BU7325HFV
High-performance Clock Generator Series
Compact 1ch Clock Generators
for Digital Cameras
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
No.09005EAT01
●Description
These Clock Generators incorporates compact package compared to oscillators, which provides the generation of
high-frequency CCD, USB, VIDEO clocks necessary for digital still cameras and digital video cameras.
●Features
1) SEL pin allowing for the selection of frequencies
2) Selection of OE pin enabling Power-down function
3) Crystal-oscillator-level clock precision with high C/N characteristics and low jitter
4) Micro miniature HVSOF6 Package incorporated
5) Single power supply of 3.3 V
●Applications
Digital Still Camera, Digital Video Camera, and others
●Lineup
BU3071HFV
BU3072HFV
BU3073HFV
Supply voltage
Parameter
3.0 V ~ 3.6V
3.0 V ~ 3.6V
3.0 V ~ 3.6V 2.85 V ~ 3.6V 2.85 V ~ 3.6V 2.85 V ~ 3.6V
Operating temperature range
-5℃ ~ 70℃
-5℃ ~ 70℃
-5℃ ~ 70℃
Reference input clock
28.6363MHz
48.0000MHz
48.0000MHz
27.0000MHz
27.0000MHz
27.0000MHz
54.0000MHz
27.0000MHz
24.3750MHz
54.0000MHz
49.5000MHz
48.0000MHz
Output clock
Power-down function
Operating current (Typ.)
Package
BU3076HFV
-5℃ ~ 75℃
-5℃ ~ 75℃
BU7325HFV
-30℃ ~ 85℃
-
36.0000MHz
24.5454MHz
67.5000MHz
36.0000MHz
78.0000MHz
Provided
Provided
Provided
Provided
Provided
Provided
10mA
11mA
11mA
12mA
10mA
12mA
HVSOF6
HVSOF6
HVSOF6
HVSOF6
HVSOF6
HVSOF6
●Absolute Maximum Ratings(Ta=25℃)
Parameter
Symbol
Ratings
Unit
Supply voltage
VDD
-0.3 ~ 4.0
V
Input voltage
VIN
-0.3 ~ VDD+0.3
V
Storage temperature range
Tstg
-30 ~ 125
℃
Pd
410
mW
Power dissipation
BU7322HFV
*1 Operating is not guaranteed.
*2 In the case of exceeding Ta = 25℃, 4.1mW should be reduced per 1℃.
*3 The radiation-resistance design is not carried out.
*4 Power dissipation is measured when the IC is mounted to the printed circuit board.
●Recommended Operating Range
Parameter
Symbol
Limits
Unit
Supply voltage
VDD
3.0 ~ 3.6
V
Input H voltage
VINH
0.8VDD ~ VDD
V
Input L voltage
VINL
0.0 ~ 0.2VDD
V
Operating temperature
Topr
-5 ~ 70
℃
CL
15(MAX)
pF
Output load
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
1/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
●Electrical Characteristics
BU3071HFV(Ta=25℃, VDD=3.3V,Crystal frequency=28.6363MHz, unless otherwise specified.)
Limits
Parameter
Symbol
Unit
Conditions
Min.
Typ.
Max.
Output H voltage
VOH
2.8
V
IOH=-4.0mA
Output L voltage
VOL
0.5
V
IOL=4.0mA
Consumption current 1
IDD1
10
15
mA OE=H, at no load
Consumption current 2
IDD2
1
1.3
mA OE=L
Output frequency
54.0000
MHz IN*264/35/4
The following parameters represent design guaranteed performance.
Duty
Duty
45
50
55
%
Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ
PJsSD
50
psec ※1
Period-Jitter MIN-MAX
PJsABS
300
psec ※2
Period of transition time required for the
Rise time
tr
2.5
nsec output to reach 80% from 20% of VDD.
Provided with 15pF output load.
Period of transition time required for the
Fall time
tf
2.5
nsec output to reach 20% from 80% of VDD.
Provided with 15pF output load.
Output Lock time
tLOCK
-
-
1
msec
※3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN.
If the input frequency is set to 28.6363MHz, the output frequency will be as listed above.
BU3072HFV(Ta=25℃, VDD=3.3V, Crystal frequency=48.0000MHz, unless otherwise specified.)
Limits
Parameter
Symbol
Unit
Conditions
Min.
Typ.
Max.
Output H voltage
VOH
2.8
V
IOH=-4.0mA
Output L voltage
VOL
0.5
V
IOL=4.0mA
Consumption current 1
IDD1
11
16
mA PD=H, at no load
Consumption current 2
IDD2
5
µA
PD=L
CLK_27
27.0000
MHz SEL=L, IN*18/8/4
Output frequency
CLK_36
36.0000
MHz SEL=H, IN*24/8/4
The following parameters represent design guaranteed performance.
