0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BM92A21MWV-ZE2

BM92A21MWV-ZE2

  • 厂商:

    ROHM(罗姆)

  • 封装:

    PG-VQFN40_5X5MM_EP

  • 描述:

    IC PD CTLR USB TYPE-C UQFNVA

  • 数据手册
  • 价格&库存
BM92A21MWV-ZE2 数据手册
Datasheet USB Type-C Power Delivery Controller BM92A21MWV-Z General Description Key Specifications BM92A21 is a USB Type-C Power Delivery (PD) controller that supports USB Power Delivery using base-band communication. It is compatible with USB Type-C Specification and USB Power Delivery specification. BM92A21 includes support for the PD policy engine and be able to operate independently. In addition, this IC has secondary side error amplifier that support variable output voltage and it is suitable for PD AC adapter systems. VEX Voltage Range: 4.75V to 20V VBUS Voltage Range: 4.75V to 20V Power Consumption at Sleep Power: 0.9mW(Typ) Operating Temperature Range: -30°C to +105°C     Package W (Typ) x D (Typ) x H (Max) 5.00mm x 5.00mm x 1.00mm UQFN40V5050A Features USB Type-C Specification compatible USB PD Specification compatible (BMC-PHY) Power path control using N-channel MOSFET drivers with back flow prevention Type-C cable orientation detection Supports DFP-SOURCE mode Integrated Secondary side of AC adapter system PDO1:5V/3A, PDO2:9V/3A, PDO3:12V/3A, PDO4:15V/3A, PDO5:20V/5A EC-less Operation (Auto mode)         Applications Consumer Applications AC Adaptors, Chargers  Typical Application Circuit Q2 Q1 VBUS + SGND SGND SGND SGND IFB GND SGND SGND FB ACDC Primary Side VCCIN DSCHG VB SPDSRC_G1 SPDSRC_SRC SPDSRC_G2 VEX LDISCHG_G1 SMDATA LDISCHG_SRC VDIV LDISCHG_G2 VDDIO R3 CC1 CC1 (Open or CC2) CC2 SMCLK VDDIO GPIO0 VCONN_IN GPIO1 (Open or 5V Sourece) Captive cable with a USB Type-C plug or Type-C IFB XCLPOFF1 XCLPOFF2 GPIO GPIO6 SGND BM92A21MWV-Z UQFN40V5050A GPIO7 VSVR Receptacle GPIO5 GPIO4 DBGMODDT For TEST For BC1.2 DCP VDDIO D+ D- CSENSEN SGND GND GND GND EPAD LDO28CAP LDO15DCAP XRST VCCIN VSTR/ATST2 CSENSEP IDSEL/ATST1 VCCIN LDO15ACAP DBGRSTCK VCCIN SGND GND SGND GND Figure A. Typical Application Circuit 〇Product structure : Silicon monolithic integrated circuit .www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 14 • 001 〇This product has no designed protection against radioactive rays 1/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z Contents Contents ......................................................................................................................................................................................... 2 Notation ......................................................................................................................................................................................... 3 Reference ...................................................................................................................................................................................... 3 1. Pin Configuration.................................................................................................................................................................. 4 2. Pin Description ..................................................................................................................................................................... 5 3. Block Diagram ...................................................................................................................................................................... 7 4. Electrical Characteristics ...................................................................................................................................................... 8 4.1. Absolute Maximum Ratings ................................................................................................................................................. 8 (Note 4) 4.2. Thermal Resistance ..................................................................................................................................................... 8 4.3. Recommended Operating Conditions .................................................................................................................................. 9 4.4. Internal Memory Cell Characteristics ................................................................................................................................... 9 4.5. Circuit Power Characteristics ............................................................................................................................................... 9 4.6. Digital Pin DC Characteristics ............................................................................................................................................ 10 4.7. Power Supply Management ............................................................................................................................................... 