General-purpose Operational Amplifiers / Comparators
TROPHY SERIES Operational Amplifiers
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
●Description The Universal Standard family LM358 / 324 and LM2904 / 2902 monolithic ICs integrate two independent op-amp circuits and phase compensation capacitors on a single chip, feature high gain and low power consumption, and possess an operating voltage range between 3[V]and 32[V] (single power supply.)
No.11094EBT02
TROPHY SERIES
Dual LM358 family
LM358DR LM358PWR LM358DGKR
Quad LM324 family
LM324DR LM324PWR LM324KDR
LM2904 family
LM2904DR LM2904PWR LM2904DGKR LM2904VQDR LM2904VQPWR
LM2902 family
LM2902DR LM2902PWR LM2902KDR LM2902KPWR LM2902KVQDR LM2902KVQPWR
●Features 1) Operating temperature range 0[℃] to + 70[℃] Commercial Grade LM358/324 family : Extended Industrial Grade LM2904/2902 family : -40[℃] to +125[℃] 2) Wide operating voltage range +3[V] to +32[V] (single supply) ±1.5[V] to ±16[V] (dual supply) 3) Low supply current 4) Common-mode input voltage range, including ground 5) Differential input voltage range equal to maximum ratedsupply voltage 6) High large signal voltage gain 7) Wide output voltage range ●Pin Assignment
1OUT
1 2 3 4 5 6 7
- + + -
14 13 12 11 10 9 8
4OUT 4IN4IN+ GND 3IN+ 3IN3OUT
1OUT 1IN1IN+ GND
1 2 3 4
-+
8 7
+-
Vcc 2OUT 2IN2IN+
1IN1IN+ Vcc 2IN+ 2IN2OUT
-
+
+
-
6 5
SOIC8
LM358DR LM2904DR LM2904VQDR
TSSOP8
LM358PWR LM2904PWR LM2904VQPWR
MSOP8/VSSOP8
LM358DGKR LM2904DGKR
SOIC14
LM324DR LM324KDR LM2902DR LM2902KDR LM2902KVQDR
TSSOP14
LM324PWR LM2902PWR LM2902KPWR LM2902KVQPWR
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
1/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Absolute Maximum Ratings (Ta=25[℃]) Parameter Supply Voltage Operating Temperature Range Storage Temperature Range Input Common-mode Voltage Maximum Junction Temperature Symbol Vcc-GND Topr Tstg VICM Tjmax -0.3 to +32 LM358 family +32 0 to +70 -65 to +150 -0.3 to +26 150 LM324 family Ratings LM2904 LM2902 family family +26
Technical Note
LM2904V LM2902V family family +32 -40 to +125 -0.3 to +32
Unit V ℃ ℃ V ℃
●Electric Characteristics ○LM358,LM324 family (Unless otherwise specified, Vcc=+5[V])
Limits Parameter Symbol Temperature range 25℃ Full range - 25℃ Full range - 25℃ Full range 25℃ Full range 25℃ Full range Full range - - - - - - - - 0 0
Vcc-1.5
LM358 family Min. Typ. 3 - 7 2 - 10 20 - - - - 28 5 Max. 7 9 - 50 150 - 250 500
Vcc-1.5 Vcc-2.0
LM324 family Min. - - - - - - - - - -
Vcc-1.5
Unit
Conditions VO=1.4[V] VIC=VICR(min) Vcc=5[V] to 30[V] -
Fig. No
Typ. 3 - - 2 - - 20 - - - - 28 5
Max. 7 9 - 50 150 - 250 500
Vcc-1.5 Vcc-2.0
Input Offset Voltage (*1)
VIO
mV
98
Input Offset Voltage Drift
αVIO
μV/℃
-
Input Offset Current (*1)
IIO
nA
VO=1.4[V]
98
Input Offset Current Drift
αIIO
pA/℃
-
-
Input Bias Current (*1)
IIB
nA
VO=1.4[V]
98
Input Common-modeVoltage Range
VICR
V
Vcc=5[V] to 30[V] RL≧2[kΩ] Vcc=30[V],RL≧10[kΩ] RL≦10[kΩ]
98
High Level Output Voltage
VOH
- - 20
- - 20
27 -
27 -
V
99
Low Level Output Voltage
VOL
mV
98 98
Large Signal Voltage Gain
AVD
