0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BU2363FV

BU2363FV

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    BU2363FV - DVD-Audio Reference Clock Generator for Audio/Video Appliance - Rohm

  • 数据手册
  • 价格&库存
BU2363FV 数据手册
TECHNICAL NOTE High-performance Clock Generator Series DVD-Audio Reference Clock Generator for Audio/Video Appliance BU2285FV,BU2363FV ●Description These clock generators are an IC generating three types of clocks - VIDEO, AUIDIO and SYSTEM clocks – necessary for DVD player systems, with a single chip through making use of the PLL technology. Particularly, the VIDEO clock is a DVD-Audio reference and yet achieves high C/N characteristics necessary to provide high definition images. ●Features 1) Connecting a crystal oscillator generates multiple clock signals with a built-in PLL. 2) The AUDIO clock provides switching selection outputs 3) The VIDEO clock achieves high C/N characteristics. 4) Single power supply of 3.3 V ●Aplications DVD players ●Lineup Part name Supply voltage [V] Reference frequency [MHz] DVD VIDEO Output frequency [MHz] 2 1 1/2 768fs 512fs 384fs 256fs 768fs 384fs BU2285FV 3.0 ~ 3.6 36.8640 54.0000 27.0000 13.5000 36.8640 / 33.8688 - 18.4320 / 16.9344 - 33.8688 16.9344 50 -60 SSOP-B24 BU2363FV 3.0 ~ 3.6 36.8640 54.0000 27.0000 - 36.8640 / 33.8688 - 18.4320 / 16.9344 - 33.8688 16.9344 50 -80 SSOP-B16 DVD / CD AUDIO (Switching outputs) SYSTEM Jitter 1σ [psec] C/N [dB] (VIDEO) Package Sep. 2008 ●Absolute Maximum Ratings (Ta=25℃) Symbol BU2285FV BU2363FV VDD -0.5 ~ +7.0 -0.5 ~ +7.0 VIN -0.5 ~ VDD+0.5 -0.5 ~ VDD+0.5 Storage temperature range Tstg -30 ~ +125 -30 ~ +125 Power dissipation PD 630 *1 450 *2 *1 In the case of exceeding at Ta = 25℃, 6.3mW should be reduced per 1℃ *2 In the case of exceeding at Ta = 25℃, 4.5mW should be reduced per 1℃ *Operating is not guaranteed. *The radiation-resistance design is not carried out. *Power dissipation is measured when the IC is mounted to the printed circuit board. Parameter Supply voltage Input voltage Unit V V ℃ mW ●Recommended Operating Range Parameter Supply voltage Input H voltage Input L voltage Operating temperature Maximum output load Symbol VDD VIH VIL Topr CL BU2285FV 3.0 ~ 3.6 0.8VDD ~ VDD 0.0 ~ 0.2VDD -5 ~ +70 15 BU2363FV 3.0 ~ 3.6 0.8VDD ~ VDD 0.0 ~ 0.2VDD -10 ~ +70 15 Unit V V V ℃ pF ●Electrical characteristics ◎BU2285FV(VDD=3.3V, Ta=25℃, Crystal frequency 36.8640MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions Output L voltage VOL - - 0.4 V IOL=4.0mA Output H voltage VOH 2.4 - - V IOH=-4.0mA Consumption current IDD - 30 50 mA At no load CLK54M CLK54M - 54.0000 - MHz XTAL×375 / 128 / 2 CLK27M CLK27M - 27.0000 - MHz XTAL×375 / 128 / 4 CLKDAC_H CLKDAC CLKDAC_L CLK33M CLK16M CLK33M CLK16M CLKA_H CLKA CLKA_L CLKB_H CLKB CLKB_L Duty Period-Jitter 1σ Period-Jitter MIN-MAX Rise Time Fall Time Output Lock-Time Duty P-J 1σ P-J MIN-MAX Tr Tf Tlock - 45 - - - - - 16.9344 50 50 300 2.5 2.5 - - 55 - - - - 1 MHz % psec psec nsec nsec msec - - 33.8688 18.4320 - - MHz MHz - - - - 13.5000 33.8688 16.9344 36.8640 - - - - MHz MHz MHz MHz - 27.0000 - MHz At CTRLB=OPEN, XTAL×375 / 128 / 4 At CTRLB=L, XTAL×375 / 128 / 8 XTAL×147 / 40 / 4 XTAL×147 / 40 / 8 At CTRLA=OPEN, XTAL output At CTRLA=L, XTAL×147 / 40 / 4 At CTRLA=OPEN, XTAL / 2 output At CTRLA=L, XTAL×147 / 40 / 8 Measured at a voltage of 1/2VDD *1 *2 Period of transition time required for the clock output to reach 80% from 20% of VDD Period of transition time required for the clock output to reach 20% from 80% of VDD *3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN. If the input frequency is set to 36.8640MHz, the output frequency will be as listed above. 