11 4.7.1. Outline ............................................................................................................................................................................ 11 4.7.2. Electrical Characteristics ................................................................................................................................................ 12 4.8. CC_PHY ............................................................................................................................................................................ 13 4.8.1. Outline ............................................................................................................................................................................ 13 4.8.2. Electrical Characteristics ................................................................................................................................................ 14 4.9. Voltage Detection ............................................................................................................................................................... 15 4.9.1. Outline ............................................................................................................................................................................ 15 4.9.2. Electrical Characteristics ................................................................................................................................................ 15 4.10. VBUS Discharge............................................................................................................................................................. 16 4.10.1. Outline ........................................................................................................................................................................ 16 4.10.2. Electrical Characteristics ............................................................................................................................................. 16 4.11. Power FET Gate Driver (Power Path and Discharge) .................................................................................................... 17 4.11.1. Outline ........................................................................................................................................................................ 17 4.11.2. Electrical Characteristics ............................................................................................................................................. 17 4.12. ACDC Bridge .................................................................................................................................................................. 18 4.12.1. Outline ........................................................................................................................................................................ 18 4.12.2. Electrical Characteristics ............................................................................................................................................. 18 4.13. Power On Sequence ...................................................................................................................................................... 20 4.13.1. Reset Timing ............................................................................................................................................................... 20 4.14. Power Off Sequence ...................................................................................................................................................... 20 4.15. I/O Equivalence Circuit ................................................................................................................................................... 21 5. Application Example........................................................................................................................................................... 25 5.1. Selection of Components Externally connected ................................................................................................................. 25 6. Firmware Revision ............................................................................................................................................................. 26 7. Operational Notes .............................................................................................................................................................. 27 8. Ordering Information .......................................................................................................................................................... 