25℃
25
100
-
25
100
-
Vcc=15[V] V/mV VO=1[V] to 11[V] RL≧2[kΩ] dB Vcc=5[V] to 30[V], VIC=VICR(min) Vcc=5[V] to 30[V]
Common-mode Rejection Ratio
CMRR
25℃
65
80
-
65
80
-
98
Supply-Voltage rejection ratio
KSVR
25℃
65
100
-
65
100
-
dB
98
Cross-talk Attenuation
VO1/VO2
25℃ 25℃ Full range 25℃
- 20 10 10 2 12 - -
120 30 - 20 - 30 0.7 1 0.3
- - - - - - 1.2 2 -
- 20 10 10 2 12 - -
120 30 - 20 - 30 0.7 1.4 0.5
- - - - - - 1.2 3 -
dB
f=1[kHz] to 20[kHz] Vcc=15[V],VO=0[V] VID=1[V] Vcc=15[V],VO=0[V] VID=-1[V] VO=200[mV],VID=-1[V] VO=2.5[V],No Load
101
Source Output Current (*2) Sink
mA
Full range 25℃ Full range
mA μA mA
99
Supply Current (All Amps)
ICC
Full range 25℃
Slew Rate at Unity-Gain
SR
-
-
Unity Gain Bandwidth
B1
25℃
-
0.7
-
-
1.2
-
Equivalent Input Noise Voltage
Vn
25℃
-
40
-
-
35
-
Vcc=30[V],VO=0.5[V] No Load RL=1[MΩ],CL=30[pF] VI=±10[V] V/μs Vcc=15[V],GND=-15[V] (reference to Fig100) RL=1[MΩ],CL=20[pF] MHz Vcc=15[V],GND=-15[V] (reference to Fig99) Vcc=15[V],GND=-15[V] nV/ Hz RS=100[Ω],VI=0[V] f=1[kHz](reference to Fig99)
99
99
99
99
(*1) Absolute value (*2) Under high temperature, consider the power dissipation of IC when selecting the output current. When the output terminal is continuously shorted, the output current reduces the temperature inside the IC by flushing.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
2/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ○LM2904,LM2902 family (Unless otherwise specified, Vcc=+5[V])
Limits Parameter Symbol Temperature range 25℃ Full range - 25℃ IIO LM2904V LM2902V(*5) αIIO Full range 25℃ Full range - 25℃ Full range 25℃ Full range 25℃ VOH Full range Full range VOL Full range - - - - - - - - - - - - Vcc-1.5 23 27 - LM2904 family Min. Input Offset Voltage (*3) VIO Typ. 3 - 7 2 - 2 - 10 20 - - - - 24 28 5 Max. 7 10 - 50 300 50 150 - 250 500 Vcc-1.5 Vcc-2.0 - - - 20 LM2902 family Min. - - - - - - - - - - - - Vcc-1.5 23 27 - Typ. 3 - 7 2 - 2 - 10 20 - - - - 24 - 5 Max. 7 10 - 50 300 50 150 - 250 500 Vcc-1.5 Vcc-2.0 - - - 20 mV V pA/℃ nA VO=1.4[V] mV Unit
Technical Note
Conditions
Fig. No
VO=1.4[V],VIC=VICR(min) Vcc=5[V] to MAX(*5) -
98
Input Offset Voltage Drift LM2904 LM2902(*5)
αVIO
μV/℃
-
Input Offset Current (*3)
98
Input Offset Current Drift
-
-
Input Bias Current (*3) Input Common-mode Voltage Range High Level Output Voltage LM2904 LM2902(*5) LM2904V LM2902V(*5)
IIB
nA
VO=1.4[V]
98
VICR
V
Vcc=5[V] to MAX(*5) RL≧10[kΩ] Vcc=MAX(*5),RL≧10[kΩ] Vcc=MAX(*5),RL≧10[kΩ] RL≦10[kΩ] Vcc=15[V],VO=1[V] to 11[V] RL≧2[kΩ] Vcc=5[V] to MAX(*5) VIC=VICR(min)
98
99
Low Level Output Voltage Large Signal Voltage Gain
99
AVD
25℃ 25℃ 25℃
25 50 65 65 -
100 80 80 100 - 120 30 - 20 - 30 40 0.7 1 0.3
- - - - - - - - - - - - 1.2 2 -
25 50 60 50 60 - 20 10 10 2 - 12 - - -
100 80 80 100 100 120 30 - 20 - 30 40 0.7 1.4 0.5
- - - - - - 60 - - - - - 1.2 3 -
V/mV dB dB
98
LM2904 LM2902(*5) CommonCMRR mode Rejection Ratio LM2904V LM2902V(*5) LM2904 LM2904V Supply Voltage KSVR M2902(*5) Rejection Ratio LM2902V(*5) Cross-talk Attenuation VO1/VO2
98
25℃
dB
Vcc=5[V] to MAX(*5)
98