2/16 ◎BU2363FV(VDD=3.3V, Ta=25℃, Crystal frequency 36.8640MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions Output L voltage VOL - - 0.4 V IOL=4.0mA Output H voltage VOH 2.4 - - V IOH=-4.0mA Consumption current IDD - 30 50 mA At no load CLK54M CLK54M - 54.0000 - MHz XTAL×375 / 64 / 4 CLK27M CLK27M - 27.0000 - MHz XTAL×375 / 64 / 8 CLK33M CLK33M - 33.8688 - MHz XTAL×147 / 40 / 4 CLK16M CLK16M - 16.9344 - MHz XTAL×147 / 40 / 8 CLK768_H CLK768FS1 CLK768_L CLK384_H CLK384FS2 CLK384_L Duty Period-Jitter 1σ Period-Jitter MIN-MAX Rise Time Fall Time Output Lock-Time - - - - 45 - - - - - -65 -50 36.8640 33.8688 18.4320 16.9344 50 50 300 2.5 2.5 - -80 -60 - - - - 55 - - - - 1 - - MHz MHz MHz MHz % psec psec nsec nsec msec dB dB At FSEL=OPEN, XTAL output At FSEL=L, XTAL×147 / 40 / 4 At FSEL=OPEN, XTAL / 2 output At FSEL=L, XTAL×147 / 40 / 8 Measured at a voltage of 1/2VDD Duty P-J 1σ P-J MIN-MAX Tr Tf Tlock C/N 54M C/N 33M *1 *2 Period of transition time required for the clock output to reach 80% from 20% of VDD Period of transition time required for the clock output to reach 20% from 80% of VDD C/N 54M C/N 33M *3 *4 (At a maximum load) *4 (At a maximum load) Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN. If the input frequency is set to 36.8640MHz, the output frequency will be as listed above. Common to BU2285FV and BU2363FV: *1 Period-Jitter 1σ This parameter represents standard deviation (1 ) on cycle distribution data at the time when the output clock cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd. Period-Jitter MIN-MAX This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd. Output Lock-Time The Lock-Time represents elapsed time after power supply turns ON to reach a 3.0V voltage, after the system is switched from Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized at a specified frequency, respectively. BU2363FV *4 Make measurements with settings of SPAN to 100kHz, RBW to 1kHz, and VBW to 100Hz taking the middle point between (54.0000MHz20kHz) and (33.8688MHz20kHz) as a measurement point. *2 *3 3/16 ●Reference data (BU2285FV basic data) RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 5.0nsec/div Fig.1 54MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.2 54MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 10KHz/div Fig.3 54MHz Spectrum VDD=3.3V, at CL=15pF RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 5.0nsec/div Fig.4 27MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.5 27MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 10KHz/div Fig.6 27MHz Spectrum VDD=3.3V at CL=15pF RBW=1KHz VBW=100Hz 500psec/div 10dB/div 1.0V/div 10.0nsec/div Fig.7 13.5MHz output waveform VDD=3.3V, at CL=15pF 1.0V/div 10KHz/div Fig.9 13.5MHz Spectrum VDD=3.3V, at CL=15pF Fig.8 13.5MHz Period-Jitter VDD=3.3V, at CL=15pF RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 5.0nsec/div Fig.10 33.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.11 33.9MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 10KHz/div Fig.12 33.9MHz Spectrum VDD=3.3V, at CL=15pF 4/16 ●Reference data (BU2285FV basic data) RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 10.0nsec/div Fig.13 16.