Duty
Duty
45
50
55
%
Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ
PJsSD
35
psec ※1
Long-Term-Jitter
MIN-MAX of long-term jitter
LTJsABS
0.9
1.5
nsec
MIN-MAX
(100 µsec from trigger)
Period of transition time required for the
Rise time
tr
2.5
nsec output to reach 80% from 20% of VDD.
Provided with 15pF output load.
Period of transition time required for the
Fall time
tf
2.5
nsec output to reach 20% from 80% of VDD.
Provided with 15pF output load.
Output Lock time
tLOCK
-
-
1
msec
※3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN.
If the input frequency is set to 48.0000MHz, the output frequency will be as listed above.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
2/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
BU3073HFV(Ta=25℃, VDD=3.3V, Crystal frequency=48.0000MHz, unless otherwise specified.)
Limits
Parameter
Symbol
Unit
Conditions
Min.
Typ.
Max.
Output H voltage
VOH
2.8
V
IOH=-4.0mA
Output L voltage
VOL
0.5
V
IOL=4.0mA
Consumption current 1
IDD1
11
16
mA PD=H, at no load
Consumption current 2
IDD2
5
mA PD=L
CLK_375
24.3750
MHz SEL=L, IN*65/16/8
Output frequency
CLK_545
24.5454
MHz SEL=H, IN*45/11/8
The following parameters represent design guaranteed performance.
Duty
Duty
45
50
55
%
Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ
PJsSD
45
psec ※1
Long-Term-Jitter
MIN-MAX of long-term jitter
LTJsABS
0.9
1.5
nsec
MIN-MAX
(100 µsec from trigger)
Period of transition time required for the
Rise time
tr
2.5
nsec output to reach 80% from 20% of VDD.
Provided with 15pF output load.
Period of transition time required for the
Fall time
tf
2.5
nsec output to reach 20% from 80% of VDD.
Provided with 15pF output load.
Output Lock time
tLOCK
-
-
1
msec
※3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN.
If the input frequency is set to 48.0000MHz, the output frequency will be as listed above.
BU3076HFV(Ta=25℃, VDD=3.3V, Crystal frequency=27.0000MHz, unless otherwise specified.)
Limits
Parameter
Symbol
Unit
Conditions
Min.
Typ.
Max.
Output H voltage
VOH
2.8
V
IOH=-4.0mA
Output L voltage
VOL
0.5
V
IOL=4.0mA
Pull-down resistance
Rpd
25
50
100
KΩ Pull-down resistance on input pin
Consumption current 1
IDD1
10
15
mA 54MHz output, at no load
Consumption current 2
IDD2
12
18
mA 67.5MHz output, at no load
Standby current
IDDst
1
µA
OE=L
CLK_54
54.0000
MHz SEL=L, IN*48/6/4
Output frequency
CLK_67.5
67.5000
MHz SEL=H, IN*60/6/4
The following parameters represent design guaranteed performance.
Duty
Duty
45
50
55
%
Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ
PJsSD
50
psec ※1
Period-Jitter MIN-MAX
PJsABS
300
psec ※2
Period of transition time required for the
Rise time
tr
1.5
nsec output to reach 80% from 20% of VDD.
Provided with 15pF output load.
Period of transition time required for the
Fall time
tf
1.5
nsec output to reach 20% from 80% of VDD.
Provided with 15pF output load.
Output Lock time
tLOCK
-
-
200
µsec
※3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN.
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
3/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
BU7322HFV(Ta=25℃, VDD=3.3V, Crystal frequency=27.0000MHz, unless otherwise specified.)
Limits
Parameter
Symbol
Unit Conditions
Min.
Typ.
Max.
Output H voltage
VOH
2.8
V
IOH=-4.0mA
Output L voltage
VOL
0.5
V
IOL=4.0mA
Pull-down resistance
Rpd
25
50
100
kΩ
Pull-down resistance on input pin
Consumption current 1
IDD
10
13.5
mA 49.5MHz output, at no load
Consumption current 2
IDD2
9.5
13.0
mA 36.0MHz output, at no load
Standby current
IDDst
1
µA
OE=L
CLK_49.5
49.5000
MHz SEL=L, IN*66/6/6
Output frequency
CLK_36
36.0000
MHz SEL=H, IN*64/6/8
The following parameters represent design guaranteed performance.
Duty
Duty
45
50
55
%
Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ
PJsSD
50
psec ※1
Period-Jitter MIN-MAX
PJsABS
300
psec ※2
Period of transition time required for the
Rise time
tr
2.5
nsec output to reach 80% from 20% of VDD.
Provided with 15pF output load.
Period of transition time required for the
Fall time
tf
2.5
nsec output to reach 20% from 80% of VDD.
Provided with 15pF output load.
Output Lock time
tLOCK
-
-
200
µsec
※3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN.
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.
BU7325HFV(Ta=25℃, VDD=3.3V, Crystal frequency=27.0000MHz, unless otherwise specified.)
