BU2363FV
High-performance Clock Generator Series
DVD-audio Reference
Clock Generators for A/V Equipments
BU2285FV,BU2363FV
No.09005EAT03
●Description
These clock generators are an IC generating three types of clocks - VIDEO, AUIDIO and SYSTEM clocks – necessary for
DVD player systems, with a single chip through making use of the PLL technology. Particularly, the VIDEO clock is a
DVD-Audio reference and yet achieves high C/N characteristics necessary to provide high definition images.
●Features
1) Connecting a crystal oscillator generates multiple clock signals with a built-in PLL.
2) The AUDIO clock provides switching selection outputs
3) The VIDEO clock achieves high C/N characteristics.
4) Single power supply of 3.3 V
●Applications
DVD players
●Line up matrix
Part name
Supply voltage [V]
Reference frequency [MHz]
DVD VIDEO
Output frequency[MHz]
DVD / CD AUDIO
(Switching outputs)
SYSTEM
BU2285FV
3.0 ~ 3.6
36.8640
54.0000
27.0000
13.5000
36.8640 / 33.8688
-
18.4320 / 16.9344
-
33.8688
16.9344
50
-60
SSOP-B24
2
1
1/2
768fs
512fs
384fs
256fs
768fs
384fs
Jitter 1σ [psec]
C/N [dB] (VIDEO)
Package
●Absolute Maximum Ratings (Ta=25℃)
Parameter
Symbol
Supply voltage
VDD
Input voltage
VIN
Storage temperature range
Tstg
Power dissipation
PD
BU2285FV
-0.5 ~ +7.0
-0.5 ~ VDD+0.5
-30 ~ +125
630 *1
BU2363FV
3.0 ~ 3.6
36.8640
54.0000
27.0000
-
36.8640 / 33.8688
-
18.4320 / 16.9344
-
33.8688
16.9344
50
-80
SSOP-B16
BU2363FV
-0.5 ~ +7.0
-0.5 ~ VDD+0.5
-30 ~ +125
450 *2
Unit
V
V
℃
mW
BU2363FV
3.0 ~ 3.6
0.8VDD ~ VDD
0.0 ~ 0.2VDD
-10 ~ +70
15
Unit
V
V
V
℃
pF
*1 In the case of exceeding at Ta = 25℃, 6.3mW should be reduced per 1℃
*2 In the case of exceeding at Ta = 25℃, 4.5mW should be reduced per 1℃
*Operating is not guaranteed.
*The radiation-resistance design is not carried out.
*Power dissipation is measured when the IC is mounted to the printed circuit board.
●Recommended Operating Range
Parameter
Supply voltage
Input H voltage
Input L voltage
Operating temperature
Maximum output load
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Symbol
VDD
VIH
VIL
Topr
CL
BU2285FV
3.0 ~ 3.6
0.8VDD ~ VDD
0.0 ~ 0.2VDD
-5 ~ +70
15
1/16
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Electrical characteristics
◎BU2285FV(VDD=3.3V, Ta=25℃, Crystal frequency 36.8640MHz, unless otherwise specified.)
Limits
Parameter
Symbol
Unit
Conditions
Min.
Typ.
Max.
Output L voltage
VOL
-
-
0.4
V
IOL=4.0mA
Output H voltage
VOH
2.4
-
-
V
IOH=-4.0mA
Consumption current
IDD
-
30
50
mA
CLK54M
CLK54M
-
54.0000
-
MHz XTAL×375 / 128 / 2
CLK27M
CLK27M
-
27.0000
-
MHz XTAL×375 / 128 / 4
CLKDAC_H
-
27.0000
-
CLKDAC_L
-
13.5000
-
CLK33M
CLK33M
-
33.8688
-
MHz XTAL×147 / 40 / 4
CLK16M
CLK16M
-
16.9344
-
MHz XTAL×147 / 40 / 8
CLKA_H
-
36.8640
-
CLKA_L
-
33.8688
-
CLKB_H
-
18.4320
-
CLKB_L
-
16.9344
-
Duty
45
50
55
P-J 1σ
-
50
-
psec *1
P-J
MIN-MAX
-
300
-
psec *2
Rise Time
Tr
-
2.5
-
Fall Time
Tf
-
2.5
-
Tlock
-
-
1
CLKDAC
CLKA
CLKB
Duty
Period-Jitter 1σ
Period-Jitter MIN-MAX
Output Lock-Time
At no load
At CTRLB=OPEN,
MHz XTAL×375 / 128 / 4
At CTRLB=L,
MHz XTAL×375 / 128 / 8
At CTRLA=OPEN,
MHz XTAL output
At CTRLA=L,
MHz XTAL×147 / 40 / 4
At CTRLA=OPEN,
MHz XTAL / 2 output
At CTRLA=L,
MHz XTAL×147 / 40 / 8
%
Measured at a voltage of 1/2VDD
Period of transition time required for the clock
nsec output to reach 80% from 20% of VDD
Period of transition time required for the clock
nsec output to reach 20% from 80% of VDD
msec *3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.
