V
AVDD/2 -3.96V
AVDD/2 -4.00V
+15.0V
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
06h
⊿VCOM
COLD
Voltage
[6:0]
AVDD/2 -0.04V
AVDD/2 -3.00V
17.0 V
05h
04h
AVDD/2 -4.04V
AVDD/2 -4.08V
AVDD/2 -4.12V
AVDD/2 -4.16V
AVDD/2 -4.20V
AVDD/2 -4.24V
AVDD/2 -4.28V
AVDD/2 -4.32V
AVDD/2 -4.36V
AVDD/2 -4.40V
AVDD/2 -4.44V
AVDD/2 -4.48V
AVDD/2 -4.52V
AVDD/2 -4.56V
AVDD/2 -4.60V
AVDD/2 -4.64V
AVDD/2 -4.68V
AVDD/2 -4.72V
AVDD/2 -4.76V
AVDD/2 -4.80V
AVDD/2 -4.84V
AVDD/2 -4.88V
AVDD/2 -4.92V
AVDD/2 -4.96V
AVDD/2 -5.00V
AVDD/2 -5.04V
AVDD/2 -5.08V
Enable
VDD
Phase
[7]
VDD
MODE
[6]
DC/DC
07h
VDD
Output
Voltage
[5:0]
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
GPM
Input
Delay
[7:6]
Reset
Monitor
Selecet
[5]
VDD
08h
Reset
Voltage
[4:0]
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
Function
Select
[7]
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Delay1
time
[6:3]
0 msec
Discharge
time
[2:0]
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
5 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
10 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
15 msec
0 msec
1 msec
2 msec
3 msec
4 msec
3.3 V
5 msec
1.0 usec
VIN
3.40 V
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
20 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
25 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
30 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
35 msec
0 msec
1 msec
2 msec
3 msec
4 msec
3.3 V
5 msec
VD_Phase_
Set 2
42/75
LDO
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.40 V
VDD
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Enable
40 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
60 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
80 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
100 msec
0 msec
1 msec
2 msec
3 msec
4 msec
3.3 V
5 msec
1.5 usec
VIN
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
150 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
200 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
250 msec
0 msec
1 msec
2 msec
3 msec
4 msec
5 msec
300 msec
0 msec
1 msec
2 msec
3 msec
4 msec
3.3 V
5 msec
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Command Table - continued
Regitser Address
09h
DATA
(HEX)
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
0Eh
0Fh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
1Eh
1Fh
20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2Ch
2Dh
2Eh
2Fh
30h
31h
32h
33h
34h
35h
36h
37h
38h
39h
3Ah
3Bh
3Ch
3Dh
3Eh
3Fh
40h
41h
42h
43h
44h
45h
46h
47h
48h
49h
4Ah
4Bh
4Ch
4Dh
4Eh
4Fh
50h
51h
52h
53h
54h
55h
56h
57h
58h
59h
5Ah
5Bh
5Ch
5Dh
5Eh
5Fh
60h
61h
62h
63h
64h
65h
66h
67h
68h
69h
6Ah
6Bh
6Ch
6Dh
6Eh
6Fh
70h
71h
72h
73h
74h
75h
76h
77h
78h
79h
7Ah
7Bh
7Ch
7Dh
7Eh
7Fh
DataRef
[7]
Delay3
time
[6:4]
0Ah
DoubleReg
[3]
Disable
0 msec
Enable
Disable
5 msec
Enable
Disable
10 msec
Enable
Disable
15 msec
Enable
Disable
Disable
20 msec
Enable
Disable
25 msec
Enable
Disable
30 msec
Enable
Disable
40 msec
Enable
Delay2
time
[2:0]
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
VGH
Discharge
Enable
[7]
Delay5
time
[6:4]
0Bh
AR_Time
[3]
0.5 sec
0 msec
1.0 sec
0.5 sec
2 msec
1.0 sec
0.5 sec
4 msec
1.0 sec
0.5 sec
6 msec
1.0 sec
Enable
0.5 sec
8 msec
1.0 sec
0.5 sec
1.0 sec
0.5 sec
10 msec
1.0 sec
0.5 sec
1.0 sec
Delay4
time
[2:0]
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
AVDD
COMP
[7]
AVDD
OCP
Select
[6]
AVDD
SS
time
[5:4]
0Ch
AVDD
SW
Slew Rate
[3:2]
Slow2
Slow1
5 msec
Fast1
Fast2
Slow2
Slow1
10 msec
Fast1
Fast2
2.0 A
Slow2
Slow1
15 msec
Fast1
Fast2
Slow2
Slow1
20 msec
Fast1
Fast2
AV_COM
P_Set 1
43/75
Slow2
Slow1
5 msec
Fast1
Fast2
Slow2
Slow1
10 msec
Fast1
Fast2
1.0 A
Slow2
Slow1
15 msec
Fast1
Fast2
Slow2
Slow1
20 msec
Fast1
Fast2
AVDD
COIL
[1:0]
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
Start-up
Bit
[7]
VGH
mode
select
[6]
0Dh
VGH/VGL
VDD
AVDD
Frequenc Frequenc Frequenc
y
y
y
[5:4]
[3:2]
[1:0]
2.1MHz
1.05MHz
2.1MHz
525KHz
2.1MHz
1.05MHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
525KHz
525KHz
525KHz
2.1MHz
1.05MHz
2.1MHz
256KHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
1.05MHz
256KHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
1.05MHz
525KHz
525KHz
525KHz
2.1MHz
1.05MHz
256KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
2.1MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
128KHz
525KHz
256KHz
525KHz
525KHz
128KHz
525KHz
256KHz
2.1MHz
1.05MHz
525KHz
2.1MHz
2.1MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
128KHz
525KHz
256KHz
525KHz
525KHz
128KHz
2.1MHz
1.05MHz
2.1MHz
1.05MHz
525KHz
2.1MHz
525KHz
2.1MHz
1.05MHz
2.1MHz
1.05MHz
525KHz
1.05MHz
2.1MHz
1.05MHz
525KHz
525KHz
2.1MHz
1.05MHz
2.1MHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
525KHz
2.1MHz
1.05MHz
525KHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
256KHz
1.05MHz
525KHz
525KHz
1.05MHz
2.1MHz
1.05MHz
256KHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
256KHz
1.05MHz
525KHz
x2 mode
2.1MHz
1.05MHz
1.05MHz
525KHz
256KHz
Disable
2.1MHz
1.05MHz
2.1MHz
1.05MHz
525KHz
x3 mode
2.1MHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