Limits
Parameter
Symbol
Unit
Conditions
Min.
Typ.
Max.
Output H voltage
VOH
2.8
V
IOH=-4.0mA
Output L voltage
VOL
0.5
V
IOL=4.0mA
Pull-down resistance
Rpd
25
50
100
kΩ
Pull-down resistance on input pin
Consumption current 1
IDD1
11
15
mA OE=H, SEL=L, at no load
Consumption current 2
IDD2
12
16.5
mA OE=H, SEL=H, at no load
Standby current
IDDst
1
µA
OE=L
CLK_48
48.0000
MHz SEL=L, IN*96/9/6
Output frequency
CLK_78
78.0000
MHz SEL=H, IN*104/9/4
The following parameters represent design guaranteed performance.
Duty
Duty
45
50
55
%
Measured at a voltage of 1/2 of VDD
Period-Jitter 1σ
PJsSD
50
psec ※1
Period-Jitter MIN-MAX
PJsABS
300
psec ※2
Period of transition time required for the
Rise time
tr
1.5
nsec output to reach 80% from 20% of VDD.
Provided with 15pF output load.
Period of transition time required for the
Fall time
tf
1.5
nsec output to reach 20% from 80% of VDD.
Provided with 15pF output load.
Output Lock time
tLOCK
-
-
200
µsec
※3
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN.
If the input frequency is set to 27.0000MHz, the output frequency will be as listed above.
Common to BU3071HFV, BU3072HFV, BU3073HFV, BU3076HFV, BU7322HFV, BU7325HFV
※1
※2
※3
Period-Jitter 1σ
This parameter represents standard deviation (=1σ) on cycle distribution data at the time when the output clock cycles are sampled 1000 times
consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
Period-Jitter MIN-MAX
This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock cycles are sampled 1000 times
consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.
Output Lock Time
This parameter represents elapsed time after power supply turns ON to reach a voltage of 3.0 V, after the system is switched from Power-Down state to
normal operation state, or after the output frequency is switched, until it is stabilized at a specified frequency, respectively.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
4/21
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
●Reference data (BU3071HFV basic data)
RBW:1kHz
10kHz/div
500psec/div
5nsec/div
Fig.1 54MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
10dB/div
1V/div
1V/div
VBW:100Hz
Fig.2 54MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
Fig.3 54MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
●Reference data (BU3072HFV basic data)
RBW:1kHz
10dB/div
1V/div
1V/div
VBW:100Hz
10nsec/div
Fig.4 27MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
10kHz/div
500psec/div
Fig.5 27MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
Fig.6 27MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
RBW:1kHz
1V/div
1V/div
10dB/div
VBW:100Hz
5nsec/div
Fig.7 36MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
500psec/div
Fig.8 36MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
5/21
10kHz/div
Fig.9 36MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
●Reference data (BU3073HFV basic data)
RBW:1kHz
1V/div
1V/div
10dB/div
VBW:100Hz
500psec/div
10nsec/div
Fig.10 24.375MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
Fig.11 24.375MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
10kHz/div
Fig.12 24.375MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
RBW:1kHz
1V/div
1V/div
10dB/div
VBW:100Hz
Fig.13 24.5454MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
10kHz/div
500psec/div
10nsec/div
Fig.14 24.5454MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
Fig.15 24.5454MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃
●Reference data (BU3076HFV basic data)
RBW:1kHz
10dB/div
1V/div
1V/div
VBW:100Hz
5nsec/div
Fig.16 54MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
10kHz/div
500psec/div
Fig.17 54MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
Fig.18 54MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
RBW:1kHz
2nsec/div
Fig.19 67.5MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
10dB/div
1V/div
1V/div
VBW:100Hz
500psec/div