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.14 16.9MHz Period-Jitter VDD=3.3V, at CL=15pF 1.0V/div 1.0V/div 5.0nsec/div Fig.16 36.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.17 36.9MHz Period-Jitter VDD=3.3V, at CL=15pF 1.0V/div 1.0V/div 10.0nsec/div Fig.19 18.4MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.20 18.4MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 10dB/div 10KHz/div Fig.18 36.9MHz Spectrum VDD=3.3V, at CL=15pF RBW=1KHz VBW=100Hz 10dB/div 10KHz/div Fig.15 16.9MHz Spectrum VDD=3.3V, at CL=15pF RBW=1KHz VBW=100Hz 10KHz/div Fig.21 18.4MHz Spectrum VDD=3.3V, at CL=15pF 5/16 ●Reference data (BU2285FV Temperature and Supply voltage variations data) 55 Period-jitter1σ :PJ-1σ[psec] 100 90 80 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 600 Period-jitterMIN-MAX : PJ-MIN-MAX[psec] 500 400 300 200 100 0 -25 0 25 50 75 100 Temperature:T[℃] 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] VDD=3.7V VDD=3.3V VDD=2.9V VDD=3.7V VDD=3.3V VDD=2.9V VDD=2.9V VDD=3.3V VDD=3.7V Temperature:T[℃] Fig.22 54MHz Temperature-Duty 55 Period-jitter1σ :PJ-1σ[psec] Fig.23 54MHz Temperature-Period-Jitter 1σ 100 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 80 Fig.24 54MHz Temperature-Period-Jitter MIN-MAX 600 500 400 300 200 100 0 -25 0 25 50 75 100 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] VDD=3.7V VDD=3.3V VDD=2.9V Period-jitterMIN-MAX: PJ-MIN-MAX[psec] VDD=3.7V VDD=3.3V VDD=2.9V VDD=2.9V VDD=3.3V VDD=3.7V Temperature:T[℃] Temperature:T[℃] Fig.25 27MHz Temperature-Duty 55 Period-jitter1σ :PJ-1σ[psec] 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] Fig.26 27MHz Temperature-Period-Jitter 1σ 100 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Temperature:T[℃] Fig.27 27MHz Temperature-Period-Jitter MIN-MAX 600 500 400 300 200 100 0 -25 0 25 50 75 100 Temperature:T[℃] Period-jitterMIN-MAX: PJ-MIN-MAX[psec] VDD=3.3V VDD=3.7V VDD=2.9V 80 VDD=3.7V VDD=3.3V VDD=2.9V VDD=3.7V VDD=3.3V VDD=2.9V Fig.28 13.5MHz Temperature-Duty 55 54 53 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] Fig.29 13.5MHz Temperature-Period-Jitter 1σ 100 Period-jitter1σ:PJ-1σ[psec] 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Temperature:T[℃] Fig.30 13.5MHz Temperature-Period-Jitter MIN-MAX 600 500 400 300 200 100 0 -25 0 25 50 75 100 Temperature:T[℃] VDD=2.9V VDD=3.3V VDD=3.7V VDD=2.9V VDD=3.7V VDD=3.3V Period-jitterMIN-MAX: PJ-MIN-MAX[psec] 80 Duty:Duty[%] VDD=2.9V VDD=3.7V VDD=3.3V Fig.31 33.9MHz Temperature-Duty Fig.32 33.9MHz Temperature-Period-Jitter 1σ Fig.33 33.9MHz Temperature-Period-Jitter MIN-MAX 6/16 ● Reference data (BU2285FV Temperature and Supply voltage variations data) 55 100 27.000000 MHz 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] Period-jitter1σ :PJ-1σ[psec] 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Temperature:T[℃] 600 500 400 300 200 100 0 -25 0 25 50 75 100 Temperature:T[℃] Period-jitterMIN-MAX: PJ-MIN-MAX[psec] 80 VDD=2.9V VDD=3.3V VDD=3.7V VDD=2.9V VDD=3.3V VDD=3.7V VDD=2.9V VDD=2.9V VDD=3.3V VDD=3.3V VDD=3.7V VDD=3.7V Fig.34 16.9MHz Temperature-Duty 55 Period-jitter1σ :PJ-1σ[psec] 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] Fig.35 16.9MHz Temperature-Period-Jitter 