2.1MHz
2.1MHz
1.05MHz
256KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
525KHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
128KHz
525KHz
256KHz
525KHz
2.1MHz
2.1MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
525KHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
128KHz
525KHz
256KHz
128KHz
Check
Sum
[7:0]
525KHz
2.1MHz
2.1MHz
1.05MHz
525KHz
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Command Table – continued
Regitser Address
09h
DATA
(HEX)
80h
81h
82h
83h
84h
85h
86h
87h
88h
89h
8Ah
8Bh
8Ch
8Dh
8Eh
8Fh
90h
91h
92h
93h
94h
95h
96h
97h
98h
99h
9Ah
9Bh
9Ch
9Dh
9Eh
9Fh
A0h
A1h
A2h
A3h
A4h
A5h
A6h
A7h
A8h
A9h
AAh
ABh
ACh
ADh
AEh
AFh
B0h
B1h
B2h
B3h
B4h
B5h
B6h
B7h
B8h
B9h
BAh
BBh
BCh
BDh
BEh
BFh
C0h
C1h
C2h
C3h
C4h
C5h
C6h
C7h
C8h
C9h
CAh
CBh
CCh
CDh
CEh
CFh
D0h
D1h
D2h
D3h
D4h
D5h
D6h
D7h
D8h
D9h
DAh
DBh
DCh
DDh
DEh
DFh
E0h
E1h
E2h
E3h
E4h
E5h
E6h
E7h
E8h
E9h
EAh
EBh
ECh
EDh
EEh
EFh
F0h
F1h
F2h
F3h
F4h
F5h
F6h
F7h
F8h
F9h
FAh
FBh
FCh
FDh
FEh
FFh
DataRef
[7]
Delay3
time
[6:4]
0Ah
DoubleReg
[3]
Disable
0 msec
Enable
Disable
5 msec
Enable
Disable
10 msec
Enable
Disable
15 msec
Enable
Enable
Disable
20 msec
Enable
Disable
25 msec
Enable
Disable
30 msec
Enable
Disable
40 msec
Enable
Delay2
time
[2:0]
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
VGH
Discharge
Enable
[7]
Delay5
time
[6:4]
0Bh
AR_Time
[3]
0.5 sec
0 msec
1.0 sec
0.5 sec
2 msec
1.0 sec
0.5 sec
4 msec
1.0 sec
0.5 sec
6 msec
1.0 sec
Disable
0.5 sec
8 msec
1.0 sec
0.5 sec
1.0 sec
0.5 sec
10 msec
1.0 sec
0.5 sec
1.0 sec
Delay4
time
[2:0]
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
0 msec
5 msec
10 msec
15 msec
20 msec
25 msec
30 msec
40 msec
AVDD
COMP
[7]
AVDD
OCP
Select
[6]
AVDD
SS
time
[5:4]
0Ch
AVDD
SW
Slew Rate
[3:2]
Slow2
Slow1
5 msec
Fast1
Fast2
Slow2
Slow1
10 msec
Fast1
Fast2
2.0 A
Slow2
Slow1
15 msec
Fast1
Fast2
Slow2
Slow1
20 msec
Fast1
Fast2
AV_COM
P_Set 2
44/75
Slow2
Slow1
5 msec
Fast1
Fast2
Slow2
Slow1
10 msec
Fast1
Fast2
1.0 A
Slow2
Slow1
15 msec
Fast1
Fast2
Slow2
Slow1
20 msec
Fast1
Fast2
AVDD
COIL
[1:0]
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
AVC_Set1
AVC_Set2
AVC_Set3
AVC_Set4
Start-up
Bit
[7]
VGH
mode
select
[6]
0Dh
VGH/VGL
VDD
AVDD
Frequenc Frequenc Frequenc
y
y
y
[5:4]
[3:2]
[1:0]
2.1MHz
1.05MHz
2.1MHz
525KHz
2.1MHz
1.05MHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
525KHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
1.05MHz
2.1MHz
1.05MHz
256KHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
256KHz
1.05MHz
525KHz
525KHz
525KHz
2.1MHz
1.05MHz
256KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
2.1MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
128KHz
525KHz
256KHz
525KHz
525KHz
2.1MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
2.1MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
128KHz
525KHz
256KHz
525KHz
525KHz
2.1MHz
1.05MHz
128KHz
525KHz
2.1MHz
1.05MHz
2.1MHz
1.05MHz
2.1MHz
525KHz
525KHz
2.1MHz
1.05MHz
2.1MHz
1.05MHz
1.05MHz
525KHz
525KHz
2.1MHz
1.05MHz
2.1MHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
525KHz
525KHz
1.05MHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
2.1MHz
256KHz
2.1MHz
1.05MHz
525KHz
1.05MHz
2.1MHz
1.05MHz
256KHz
525KHz
1.05MHz
525KHz
2.1MHz
1.05MHz
256KHz
1.05MHz
525KHz
525KHz
525KHz
256KHz
x2 mode
2.1MHz
1.05MHz
525KHz
2.1MHz
256KHz
1.05MHz
525KHz
Enable
2.1MHz
1.05MHz
2.1MHz
1.05MHz
525KHz
x3 mode
2.1MHz
1.05MHz
525KHz
2.1MHz
1.05MHz
525KHz
256KHz
2.1MHz
1.05MHz
525KHz
2.1MHz
128KHz
525KHz
256KHz
2.1MHz
1.05MHz
525KHz
1.05MHz
2.1MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
128KHz
525KHz
256KHz
525KHz
525KHz
2.1MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
2.1MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
1.05MHz
128KHz
525KHz
525KHz
256KHz
2.1MHz
1.05MHz
128KHz
525KHz
256KHz
128KHz
Check
Sum
[7:0]
525KHz
525KHz
2.1MHz
1.05MHz
525KHz
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Check Sum
Check Sum which has been adopted in BM81810MUV-M is shown below.
You will calculate the Check Sum that the sum of the data, including the Check Sum(CHK7 to CHK0) is 00h.
Register
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
[7]
A7
B7
C7
D7
E7
F7
G7
H7
I7
J7
K7
L7
M7
CHK7
[6]
A6
B6
C6
D6
E6
F6
G6
H6
I6
J6
K6
L6
M6
CHK6
[5]
A5
B5
C5
D5
E5
F5
G5
H5
I5
J5
K5
L5
M5
CHK5
[4]
A4
B4
C4
D4
E4
F4
G4
H4
I4
J4
K4
L4
M4
CHK4
[3]
A3
B3
C3
D3
E3
F3
G3
H3
I3
J3
K3
L3
M3
CHK3
[2]
A2
B2
C2
D2
E2
F2
G2
H2
I2
J2
K2
L2
M2
CHK2
[1]
A1
B1
C1
D1
E1
F1
G1
H1
I1
J1
K1
L1
M1
CHK1
[0]
A0
B0
C0
D0
E0
F0
G0
H0
I0
J0
K0
L0
M0
CHK0
[A7:A0] + [B7:B0] + [C7:C0] + [D7:D0] + [E7:E0] + [F7:F0] + [G7:G0] + [H7:H0] + [I7:I0] + [J7:J0]
+ [K7:K0] + [L7:L0] + [M7:M0] + [CHK7:CHK0] = 00h
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
45/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Soft Start Time
BM81810MUV-M has soft start function on AVDD, VGH, VGL and VDD.
Time of the soft start is up to the output voltage reaches the typ Value.
The output voltage typ Value of each block is shown in the following table.