Fig.20 67.5MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
6/21
10kHz/div
Fig.21 67.5MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
●Reference data (BU7322HFV basic data)
RBW:1kHz
1V/div
1V/div
10dB/div
VBW:100Hz
5nsec/div
Fig.22 49.5MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
500psec/div
Fig.23 49.5MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
10kHz/div
Fig.24 49.5MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
RBW:1kHz
10dB/div
1V/div
1V/div
VBW:100Hz
10nsec/div
Fig.25 36MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
500psec/div
Fig.26 36MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
10kHz/div
Fig.27 36MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
●Reference data (BU7325HFV basic data)
10dB/div
1V/div
1V/div
RBW:1kHz
VBW:100Hz
5nsec/div
Fig.28 48MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃)
10kHz/div
500psec/div
Fig.29 48MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
Fig.30 48MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃
RBW:1kHz
1V/div
1V/div
10dB/div
VBW:100Hz
10nsec/div
Fig.31 78MHz output waveform
(VDD=3.3V,CL=15pF,Ta=25℃
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
500psec/div
Fig.32 78MHz Period-Jitter
(VDD=3.3V,CL=15pF,Ta=25℃)
7/21
10kHz/div
Fig.33 78MHz spectrum
(VDD=3.3V,CL=15pF,Ta=25℃)
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
51
50
49
VDD=3.3V
VDD=3.7V
48
47
46
45
VDD=2.9V
5
5
4
4
3
2
VDD=2.9V
VDD=3.3V
VDD=3.7V
1
0
-25
0
25
50
75
0
80
60
VDD=3.7V
VDD=3.3V
20
VDD=2.9V
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.37 54MHz Period-Jitter 1σ
temperature characteristics
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
50
75
100
2
VDD=2.9V
VDD=3.3V
VDD=3.7V
1
-25
0
25
50
75
100
temperature:T [℃]
Fig.35 54MHz
Rise-time temperature characteristics
Period-Jitter MIN-MAX:JsABS [psec]
100
40
25
temperature:T [℃]
Fig.34 54MHz
Duty temperature characteristics
3
0
-25
100
temperature:T[℃]
Period-Jitter 1σ:JsSD [psec]
Rise time:tr [nsec]
55
54
53
52
Fall time:tf [nsec]
Duty:Duty[%]
●Reference data (BU3071HFV Temperature and Supply voltage variations data)
Fig.36 54MHz
Fall-time temperature characteristics
600
500
400
300
VDD=3 7V
200
100
VDD=2.9V
VDD=3.3V
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.38 54MHz Jitter-Min Max
temperature characteristics
8/21
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
5
5
54
53
52
4
4
51
50
49
48
VDD=3.7V
VDD=2.9V
47
46
45
VDD=3.3V
3
VDD=2.9V
2
1
0
25
50
75
-25
100
VDD=2.9V
1
0
25
50
75
100
-25
0
25
50
75
100
temperature:T [℃]
temperature:T [℃]
Fig.40 27MHz Rise-time
temperature characteristics
100
VDD=3.3V
VDD=3.7V
0
temperature:T [℃]
Fig.41 27MHz Fall-time
temperature characteristics
600
90
80
70
VDD=3.7V
20
10
VDD=2.9V
VDD=3.3V
0
-25
0
25
50
75
500
400
300
VDD=3.7V
200
VDD=2.9V
100
0
100
-25
0
25
Fig.42 27MHz Period-Jitter 1σ
temperature characteristics
75
100
Fig.43 27MHz Jitter-MinMax
temperature characteristics
Rise time:tr [nsec]
55
54
53
52
VDD=3.7V
VDD=2.9V
48
50
temperature:T [℃]
temperature:T [℃]
51
50
49
VDD=3.3V
VDD=3.3V
47
46
45
5
5
4
4
Fall time:tf [nsec]
60
50
40
30
Period-Jitter MIN-MAX:JsABS [psec]
Period-Jitter 1σ:JsSD [psec]
2
0
Fig.39 27MHz Duty
temperature characteristics
Duty:Duty [%]
3
VDD=3.3V
VDD=3.7V
-25
3
VDD=3.3V
VDD=2.9V
2
VDD=3.7V
1
0
25
50
75
100
temperature:T [℃]
VDD=2.9V
50
40
30
20
VDD=3.3V
VDD=3.7V
10
0
-25
0
25
50
75
25
50
75
100
100
temperature:T [℃]
Fig.47 36MHz Period-Jitter 1σ
temperature characteristic s
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig.45 36MHz Rise-time
temperature characteristics
Period-Jitter MIN-MAX:JsABS [psec]
90
80
70
60
0
temperature:T [℃]
100
VDD=3.3V
2
VDD=2.9V
VDD=3.7V
0
-25
Fig.44 36MHz Duty
temperature characteristic
3
1
0
-25
Period-Jitter 1σ:JsSD [psec]
Fall time:tf [nsec]
55
Rise time:tr [nsec]
Duty:Dyty [%]
●Reference data (BU3072HFV Temperature and Supply voltage variations data)
-25
0
25
50
75
temperature:T [℃]
100