29 9. Marking Diagrams .............................................................................................................................................................. 29 10. Physical Dimension Tape and Reel Information ................................................................................................................. 30 11. Revision History ................................................................................................................................................................. 31 www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 2/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z Notation Category Notation Description Unit V Volt (Unit of voltage) A Ampere (Unit of current) Ω, Ohm Ohm (Unit of resistance) F Farad (Unit of capacitance) deg., degree degree Celsius (Unit of Temperature) Hz Hertz (Unit of frequency) s (lower case) second (Unit of time) min minute (Unit of time) b, bit bit (Unit of digital data) B, byte 1 byte = 8 bits M, mega-, mebi- 2 M, mega-, million- 10 = 1,000,000 Unit prefix K, kilo-, kibik, kilo- 20 = 1,048,576 (used with “bit” or “byte”) 6 2 10 = 1,024 3 10 = 1,000 (used with “Ω” or “Hz”) (used with “bit” or “byte”) (used with “Ω” or “Hz”) m, milli- 10 -3 μ, micro- 10 -6 n, nano- 10 -9 p, pico- 10 -12 xxh, xxH Hexadecimal number. “x”: any alphanumeric of 0 to 9 or A to F. xxb Binary number; “b” may be omitted. “x”: a number, 0 or 1 “_” is used as a nibble (4-bit) delimiter. (eg. “0011_0101b” = “35h”) Address #xxh Address in a hexadecimal number. “x”: any alphanumeric of 0 to 9 or A to F. Data bit[n] n-th single bit in the multi-bit data. bit[n:m] Bit range from bit[n] to bit[m]. “H”, High High level (over VIH or VOH) of logic signal. “L”, Low Low level (under VIL or VOL) of logic signal. “Z”, “Hi-Z” High impedance state of 3-state signal. Numeric value Signal level Reference Name Reference Document Release Date Publisher USB Type-C “USB Type-C Specification Release 1.1” 3.Apr.2015 USB.org USB PD “Power Delivery Specification Revision2.0 Version1.1” 7.May.2015 USB.org SMBus “System Management Bus (SMBus) Specification Version 2.0” 3.Aug.2000 System Management Implementers Forum www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 3/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z VDIV VEX GND SPDSRC_G2 SPDSRC_SRC SPDSRC_G1 LDISCHG_G2 LDISCHG_SRC LDISCHG_G1 Pin Configuration FB 1. 30 29 28 27 26 25 24 23 22 21 CSENSEN 31 20 SMCLK CSENSEP 32 19 SMDATA XCLPOFF1 33 18 VDDIO XCLPOFF2 34 17 GPIO1 CC1 35 16 GPIO0 VCONN_IN 36 15 DBGMODDT CC2 37 14 DBGRSTCK LDO15DCAP 38 13 GPIO7 LDO28CAP 39 12 GPIO6 11 GPIO5 BM92A21MWV-Z UQFN40V5050A Top View (EPAD) 5 6 7 8 9 10 DSCHG GND VB GPIO4 IDSEL/ATST1 4 VSVR 3 VCCIN 2 XRST 1 VSTR/ATST2 40 GND LDO15ACAP Figure 1-1 Pin configuration www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 4/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 2. Pin Description Table 2-1 Pin Description PKG PIN# Pin Name BLOCK I/O Type I GND Digital I/O Level Description 1 GND GND 2 VSTR/ATST2 TEST/Debug IO Analog 3 IDSEL/ATST1 TEST/Debug I Analog VCCIN 4 XRST Interface I Digital VCCIN 5 VCCIN USB-PD O Analog 6 VSVR POWER I Power Analog TEST/ Debug Pin2 SMBus ID (device address) selection “H”:1Ah, “L”:18h /Debug Pin1 Digital block Reset Internal Power supply (For internal use, need to connect capacitor to GND Connect to Ground 7 DSCHG Interface IO Analog Discharge NMOS Drain 8 GND GND I GND 9 VB POWER I Power Power Source from VBUS 10 GPIO4 Interface I Digital Mode fixation (Fix: L) 11 GPIO5 Interface (Note 1) Digital NC pin (Note 1) Digital NC pin (Note 1) Digital NC pin O Ground Ground 12 GPIO6 Interface O 13 GPIO7 Interface O 14 DBGRSTCK TEST IO Digital VDDIO Test for logic 15 DBGMODDT TEST IO Digital VDDIO Test for logic (Note 1) Digital VDDIO NC pin (Note 1) Digital VDDIO Alert signal 16 GPIO0 Interface O 17 GPIO1 Interface O 18 VDDIO POWER I Power 19 SMDATA Interface IO Digital VDDIO SMBus Data 20 SMCLK Interface I Digital VDDIO SMBus Clock 21 LDISCHG_G1 FET Gate Control O Analog VEX Discharge 22 LDISCHG_SRC FET Gate Control I Analog VEX Discharge 23 LDISCHG_G2 FET Gate Control O Analog Not used 24 SPDSRC_G1 FET Gate Control O Analog Power Path FET Gate Control 25 SPDSRC_SRC FET Gate Control I Analog Power Path FET BG/SRC Voltage 26 SPDSRC_G2 FET Gate Control O Analog Power Path FET Gate Control Interface Voltage (Note 1) N-ch Open Drain www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 5/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z PKG PIN# Pin Name BLOCK 27 GND GND I GND 28 VEX POWER I Power 29 VDIV ACDC Bridge O Analog VCCIN Extension Power Input For phase compensation 30 FB ACDC Bridge O Analog VCCIN Error AMP output 31 CSENSEN ACDC Bridge I Analog VCCIN 32 CSENSEP ACDC Bridge I Analog VCCIN 33 XCLPOFF1 CCPHY