BLOCK
Soft Start
Output Voltage Typ Value
Soft Start Time
AVDD
10.5 V
Set Register
VGH
18.0 V
5 msec
VGL
-6.0 V
5 msec
VDD
1.2 V
1 msec
The time setting Soft Start of AVDD is shown in the table below.
Bit
AVDD Soft Start Time
0
0
5 msec
0
1
10 msec
1
0
15 msec
1
1
20 msec
The soft-start time of VGH and VGL are 5msec.
The soft-start time of VDD is 1msec.
The soft-start setting an example of AVDD and VGH are shown in the figure below.
ex:
ex: Case of VGH
Case of AVDD
Error of Soft-Start Time
Error of Soft-Start Time
Soft-Start
Time
Set Voltage> Typ.
Soft-Start
Time
Set Voltage> Typ.
VGH(Typ.)
AVDD(Typ.)
AVDD(Typ.)
AVDD
Error of Soft-Start Time
Time
Time
Figure 76. Soft-Start Time
If you change the setting voltage from typ values, occurs error in the soft-start time.
•The setting voltage > Typ Value ••• Soft-start will be more slow.
•The setting voltage < Typ Value ••• Soft-start will be more faster.
No error of soft-start is occurred for change of frequency.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
46/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Block Diagram
VDD
REGISTER
erramp
DAC
pwmcomp
30
driver
VREF
31
29
VDD
PGNDB
VDD
VINB
1
LDO
SWB
RST
16
28
VREG
2
VREG
RESET
VIN
AVDD
3
load SW
NTC
VLSO
4
22
ADC
SW
6
REGISTER
erramp
DAC
PAVDD
7
AVDD
pwmcomp
Θ
driver
EEPROM
SCL
27
SDA 26
PGND
5
VGL
REGISTER
LOGIC
erramp
DAC
DRN
CP_CLK
driver
13
WPN 21
12 VGL
VGL
EN
I/F
32
AVDD
8
OSC
logic
VCOM
OSCGND
REGISTER
DAC
VCOM
10
9
NEG
VGH
REGISTER
erramp
DAC
driver
14 DRP
24
PG/LDSW
VGH
Power Good
VGH
18
level shift
CPP2
17
23
level shift
FAULT
VCP
FAULT
16
level shift
CGND
CPP1
11
15
CP_CLK
level shift
GPM
level shift
GSOUT
19
GSIN 25
control
level shift
RE
20
Figure 77. Block Diagram
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
47/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
AVDD Block Function
VIN
LOAD SWITCH
VLSO
SW
REGISTER
PAVDD
ERRAMP
DAC
PWM
DRIVER
PGND
DISCHARGE
Figure 78. AVDD Block Diagram
AVDD Block (Boost DC / DC) can set the following functions by EEPROM.
1.
AVDD Voltage (Register Address 00h [7:0])
AVDD voltage can be set in 0.1V step from 5.0V to 17.0V.
2.
SW Switching Frequency (Register Address 0Ch [1:0])
The switching frequency can be set at 525KHz, 1.05MHz or 2.1MHz.
3.
Soft Start Time (Register Address 0Bh [5:4])
Soft Start Time of AVDD can be set in 5msec step from 5msec to 20msec.
4.
SW Switching Slew Rate (Register Address 0Bh [3:2])
SW pin switching Slew Rate can be controlled by the register setting.
11’b is the fastest slew rate setting, 00’b is the slowest slew rate setting.
The slew rate by each setting is as follows.
Slew Rate changes by the external part and load electric current conditions such as a coil or the diode, but adjustment
is possible on a true set condition because Slew Rate changes by Slew Rate setting change like Figure.79.
The EMI properties are improved by slowing a slew rate, but please do enough evaluations after a slew rate change
because efficiency becomes the tendency to decrease.
:AVDD Slew Rate setting
Figure 79. AVDD Switching Slew Rate
(VIN=3.3V, AVDD=10.5V, Freq=2.1MHz, L=4.7μH, IAVDD=100mA)
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
48/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
AVDD Block Function - continued
AVDD Efficiency
90
85
80
Efficiency [%]
75
70
65
60
55
50
:AVDD Slew Rate setting
45
40
0
50
100
150
200
250
Load [mA]
Figure 80. AVDD Efficiency
(dependent on Slew Rate)
(VIN=3.3V, AVDD=10.5V, Freq=2.1MHz, L=4.7μH, IAVDD=100mA)
5.
OCP Detect Level (Register Address 0Bh [6])
SW pin Over Current Protection detection level can be set at 1.0A(Min) or 2.0A(Min).
6.
COMP Adjust (Register Address 0B [7])
Phase Margin can be adjusted.
0’b: AV_COMP_SET1
1’b: AV_COMP_SET2
7.
COIL Adjust (Register Address 0Bh [1:0])
You can adjust the settings to match the coil constant to be used.
00’b:AV_COIL_SET1
01’b:AV_COIL_SET2
10’b:AV_COIL_SET3
11’b:AV_COIL_SET4
Please set the setting of COIL Adjust by frequency setting (fs) and a coil to use.
fOSC[kHz]
Coil[μH]
525
525
1050
1050
2100
2100
4.7
10
4.7
10
4.7
10
Coil Adjust
0Bh[1:0]
00'b
11'b
00'b
11'b
00'b
11'b
Comp Adjust
0Bh[7]
0'b
0'b
0'b
0'b
0'b
0'b
*Please become more than 10μF/25V product (GRT31CC81E106KE01) x3 with AVDD output capacitor at the time of the use
with a coil of 10μH.
In addition, COMP Adjust coordinates phase constant of the ERRAMP output and is effective to shift to the zero point 25% low
frequency side to produce by the ERRAMP output by making Comp Adjust 1'b and is effective in reducing ringing at the time of
the load response by the responsiveness adjustment with the actual machine.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
49/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
AVDD Block Function – continued
About the phase characteristic, please consider it based on enough evaluations with the actual model.
(1) Setting the Output L Constant (Boost Converter)
The coil to use for output is decided by the rating current I LR and input current maximum value IINMAX of the coil.
VIN
IINMAX + 1/2 x ΔIL should not reach
the rating value level
IL
L
IL
ILR
AVDD
IINMAX
average current
Figure 81. Coil Current Waveform
Co
Figure 82. Output Application Circuit Diagram
Adjust so that IINMAX +∆IL does not reach the rating current value ILR. ∆IL can be obtained by the following equation.
1
AVDD - VIN
1
[A]
Here, f is the switching frequency.
∆IL =
VIN
L
AVDD
f
Set with sufficient margin because the coil value may have the dispersion of 30%. If the coil current exceeds the
rating current ILR of the coil, it may damage the IC internal element.
BM81810MUV-M uses the current mode DC/DC converter control and has the optimized design at the coil value. A coil
inductance (L) of 4.7 μH to 10 μH is recommended from viewpoints of electric power efficiency, response, and stability.