If the input frequency is set to 36.8640MHz, the output frequency will be as listed above.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
2/16
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
◎BU2363FV(VDD=3.3V, Ta=25℃, Crystal frequency 36.8640MHz, unless otherwise specified.)
Limits
Parameter
Symbol
Unit
Conditions
Min.
Typ.
Max.
Output L voltage
VOL
-
-
0.4
V
IOL=4.0mA
Output H voltage
VOH
2.4
-
-
V
IOH=-4.0mA
Consumption current
IDD
-
30
50
mA
CLK54M
CLK54M
-
54.0000
-
MHz XTAL×375 / 64 / 4
CLK27M
CLK27M
-
27.0000
-
MHz XTAL×375 / 64 / 8
CLK33M
CLK33M
-
33.8688
-
MHz XTAL×147 / 40 / 4
CLK16M
CLK16M
-
16.9344
-
MHz XTAL×147 / 40 / 8
CLK768_H
-
36.8640
-
CLK768_L
-
33.8688
-
CLK384_H
-
18.4320
-
CLK384_L
-
16.9344
-
Duty
45
50
55
P-J 1σ
-
50
-
psec *1
P-J
MIN-MAX
-
300
-
psec *2
Rise Time
Tr
-
2.5
-
Fall Time
Tf
-
2.5
-
Tlock
-
-
1
C/N 54M
C/N 54M
-65
-80
-
dB
*4 (At a maximum load)
C/N 33M
C/N 33M
-50
-60
-
dB
*4 (At a maximum load)
CLK768FS1
CLK384FS2
Duty
Period-Jitter 1σ
Period-Jitter MIN-MAX
Output Lock-Time
At no load
At FSEL=OPEN,
MHz XTAL output
At FSEL=L,
MHz XTAL×147 / 40 / 4
At FSEL=OPEN,
MHz XTAL / 2 output
At FSEL=L,
MHz XTAL×147 / 40 / 8
%
Measured at a voltage of 1/2VDD
Period of transition time required for the clock
nsec output to reach 80% from 20% of VDD
Period of transition time required for the clock
nsec output to reach 20% from 80% of VDD
msec *3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.
If the input frequency is set to 36.8640MHz, the output frequency will be as listed above.
Common to BU2285FV and BU2363FV:
*1 Period-Jitter 1σ
This parameter represents standard deviation (1 σ) on cycle distribution data at the time when the output clock cycles
are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
*2 Period-Jitter MIN-MAX
This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock
cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
*3
Output Lock-Time
The Lock-Time represents elapsed time after power supply turns ON to reach a 3.0V voltage, after the system is
switched from Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized
at a specified frequency, respectively.