I Analog VCCIN 34 XCLPOFF2 CCPHY I Analog VCCIN 35 CC1 CCPHY IO Analog 36 VCONN_IN CCPHY I Analog 37 CC2 CCPHY IO Analog 38 LDO15DCAP POWER O Analog 39 LDO28CAP POWER O Analog 40 LDO15ACAP POWER O Analog www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 I/O Type 6/31 Digital I/O Level Description Ground Current Sense Voltage Input Negative Current Sense Voltage Input Positive Disable Clamper of CC1(Fix: L) Disable Clamper of CC2(Fix: L) Configuration channel 1 for Type-C Input power for VCONN Configuration channel 2 for Type-C Internal LDO 1.5V for Digital Need Capacitor Internal LDO 2.8V for Analog Need Capacitor Internal LDO 1.5V for Analog Need Capacitor TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 3. Block Diagram BM92A21 is USB Type-C PD controller for AC adapter applications that supports Type-C DFP port control and USB Power Delivery using base-band communication. It is compatible with USB Type-C Specification and USB Power Delivery Specification. And it has ACDC Bridge which is constructed in Error Amplifier (for Fly back AC adapter system) and Current Sense (for variable OCP function). LDISCHG_G1 LDISCHG_SRC LDISCHG_G2 SPDSRC_G1 SPDSRC_SRC SPDSRC_G2 GND VEX VDIV FB BM92A21 includes the following functional blocks: Type-C Physical Layer (base-band PHY), BMC encoder / decoder, USB-PD Protocol engine, a N-ch MOSFET switch driver, OVP and Discharge FET. BM92A21 includes an EEPROM. CSENSEN SMCLK NchFET Switch Driver CSENSEP SMDATA XCLPOFF1 SMBus XCLPOFF2 CC1 VCONN_IN Type-C Physical Layer VDDIO GPIO1 Device Policy Manager GPIO0 ACDC Bridge BB PD Physical Layer DBGMODDT Protocol CC2 SPI I/F LDO15DCAP EEPROM LDO28CAP DBGRSTCK GPIO7 GPIO6 Type-C USBPD GPIO4 VB GND DSCHG VSVR VCCIN XRST IDSEL/ATST1 VSTR/ATST2 GPIO5 GND LDO15ACAP Figure 3-1 Block Diagram www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 7/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4. Electrical Characteristics 4.1. Absolute Maximum Ratings Table 4-1 Absolute Maximum Ratings (Ta=25°C) Parameter Maximum Supply Voltage1 (VB, VEX, DSCHG, LDISCHG_G1, LDISCHG _G2, LDISCHG _SRC, SPDSRC_G1, SPDSRC_SRC, SPDSRC_G2 ) Maximum Supply Voltage2 (VDDIO, VSVR, DBGRSTCK, DBGMODDT, GPIO0, GPIO1, SMDATA, SMCLK, XRST, VCONN_IN, VSTR/ATST2, IDSEL/ATST1, VCCIN, GPIO4, GPIO5, GPIO6, GPIO7, VDIV, FB, CSENSEN,CSENSEP, XCLPOFF1, XCLPOFF2, CC1, CC2, LDO28CAP) Maximum Supply Voltage3 (LDO15DCAP, LDO15ACAP) Maximum different Voltage (LDISCHG_G1 - LDISCHG_SRC, LDISCHG_G2 - LDISCHG_SRC, SPDSRC_G1 - SPDSRC_SRC, SPDSRC_G2 - SPDSRC_SRC) Storage Temperature Range Symbol Rating Unit Conditions VIN1 -0.3 to +28 V (Note 2) (Note 3) VIN2 -0.3 to +6.5 V VIN3 -0.3 to +2.1 V Vdiff -0.3 to +6.5 V Tstg -55 to +125 °C (Note 3) (Note 2)When the DSCHG pin is applied voltage should by way of resistance more than 1kΩ. (Note 3)The different voltage between S*DRV_G* and S*DRV_SRC is defined “Symbol Vdiff”. S*_DRV_G*=S*_DRV_SRC+6.0V (typ) Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. 4.2. Thermal Resistance (Note 4) Table 4-2 Thermal Resistance Parameter Symbol Thermal Resistance (Typ) 1s (Note 6) (Note 7) 2s2p Unit UQFN40V5050A Junction to Ambient Junction to Top Characterization Parameter (Note 5) θJA 125.0 43.0 °C/W ΨJT 21 14 °C/W (Note 4)Based on JESD51-2A(Still-Air) (Note 5)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. (Note 6)Using a PCB board based on JESD51-3. Layer Number of Measurement Board Single Material Board Size FR-4 114.3mm x 76.2mm x 1.57mmt Top Copper Pattern Thickness Footprints and Traces 70μm (Note 7)Using a PCB board based on JESD51-5, 7. Layer Number of Measurement Board 4 Layers Thermal Via(Note 8) Material Board Size FR-4 114.3mm x 76.2mm x 1.6mmt Top 2 Internal Layers Pitch 1.20mm Diameter Φ0.30mm Bottom Copper Pattern Thickness Copper Pattern Thickness Copper Pattern Thickness Footprints and Traces 70μm 74.2mm x 74.2mm 35μm 74.2mm x 74.2mm 70μm (Note 8) This thermal via connects with the copper pattern of all layers. www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 8/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.3. Recommended Operating Conditions Table 4-3 Recommended Operating Conditions (Ta=25C) Item Range Unit VB, VEX 4.75 to 20 V VSVR Voltage VSVR -0.1 to 0.1 V Connect to Ground VDDIO Voltage VDDIO 1.7 to 5.5 V Connect to VCCIN VCONN_IN Input Voltage VCONN 4.75 to 5.5 V Topr -30 to +105 °C VB, VEX Voltage Operating Temperature Range 4.4. Conditions Symbol Internal Memory Cell Characteristics Table 4-4 Internal Memory Cell Characteristics (Ta=25C, VB=VEX=4.75 to 20V, VSVR=0V) Limit Item Data rewriting number Data retention life (Note 9) (Note 9) Unit Conditions Min Typ Max 1000 - - time Ta≦25°C 100 - - time Ta≦105°C 20 - - year Ta≦25°C 10 - - year Ta≦105°C (Note 9)Not 100% TESTED Caution: Customer is permitted to rewrite