(2) Output Capacity Settings
For the capacitor to use for the output, select the capacitor which has the larger value in the ripple voltage V PP
allowance value and the drop voltage allowance value at the time of sudden load change. Output ripple voltage is
decided by the following equation.
∆VPP
=
ILMAX RESR +
1
fCo
VIN
AVDD
(ILMAX -
∆IL
2
Here, f is the switching frequency
and RESR is ESR of output capacitor.
) [V]
Perform setting so that the voltage is within the allowable ripple voltage range.
For the drop voltage during sudden load change; VDR, please perform the rough calculation by the following equation.
VDR =
∆I
Co
10 μs
[V]
However, 10 μs is the rough calculation value of the DC/DC response speed. Please set the capacitance considering
the sufficient margin so that these two values are within the standard value range.
(3) Selecting the Input Capacitor
Since the peak current flows between the input and output at the DC/DC converter, a capacitor is required to install at
the input side. For the reason, the low ESR capacitor is recommended as an input capacitor which has the value more
than 10 μF and less than 100 mΩ. If a capacitor out of this range is selected, the excessive ripple voltage is
superposed on the input voltage, accordingly it may cause the malfunction of IC.
However these conditions may vary according to the load current, input voltage, output voltage, inductance and
switching frequency. Be sure to perform the margin check using the actual product.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
50/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
VGH Block Function
AVDD
REGISTER
ERRAMP
DAC
DRIVER
DRP
VGH
VGH
level shift
CPP2
DISCHARGE
level shift
VCP
level shift
CPP1
CP_CLK
level shift
Figure 83. VGH Block Diagram
VGH Block (Positive Charge Pump) can set below functions by EEPROM.
1.
VGH (HOT) Voltage (Register Address 01h [7:0])
VGH (HOT) voltage can be set in 0.2V step from 8.0V to 35.0V.
2.
DRP Switching Frequency (Register Address 0Ch [5:4])
Switching frequency can be set at AVDD frequency x1, x1/2, or x1/4.
3.
VGH (COLD) Voltage (Register Address 02h [6:0])
To set VGH (COLD) voltage can have the VGH voltage relates to NTC Pin voltage, when NTC Function is used.
VGH (COLD) voltage range can be set in 0.2V step from VGH (HOT) + 0V to VGH (HOT) + 15.0V.
Refer “NTC Block Function” for the detail description of NTC Function.
4.
VGH Mode Select (Register Address 0Ch [6])
Boost Stage of Positive Charge Pump can be set by x2, x3, or x4.
x2, x3 can be formed with internal element by EEPROM setting.
x4 can be formed by connecting with external Diode.
Since this function switch needs to change the application construction,
input writing signal by I2C cannot perform Register writing.
To write this Register setting, start-up bit(REG0Ch[7]) should be ”0”.
The VGH voltage output range with the AVDD voltage is related, and may take UVP without being able to output the
VGH voltage of the setting when do not choose appropriate constitution.
Please choose appropriate constitution referring after the following pages.
5.
VGH Discharge enable (Register Address 0Ah [7])
When OFF sequence, VGH pin Discharge function can be Enable/Disable.
This function is to confirm when IC starts to operate. If read-and-write is performed after IC starts, the first time
OFF sequence will not be reflected.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
51/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
VGH Block Function - continued
Application Example for VGH (3rd Stage Positive Charge Pump)
Depending on the circuit construction, output voltage range of Charge Pump can be limited.
Besides, increasing VGH negative current can lower the possible output voltage.
Please consider the actual application need to select appropriate circuit construction.
Below Figure shows the circuit construction of 3rd Stage Positive Charge Pump.
Under this circuit, the possible setting range of VGH output voltage is (AVDD + 2) V to ( AVDD x 3 - 2 ) V.
(When VGH negative current is 0mA)
AVDD
REGISTER
ERRAMP
DAC
C_AVD
DRIVER
DRP
VGH
VGH
C_VGH
level shift
CPP2
DISCHARGE
C_DRP2
level shift
VCP
C_VCP
level shift
CPP1
CP_CLK
C_DRP1
level shift
Figure 84. 3rd Stage Positive Charge Pump
Application Example for VGH (2nd Stage Positive Charge Pump)
Below Figure shows the circuit construction of 2nd Stage Positive Charge Pump.
Under this circuit, the possible setting range of VGH output voltage is (AVDD + 1) V to (AVDD x 2-1) V
(When VGH negative current is 0mA)
AVDD
REGISTER
ERRAMP
DAC
C_AVD
DRIVER
DRP
VGH
VGH
C_VGH
level shift
CPP2
DISCHARGE
level shift
VCP
level shift
CPP1
CP_CLK
C_DRP1
level shift
Figure 85. 2nd Stage Positive Charge Pump
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
52/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
VGH Block Function - continued
Application Example for VGH (4th Stage Positive Charge Pump)
Below Figure shows the circuit construction of 4th Stage Positive Charge Pump.
Under this circuit, the possible setting range of VGH output voltage is (AVDD + 3) V to (AVDD x 4 - 3) V
(When VGH negative current is 0mA)
AVDD
REGISTER
ERRAMP
DAC
C_AVD
DRIVER
DRP
VGH
VGH
C_VGH
D_VGH2
C_DRP3
level shift
CPP2
C_VCP2
D_VGH1
DISCHARGE
C_DRP2
level shift
VCP
C_VCP1
level shift
CPP1
CP_CLK
C_DRP1
level shift
Figure 86. 4th Stage Positive Charge Pump
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
53/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
VGL Block Function
PAVDD
REGISTER
ERRAMP
DAC
DRN
DRIVER
CP_CLK
DISCHARGE
VGL
VGL
Figure 87. VGL Block Diagram
VGL Block (Negative Charge Pump) can set below functions by EEPROM.
1.
VGL Voltage (Register Address 03h [7:0])
VGL voltage can be set by 0.1V step from -4.0V to -14.0V.
2.
DRN Switching Frequency (Register Address 0Ch [5:4])
Switching frequency can set AVDD frequency x1, x1/2, or x1/4.
Application Example for VGL (1st Stage Negative Charge Pump)
Below Figure shows the circuit construction of 1st Stage Negative Charge Pump.
Under this circuit, the possible setting range of VGL output voltage is -4 V to -(AVDD – 2Vf) V
(When VGL positive current is 0mA)
PAVDD
REGISTER
ERRAMP
DAC
C_DRN
CP_CLK
DRN
DRIVER
D_VGL
DISCHARGE
VGL
VGL
C_VGL
Figure 88. 1st Stage Negative Charge Pump
Application Example for VGL (2nd Stage Negative Charge Pump)
Below Figure shows the circuit construction of 2nd Stage Negative Charge Pump.
Under this circuit, the possible setting range of VGL output voltage is -4 V to -(AVDDx2 – 4Vf) V
(When VGL positive current is 0mA)
PAVDD
REGISTER
DAC
ERRAMP
CP_CLK
DRN
DRIVER
C_DRN2
C_DRN1
D_VGL2
DISCHARGE
D_VGL1
VGL
C_VGL
VGL
C_VCN
Figure 89. 2nd Stage Negative Charge Pump
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
54/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
VCOM Block Function
AVDD
VCOM
REGISTER
DAC
NEG
Figure 90. VCOM Block Diagram
VCOM Block (VCOM Calibrator) can set below functions by EEPROM.