BU2363FV
*4 Make measurements with settings of SPAN to 100kHz, RBW to 1kHz, and VBW to 100Hz taking the middle point
between (54.0000MHz20kHz) and (33.8688MHz20kHz) as a measurement point.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
3/16
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Reference data (BU2285FV basic data)
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
5.0nsec / div
Fig.1 54MHz output waveform
VDD=3.3V, at CL=15pF
500psec / div
Fig.2 54MHz Period-Jitter
VDD=3.3V, at CL=15pF
10KHz / div
Fig.3 54MHz Spectrum
VDD=3.3V, at CL=15pF
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
Fig.5 27MHz Period-Jitter
VDD=3.3V, at CL=15pF
5.0nsec / div
Fig.4 27MHz output waveform
VDD=3.3V, at CL=15pF
10KHz / div
Fig.6 27MHz Spectrum
VDD=3.3V at CL=15pF
10.0nsec / div
Fig.7 13.5MHz output waveform
VDD=3.3V, at CL=15pF
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
Fig.8 13.5MHz Period-Jitter
VDD=3.3V, at CL=15pF
10KHz / div
Fig.9 13.5MHz Spectrum
VDD=3.3V, at CL=15pF
5.0nsec / div
Fig.10 33.9MHz output waveform
VDD=3.3V, at CL=15pF
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
Fig.11 33.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
4/16
10KHz / div
Fig.12 33.9MHz Spectrum
VDD=3.3V, at CL=15pF
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Reference data (BU2285FV basic data)
10.0nsec / div
Fig.13 16.9MHz output waveform
VDD=3.3V, at CL=15pF
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
10KHz / div
Fig.15 16.9MHz Spectrum
VDD=3.3V, at CL=15pF
500psec / div
Fig.14 16.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
5.0nsec / div
Fig.16 36.9MHz output waveform
VDD=3.3V, at CL=15pF
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
Fig.17 36.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
10KHz / div
Fig.18 36.9MHz Spectrum
VDD=3.3V, at CL=15pF
10.0nsec / div
Fig.19 18.4MHz output waveform
VDD=3.3V, at CL=15pF
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
Fig.20 18.4MHz Period-Jitter
VDD=3.3V, at CL=15pF
5/16
10KHz / div
Fig.21 18.4MHz Spectrum
VDD=3.3V, at CL=15pF
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Reference data (BU2285FV Temperature and Supply voltage variations data)
54
90
VDD=3.7V
VDD=3.3V
VDD=2.9V
52
51
50
49
48
47
46
80
VDD=3.7V
VDD=3.3V
VDD=2.9V
70
60
50
40
30
20
10
-25
0
25
50
75
0
100
Fig.22 54MHz
100
54
90
51
50
49
48
47
46
-25
0
25
50
75
70
60
VDD=3.7V
VDD=3.3V
VDD=2.9V
50
40
30
20
100
100
90
VDD=3.3V
VDD=3.7V
VDD=2.9V
51
50
49
48
47
46
45
50
75
25
50
75
60
VDD=3.7V
VDD=3.3V
VDD=2.9V
50
40
30
20
Period-jitter1σ : PJ-1σ[psec]
90
53
52
51
50
VDD=2.9V
VDD=3.3V
VDD=3.7V
45
0
25
50
75
100
Temperature:T[℃]
Fig.31 33.9MHz
Temperature-Duty
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
25
50
75
100
500
400
VDD=3.7V
VDD=3.3V
VDD=2.9V
300
200
100
0
0
25
50
75
100
-25
0
25
50
75
100
Temperature: T[ ℃]
Fig.30 13.5MHz
Temperature-Period-Jitter MIN-MAX
600
80
70
60
50
40
VDD=2.9V
VDD=3.7V