EEPROM on BM92A21 only in case of being provided technical support from ROHM. 4.5. Circuit Power Characteristics Table 4-5 Common Characteristics Electrical Characteristics (Ta=25C) Item Symbol Limit Unit Conditions - mW VSVR=0V, VB=open, VEX=5V, VDDIO=VCCIN - mW VSVR=0V, VB=open, VEX=5V, VDDIO=VCCIN Min Typ Max PST - 0.9 POP - 6 [Circuit Power] Sleep power (Note 10) Standby power (Note11) (Note 10) Sleep power: Power consumption at unattached plug. (Note 11) Standby power: Power consumption at attached plug. www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 9/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.6. Digital Pin DC Characteristics Table 4-6 Digital Pin DC Characteristics Electrical Characteristics (Ta=25C, VSVR=3.3V, VB=open, VEX=open, VDDIO=3.3V) Item Symbol Limit Min Typ Digital characteristics (VDDIO Power:GPIO0, GPIO1, SMDATA, SMCLK) 0.8× Input "H" level VIH1 VDDIO Max Unit Comment Input "L" level VIL1 -0.3 - Input leak current IIC1 -5 0 VDDIO+ 0.3 0.2× VDDIO 5 VOH1 0.7× VDDIO - - V Source=1mA VOL SMDATA - - 0.4 V Sink=350μA Max VOL1 - - 0.3 V Sink=1mA Output Voltage when “H” SMDATA pin "L" level voltage (SMDATA) Output Voltage when “L” (GPIO0, GPIO1) V V μA Power: VDDIO Digital characteristics ( VCCIN Power: XRST, GPIO4, GPIO5, GPIO6, GPIO7) Input "H" level VIH2 0.8× VCCIN - VCCIN+ 0.3 V Input "L" level VIL2 -0.3 - 0.2× VCCIN V Input leak current IIC2 -5 0 5 μA Power: VCCIN Output Voltage when “H” (GPIOs) VOH2 0.7× VCCIN - - V Source=1mA Output Voltage when “L” (GPIOs) VOL2 - - 0.3 V Sink=1mA www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 10/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.7. Power Supply Management 4.7.1. Outline BM92A21 has a power selector. It select the lowest power supply voltage from VSVR, VEX, or VB for low power consumption. Internal Power Supply (VCCIN) gives priority in order of VSVR, VEX, and VB. VCCIN supplied from the power selector is used to BM92A21 main power source. LDOs (for internal only) are supplied from VCCIN, and output each internal supply voltage. Each power supply input have UVLO and OVLO. And POR (power on reset) signal is generated from detection of LDO28OK, LDO15DOK, LDO15AOK, and VCCIN. UVLO /OVLO signal UVLO/OVLO Detection Power Selector with regulator VSVR VEX VB Internal Power Supply VCCIN POR signal POR LDO28OK LDO LDO28CAP LDO15DOK LDO LDO15DCAP LDO15AOK LDO LDO15ACAP Internal Power Supply VDDIO detection signal VDDIO DET 5 to 20V VBUS 0V VEX 0V 5 to 20V 5V VSVR 0V VCCIN 0V VBUS VEX VSVR Figure 4-1 Power Supply Management Block Diagram and Timing Chart www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 11/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.7.2. Electrical Characteristics Table 4-7 Power Supply Management Characteristics Item Symbol Limit Min Typ Max [Analog characteristics] Unless otherwise specified Ta=25°C, GND=0V, CVCCIN=4.7μF(Ceramic ), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic ) Input Analog Pins: VSVR, VEX, VB UVLO rising threshold voltage 1 VUVLO1H 2.8 UVLO rising threshold voltage 2 VUVLO2H 3.5 UVLO falling threshold voltage VUVLOL 2.7 OVLO rising threshold voltage VOVLO5 6.4 OVLO rising threshold voltage VOVLO20 28 OVLO hysteresis voltage 1 VOV5HYS 240 OVLO hysteresis voltage 2 VOV20HYS 920 Power ON reset threshold voltage VPOR 2.6 VDDIO detection voltage VDB 1.7 LDO28CAP output voltage V28 2.8 LDO15DCAP output voltage V15D 1.5 LDO15ACAP output voltage V15A 1.5 - www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 12/31 Unit Comment V V V V V mV mV V V V V V VSVR VEX, VB VSVR, VEX, VB VSVR VEX, VB VSVR VEX, VB VCCIN For Dead Battery Operation No Load, VEX=5V No Load, VEX=5V No Load, VEX=5V TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.8. CC_PHY 4.8.1. Outline CC_PHY has below functions of USB Type-C. (Refer to USB Type-C Spec) - Defining Port Mode > DFP Mode Condition - DFP-to-UFP Attach / Detach Detection - Plug Orientation / Cable Twist Detection - USB Type-C VBUS Voltage Detection and Usage - VCONN (Supply for SOP’) Control - Base-Band Power Delivery Communication (BBPD communication) VBUS MCU VCONNSW VCONN_IN VBUS_MONI MCU CC1 BB_PHY CC2 Receptacle Control Logic XCLPOFF1 CC DET UFP_CLAMP Rd GND Rd XCLPOFF2 GND PORT_CONT Figure 4-2 CC_PHY Block Diagram [PORT_CONT] This block is fixed DFP mode. (DFP) Variable current source is connected to CC terminal. These currents of each mode are Default Current, Medium Current and High Current. [CC_DET] CC_DET has functions of “Attach / Detach Detection”, “Plug Orientation / Cable Twist Detection”, “Discovery and detect extension mode” and “USB Type-C VBUS Current Detection”. Attach / Detach is detected with monitoring voltage of CC terminal. When the voltage of CC terminal become under a threshold voltage at DFP, attach is detected. Oppositely, when