1.
VCOM (HOT) Voltage (Register Address 04h [7:0])
VCOM (HOT) voltage can be set by 40mV step from AVDD/2 +/- 0.0V to 4.0V.
2.
VCOM (CAL) Voltage (Device Address 1001111x)
VCOM (CAL) voltage is the function to make minor adjustment of VCOM (HOT) voltage value.
VCOM (HOT) can be set by 10mV step from +/- 0.0V to 0.63V.
Refer Page 19, “EEPROM I2C Format for DVR (VCOM calibrator)” for VCOM (CAL) voltage setting.
3.
VCOM (COLD) Voltage (Register Address 05h [6:0])
To set VCOM (COLD) voltage can have the VCOM voltage relates to NTC Pin voltage, when NTC Function is used.
VCOM (COLD) voltage range can be set by 10mV step from VCOM (CAL)–0V to VCOM (CAL)+0.63V.
Refer “NTC Block Function” for the detail description of NTC Function.
However, VCOM output voltage setting range is AVDD x0.7 to AVDD x0.2 or AVDD/2+4.8V to AVDD/2-4.8V.
For Example AVDD = 13.0V
10.5V
+0.63V
11.13V
VCOM Max Voltage
AVDD x 0.7 = 13 x 0.7 = 9.1V
AVDD/2 = 6.5V
2.5V
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
-0.63V
55/75
1.87V
VCOM Min Voltage
AVDD x 0.2 = 13 x 0.2 = 2.6V
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
VDD Block Function
VINB
REGISTER
ERRAMP
DAC
PWM
SWB
VDD
DRIVER
PGNDB
VDD
LDO
DISCHARGE
Figure 91. VDD Block Diagram
VDD Block (Buck DC/DC) can set below functions by EEPROM.
1.
VDD Voltage (Register Address 06h [5:0])
VDD voltage can be set by 0.05V step from 0.9V to 3.4V.
2.
SWB Switching Frequency (Register Address 0Ch [3:2])
Switching frequency can be set at 525KHz, 1.05MHz, or 2.1MHz.
3.
VDD Phase Adjust (Register Address 06h [7])
Phase Margin can be adjusted.
0’b : VD_Phase_Set1
1’b : VD_Phase_Set2
VIN[V]
5
3.3
VDD[V]
0.9 to 1.25
1.3 to
0.9 to
VDD Phase Adjust
1'b
0'b
0'b
Set VDD Phase Adjust 1’b when On-duty < 25%.
4.
VDD Mode Select (Register Address 06h [6])
VDD Block can be switched to DC/DC or LDO Mode.
Since this function switch needs to change the application construction,
input writing signal by I2C cannot perform Register writing.
To write this Register setting, start-up bit(REG0Ch[7]) should be ”0”.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
56/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
VDD Block Function – continued
Application Example for VDD (Buck DC/DC)
VDD application can select Buck DC/DC or LDO by “VDD Mode Select” of EEPROM setting.
When VDD Mode is selected at ”0”, Buck DC/DC operates.
Below figure shows example of Buck DC/DC application circuit.
VINB
REGISTER
DAC
C_VINB
ERRAMP
PWM
SWB
L_SWB
VDD
DRIVER
C_VDD
PGNDB
VDD
LDO
DISCHARGE
Figure 92. VDD Block Diagram(Buck DC/DC)
Application Example for VDD (LDO)
When VDD Mode is selected at ”1”, LDO operates.
Below figure shows example of LDO application circuit.
VINB
REGISTER
DAC
C_VINB
ERRAMP
PWM
SWB
DRIVER
PGNDB
VDD
C_VDD
VDD
LDO
DISCHARGE
Figure 93. VDD Block Diagram(LDO)
C_VDD in LDO mode, please use 1.0μF to 10μF.
In addition, when VDD function is not used, please set in VDD LDO mode, and, please connect capacitor more than 1.0μF.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
57/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
GPM Block Function
VGH
level shift
GSOUT
GSIN
control
level shift
RE
Figure 94. GPM Block Diagram
GPM Block (Gate Pulse Modulation) can set below functions by EEPROM.
1.
Input Delay Time (Register Address 07h [7:6])
Falling timing of input signal can be set at 0.1μsec, 0.5μsec, 1.0μsec, or 1.5μsec.
GSIN
Input Delay Time
GSOUT
Figure 95. GPM Input Delay Time
Pin connection when GPM is not used
When GPM function is not used, connect GSIN pin to VIN.
Connect RE pin to resistance (2.0kohm).
GSOUT pin should be OPEN.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
58/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
RESET Block Function
VIN
VDD
RST
REGISTER
RESET
DAC
DELAY
Figure 96. RESET Block Diagram
RESET Block can set below functions by EEPROM.
1.
RESET Detect Voltage (Register Address 07h [4:0])
RESET detection voltage can be set by 0.1V step from 0.6V to 3.3V.
2.
RESET Monitor Select (Register Address 07h [5])
RESET detection pin can select from VDD and VIN.
3.
Delay2 Time (Register Address 09h [2:0])
RESET detection time can be set from 0msec to 40msec.
RESET
Monitor pin
(VIN or VDD)
Detect Voltage
Detect Voltage -0.1V
Delay2 Time
RST
Figure 97. RESET Function
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
59/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
PG/LDSW Block Function
PG/LDSW Block can switch PG (Power Good) and LDSW (Load Switch) function by EEPROM.
Case of PG Function,
When GPM Block becomes workable, PG pin will change from High to Low to recognize as all boost sequence is completed.
PG/LDSW
SEQUENCE
LOGIC
VGL
Figure 98. PG/LDSW Block Diagram
PG/LDSW
Case of LDSW Function,
This function is used when VGL voltage output is prior to AVDD voltage output.
With below application construction, ”Timing Chart 3” sequence can be realized.
PAVDD
M_LDSW
Gate
Voltage
AVDD
LSW ON Delay
PAVDD
C_LDSW
M_LDSW
C_GD
AVDD
EN
PG/LDSW
R_LDSW
R_LSGATE
PG/LDSW
M_LDSW
Gate
Voltage
SEQUENCE
LOGIC
AVDD
LDSW OFF
Delay
Figure 99. LDSW Function
Figure 100. LDSW Delay Time
LDSW on delay can be set by the formula below.
𝑅𝐿𝑆𝐺𝐴𝑇𝐸 × 𝑅𝐿𝐷𝑆𝑊
𝑅𝐿𝑆𝐺𝐴𝑇𝐸 + 𝑅𝐿𝐷𝑆𝑊
𝑉𝑡ℎ
𝐿𝐷𝑆𝑊 𝑂𝑁 𝐷𝑒𝑙𝑎𝑦 = −𝐶𝐿𝐷𝑆𝑊 × (
) ln (1 −
×
) [𝑠𝑒𝑐]
𝑅𝐿𝑆𝐺𝐴𝑇𝐸 + 𝑅𝐿𝐷𝑆𝑊
𝑅𝐿𝐷𝑆𝑊
𝐴𝑉𝐷𝐷
LDSW off delay can be set by the formula below.