1σ 100 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Temperature:T[℃] Period-jitterMIN-MAX: PJ-MIN-MAX[psec] 80 Fig.36 16.9MHz Temperature-Period-Jitter MIN-MAX 600 500 400 300 200 100 0 -25 0 25 50 75 100 Temperature:T[℃] VDD=2.9V VDD=3.3V VDD=3.7V VDD=2.9V VDD=3.3V VDD=3.7V VDD=3.7V VDD=3.3V VDD=2.9V Fig.37 36.9MHz Temperature-Duty 55 Fig.38 36.9MHz Temperature-Period-Jitter 1σ 100 Period-jitter1σ :PJ-1σ[psec] 90 80 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Fig.39 36.9MHz Temperature-Period-Jitter MIN-MAX 600 500 400 300 200 100 0 -25 0 25 50 75 100 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] Period-jitterMIN-MAX: PJ-MIN-MAX[psec] VDD=3.3V VDD=2.9V VDD=3.7V VDD=2.9V VDD=3.3V VDD=3.7V VDD=2.9V VDD=3.3V VDD=3.7V Temperature:T[℃] Temperature:T[℃] Fig.40 18.4MHz Temperature-Duty 50 Circuit Current :IDD[mA] 40 30 20 10 0 -25 0 25 50 75 100 Temperature:T[℃] Fig.41 18.4MHz Temperature-Period-Jitter 1σ Fig.42 18.4MHz Temperature-Period-Jitter MIN-MAX VDD=3.7V VDD=3.3V VDD=2.9V Fig.43 Consumption current (with maximum output load) Temperature-Consumption current 7/16 ●Reference data (BU2363FV basic data) RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 3.0nsec/div Fig.44 54MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.45 54MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 10KHz/div Fig.46 54MHz Spectrum VDD=3.3V, at CL=15pF RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 10dB/div 5.0nsec/div Fig.47 27MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.48 27MHz Period-Jitter VDD=3.3V, at CL=15pF 10KHz/div Fig.49 27MHz Spectrum VDD=3.3V, at CL=15pF RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 5.0nsec/div Fig.50 33.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.51 33.9MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 10KHz/div Fig.52 33.9MHz Spectrum VDD=3.3V, at CL=15pF RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 10dB/div 10.0nsec/div Fig.53 16.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.54 16.9MHz Period-Jitter VDD=3.3V, at CL=15pF 10KHz/div Fig.55 16.9MHz Spectrum VDD=3.3V, at CL=15pF 8/16 ●Reference data (BU2363FV basic data) RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 5.0nsec/div Fig.56 36.9MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.57 36.9MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 10KHz/div Fig.58 36.9MHz Spectrum VDD=3.3V, at CL=15pF RBW=1KHz VBW=100Hz 1.0V/div 1.0V/div 10.0nsec/div Fig.59 18.4MHz output waveform VDD=3.3V, at CL=15pF 500psec/div Fig.60 18.4MHz Period-Jitter VDD=3.3V, at CL=15pF 10dB/div 10KHz/div Fig.61 18.4MHz Spectrum VDD=3.3V, at CL=15pF 600 ●Reference data (BU2363FV Temperature and Supply voltage variations data) 55 Period-jitter1σ : PJ-1σ[psec] 100 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] 80 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 VDD=3.7V VDD=3.3V VDD=2.9V VDD=3.7V VDD=3.3V VDD=2.9V 500 400 300 200 100 0 -25 0 25 VDD=2.9V VDD=3.3V VDD=3.7V 75 100 50 75 100 Temperature:T[℃] Temperature: T[ ℃] Temperature: T[ ℃] Fig.62 54MHz Temperature-Duty 55 Period-jitter1σ : PJ-1σ[psec] Fig.63 54MHz Temperature-Period-Jitter 1σ 100 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Fig.64 54MHz Temperature-Period-Jitter MIN-MAX 600 500 400 300 200 100 0 -25 0 25 50 75 100 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] VDD=3.3V