the voltage of CC terminal become over a threshold voltage, detach is detected. Plug orientation and cable twist is detected from the relationship of two CC terminals. Because only one wire is connected to Rd, the difference between two CC terminals is generated. www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 13/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z [VBUS_MONI] UFP detect Attach / Detach by existence of VBUS voltage. VBUSDET detects Attach when VBUS voltage over the threshold voltage. And it detects Detach when VBUS under the threshold voltage. [VCONNSW] VCONNSW is the power switch for VCONN source. It has OCP function. [BB_PHY] If Type-C controller supports BBPD, CC terminal can output BBPD communication signal. (Refer to BB_PHY) 4.8.2. Electrical Characteristics Table 4-8 CC_PHY Characteristics Item Symbol Limit Min Typ Max Unit Comment [PORT_CONT characteristics] Unless otherwise specified Ta=25°C, VEX=5V, VCONN_IN=open, VDDIO=VCCIN, GND=0V, CVCCIN=4.7μF(Ceramic), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic) Input Analog Pins: CC1, CC2 Default current CCPUP1 64 80 96 μA Medium current CCPUP2 166 180 194 μA High current CCPUP3 304 330 356 μA Pull down resistor CCPDN 4.6 5.1 5.6 kΩ [UFP_CLAMP characteristics] Unless otherwise specified Ta=25°C, VEX=5V, VCONN_IN=open, VDDIO=VCCIN, GND=0V, CVCCIN=4.7μF(Ceramic), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic) Input Analog Pins: CC1, CC2 CCx terminal input impedance CCZin 126 kΩ CCx clamp voltage CCCLP 0.7 1.3 V Iin=64 to 356μA [VBUS MONI] Unless otherwise specified Ta=25°C, VEX=5V, VCONN_IN=open, VDDIO=VCCIN, GND=0V, CVCCIN=4.7μF(Ceramic), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic) Input Analog Pins: VB VBUS presence detection level CCVBDET 3.42 V [VCONNSW] Unless otherwise specified Ta=25°C, VEX=5V, VCONN_IN=5V, VDDIO=VCCIN, GND=0V, CVCCIN=4.7μF(Ceramic), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic) Input Analog Pins: CC1, CC2, VCONN_IN VCONN_IN to CCx resistance CCVCR 500 mΩ Overcurrent protection level CCVCOCP 1.1 A www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 14/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.9. Voltage Detection 4.9.1. Outline VDET Block detects the voltage level of VB. It can detect follow conditions; -OVP (over voltage protection) detection -VBUS voltage drop detection VBUS + OVP detection + VBUS voltage drop detection - Variable Reference Voltage Figure 4-3 Voltage Detection Block Diagram 4.9.2. Electrical Characteristics Table 4-9 Voltage Detection characteristics Item Symbol Limit Min Typ Max Unit Comment [VDET characteristics] Unless otherwise specified Ta=25°C, VEX=5V, VCONN_IN=5V, VDDIO=VCCIN, GND=0V, CVCCIN=4.7μF(Ceramic ), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic ), Vnom=PD negotiation Voltage Input Analog Pins: VB Over voltage protection detection OVP 17 20 23 % Standard voltage=Vnom rate VBUS voltage drop detection rate VB_DROP -27 -25 -23 % Standard voltage=Vnom www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 15/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.10. VBUS Discharge 4.10.1. Outline NMOS switch is prepared for VBUS discharging. DSCHG Discharge Resistor Discharge Control GND Figure 4-4 VBUS Discharge Block Diagram 4.10.2. Electrical Characteristics Table 4-10 VBUS Discharge Characteristics Item Symbol Limit Min Typ Max Unit Comment [Discharge characteristics] Unless otherwise specified Ta=25°C, VEX=5V, VCONN_IN=5V, VDDIO=VCCIN, GND=0V, CVCCIN=4.7μF(Ceramic), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic) Input Analog Pins: DSCHG MOSFET Switch ON Resistance RDSCHG 25 Ω www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 16/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.11. Power FET Gate Driver (Power Path and Discharge) 4.11.1. Outline OUT LDISCHG_G2 OUT IN IN Charge pump IN IN LDISCHG_SRC LDISCHG_G1 SPDSRC_G2 OUT Charge pump Charge pump OUT Charge pump SPDSRC_G1 SPDSRC_SRC FET Gate Driver is the NMOS switch driver for power line and discharging switch. - External Nch-FET gate control: SPDSRC, LDISCHG Figure 4-5 Power FET Gate Driver Block Diagram 4.11.2. Electrical Characteristics Table 4-11 Power FET Gate Driver Characteristics Item Symbol Limit Min Typ Max Unit Comment [Discharge characteristics] Unless otherwise specified Ta=25°C, VEX=5V, VCONN_IN=5V, VDDIO=VCCIN, GND=0V, CVCCIN=4.7μF(Ceramic), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic) Input Analog Pins: SPDSRC_SRC, LDISCHG_SRC=0V Output Analog Pins: SPDSRC _G1, SPDSRC _G2, LDISCHG_G1, LDISCHG_G2 SPDSRC_G1 – SPDSRC_SRC FET control voltage between gate SPDSRC_G2 – SPDSRC_SRC VGS 6.0 V and source LDISCHG_G1 – LDISCHG_SRC LDISCHG_G2 – LDISCHG_SRC www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 