25℃ 25℃ Full range 25℃ Full range 25℃
- 20 10 10 2 - 12 - - -
dB
f=1[kHz] to 20[kHz] Vcc=15[V],VO=0[V] VID=1[V] Vcc=15[V],VO=0[V] VID=-1[V] VO=200[mV],VID=-1[V]
101
Source Output Current (*4) Sink LM2904 LM2902(*5) LM2904V LM2902V(*5) Supply Current (All Amps)
mA
mA μA μA
99
Io 25℃ Full range ICC Full range 25℃
VO=2.5[V],No Load Vcc=MAX(*5),VO=0.5[V] No Load RL=1[MΩ],CL=30[pF], VI=±10[V] V/μs Vcc=15[V],GND=-15[V] (reference to Fig100) RL=1[MΩ],CL=20[pF] MHz Vcc=15[V],GND=-15[V] (reference to Fig99) Vcc=15[V],GND=-15[V] RS=100[Ω]VI=0[V] nV/ Hz f=1[kHz], ( reference to Fig99) mA 99
Slew Rate at Unity Gain
SR
99
Unity-Gain Bandwidth
B1
25℃
-
0.7
-
-
1.2
-
99
Equivalent Input Noise Voltage
Vn
25℃
-
40
-
-
35
-
99
(*3) Absolute value (*4) Under high temperature, consider the power dissipation of the IC when selecting the output current. When the output terminal is continuously shorted the output current is reduced to lower the temperature inside the IC. (*5) The maximum supply voltage is 26V for the LM2904DR, LM2904PW, LM2904PWR, and LM2904DQKR The maximum supply voltage is 32V for the LM2904VQDR and LM2904VQPWR
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
3/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Reference Data LM358 family
800
LM358 family LM358 family
Technical Note
LM358 family
POWER DISSIPATION Pd [mW]
LM358PWR
600
LM358DGKR LM358DR
25℃ 0℃ 32V
400
200
70℃
5V 3V
0 0 25 50
70
75
100
℃ AMBIENT TEMPERATURE : [Ta ][℃]
Fig. 1 Derating Curve
LM358 family
Fig. 2 Supply Current – Supply Voltage
LM358 family
Fig. 3 Supply Current – Ambient Temperature
LM358 family 0℃
0℃ 25℃
25℃
70℃
70℃
Fig. 4 Maximum Output Voltage – Supply Voltage (RL=10[kΩ])
LM358 family
Fig. 5 Fig. 6 Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage (VCC=5[V],RL=2[kΩ]) (VCC=5[V])
LM358 family 70℃ 15V LM358 family
3V 5V 0℃ 15V 25℃ 5V 3V
Fig. 7 Output Source Current – Ambient Temperature (VOUT=0[V])
LM358 family
Fig. 8 Output Sink Current – Output Voltage (VCC=5[V])
LM358 family 32V
Fig. 9 Output Sink Current – Ambient Temperature (VOUT=VCC)
LM358 family
25℃
0℃ 5V 0℃ 25℃
70℃
3V 70℃
Fig. 10 Low Level Sink Current - Supply Voltage (VOUT=0.2[V])
Fig. 11 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V])
Fig. 12 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
4/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Reference Data LM358 family
LM358 family LM358 family
Technical Note
LM358 family
3V 0℃ 25℃
32V
5V
32V 3V 70℃
5V
Fig. 13 Input Offset Voltage – Ambient Temperature (Vicm=0[V], VOUT=1.4[V])
LM358 family
Fig. 14 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V])
LM358 family
Fig. 15 Input Bias Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V])
LM358 family
0℃ 25℃
70℃ 0℃ 25℃
70℃
[V]
Fig. 16 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V])
LM358 family
Fig. 17 Input Offset Voltage – Common Mode Input Voltage (VCC=5[V])
LM358 family
Fig. 18 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V])
LM358 family
0℃ 3V
25℃
15V
5V 5V 32V 70℃
Fig. 19 Input Offset Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V])