VDD=2.9V VDD=3.7V Temperature: T[ ℃] Period-jitterMIN-MAX: PJ-MIN-MAX[psec] VDD=3.7V VDD=3.3V VDD=2.9V 80 VDD=2.9V VDD=3.3V VDD=3.7V Temperature: T[ ℃] Fig.65 27MHz Temperature-Duty Fig.66 27MHz Temperature-Period-Jitter 1σ Fig.67 27MHz Temperature-Period-Jitter MIN-MAX 9/16 ●Reference data (BU2363FV Temperature and Supply voltage variations data) 55 Period-jitter1σ : PJ-1σ[psec] 100 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 80 600 54 53 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] Period-jitterMIN-MAX: PJ-MIN-MAX[psec] Duty:Duty[%] VDD=3.7V VDD=3.3V VDD=2.9V VDD=3.3V VDD=3.7V VDD=2.9V 500 400 300 200 100 0 -25 0 25 50 VDD=3.7V VDD=3.3V VDD=2.9V 75 100 Temperature: T[ ℃] Temperature:T[℃] Fig.68 33.9MHz Temperature-Duty 55 Period-jitter1σ : PJ-1σ[psec] Fig.69 33.9MHz Temperature-Period-Jitter 1σ 100 90 80 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Fig.70 33.9MHz Temperature-Period-Jitter MIN-MAX 600 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] Period-jitterMIN-MAX: PJ-MIN-MAX[psec] VDD=3.7V VDD=3.3V VDD=2.9V VDD=3.7V VDD=3.3V VDD=2.9V 500 400 300 200 100 0 -25 0 25 VDD=3.7V VDD=3.3V VDD=2.9V 50 75 100 Temperature: T[ ℃] Fig.71 16.9MHz Temperature-Duty Fig.72 16.9MHz Temperature-Period-Jitter 1σ Fig.73 16.9MHz Temperature-Period-Jitter MIN-MAX Temperature:T[℃] 55 Period-jitter1σ : PJ-1σ[psec] 100 600 54 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 70 60 50 40 30 20 10 0 -25 0 25 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] VDD=3.7V VDD=3.3V VDD=2.9V 90 80 VDD=2.9V VDD=3.3V VDD=3.7V 500 400 300 200 100 0 VDD=3.3V VDD=2.9V VDD=3.7V 50 75 100 50 75 100 -25 0 25 50 75 100 Temperature:T[℃] Temperature: T[ ℃] Temperature: T[ ℃] Fig.74 36.9MHz Temperature-Duty 55 53 Duty:Duty[%] 52 51 50 49 48 47 46 45 -25 0 25 50 75 100 Temperature:T[℃] 54 Fig.75 36.9MHz Temperature-Period-Jitter 1σ 100 90 70 60 50 40 30 20 10 0 -25 0 25 50 75 100 Fig.76 36.9MHz Temperature-Period-Jitter MIN-MAX 600 Period-jitterMIN-MAX: PJ-MIN-MAX[psec] VDD=3.7V VDD=3.3V VDD=2.9V Period-jitter1σ : PJ-1σ[psec] 80 VDD=2.9V VDD=3.3V VDD=3.7V 500 400 300 200 100 0 -25 0 25 VDD=3.3V VDD=2.9V VDD=3.7V 50 75 100 Temperature: T[ ℃] Temperature: T[ ℃] Fig.77 18.4MHz Temperature-Duty Fig.78 18.4MHz Temperature-Period-Jitter 1σ Fig.79 18.4MHz Temperature-Period-Jitter MIN-MAX 10/16 ●Reference data (BU2363FV Temperature and Supply voltage variations data) 50 Circuit Current : IDD[mA] 40 30 20 10 0 -25 0 25 50 75 100 VDD=3.7V VDD=3.3V VDD=2.9V Temperature: T[ ℃] Fig.80 Consumption current (with maximum output load) Temperature-Consumption current ● Block diagram, Pin assignment ◎BU2285FV 23:CTRLB (CTRLB=OPEN:27.0000MHz CTRL=L :13.5000MHz) 1/2 8:XTALIN 9:XTALOUT 22:CLK54M (54.0000MHz) XTAL OSC PLL1 1/4 16:CLK27M (27.0000MHz) 20:CLKDAC (CTRLB=OPEN:27.0000MHz CTRLB=L :13.5000MHz 24:CLK33M (33.8688MHz) 1/8 PLL2 1/4 1/8 3:CLK16M (16.9344MHz) 12:CLKA (CTRLA=OPEN:36.8640MHz CTRLA=L :33.8688MH 1/2 21:OE 11:CTRA (CTRLA=OPEN:48.0kHz type CTRLA=L :44.1kHz type) 13:CLKB (CTRLA=OPEN:18.4320MHz CTRLA=L :16.9344MH Fig.81 1:VDD1 2:VSS1 3:CLK16M 4:AVSS 24:CLK33M 23:CTRLB 22:CLK54M 21:OE BU2285FV 5:AVDD 6:AVDD 7:AVSS 8:XTALIN 9:XTALOUT 10:NC 11:CTRLA 12:CLKA 20:CLKDAC 19:DVDD 18:DVSS 17:DVSS 16:CLK27M 15:VDD2 14:VSS2 13:CLKB CTRLA L OPEN CLKA 33.8688MHz 36.8640MHz CLKB 16.9344MHz 18.4320MHz CTRLB L OPEN