Fig.46 36MHz Fall-time
temperature characteristics
600
500
400
VDD=2.9V
300
200
VDD=3.3V
100
VDD=3.7V
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.48 36MHz Jitter-Min Max
temperature characteristics
9/21
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
5
5
54
53
52
4
4
51
50
VDD=3.7V
49
48
47
VDD=3.3V
46
VDD=2.9V
3
VDD=2.9V
2
1
VDD=3.7V
-25
0
25
50
75
-25
100
VDD=2.9V
1
VDD=3.7V
0
25
50
75
100
-25
temperature:T [℃]
Fig.49 24.375MHz Duty
temperature characteristics
Fig.50 24.375MHz Rise-time
temperature characteristics
100
VDD=3.3V
0
25
50
75
temperature:T [℃]
100
Fig.51 24.375MHz Fall-time
temperature characteristics
Period-Jitter MIN-MAX:JsABS
[psec]
600
VDD=3.7V
60
50
40
30
20
10
VDD=3.3V
VDD=2.9V
0
-25
0
25
50
75
500
VDD=3.7V
400
300
200
VDD=2.9V
VDD=3.3V
100
0
-25
100
0
Fig.52 24.375MHz Period-Jitter 1σ
temperature characteristics
Rise time:tr [nsec]
54
53
52
VDD=3.7V
49
VDD=2.9V
VDD=3.3V
5
4
4
3
VDD=2.9V
2
1
-25
90
80
70
60
50
40
VDD=3.7V
30
20
VDD=2.9V
VDD=3.3V
10
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.57 24.5454MHz Period-Jitter 1σ
temperature characteristics
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
0
25
50
75
temperature:T [℃]
100
VDD=2.9V
1
VDD=3.7V
-25
0
25
VDD=3.3V
50
75
100
temperature:T [℃]
Fig.55 24.5454MHz Rise-time
temperature characteristics
Period-Jitter MIN-MAX:JsABS [psec]
100
2
0
100
Fig.54 24.5454MHz Duty
temperature characteristics
3
VDD=3.3V
VDD=3.7V
0
45
0
25
50
75
temperature:T [℃]
100
5
46
-25
75
Fig.53 24.375MHz Jitter-Min Max
temperature characteristics
55
48
47
50
temperature:T [℃]
temperature:T [℃]
51
50
25
Fall time:tf [nsec]
90
80
70
Period-Jitter 1σ:JsSD [psec]
2
0
temperature:T [℃]
Duty:Duty [%]
3
VDD=3.3V
0
45
Period-Jitter 1σ:JsSD [psec]
Fall time:tf [nsec)]
55
Rise time:tr [nsec]
Duty:Duty [%]
●Reference data (BU3073HFV Temperature and Supply voltage variations data)
Fig.56 24.5454MHz Fall-time
temperature characteristics
600
VDD=3.7V
500
400
300
200
VDD=2.9V
VDD=3.3V
100
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.58 24.5454MHz Jitter-MinMax
temperature characteristics
10/21
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
5
5
53
52
51
50
49
48
47
46
45
4
4
VDD=3.7V
VDD=3.3V
VDD=2.9V
VDD=2.9V
3
2
1
1
25
50
75
0
-25
100
0
25
70
VDD=2.9V
40
30
20
10
VDD=3.7V
VDD=3.3V
0
-25
0
25
50
75
-25
100
0
25
50
75
100
temperature:T [℃]
Fig.61 54MHz Fall-time
temperature characteristics
500
400
VDD=2.9V
300
200
100
VDD=3.7V
VDD=3.3V
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.62 54MHz Period-Jitter 1σ
temperature characteristics
Fig.63 54MHz Jitter-Min Max
temperature characteristics
Rise time:tr [nsec]
55
54
53
52
VDD=3.7V
VDD=3.3V
48
47
46
45
100
600
temperature:T [℃]
51
50
49
75
Fig.60 54MHz Rise-time
temperature characteristics
Period-Jitter MIN-MAX:JsABS [psec]
80
60
50
50
temperature:T [ ℃]
100
90
VDD=3.3V
VDD=3.7V
5
5
4
4
VDD=2.9V
3
Fall time:tf [nsec]
0
Fig.59 54MHz Duty
temperature characteristics
Period-Jitter 1σ:JsSD [psec]
VDD=2.9V
2
VDD=3.3V
VDD=3.7V
temperature:T [℃]
Duty:Duty [%]
3
0
-25
VDD=3.3V
2
VDD=3.7V
1
3
VDD=2.9V
VDD=3.3V
2
1
VDD=3.7V
0
VDD=2.9V
-25
0
25
50
75
0
-25
100
temperature:T [℃]
60
VDD=2.9V
40
30
20
VDD=3.7V
10
VDD=3.3V
0
-25
0
25
50
75
25
50
75
100
100
temperature:T [℃]
Fig.67 67.5MHz Period-Jitter 1σ
temperature characteristics
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
-25
0
25
50
75
100
temperature:T [℃]
Fig.65 67.5MHz
Rise-time temperature characteristics
Period-Jitter MIN-MAX:JsABS [psec]
70
50
0
temperature:T [℃]
Fig.64 67.5MHz
Duty temperature characteristics
Period-Jitter 1σ:JsSD [psec]
Fall time:tf [nsec]
55
54
Rise time:tr [nsec]
Duty:Duty [%]
●Reference data (BU3076HFV Temperature and Supply voltage variations data)
Fig.66 67.5MHz
Fall-time temperature characteristics
600
500
400
VDD=3.7V
VDD=2.9V
300
200
VDD=3.3V
100
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.68 67.5MHz Jitter-MinMax
temperature characteristics