𝐿𝐷𝑆𝑊 𝑂𝐹𝐹 𝐷𝑒𝑙𝑎𝑦 = −𝐶_𝐿𝐷𝑆𝑊 × 𝑅_𝐿𝐷𝑆𝑊 × ln (
𝑅𝐿𝑆𝐺𝐴𝑇𝐸 + 𝑅𝐿𝐷𝑆𝑊
𝑉𝑡ℎ
×
) [𝑠𝑒𝑐]
𝑅𝐿𝐷𝑆𝑊
𝐴𝑉𝐷𝐷
where:
AVDD is AVDD setting voltage.
Vth is M_LDSW gate threshold voltage
When using the LDSW function, set the delay3 time to be longer than or equal to the sum of the maximum value including the
variation of the load switch ON delay time and VGL soft start time. If the delay3 time setting is short, UVP is applied at startup.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
60/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
NTC Block Function
VGH
REGISTER
ADC
4bit
NTC
DAC
LOGIC
VCOM
REGISTER
Θ
DAC
Figure 101. NTC Block Diagram
NTC Block is the function to adjust VGH, VCOM voltage depending on NTC pin voltage.
NTC pin will output 40μA (Typ) current.
Connecting thermistor element can perform temperature adjustment function.
Below functions can be set by EEPROM.
1.
VGH NTC Enable (Register Address 02h [7])
VGH Block NTC Function can be changed to Enable or Disable.
2.
VCOM NTC Enable (Register Address 05h [7])
VCOM Block NTC Function can be changed to Enable or Disable.
Pin connection when NTC is not used.
When NTC function is not used, connect NTC pin to OPEN.
EN Block Function
VEN
Rup
EN
100KΩ
300KΩ
+
VREF
(0.9V)
200KΩ
Figure 102. EN Block Diagram
When inserting resistor to EN terminal, EN threshold voltage is decided by resistance division with internal resistor.
Threshold Voltage calculation;
EN threshold voltage high typical ( VENH ) = 0.9/300x (400+Rup) [V]
EN threshold voltage low typical ( VENL ) = 0.9/500x (600+Rup) [V]
The EN threshold voltage including unevenness is as follows;
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
61/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
VGH and VCOM temperature compensation
NTC[V]
1.25V
0.5V
Ta[℃]
VGH[V]
VGH + VGH
(HOT) (COLD)
Fh
Eh
Dh
Ch
Bh
Ah
9h
8h
7h
6h
5h
4h
3h
2h
1h
0h
VGH
(HOT)
Ta[℃]
VCOM[V]
VCOM
(CAL)
Fh
Eh
Dh
Ch
Bh
Ah
9h
8h
7h
6h
5h
4h
3h
2h
1h
0h
VCOM + VCOM
(CAL) (COLD)
Ta[℃]
Figure 103. NTC Function
NTC Function can adjust VGH, VCOM voltage depending on NTC voltage (VNTC).
4 bit ADC is used to detect NTC voltage.
When NTC pin voltage VNTC ≤ 0.5V, NTC function will judge as HOT setting.
In this case, VGH and VCOM output voltage can be calculated by below formula.
VGH = VGH (HOT)
VCOM = VCOM (CAL)
When NTC pin voltage VNTC ≥ 1.25V, NTC function will judge as COLD setting.
VGH = VGH (HOT) + ΔVGH (COLD)
VCOM = VCOM (CAL) – ΔVCOM (COLD)
When NTC pin voltage is 0.5V < VNTC < 1.25V, VGH and VCOM can be estimated by below formula.
𝑉𝐺𝐻 =
Δ𝑉𝐺𝐻(𝐶𝑂𝐿𝐷)
𝑉𝑁𝑇𝐶 − 0.5𝑉
∗ (𝑅𝑂𝑈𝑁𝐷𝑈𝑃 (
) − 𝟏) + 𝑉𝐺𝐻(𝐻𝑂𝑇) [V]
𝟏𝟓
0.047𝑉
𝑉𝐶𝑂𝑀 = 𝑉𝐶𝑂𝑀(𝐶𝐴𝐿) −
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
ΔVCOM(C𝑂𝐿𝐷)
𝑉𝑁𝑇𝐶 − 0.5𝑉
∗ (𝑅𝑂𝑈𝑁𝐷𝑈𝑃 (
) − 𝟏) [𝑉]
𝟏𝟓
0.047𝑉
62/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
FAULT Block Function
FAULT
UVLO
TSD
Shut Down
by UVP and OCP
LOGIC
Check Sum
Fail Register
I2C
Figure 104. FAULT Block Diagram
FAULT Function is to inform IC situation to outside.
When the operation is normal, FAULT pin will be High.
When the operation is abnormal, FAULT pin will be Low.
Below are the conditions to have FAULT pin to Low.
I. Detect UVLO
II. Start TSD
III. Shutdown by UVP or OCP
IV. Check Sum NG
Fail Register Function
When FAULT PIN is Low, it is possible to confirm which protection circuit is activating by reading Data from Fail Register.
Fail Register will reflect the protection detected circuit at the moment of FAULT=Low
Register Address of Fail Register is 10h.
Register
Address
D7
D6
D5
D4
D3
D2
D1
D0
10h
AVDD UVP
VDD UVP
VGH UVP
VGL UVP
Double
Register
Error
AVDD OCP
TSD
Check sum
Error
Fail Register does not have EEPROM writing function.
When VIN UVLO is detected, the data will be deleted.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
63/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Protection function explanation of POWER MANAGEMENT block
I.
UNDER VOLTAGE LOCK OUT (UVLO)
The BM81810MUV-M has UVLO function for VIN and a circuit miss-operation during in under UVLO voltage operation is
prevented. If VIN below UVLO voltage, it shuts down VDD, AVDD, VGH, VGL, GPM, VCOM and RESET.
II.
THERMAL SHUTDOWN (TSD)
The BM81810MUV-M incorporates a Thermal Shut Down (TSD) function. If IC temperature exceeds 175°C (TYP), it shuts
down VDD, AVDD, VGH, VGL, GPM, VCOM and RESET.
III. UNDER VOLTAGE PROTECTION (UVP)
This block has Under Voltage Protection (UVP) function for VDD, AVDD, VGH and VGL output.
When detecting UVP, inner Counter will be activated, and after 5ms passed, it shuts down VDD, AVDD, VGH, VGL, GPM,
and VCOM. (It also shuts down RESET when RESET monitors VDD voltage.)
IV. OVER VOLTAGE PROTECTION (OVP)
This block has Over Voltage Protection (OVP) function for AVDD output.
When detecting OVP, output voltage rising is limited by forcing Switching turn off. If output voltage falls, Switching is
restarted.