17/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.12. ACDC Bridge 4.12.1. Outline ACDC Bridge Block has an error amplifier and current sensing comparator. To Connector + CSENSEP CSENSEN To Connector GND OCP (variable) VCCIN VEX VB FB + VDIV - Figure 4-6 ACDC Bridge Block Diagram 4.12.2. Electrical Characteristics Table 4-12 ACDC Bridge Characteristics Item Symbol Limit Min Typ Max Unit Comment [Discharge characteristics] Unless otherwise specified Ta=25°C, VEX=5V, VCONN_IN=VCCIN, VDDIO=VCCIN, GND=0V, CVCCIN=4.7μF(Ceramic), CLDO28=CLDO15D=CLDO15A =1μF(Ceramic) Input Analog Pins: VEX,CSENSEP, CSENCEN Output Analog Pins: FB, VDIV (Vnom=PDO setting voltage, Inom=PDO setting current) PDO voltage setting range BRDVR 5 20 V PDO voltage setting step BRDVS 50 mV PDO1 setting voltage VPDO1 5 V PDO2 setting voltage VPDO2 9 V PDO3 setting voltage VPDO3 12 V PDO4 setting voltage VPDO4 15 V PDO5 setting voltage VPDO5 20 V Feedback current threshold voltage Vnom Vnom BRDVTH Vnom V VEX= Rise (PDO=Vnom) -2% +2% Trans conductance BRDTC 1 S ΔIFB/ΔVEX Maximum feedback current BRDImax 2 mA PDO current setting range BRDIR 0 5 A www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 18/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z PDO current setting step PDO1 setting current PDO2 setting current PDO3 setting current PDO4 setting current PDO5 setting current (NOTE12) Current sense detecting rate (PDO=Inom) BRDIS Inom1 Inom2 Inom3 Inom4 Inom5 - BRDCCS - 10 3 3 3 3 5 Inom X1.2 - mA A A A A A - A Inom: Negotiated current (NOTE12)Minimum BRDCCS value is 1.2A. For example, when PDO is 0.5A, BRDCCS value is not 0.5A×1.2, BRDCCS value is 1.2A. www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 19/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.13. Power On Sequence VSVR 0V 5V VEX 0V Status Firmware download (max 230ms) Firmware download Shutdown Normal operation Figure 4-6 Power On Sequence 4.13.1. Reset Timing Please input “L” level more than 100us when need reset. T1 T2 XRST SMBus access SMBus can operate SMBus can operate SMBus can’t operate Figure 4-7 Reset Timing Chart Table 4-13 Reset Timing Characteristics Item Symbol Reset Timing XRST Minimum Pulse SMBus access Start after XRST release 4.14. Limit Unit Min Typ Max T1 100 - - μs T2 230 - - ms Comment Power Off Sequence 4.75V~20V VEX Status 0V Normal Operation Shutdown Figure 4-8 Power Off Sequence www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 20/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 4.15. I/O Equivalence Circuit PIN No. 5 6 9 28 PIN Name VCCIN VSVR VB VEX Equivalent circuit diagram VB Pin VEX Pin Power Selector VSVR Pin VCCIN Internal Circuit Pin 7 DSCHG Pin 16 17 15 14 GPIO0 GPIO1 DBGMODDT DBGRSTCK 10 11 12 13 GPIO4 GPIO5 GPIO6 GPIO7 29 VDIV VCCIN VDDIO VCCIN VDDIO VDDIO Pin GPIO0 GPIO1 DBGMODDT DBGRSTCK VCCIN VCCIN VCCIN Pin www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Pin GPIO4 GPIO5 GPIO6 GPIO7 VCCIN 21/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z PIN No. 30 PIN Name Equivalent circuit diagram FB VCCIN VCCIN VCCIN Pin 18 VDDIO Pin 32 31 CSENSEP CSENSEN I/O Interface Circuit VCCIN Pin 19 21 SMDATA SMCLK VDDIO Pin 32 22 23 24 25 26 LDISCHG_G1 LDISCHG_SRC LDISCHG_G2 SPDSRC_G1 SPDSRC _SRC SPDSRC _G2 Pin Sx_DRV_G1 Sx_DRV_G2 Sx_DRV_SRC Pin www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 22/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z PIN No. 33 34 35 36 37 PIN Name XCLPOFF1 XCLPOFF2 CC1 VCONN_IN CC2 Equivalent circuit diagram Pin VCONN_IN Pin Pin CC2 CC1 Pin Pin XCLPOFF2 XCLPOFF1 4 XRST VCCIN VCCIN Pin 38 40 LDO15DCAP LDO15ACAP VCCIN VCCIN Pin Internal Circuit 39 LDO28CAP VCCIN Pin Internal Circuit www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 23/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z PIN No. 2 PIN Name Equivalent circuit diagram VSTR/ATST2 VCCIN Pin 3 IDSEL/ATST1 VCCIN Pin www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 24/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 5. Application Example Q2 + R3 C5 C1 C2 IFB Q1 C3 SGND 10μF SGND SGND R1 1μF 1kΩ R2 1μF ACDC Primary Side SGND 0.01μF C4 FB VCCIN DSCHG VB SPDSRC_G1 SPDSRC_SRC SPDSRC_G2 VEX LDISCHG_G1 SMDATA LDISCHG_SRC VDIV 100 kΩ LDISCHG_G2 VDDIO 100 100 10 10 kΩ kΩ kΩ kΩ SGND R2 C4 GND SGND R3 VBUS C3 CC1 CC1 (Open or CC2) CC2 SMCLK VDDIO GPIO0 VCONN_IN GPIO1 (Open or 5V Sourece) Captive cable with a USB Type-C plug or Type-C IFB XCLPOFF1 XCLPOFF2 GPIO GPIO6 SGND BM92A21MWV-Z UQFN40V5050A GPIO7 VSVR Receptacle GPIO5 GPIO4 DBGMODDT For TEST For BC1.2 DCP VDDIO D+ D- 100 100 kΩ kΩ 100 100 100 kΩ kΩ kΩ CSENSEN SGND GND GND GND EPAD VCCIN RCS SGND LDO28CAP XRST 100 kΩ LDO15ACAP VSTR/ATST2 VCCIN CSENSEP IDSEL/ATST1 VCCIN LDO15DCAP DBGRSTCK CVCCIN CLDO15A CLDO28 CLDO15D GND SGND GND Figure 5-1 Application Example 5.1. Selection of Components Externally