11/21
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
●Reference data (BU7322HFV Temperature and Supply voltage variations data)
5
5
55
54
VDD=3.7V
50
49
48
47
VDD=3.3V
VDD=2.75V
46
45
3
2
VDD=3.7V
1
0
25
50
75
100
0
25
90
80
70
VDD=2.75V
20
10
0
VDD=3.3V
-25
0
25
50
75
75
-25
100
400
VDD=3.7V
VDD=2.75V
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.73 49.5MHz Jitter-Min Max
temperature characteristics
5
VDD=2.75V
48
VDD=2.75V
4
Fall time:tf [nsec]
Rise time:tr [nsec]
VDD=3.3V
3
2
VDD=3.7V
VDD=3.3V
1
0
25
100
VDD=3.3V
100
100
VDD=3.7V
0
75
200
4
-25
50
Fig.71 49.5MHz Fall-time
temperature characteristics
5
47
46
45
25
temperature:T [℃]
300
55
54
53
51
50
49
0
500
temperature:T [℃]
Duty:Duty [%]
50
600
Fig.72 49.5MHz Period-Jitter 1σ
temperature characteristics
52
VDD=3.3V
VDD=3.7V
1
Fig.70 49.5MHz Rise-time
temperature characteristics
Period-Jitter MIN-MAX:JsABS [psec]
100
VDD=3.7V
2
temperature:T [℃]
temperature:T [℃]
60
50
40
30
VDD=2.75V
3
0
-25
Fig.69 49.5MHz Duty
temperature characteristics
Period-Jitter 1σ:JsSD [psec]
VDD=3.3V
0
-25
50
75
100
0
25
50
75
100
Fig.75 36MHz Rise-time
temperature characteristics
70
3
2
VDD=3.7V
1
VDD=3.3V
-25
0
25
50
75
100
temperature:T [℃]
temperature:T [℃]
Fig.74 36MHz Duty
temperature characteristics
VDD=2.75V
0
-25
temperature:T [℃]
Fig.76 36MHz Fall-time
temperature characteristics
600
60
Period-Jitter MIN-MAX:JsABS
[psec]
Period-Jitter 1σ:JsSD [psec]
Fall time:tf [nsec]
51
Rise time:tr [nsec]
Duty:Duty [%]
52
4
VDD=2.75V
4
53
50
VDD=2.75V
40
30
20
10
VDD=3.3V
VDD=3.7V
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.77 36MHz Period-Jitter 1σ
temperature characteristics
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
500
400
VDD=2.75V
300
200
100
VDD=3.7V
VDD=3.3V
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.78 36MHz Jitter-MinMax
temperature characteristics
12/21
2009.04 - Rev.A
Technical Note
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
●Reference data (BU7325HFV Temperature and Supply voltage variations data)
VDD=3.3V
5
4
4
VDD=3.7V
3
2
1
VDD=2.75V
VDD=3.3V
0
25
50
75
Period-Jitter MIN-MAX:JsABS [psec]
Fig.79 48MHz
Duty temperature characteristics
Period-Jitter 1σ:JsSD [psec]
90
80
70
60
VDD=2.75V
40
30
20
10
VDD=3.3V
0
-25
0
25
VDD=3.7V
50
75
0
25
0
25
600
200
100
VDD=3.7V
0
-25
0
25
50
75
100
Rise time:tr [nsec]
5
5
4
4
VDD=2.75V
3
2
1
VDD=3.7V
VDD=3.3V
3
VDD=2.75V
2
1
VDD=3.7V
VDD=3.3V
50
75
0
-25
100
50
VDD=2.75V
30
20
VDD=3.3V
VDD=3.7V
0
50
75
100
VDD=2.75V
0
VDD=2.75V
60
25
75
VDD=3.3V
300
0
25
50
75
100
100
temperature:T [℃]
Fig.87 78MHz Period-Jitter 1σ
temperature characteristics
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
-25
0
25
50
75
100
temperature:T [℃]
Fig.85 78MHz Rise-time
temperature characteristics
0
50
400
Fig.84 78MHz Duty
temperature characteristics
-25
25
500
temperature:T [℃]
10
0
Fig.81 48MHz
Fall-time temperature characteristics
temperature:T [℃]
40
-25
Fig.83 48MHz Jitter-Min Max
temperature characteristics
Period-Jitter MIN-MAX:JsABS [psec]
Duty:Duty [%]
100
temperature:T [℃]
70
Period-Jitter 1σ:JsSD [psec]
75
Fig.80 48MHz
Rise-time temperature characteristics
100
VDD=3.7V
-25
50
temperature:T [ ℃]
Fig.82 48MHz Period-Jitter 1σ
temperature characteristics
VDD=3.3V
VDD=3.3V
temperature:T [℃]
temperature:T [℃]
55
54
53
52
51
50
49
48
47
46
45
1
0
-25
100
temperature:T [℃]
50
VDD=2.75V
2
VDD=3.7V
0
-25
3
VDD=2.75V
45
100
Fall time:tf [nsec]
VDD=3.7V
50
49
48
47
46
5
Fall time:tf [nsec]
Duty:Duty [%]
54
53
52
51
Rise time:tr [nsec]
55
Fig.86 78MHz Fall-time
temperature characteristics
600
500
400
300
VDD=2.75V
VDD=3.3V
200
100
VDD=3.7V
0
-25
0
25
50
75
100
temperature:T [℃]
Fig.88 78MHz Jitter-MinMax
temperature characteristic
13/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
●Block diagram, pin assignment/functions
(BU3071HFV)
1:VDD
6:IN
2:VSS
5:TEST
3:OUT
4:OE
6pin:IN
PLL
1/4
3pin:OUT
4pin:OE
Fig.89
PIN
NO.