V.
OVER CURRENT PROTECTION (OCP)
This block has Over Current Protection (OCP) function for VDD and AVDD.
When detecting OCP, it controls Switching and limits generating over current in FET.
BLOCK
VDD
Working Condition
Action
Protective removal
Over current Protection
( Buck DCDC mode )
Protective Function
ISWB > 1.0 A (Min)
Control switching pulse duty to not over
current limit
ISWB < 1.0 A (Min)
Over current Protection
( LDO mode )
ISWB > 0.3 A (Min)
Control LDO to not over current limit.
ISWB < 0.3 A (Min)
IC shutdown
if UVP status maintains during 5msec
IC restart
AVDD < ( Target Value x 1.05 )
Under Voltage Protection
AVDD
Detect : VDDTarget value x 0.9
Over Voltage Protection
AVDD > (Target value x 1.1)
Switching STOP
Over current Protection
ISW > 1.0 A (Min) or 2.0 A (Min)
Control switching pulse duty to not
over current limit
IC shutdown
if OCP status maintains during 5msec
ISW < 1.0 A (Min) or 2.0 A (Min)
IC restart
Under Voltage Protection
Detect : AVDDTarget value x 0.9
IC shutdown
if UVP status maintains during 5msec
VGH
Under Voltage Protection
Detect : VGHTarget value x 0.9
IC shutdown
if UVP status maintains during 5msec
IC restart
VGL
Under Voltage Protection
Detect : VGL>Target value x 0.8
Release : VGL 2.55V (Typ)
Thermal shutdown
Tj > 175°C (Typ)
IC shutdown
Tj < 150°C (Typ)
IC restart
General
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
64/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Double Register
BM81810MUV-M can perform various setting by Register.
If these settings are changed without intension, to avoid application abnormal operation, certain specific Register has error
detection function.
Below shows the Register with anomaly detection function.
Register
Address
D7
D6
D5
D4
00h
07h
08h
D0
⊿VGH COLD Voltage
VGL Output Voltage
04h
06h
D1
VGH HOT Output Voltage
VGH
NTC Enable
03h
05h
D2
AVDD Output Voltage
01h
02h
D3
VCOM HOT Output Voltage
VCOM
NTC Enable
VDD
Phase
VCOM COLD Votlage
VDD
MODE
GPM
Input Delay
Function
Select
VDD Output Voltage
Reset
Monitor Select
Reset Voltage
Delay1 time
Discharge time
09h
Data Refresh
Delay3 time
DoubleReg
Delay2 time
0Ah
VGH
Discharge Enable
Delayt5 time
AR_Time
Delay4 time
0Bh
AVDD
COMP
Start-up
Bit
0Ch
AVDD
OCP Select
VGH
mode select
AVDD
SS Time
VGH/VGL
Frequency
0Dh
10h
AVDD
SW Slew Rate
VDD
Frequency
AVDD
COIL
AVDD
Frequency
Check Sum
AVDD UVP
VDD UVP
VGH UVP
VGL UVP
Double Register
Error
AVDD OCP
TSD
Check sum
Error
Double Register correspond BIT
Data Refresh
Data Refresh is the Function to read Data from EEPROM periodically.
If Register setting is suddenly changed without intension, Data Refresh function can read Data from EEPROM to recover to the
normal Data.
Data Refresh performs at certain cycle period.
The time of period can be set by Register at 0.5sec or 1.0sec.
In the case of WPN=Low, Double Register Function and Data Refresh Function can be set by Register as Enable or Disable.
Below table shows the function by each combination.
In the case of WPN=High, Double Register Function and Data Refresh Function are Disable.
WPN
Data
Refresh
Double
Register
Data Refresh Operation
Double Register Check
Low
0 : Disable
0 : Disable
Disable
Disable
(Keep working even logic abnormality happens)
Low
0 : Disable
1 : Enable
Disable
Enable
(First shutdown once logic abnormality detects.
After Fault to be low for 1msec, then re-start)
Low
1 : Enable
0 : Disable
Enable
(Data Refresh at set period)
Disable
(Keep working even logic abnormality happens)
Low
1 : Enable
1 : Enable
Enable
(Data Refresh at set period)
Enable
(Perform Data Refresh once logic abnormality detects)
High
-
-
Disable
Disable
(Keep working even logic abnormality happens)
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
65/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
PCB Layout Guide
GND Wiring Pattern
The high current GND (PGND) should be wired thick. To reduce line impedance, the GND lines must be as short and
thick as possible and uses few via. Therefore design at PCB board four layers or above is recommended. (Please use
the middle layer as GND shielding and directly connect each GND.) In the case of two layers or less at PCB board
designs, please enough confirm with the actual model about the heat and the noise with care to a GND wiring.
Switching-Line Wiring Pattern
The wiring from switching line (SW pin) of DC/DC converter to inductor and diode must be as short and thick as
possible. If a wiring is long, ringing by switching increases, and the voltage over the resistance of this IC might be
generated. Please note that switching line does not vary PCB layer.
Switching line and wiring easily affected by noise such as feedback line must be placed separately.
Switching noise spread may cause the lack of operation stability. In case the multi-layer PCB board, please note that a
switching line and a line easily affected by noise or the external components are not adjacent between layers.
Drawing GND shield line between switching line and these lines easily affected by noise is recommended if these lines
are placed close.
Power Supply Voltage Line Wiring Pattern
For power supply voltage (VIN, VINB, VLSO, PAVDD, AVDD, VGH), place smooth capacitor nearby IC pin.
Please note that smooth capacitor does not vary PCB layer.
The figure 105 shows an application circuit on the basis of the basic PCB layout pattern guideline mentioned above.
◆ Bold line: High current line
◆ Blue line(two dots and dashed line): Wiring easily affected by noise
◆ Red line (dashed line): Noise source line such as switching line.
◆
Place smooth capacitor nearby IC pin
◆
D_SW locates it near SW terminal / PAVDD terminal of BM81810MUV-M, and a current loop of SW terminal ••• SBD
••• PAVDD, please become as short as possible.
R_NTC2
R_NTC3
WPN
R_NTC1
R_FLT
VIN
R_RE
GSOUT
VIN
Θ
R_PG
VGH
FAULT
RE
EN
10 11 12 13 14 15 16
L_SWB
C_VDD
VCP
CPP1
C_DRP1
D_VGL
DRP
DRN
C_DRN
VGL
VCOM
9
SWB
2
3
VREG
1
4
5
6
7
C_VCOM
8
C_VGL
AVDD
SW
SCL
RST
VLSO
SDA
R_RST
25 26 27 28 29 30 31 32
GSIN
C_VGH
C_VCP
17 18 19 20 21 22 23 24
VIN
VDD
C_DRP2
CPP2
NTC
PG / LDSW
AVDD
C_VINB
C_REG
(D_SW)
L_SW
VIN
C_VIN
C_AVD
C_LSO
Figure 105. PCB Layout Indications
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
66/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
EMC Layout Guide
Introduce the plan that can design on the PCB as EMC measures.