CLKDAC 13.5000MHz 27.0000MHz Fig.82 11/16 ●Block diagram, Pin assignment ◎BU2363FV 1/4 XTALIN=36.8640MHz 7:XTALIN 8:XTALOUT 3:CLK54M (54.0000MHz) XTAL OSC MULTI-PLL Technology 1/8 4:CLK27M (27.0000MHz) PLL2 1/4 15:CLK33M (33.8688MHz) 1/8 13:CLK16M (16.9344MHz) 10:768FS1 (FSEL=OPEN:36.8640MHz FSEL=L :33.8688MHz) 1/2 16:OE 14:FSEL (FSEL=OPEN:48.0kHz type FSEL=L :44.1kHz type) 9:384FS2 (FSEL=OPEN:18.4320MHz FSEL=L :16.9344MHz) Fig.83 1:VDD2 2:VSS2 16:OE 15:CLK33M BU2363FV 3:CLK254M 4:CLK27M 5:AVDD 6:AVSS 7:XTALIN 8:XTALOUT 14:FSEL 13:CLK16M 12:DVDD 11:DVSS 10:768FS1 9:384FS2 Fig.84 FSEL L OPEN CLK768FS 33.8688MHz 36.8640MHz CLK384FS 16.9344MHz 18.4320MHz 12/16 ●Example of application circuit ◎BU2285FV 1:VDD1 24:CLK33M 23:CTRLB 22:CLK54M 21:OE 33.8688MHz OPEN:27.0000MHz L :13.5000MHz 54.0000MHz OPEN:Enable L :Disable 27.0000MHz or 13.5000MHz 0.1uF 0.1uF 2:VSS1 16.9344MHz 3:CLK16M 4:AVSS 0.1uF 5:AVDD 6:AVDD BU2285FV 20:CLKDAC 19:DVDD 18:DVSS 17:DVSS 16:CLK27M 15:VDD2 0.1uF 7:AVSS 8:XTALIN 9:XTALOUT 10:NC OPEN:48.0kHz type L :44.1kHz type 11:CTRLA 12:CLKA 27.0000MHz 0.1uF 14:VSS2 13:CLKB 36.8640MHz or 33.8688MHz 18.4320MHz or 16.9344MHz Fig.85 Pin function PIN No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 PIN name VDD1 VSS1 CLK16M AVSS AVDD AVDD AVSS XTALIN XTALOUT NC CTRLA CLKA CLKB VSS2 VDD2 CLK27M DVSS DVSS DVDD CLKDAC OE CLK54M CTRLB CLK33M PIN function 33MHz system power supply 33MHz system GND 16.9344MHz output Analog GND Analog power supply Analog power supply Analog GND Crystal input terminal Crystal output terminal NC CLKA or B output selection (with pull-up) CTRLA=OPEN:36.8640MHz, CTRLA=L:33.8688MHz CTRLA=OPEN:18.4320MHz, CTRLA=L:16.9344MHz CLKA, B GND CLKA, B power supply 27.0000MHz output Digital GND Digital GND Digital power supply CTRLB=OPEN:27.0000MHz, CTRLB=L:13.5000MHz Output enable (with pull-up), OPEN:enable, L:disable 54.0000MHz output CLKDAC output selection(with pull-up) 33.8688MHz output Note) Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.) Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD1) and 2PIN (VSS1), 4PIN (AVSS) and 5PIN (AVDD), 6PIN (AVDD) and 7PIN (AVSS), 14PIN (VSS2) and 15PIN (VDD2), and 17PIN/18PIN (DVSS) and 19PIN (DVDD), respectively. Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal. For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2285FV from the printed circuit board or to insert a capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal. 13/16 ●Example of application circuit ◎BU2363FV 1:VDD2 16:OE 15:CLK33M OPEN:Enable L :Disable 33.8688MHz OPEN:48.0kHz type L :44.1kHz type 16.9344MHz 0.1uF 2:VSS2 BU2363FV 54.0000MHz 27.0000MHz 3:CLK254M 4:CLK27M 5:AVDD 14:FSEL 13:CLK16M 12:DVDD 0.1uF 6:AVSS 7:XTALIN 8:XTALOUT 0.1uF 11:DVSS 10:768FS1 9:384FS2 36.8640MHz or 33.8688MHz 18.4320MHz or 16.9344MHz Fig.86 Pin function PIN No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIN name VDD2 VSS2 CLK54M CLK27M AVDD AVSS XTALIN XTALOUT 384FS2 768FS1 DVSS DVDD CLK16M FSEL CLK33M OE PIN function 27MHz, 54MHz power supply 27MHz, 54MHzGND 54.0000MHz output 27.0000MHz output Analog power supply Analog GND Crystal input terminal Crystal output terminal FSEL=OPEN:18.4320MHz, FSEL=L:16.9344MHz FSEL=OPEN:36.8640MHz, FSEL=L:33.8688MHz Digital GND Digital power supply 16.9344MHz output 9, 10PIN output selection(with pull-up) OPEN:18.4320MHz(9PIN), 