VDD=3.3V
30
20
500
400
300
200
VDD=2.9V
VDD=3.7V
VDD=3.3V
100
10
0
0
-25
0
Temperature: T[ ℃]
100
46
100
Fig.27 27MHz
Temperature-Period-Jitter MIN-MAX
Fig.29 13.5MHz
Temperature-Period-Jitter 1σ
54
47
200
-25
10
55
48
VDD=2.9V
VDD=3.3V
VDD=3.7V
300
Temperature: T[ ℃]
70
Temperature:T[℃]
49
400
600
-25
Fig.28 13.5MHz
Temperature-Duty
75 100
500
100
80
100
50
0
0
0
25
25
Fig.24 54MHz
Temperature-Period-Jitter MIN-MAX
Fig.26 27MHz
Temperature-Period-Jitter 1σ
54
0
0
Temperature: T[ ℃]
Period-jitter1σ : PJ-1σ[psec]
Duty : Duty[ %]
-25
10
55
-25
100
Temperature: T[℃]
80
Temperature:T[℃]
52
200
600
-25
Fig.25 27MHz
Temperature-Duty
53
300
100
0
45
Duty:Duty[%]
75
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty:Duty[%]
Period-jitter1σ : PJ-1σ[psec]
55
52
50
Fig.23 54MHz
Temperature-Period-Jitter 1σ
Temperature-Duty
VDD=3.7V
VDD=3.3V
VDD=2.9V
VDD=2.9V
VDD=3.3V
VDD=3.7V
400
Temperature:T[℃]
Temperature:T[℃]
53
25
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
-25
500
0
0
45
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty:Duty[%]
53
600
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
100
Period-jitter1σ : PJ-1σ[psec]
55
-25
0
25
50
75
100
Temperature: T[ ℃]
Fig.32 33.9MHz
Temperature-Period-Jitter 1σ
6/16
-25
0
25
50
75
100
Temperature: T[ ℃]
Fig.33 33.9MHz
Temperature-Period-Jitter MIN-MAX
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Reference data (BU2285FV Temperature and Supply voltage variations data)
100
54
90
52
51
50
49
48
VDD=2.9V
VDD=3.3V
VDD=3.7V
47
46
45
80
70
60
50
40
30
VDD=2.9V
VDD=3.3V
VDD=3.7V
20
10
0
25
50
75
100
-25
0
Fig.34 16.9MHz
Temperature-Duty
90
Duty : Duty[ %]
53
52
51
50
VDD=3.7V
VDD=3.3V
VDD=2.9V
46
Period-jitter1σ : PJ-1σ[psec]
100
54
47
45
0
25
50
75
80
60
50
40
30
20
-25
0
25
50
75
90
Period-jitter1σ : PJ-1σ[psec]
100
51
50
49
VDD=2.9V
VDD=3.3V
VDD=3.7V
45
25
50
75
100
Temperature:T[℃]
VDD=2.9V
VDD=3.3V
VDD=3.7V
400
300
200
100
-25
0
25
50
75
100
Fig.39 36.9MHz
Temperature-Period-Jitter MIN-MAX
600
80
70
VDD=3.3V
VDD=2.9V
VDD=3.7V
60
50
40
30
20
10
500
VDD=2.9V
VDD=3.3V
VDD=3.7V
400
300
200
100
0
-25
0
25
50
75
100
Temperature: T[ ℃]
Fig.40 18.4MHz
Temperature-Duty
100
Temperature: T[ ℃]
0
0
75
500
100
Fig.38 36.9MHz
Temperature-Period-Jitter 1σ
52
50
Fig.36 16.9MHz
Temperature-Period-Jitter MIN-MAX
Temperature: T[ ℃]
53
25
0
-25
54
-25
0
10
55
46
VDD=2.9V
VDD=2.9V
VDD=3.3V
VDD=3.3V
VDD=3.7V
VDD=3.7V
100
Temperature: T[ ℃]
VDD=2.9V
VDD=3.3V
VDD=3.7V
70
100
Fig.37 36.9MHz
Temperature-Duty
47
200
600
Temperature:T[℃]
48
300
100
0
-25
Duty : Duty[ %]
75
Fig.35 16.9MHz
Temperature-Period-Jitter 1σ
55
48
50
400
Temperature: T[ ℃]
Temperature: T[ ℃]
49
25
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
-25
500
0
0
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty : Duty[ %]
53
600
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Period-jitter1σ : PJ-1σ[psec]
55
Fig.41 18.4MHz
Temperature-Period-Jitter 1σ
-25
0
25
50
75
100