connected Table 5-1 Selection of Components Externally Connected Item (Note 13) VCCIN Capacitance (Note 13) LDO15ACAP Capacitance (Note 13) LDO15DCAP Capacitance (Note 13) LDO28CAP Capacitance Q1,Q2 Gate-Source Capacitance System Phase Compensation (Note13) Capacitance 1 System Phase Compensation (Note13) Capacitance 2 Capacitance for the VBUS setup (Note13) timing Phase Compensation Capacitance (Note13) Current Sensing Resistor System Phase Compensation Resistance Resistance for the VBUS setup timing ACDC Feedback Current Limit Resistor Symbol Limit Unit Min Typ Max CVCCIN CLDO15A CLDO15D CLDO28 0.60 0.47 0.47 0.47 4.7 1.0 1.0 1.0 10 2.2 2.2 2.2 μF μF μF μF CQx_gs 470p - 0.5μ F C1 - - - F C2 - - - F C3 - - - F C4 470p - 0.5μ F RCS - 10 - mΩ R1 - - - Ω R2 - - - Ω R3 - - - Ω Comment Please choose the value suitable for your ACDC system. Please choose the value suitable for your ACDC system. In the case of R2≠0. If R2 is 0Ω, please coordinate C4 so that sum total of C3 and CQ and C4 is in the limit. This resistance tolerance influences OCP detection accuracy. Please choose the value that you can permit. Please choose the value suitable for your ACDC system. Please choose the value suitable for your ACDC system. Please choose the value suitable for your ACDC system. (Note 13) Please set the capacity of the condenser not to be less than the minimum in consideration of temperature properties, DC bias properties. www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 25/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 6. Firmware Revision Firmware Revision 1565h www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 26/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 7. Operational Notes (1) Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. (2) Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. (3) Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. (4) Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. (5) Thermal Consideration Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating. (6) Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. (7) Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. (8) Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. (9) Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 27/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z Operational Notes – continued (10) Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. (11) Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. (12) Regarding the Input Pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Figure xx. Example of monolithic IC structure Resistor Transistor (NPN) Pin A Pin B C E Pin A N P+ P N N P+ N Parasitic Elements N P+ N P N P+ B N C E Parasitic Elements P Substrate P Substrate Parasitic Elements Pin B B GND Parasitic Elements GND GND N Region close-by GND (13) Ceramic Capacitor When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. (14) Area of Safe Operation (ASO) Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation(ASO) (15) Over Current Protection Circuit (OCP) This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit. www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 28/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 8. Ordering Information B M 9 2 A Part Number 9. 2 1 M W V - Package MWV:UQFN40V5050A Z E2 Manufacturing Code Packaging and forming specification E2: Embossed tape and reel Marking Diagrams UQFN40V5050A (TOP VIEW) Part Number Marking M92 A21 LOT Number 1PIN MARK www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 29/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 10. Physical Dimension Tape and Reel Information Package Name www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 UQFN40V5050A 30/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 BM92A21MWV-Z 11. Revision History Date Revision 31.Mar.2017 001 www.rohm.com © 2017 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001 Changes New Release 31/31 TSZ02201-0232AA000560-1-2 31.Mar.2017 Rev.001 Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) intend to use our Products in devices requiring extremely high reliability (such as medical equipment , transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.003 Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.003 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001
BM92A21MWV-ZE2 价格&库存

很抱歉,暂时无法提供与“BM92A21MWV-ZE2”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BM92A21MWV-ZE2
    •  国内价格
    • 1+30.79572
    • 10+26.13237

    库存:49

    BM92A21MWV-ZE2
      •  国内价格 香港价格
      • 1+41.105501+4.96762
      • 10+30.8311610+3.72596
      • 50+27.1576950+3.28202
      • 100+23.19230100+2.80280
      • 500+21.57857500+2.60778
      • 1000+20.848741000+2.51958
      • 2000+20.556812000+2.48430
      • 4000+20.256774000+2.44804

      库存:50