Measures by the board pattern
•Wire AVDD line briefly thickly. (1)
•Wire the current loop of Boost DC/DC briefly thickly. (2)
Measures by the external component
•Insert a common mode filter or a beads coil in the AVDD line and form the EMC filter. (3)
•Place output capacitor and small capacitor (10pF - 1,000pF) in parallel. (4)
•Insert the snubber circuit in SW pin. (Assumed the efficiency becomes worse) (5)
Figure 106. EMI Circuit 1
(2)
Figure 107. EMI Circuit 2
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
67/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
I/O Equivalence Circuit
1. VINB
2. VREG
3. VIN
VIN
VINB
VIN
VREG
4. VLSO
6. SW
7. PAVDD
VIN
PAVDD
PAVDD
VLSO
SW
8. AVDD
9. NEG
10. VCOM
AVDD
AVDD
AVDD
VCOM
NEG
12. VGL
AVDD
13. DRN
14. DRP
PAVDD
PAVDD
AVDD
AVDD
Internal reg.
DRP
DRN
VGL
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
68/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
I/O Equivalence Circuit - continued
15. CPP1
16. VCP
17. CPP2
VGH
VGH
VGH
CPP2
CPP2
CPP2
VCP
VCP
VCP
CPP1
CPP1
CPP1
AVDD
AVDD
18. VGH
19. GSOUT
AVDD
20. RE
VGH
VGH
VGH
21. WPN
GSOUT
GSOUT
RE
RE
22. NTC
23. FAULT
VREG
VREG
FAULT
WPN
NTC
24. PG/LDSW
25. GSIN
26. SDA
VREG
VREG
PG/LDSW
SDA
GSIN
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
69/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
I/O Equivalence Circuit - continued
27. SCL
28. RST
29. VDD
VREG
VDD
RST
SCL
30. SWB
32. EN
VREG
VINB
SWB
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
EN
70/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Operation Notes
1. Reverse Connection of Power Supply
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power
supply terminals.
2. Power Supply Lines
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and
aging on the capacitance value when using electrolytic capacitors.
3. Ground Voltage
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.
4. Ground Wiring Pattern
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.
5. Thermal Consideration
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size
and copper area to prevent exceeding the Pd rating.
6. Recommended Operating Conditions
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.
The electrical characteristics are guaranteed under the conditions of each parameter.
7. Inrush Current
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and
routing of connections.
8. Operation Under Strong Electromagnetic Field
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
9. Testing on Application Boards
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply
should always be turned off completely before connecting or removing it from the test setup during the inspection
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during
transport and storage.
10. Inter-pin Short and Mounting Errors
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and
unintentional solder bridge deposited in between pins during assembly to name a few.
11. Unused Input Pins
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the
power supply or ground line.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
71/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Operational Notes – continued
12. Regarding the Input Pin of the IC
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a
parasitic diode or transistor. For example (refer to figure below):
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be
avoided.
Resistor
Transistor (NPN)
Pin A
Pin B
C
E
Pin A
N
P+
P
N
N
P+
N
Pin B
B
Parasitic
Elements
N
P+
N P
N
P+
B
N
C
E
Parasitic
Elements
P Substrate
P Substrate
GND
GND
Parasitic
Elements
Parasitic
Elements
GND
GND
N Region
close-by
Example of monolithic IC structure
13. Ceramic Capacitor
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with
temperature and the decrease in nominal capacitance due to DC bias and others.
14. Area of Safe Operation (ASO)
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe
Operation (ASO).
15. Thermal Shutdown Circuit(TSD)
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below
the TSD threshold, the circuits are automatically restored to normal operation.
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from
heat damage.
16. Over Current Protection Circuit (OCP)
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should
not be used in applications characterized by continuous operation or transitioning of the protection circuit.
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
72/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Ordering Information
B
M
8
1
8
1
0
Part Number
M
U
V
Package
MUV: VQFN32SV5050
-
ME2
Product Rank
M: for Automotive
Packaging specification
E2: Embossed tape and reel
Marking Diagram
VQFN32SV5050(TOP VIEW)
B M
8 1 8 1 0
Part Number Marking
LOT Number
Pin 1 Mark
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
73/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Physical Dimension, Tape and Reel Information
Package Name
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
VQFN32SV5050
74/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Revision History
Date
Revision
25.July.2016
001
10.Jan.2019
002
9.Dec.2020
003
Changes
New Release
AVDD Current Limit (1A setting) Limit Maximum 3.0A -> 2.5A (P.6)
Remove WPN pin from input tolerant. (P.1)
Describe the package name in detail. (P.1)
Change absolute maximum ratings value of WPN pin. (P.4)
Add C_GD to application circuit when using LDSW mode.(P.31, P32)
Correct some minor typographical errors.
Updated packages and part numbers. P.75-2, P.75-3
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
75/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Ordering Information
B
M
8
1
8
1
0
Part Number
M
U
V
Package
MUV: VQFN32SV050A
-
MZE2
Product Rank
M: for Automotive
Production site
Z: Added
Packaging specification
E2: Embossed tape and reel
Marking Diagram
VQFN32SV050A(TOP VIEW)
B M
8 1 8 1 0
Part Number Marking
LOT Number
Pin 1 Mark
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
75-2/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
BM81810MUV-M
Physical Dimension, Tape and Reel Information
Package Name
.
www.rohm.com
© 2016 ROHM Co., Ltd. All rights reserved.
TSZ22111 • 15 • 001
VQFN32SV050A
75-3/75
TSZ02201-0313AAF00730-1-2
9.Dec.2020 Rev.003
Notice
Precaution on using ROHM Products
1.
If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1),
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any
ROHM’s Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN
USA
EU
CHINA
CLASSⅢ
CLASSⅡb
CLASSⅢ
CLASSⅢ
CLASSⅣ
CLASSⅢ
2.
ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3.
Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our
Products under any special or extraordinary environments or conditions (as exemplified below), your independent
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble
cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4.
The Products are not subject to radiation-proof design.
5.
Please verify and confirm characteristics of the final or mounted products in using the Products.
6.
In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7.
De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in
the range that does not exceed the maximum junction temperature.
8.
Confirm that operation temperature is within the specified range described in the product specification.
9.
ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1.
When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2.
In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,
please consult with the ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Notice-PAA-E
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.004
Precautions Regarding Application Examples and External Circuits
1.
If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2.
You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1.
Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl 2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2.
Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3.
Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4.
Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign
trade act, please consult with ROHM in case of export.
Precaution Regarding Intellectual Property Rights
1.
All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data.
2.
ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the
Products with other articles such as components, circuits, systems or external equipment (including software).
3.
No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to
manufacture or sell products containing the Products, subject to the terms and conditions herein.
Other Precaution
1.
This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2.
The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3.
In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4.
The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
Notice-PAA-E
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.004
Datasheet
General Precaution
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this document is current as of the issuing date and subject to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales
representative.
3.
The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccuracy or errors of or
concerning such information.
Notice – WE
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.001