Temperature: T[ ℃]
Fig.42 18.4MHz
Temperature-Period-Jitter MIN-MAX
Circuit Current : IDD[mA]
50
40
30
20
VDD=3.7V
VDD=3.3V
VDD=2.9V
10
0
-25
0
25
50
75
100
Temperature:T[℃]
Fig.43 Consumption current
(with maximum output load)
Temperature-Consumption current
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
7/16
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Reference data (BU2363FV basic data)
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
3.0nsec / div
500psec / div
Fig.44 54MHz output waveform
VDD=3.3V, at CL=15pF
10KHz / div
Fig.45 54MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.46 54MHz Spectrum
VDD=3.3V, at CL=15pF
5.0nsec / div
Fig.47 27MHz output waveform
VDD=3.3V, at CL=15pF
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
10KHz / div
Fig.49 27MHz Spectrum
VDD=3.3V, at CL=15pF
500psec / div
Fig.48 27MHz Period-Jitter
VDD=3.3V, at CL=15pF
5.0nsec / div
Fig.50 33.9MHz output waveform
VDD=3.3V, at CL=15pF
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
Fig.51 33.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
10KHz / div
Fig.52 33.9MHz Spectrum
VDD=3.3V, at CL=15pF
10.0nsec / div
Fig.53 16.9MHz output waveform
VDD=3.3V, at CL=15pF
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
Fig.54 16.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
8/16
10KHz / div
Fig.55 16.9MHz Spectrum
VDD=3.3V, at CL=15pF
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Reference data (BU2363FV basic data)
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
5.0nsec / div
10KHz / div
Fig.57 36.9MHz Period-Jitter
VDD=3.3V, at CL=15pF
Fig.56 36.9MHz output waveform
VDD=3.3V, at CL=15pF
Fig.58 36.9MHz Spectrum
VDD=3.3V, at CL=15pF
10.0nsec / div
Fig.59 18.4MHz output waveform
VDD=3.3V, at CL=15pF
10dB / div
1.0V / div
1.0V / div
RBW=1KHz
VBW=100Hz
500psec / div
Fig.60 18.4MHz Period-Jitter
VDD=3.3V, at CL=15pF
10KHz / div
Fig.61 18.4MHz Spectrum
VDD=3.3V, at CL=15pF
●Reference data (BU2363FV Temperature and Supply voltage variations data)
100
52
51
50
49
48
47
46
45
600
VDD=3.7V
VDD=3.3V
VDD=2.9V
90
80
70
60
50
40
30
20
10
0
-25
0
25
50
75
100
0
Temperature:T[℃]
50
75
52
51
50
49
48
47
46
45
0
25
50
75
200
100
-25
0
100
Temperature:T[℃]
Fig.65 27MHz
Temperature-Duty
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
25
50
75
100
Temperature: T[ ℃]
Fig.64 54MHz
Temperature-Period-Jitter MIN-MAX
600
90
VDD=3.3V
VDD=2.9V
VDD=3.7V
80
70
60
50
40
30
20
10
0
-25
300
100
100
VDD=3.7V
VDD=3.3V
VDD=2.9V
Period-jitter1σ : PJ-1σ[psec]
Duty : Duty[%]
25
Fig.63 54MHz
Temperature-Period-Jitter 1σ
55
53
400
Temperature:T[℃]
Fig.62 54MHz
Temperature-Duty
54
VDD=2.9V
VDD=3.3V
VDD=3.7V
500
0
-25
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty : Duty[%]
53
Period-jitter1σ : PJ-1σ[psec]
VDD=3.7V
VDD=3.3V
VDD=2.9V
54
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
55
VDD=2.9V
VDD=3.3V
VDD=3.7V
500
400
300
200
100
0
-25
0
25
50
75
100
Temperature:T[℃]