36.8640MHz(10PIN) L:16.9344MHz(9PIN), 33.8688MHz(10PIN) 33.8688MHz output Output enable (with pull-up), OPEN:enable, L:disable Note) Basically, mount ICs to the printed circuit board for use. (If the ICs are not mounted to the printed circuit board, the characteristics of ICs may not be fully demonstrated.) Mount 0.1F capacitors in the vicinity of the IC PINs between 1PIN (VDD2) and 2PIN (VSS2), 5PIN (AVDD) and 6PIN (AVSS), 11PIN (DVSS) and 12PIN (DVDD), respectively. Depending on the conditions of the printed circuit board, mount an additional electrolytic capacitor between the power supply and GND terminal. For EMI protection, it is effective to put ferrite beads in the origin of power supply to be fed to BU2363FV from the printed circuit board or to insert a capacitor (of 1 or less), which bypasses high frequency desired, between the power supply and the GND terminal. Even though we believe that the example of recommended circuit is worth of a recommendation, please be sure to thoroughly recheck the characteristics before use. 14/16 ●Cautions on use (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr), etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Recommended operating conditions These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter. (3) Reverse connection of power supply connector The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply terminal. (4) Power supply line Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner. Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (5) GND voltage Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient. (6) Short circuit between terminals and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down. (7) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (8) Inspection with set PCB On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB. (9) Input terminals In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (10) Ground wiring pattern If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well. (11) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. 15/16 ●Product Designation B U 2 2 8 5 F V E 2 Part No. Type BU2285FV BU2363FV Package Type FV : SSOP-B24(BU2285FV) FV : SSOP-B16(BU2363FV) Package and forming specification E2: Reel-like emboss taping SSOP-B16 Tape Quantity 5.0 ± 0.2 1.15 ± 0.1 6.4 ± 0.3 0.1 4.4 ± 0.2 16 9 Embossed carrier tape 2500pcs E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand) 1 8 0.15 ± 0.1 0.65 0.1 0.22 ± 0.1 0.3Min. Direction of feed 1234 (Unit:mm) Reel 1234 ※When you order , please order in times the amount of package quantity. 1234 1pin 1234 1234 Direction of feed 1234 1234 1234 SSOP-B24 Tape Quantity 7.8 ± 0.2 24 13 Embossed carrier tape 2000pcs E2 (The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand) Direction 0.3Min. 7.6 ± 0.3 5.6 ± 0.2 of feed 1 12 1.15 ± 0.1 0.1 0.15 ± 0.1 0.1 0.65 1234 1234 1234 1234 1234 1234 1234 1234 0.22 ± 0.1 Reel 1pin Direction of feed (Unit:mm) ※When you order , please order in times the amount of package quantity. Catalog No.08T806A '08.9 ROHM © Appendix Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM CO.,LTD. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2009 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster @ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix-Rev4.0
BU2363FV 价格&库存

很抱歉,暂时无法提供与“BU2363FV”相匹配的价格&库存,您可以联系我们找货

免费人工找货