1
2
3
4
5
6
PIN
name
VDD
VSS
OUT
OE
TEST
IN
Fig.90
Function
Power supply
GND
Clock output terminal
Output enable (L: disable, H: enable), equipped with Pull-down function, output fixed to L at disable
TEST pin, equipped with Pull-down function
Clock input pin (28.6363 MHz input)
(BU3072HFV)
PLL
1:VDD
6:IN
2:VSS
5:SEL
3:OUT
4:PD
6pin:IN
1/4
DATA1
DATA2
3pin:OUT
5pin:SEL
4pin:PD
Fig.91
PIN
NO.
1
2
3
4
5
6
PIN
name
VDD
VSS
OUT
PD
SEL
IN
Fig.92
Function
Power supply
GND
Clock output terminal (L:27.0000MHz, H:36.0000MHz)
Power-down (L: Hi-Z, H: enable), equipped with Pull-down function, output set to Hi-Z at disable
Output selection (L: 27.0000 MHz, H: 36.0000 MHz)
Clock input pin (48.0000 MHz input)
(BU3073HFV)
PLL
1:VDD
6:IN
2:VSS
5:SEL
3:OUT
4:PD
6pin:IN
DATA1
DATA2
1/8
3pin:OUT
5pin:SEL
4pin:PD
Fig.93
PIN
NO.
1
2
3
4
5
6
PIN
name
VDD
VSS
OUT
PD
SEL
IN
Fig.94
Function
Power supply
GND
Clock output terminal (L:24.3750MHz, H:24.5454MHz)
Power-down (L: disable, H: enable), equipped with Pull-down function, output set to L at disable
Output selection (L:24.3750MHz, H:24.5454MHz)
Clock input pin (48.0000MHz input)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
14/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
(BU3076HFV)
PLL
6pin:IN
1:VDD
6:IN
2:VSS
5:SEL
3:OUT
4:OE
DATA1
DATA2
1/4
3pin:OUT
5pin:SEL
4pin:OE
Fig.95
PIN
NO.
1
2
3
4
PIN
name
VDD
VSS
OUT
OE
5
6
SEL
IN
Fig.96
Function
Power supply
GND
Clock output terminal (L:54.0000MHz, H:67.5000MHz)
Power-down (L: disable, H: enable), equipped with Pull-down function, output set to L at disable
Output selection (L:54.0000MHz, H:67.5000MHz)
Clock input pin (27.0000MHz input)
(BU7322HFV)
PLL
1:VDD
6:IN
2:VSS
5:SEL
3:OUT
4:OE
6pin:IN
1/6
1/8
DATA1
DATA2
3pin:OUT
5pin:SEL
4pin:OE
Fig.97
PIN
NO.
1
2
3
4
5
6
PIN
name
VDD
VSS
OUT
OE
SEL
IN
Fig.98
Function
Power supply
GND
Clock output terminal (L:49.5000MHz, H:36.0000MHz)
Power-down (L:disable ,H:enable) equipped with Pull-down function, disable output set to L at disable
Output selection (L:49.5000MHz, H:36.0000MHz) equipped with Pull-down function
Clock input pin (27.0000MHz input)
(BU7325HFV)
PLL
1:VDD
6:IN
2:VSS
5:SEL
3:OUT
4:OE
6pin:IN
DATA1
DATA2
1/6
1/4
3pin:OUT
5pin:SEL
4pin:OE
Fig.99
PIN
NO.