Fig.66 27MHz
Temperature-Period-Jitter 1σ
9/16
-25
0
25
50
75
100
Temperature: T[ ℃]
Fig.67 27MHz
Temperature-Period-Jitter MIN-MAX
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Reference data (BU2363FV Temperature and Supply voltage variations data)
90
VDD=3.7V
VDD=3.3V
VDD=2.9V
52
51
50
49
48
47
46
80
VDD=3.3V
VDD=3.7V
VDD=2.9V
70
60
50
40
30
20
10
0
45
0
25
50
75
100
0
Temperature:T[℃]
90
VDD=3.7V
VDD=3.3V
VDD=2.9V
51
50
49
48
46
-25
0
25
50
75
60
50
40
30
20
-25
Period-jitter1σ : PJ-1σ[psec]
VDD=3.7V
VDD=3.3V
VDD=2.9V
51
50
49
48
47
46
45
0
25
50
75
70
60
50
40
30
20
90
Period-jitter1σ : PJ-1σ[psec]
100
VDD=3.7V
VDD=3.3V
VDD=2.9V
51
50
49
48
47
46
25
50
75
25
50
75
0
25
100
Temperature:T[℃]
Fig.77 18.4MHz
Temperature-Duty
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
50
75
100
Fig.73 16.9MHz
Temperature-Period-Jitter
VDD=3.3V
VDD=2.9V
VDD=3.7V
500
400
300
200
100
100
-25
0
25
50
75
100
Temperature: T[ ℃]
Fig.76 36.9MHz
Temperature-Period-Jitter MIN-MAX
600
VDD=2.9V
VDD=3.3V
VDD=3.7V
80
70
60
50
40
30
20
10
0
45
0
100
0
0
Fig.75 36.9MHz
Temperature-Period-Jitter 1σ
54
-25
200
Temperature:T[℃]
55
52
300
-25
10
-25
Fig.74 36.9MHz
Temperature-Duty
100
Temperature: T[ ℃]
VDD=2.9V
VDD=3.3V
VDD=3.7V
80
100
75
600
Temperature:T[℃]
53
400
100
0
75
50
VDD=3.7V
VDD=3.3V
VDD=2.9V
Temperature: T[ ℃]
90
50
500
Fig.72 16.9MHz
Temperature-Period-Jitter 1σ
100
25
25
0
-25
54
0
0
Fig.70 33.9MHz
Temperature-Period-Jitter MIN-MAX
10
55
-25
100
Temperature: T[ ℃]
VDD=3.7V
VDD=3.3V
VDD=2.9V
70
Temperature:T[℃]
52
200
600
80
100
Fig.71 16.9MHz
Temperature-Duty
53
300
100
0
45
Duty : Duty[%]
75
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty:Duty[%]
Period-jitter1σ : PJ-1σ[psec]
100
54
47
Duty:Duty[%]
50
Fig.69 33.9MHz
Temperature-Period-Jitter 1σ
55
52
VDD=3.7V
VDD=3.3V
VDD=2.9V
400
Temperature:T[℃]
Fig.68 33.9MHz
Temperature-Duty
53
25
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
-25
500
0
-25
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
Duty:Duty[%]
53
600
Period-jitterMIN-MAX:
PJ-MIN-MAX[psec]
100
54
Period-jitter1σ : PJ-1σ[psec]
55
500
VDD=3.3V
VDD=2.9V
VDD=3.7V
400
300
200
100
0
-25
0
25
50
75
100
Temperature:T[℃]
Fig.78 18.4MHz
Temperature-Period-Jitter 1σ
10/16
-25
0
25
50
75
100
Temperature: T[ ℃]
Fig.79 18.4MHz
Temperature-Period-Jitter
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Reference data (BU2363FV Temperature and Supply voltage variations data)
Circuit Current : IDD[mA]
50
40
30
20
VDD=3.7V
VDD=3.3V
VDD=2.9V
10
0
-25
0
25
50
75
100
Temperature:T[℃]
Fig.80 Consumption current
(with maximum output load)
Temperature-Consumption current
●Block diagram, Pin assignment
◎BU2285FV
23:CTRLB
(CTRLB=OPEN:27.0000MHz
CTRL=L
:13.5000MHz)
XTAL
OSC
8:XTALIN
9:XTALOUT
PLL1
1/2
22:CLK54M
(54.0000MHz)
1/4
16:CLK27M
(27.0000MHz)
1/8
PLL2
20:CLKDAC
(CTRLB=OPEN:27.0000MHz
CTRLB=L
:13.5000MHz)
1/4
24:CLK33M
(33.8688MHz )
1/8
3:CLK16M
(16.9344MHz)
12:CLKA
(CTRLA=OPEN:36.8640MHz
CTRLA=L
:33.8688MHz)
1/2
13:CLKB
(CTRLA=OPEN:18.4320MHz
CTRLA=L
:16.9344MHz)
21:OE
11:CTRA
(CTRLA=OPEN:48.0kHz type
CTRLA=L
:44.1kHz type)
Fig.81
1:VDD1
24:CLK33M
2:VSS1
23:CTRLB
3:CLK16M
22:CLK54M
4:AVSS
21:OE
6:AVDD
7:AVSS
8:XTALIN
BU2285FV
5:AVDD
CTRLA
20:CLKDAC
19:DVDD
CLKA
CLKB
L
33.8688MHz
16.9344MHz
OPEN
36.8640MHz
18.4320MHz
18:DVSS
17:DVSS
9:XTALOUT
16:CLK27M
10:NC
15:VDD2
11:CTRLA
14:VSS2
12:CLKA
13:CLKB
CTRLB
CLKDAC
L
13.5000MHz
OPEN
27.0000MHz
Fig.82
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
11/16
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Block diagram, Pin assignment
◎BU2363FV
1/4
3:CLK54M
(54.0000MHz)
MULTI-PLL
Technology
1/8
4:CLK27M
(27.0000MHz)
PLL2
1/4
15:CLK33M
(33.8688MHz)
1/8
13:CLK16M
(16.9344MHz)
XTALIN=36.8640MHz
7:XTALIN
8:XTALOUT
XTAL
OSC
10:768FS1
(FSEL=OPEN:36.8640MHz
FSEL=L
:33.8688MHz)
1/2
9:384FS2
(FSEL=OPEN:18.4320MHz
FSEL=L
:16.9344MHz)
16:OE
14:FSEL
(FSEL=OPEN:48.0kHz type
FSEL=L
:44.1kHz type)
Fig.83
1:VDD2
16:OE
2:VSS2
15:CLK33M
4:CLK27M
5:AVDD
6:AVSS
BU2363FV
3:CLK254M
14:FSEL
13:CLK16M
12:DVDD
11:DVSS
7:XTALIN
10:768FS1
8:XTALOUT
9:384FS2
Fig.84
FSEL
L
OPEN
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
CLK768FS
33.8688MHz
36.8640MHz
12/16
CLK384FS
16.9344MHz
18.4320MHz
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Example of application circuit
◎BU2285FV
1:VDD1
24:CLK33M
33.8688MHz
2:VSS1
23:CTRLB
3:CLK16M
22:CLK54M
OPEN:27.0000MHz
L
:13.5000MHz
54.0000MHz
4:AVSS
21:OE
0.1uF
16.9344MHz
5:AVDD
6:AVDD
0.1uF
7:AVSS
8:XTALIN
BU2285FV
0.1uF
20:CLKDAC
19:DVDD
0.1uF
18:DVSS
17:DVSS
9:XTALOUT
16:CLK27M
10:NC
15:VDD2
11:CTRLA
14:VSS2
:44.1kHz type
36.8640MHz
or 33.8688MHz
12:CLKA
13:CLKB
27.0000MHz
0.1uF
OPEN:48.0kHz type
L
OPEN:Enable
L
:Disable
27.0000MHz
or 13.5000MHz
18.4320MHz
or 16.9344MHz
Fig.85
Pin Function
PIN No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
PIN Name
VDD1
VSS1
CLK16M
AVSS
AVDD
AVDD
AVSS
XTALIN
XTALOUT
NC
CTRLA
CLKA
CLKB
VSS2
VDD2
CLK27M
DVSS
DVSS
DVDD
CLKDAC
OE
CLK54M
CTRLB
CLK33M
PIN Function
33MHz system power supply
33MHz system GND
16.9344MHz output
Analog GND
Analog power supply
Analog power supply
Analog GND
Crystal input terminal
Crystal output terminal
NC
CLKA or B output selection (with pull-up)
CTRLA=OPEN:36.8640MHz, CTRLA=L:33.8688MHz
CTRLA=OPEN:18.4320MHz, CTRLA=L:16.9344MHz
CLKA, B GND
CLKA, B power supply
27.0000MHz output
Digital GND
Digital GND
Digital power supply
CTRLB=OPEN:27.0000MHz, CTRLB=L:13.5000MHz
Output enable (with pull-up), OPEN:enable, L:disable
54.0000MHz output
CLKDAC output selection(with pull-up)
33.8688MHz output
Note) Basically, mount ICs to the printed circuit board for use.
(If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.)
Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD1) and 2PIN (VSS1), 4PIN (AVSS) and 5PIN (AVDD), 6PIN (AVDD) and 7PIN
(AVSS), 14PIN (VSS2) and 15PIN (VDD2), and 17PIN/18PIN (DVSS) and 19PIN (DVDD), respectively.
Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal.
For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2285FV from the printed circuit board or to insert a
capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
13/16
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Example of application circuit
◎BU2363FV
1:VDD2
16:OE
OPEN:Enable
L
:Disable
2:VSS2
15:CLK33M
33.8688MHz
14:FSEL
OPEN:48.0kHz type
L
:44.1kHz type
16.9344MHz
0.1uF
3:CLK254M
27.0000MHz
4:CLK27M
5:AVDD
0.1uF
6:AVSS
BU2363FV
54.0000MHz
13:CLK16M
12:DVDD
0.1uF
11:DVSS
7:XTALIN
10:768FS1
8:XTALOUT
9:384FS2
36.8640MHz
or 33.8688MHz
18.4320MHz
or 16.9344MHz
Fig.86
Pin Function
PIN No.
1
2
3
4
5
6
7
8
9
10
11
12
13
PIN Name
VDD2
VSS2
CLK54M
CLK27M
AVDD
AVSS
XTALIN
XTALOUT
384FS2
768FS1
DVSS
DVDD
CLK16M
14
FSEL
15
16
CLK33M
OE
PIN Function
27MHz, 54MHz power supply
27MHz, 54MHzGND
54.0000MHz output
27.0000MHz output
Analog power supply
Analog GND
Crystal input terminal
Crystal output terminal
FSEL=OPEN:18.4320MHz, FSEL=L:16.9344MHz
FSEL=OPEN:36.8640MHz, FSEL=L:33.8688MHz
Digital GND
Digital power supply
16.9344MHz output
9, 10PIN output selection(with pull-up)
OPEN:18.4320MHz(9PIN), 36.8640MHz(10PIN)
L:16.9344MHz(9PIN), 33.8688MHz(10PIN)
33.8688MHz output
Output enable (with pull-up), OPEN:enable, L:disable
Note) Basically, mount ICs to the printed circuit board for use.
(If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.)
Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN (AVSS), 11PIN (DVSS) and 12PIN
(DVDD), respectively.
Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal.
For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2363FV from the printed circuit board or to insert a
capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal.
Even though we believe that the example of recommended circuit is worth of a recommendation, please be sure to thoroughly recheck the characteristics
before use.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
14/16
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Notes for use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr),
etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit.
If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical
safety measures including the use of fuses, etc.
(2) Recommended operating conditions
These conditions represent a range within which characteristics can be provided approximately as expected. The
electrical characteristics are guaranteed under the conditions of each parameter.
(3) Reverse connection of power supply connector
The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown
due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply
terminal.
(4) Power supply line
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.
In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has
the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus
suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the
wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At
the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be
used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.
(5) GND voltage
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
(6) Short circuit between terminals and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between
the terminal and the power supply or the GND terminal, the ICs can break down.
(7) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(8) Inspection with set PCB
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig.
After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition,
for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the
transportation and the storage of the set PCB.
(9) Input terminals
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a
voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to
the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is
applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of
electrical characteristics.
(10) Ground wiring pattern
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the
small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
(11) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
15/16
2009.04 - Rev.A
Technical Note
BU2285FV,BU2363FV
●Ordering part number
B
U
2
Part No.
2
8
5
F
Part No.
2285
2363
V
-
Package
FV:SSOP-B24
FV:SSOP-B16
E
2
Packaging and forming specification
E2: Embossed tape and reel
SSOP-B24
7.8 ± 0.2
(MAX 8.15 include BURR)
13
Embossed carrier tape
Quantity
2000pcs
0.3Min.
1
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
12
0.15 ± 0.1
0.1
1.15 ± 0.1
Tape
Direction
of feed
5.6 ± 0.2
7.6 ± 0.3
24
0.1
0.65
0.22 ± 0.1
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SSOP-B16
5.0±0.2
9
0.3Min.
4.4±0.2
6.4±0.3
16
1
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
8
0.10
1.15±0.1
0.15±0.1
0.1
0.65
1pin
0.22±0.1
(Unit : mm)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Reel
16/16
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2009.04 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of
any of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
R0039A