1
2
3
4
5
6
PIN
name
VDD
VSS
OUT
OE
SEL
IN
Fig.100
Function
Power supply
GND
Clock output terminal (L:48.0000MHz, H:78.0000MHz)
Power-down (L:disable ,H:enable) equipped with Pull-down function, disable output set to L at disable
Output selection (L:48.0000MHz, H:78.0000MHz)
Clock input pin (27.0000MHz input)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
15/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
●Application circuit example
(BU3071HFV)
(BU3072HFV)
1:VDD
6:IN
28.6363MHz
2:VSS
5:TEST
3:OUT
4:OE
1:VDD
6:IN
2:VSS
5:SEL
3:OUT
4:PD
48MHz
H:36.0000MHz
H:enable
54.0000MHz
L:27.0000MHz
H:36.0000MHz
L:27.0000MHz
H:enable
L:disable
Fig.101
(BU3073HFV)
(BU3076HFV)
1:VDD
6:IN
2:VSS
5:SEL
3:OUT
4:PD
48MHz
H:24.5454MHz
L:24.3750MHz
H:24.5454MHz
L:24.3750MHz
H:67.5000MHz
L:54.00000MHz
1:VDD
6: IN
2: VSS
5: SEL
3: OUT
4: OE
27MHz
H:67.5000MHz
L:54.0000MHz
H:enable
H:enable
L:disable
Fig.103
L:disable
Fig.104
(BU7322HFV)
H:36.0000MHz
L:49.5000MHz
L:Hi-Z
Fig.102
(BU7325HFV)
1:VDD
6: IN
2: VSS
5: SEL
3: OUT
4: OE
27MHz
H:36.0000MHz
L:49.5000MHz
H:78.0000MHz
L:48.0000MHz
1:VDD
6: IN
2: VSS
5: SEL
3: OUT
4: OE
H:78.0000MHz
L:48.0000MHz
H:enable
H:enable
Fig.105
27MHz
L:disable
Fig.106
L:disable
For VDD and VSS, insert a bypass capacitor of approx. 0.1 µF as close as possible to the pin.
Bypass capacitors with good high-frequency characteristics are recommended.
Even though we believe that the typical application circuit is worth of a recommendation, please be sure to thoroughly recheck the characteristics before use.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
16/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
●Equivalent circuit
3-pin (Output pin)
From the inside of IC
From the inside of IC
PD=L ; Hi-Z
; enable
Fig.107
BU3071HFV, BU3073HFV, BU3076HFV
BU7322HFV, BU7325HFV
Fig.108
BU3072HFV
4-pin (Input pin)
To the inside of IC
Fig.109
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
17/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
5-pin (Input pin)
To the inside of IC
To the inside of IC
Fig.110
BU3072HFV, BU3073HFV, BU3076HFV
BU7322HFV, BU7325HFV
Fig.111
BU3071HFV
6-pin (Input pin)
To the inside
of IC
From the inside of IC
To the inside of IC
To the inside of IC
To the inside
of IC
Fig.112
BU3072HFV, BU3073HFV, BU3076HF
BU7322HFV, BU7325HFV
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig.113
BU3071HFV
18/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
●Appearance of Marker
(0.45)
Marker
○ ○
(1.5)
(1.2)
(1.4)
(0.15)
2.6±0.1
(Dimension including burr: Max. 2.8)
3.0±0.1
(Dimension including burr: Max. 1.8)
1.6±0.1
LOT No.
0.75MAX
0.145±0.05
0.5
0.22±0.05
Fig.114
・List of markers
Model name
Marker
BU3071HFV
AB
BU3072HFV
AC
BU3073HFV
AD
BU3076HFV
AA
BU7322HFV
AE
BU7325HFV
AH
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
(UNIT:mm)
19/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
●Notes for use
1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr),
etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit.
If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical
safety measures including the use of fuses, etc.
2) Recommended operating conditions
These conditions represent a range within which characteristics can be provided approximately as expected. The
electrical characteristics are guaranteed under the conditions of each parameter.
3) Reverse connection of power supply connector
The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown
due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply
terminal.
4) Power supply line
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.
In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has
the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus
suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the
wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At
the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to
be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the
constant.
5) GND voltage
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.
6) Short circuit between terminals and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between
the terminal and the power supply or the GND terminal, the ICs can break down.
7) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
8) Inspection with set PCB
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig.
After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition,
for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the
transportation and the storage of the set PCB.
9) Input terminals
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a
voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to
the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is
applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of
electrical characteristics.
10) Ground wiring pattern
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the
small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
11) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
20/21
2009.04 - Rev.A
BU3071HFV,BU3072HFV,BU3073HFV,BU3076HFV,BU7322HFV,BU7325HFV
Technical Note
●Ordering part number
B
U
3
Part No.
0
7
1
H
Part No.
3071,3072,3073
3076,7322,7325
F
V
Package
HFV : HVSOF6
-
T
R
Packaging and forming specification
TR: Embossed tape and reel
HVSOF6
(1.5)
(0.45)
(1.4)
Embossed carrier tape
Quantity
3000pcs
Direction
of feed
(1.2)
1 2 3
Tape
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
(0.15)
2.6±0.1
(MAX 2.8 include BURR)
6 5 4
)
1pin
0.145±0.05
0.75Max.
3.0±0.1
1.6±0.1
(MAX 1.8 include BURR)
S
0.1 S
0.22±0.05
Direction of feed
0.5
(Unit : mm)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Reel
21/21
∗ Order quantity needs to be multiple of the minimum quantity.
2009.04 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of
any of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
R0039A