LM358 family
Fig. 20 Large Signal Voltage Gain – Supply Voltage (RL=2[kΩ])
LM358 family 36V 32V
Fig. 21 Large Signal Voltage Gain – Ambient Temperature (RL=2[kΩ])
LM358 family
0℃
25℃
70℃
5V
3V
Fig. 22 Common Mode Rejection Ratio – Supply Voltage
Fig. 23 Common Mode Rejection Ratio – Ambient Temperature
Fig. 24 Power Supply Rejection Ratio – Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
5/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Reference Data LM324 family
LM324 family LM324 family BA2904 family
Technical Note
BA2904 family LM324 family
1000
LM324PWR
POWER DISSIPATION Pd [mW]
800
LM324DR LM324KDR
25℃ 0℃ 32V
600
400
5V 3V
200
70℃
0 0 25 50
70
75
100
AMBIENT TEMPERATURE :[℃] [℃] Ta
Fig. 25 Derating Curve
LM324 family
Fig. 26 Supply Current – Supply Voltage
LM324 family
Fig. 27 Supply Current – Ambient Temperature
LM324 family
0℃ 0℃ 25℃
25℃
70℃
70℃
Fig. 28 Maximum Output Voltage – Supply Voltage (RL=10[kΩ])
LM324 family
Fig. 29 Fig. 30 Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage (VCC=5[V],RL=2[kΩ]) (VCC=5[V])
LM324 family 70℃ 15V LM324 family
3V 5V 0℃ 15V 25℃ 5V 3V
Fig. 31 Output Source Current – Ambient Temperature (VOUT=0[V])
LM324 family 0℃ 25℃
Fig. 32 Output Sink Current – Output Voltage (VCC=5[V])
LM324 family 32V
Fig. 33 Output Sink Current – Ambient Temperature (VOUT=VCC)
LM324 family
5V
0℃
25℃
70℃
3V 70℃
Fig. 34 Low Level Sink Current - Supply Voltage (VOUT=0.2[V])
Fig. 35 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V])
Fig. 36 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
6/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Reference Data LM324 family
LM324 family LM324 family
Technical Note
LM324 family
3V
0℃
25℃
32V
5V
32V 3V
70℃
5V
Fig. 37 Input Offset Voltage – Ambient Temperature (Vicm=0[V], VOUT=1.4[V])
LM324 family
Fig. 38 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V])
LM324 family
Fig. 39 Input Bias Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V])
LM324 family
0℃ 25℃
70℃ 0℃ 25℃
70℃
[V]
Fig. 40 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V])
LM324 family
Fig. 41 Input Offset Voltage – Common Mode Input Voltage (VCC=5[V])
LM324 family
Fig. 42 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V])
LM324 family
0℃ 3V
25℃
15V
5V 5V 32V 70℃
Fig. 43 Input Offset Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V])
LM324 family
Fig. 44 Large Signal Voltage Gain – Supply Voltage (RL=2[kΩ])
LM324 family 36V 32V
Fig. 45 Large Signal Voltage Gain – Ambient Temperature (RL=2[kΩ])
LM324 family
0℃
25℃
70℃
5V
3V
Fig. 46 Common Mode Rejection Ratio – Supply Voltage
Fig. 47 Common Mode Rejection Ratio – Ambient Temperature
Fig. 48 Power Supply Rejection Ratio – Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
7/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Reference Data LM2904 family
LM2904 family
Technical Note
800
POWER DISSIPATION Pd [mW]
LM2904PWR LM2904VQPWR
SUPPLY CURRENT [mA]
1.0
BM2904 family LA2904 family
1.0
SUPPLY CURRENT [mA]
LM2904 family BA2904 family
600
LM2904DGKR LM2904DR LM2904VQDR
0.8
25℃
0.8
32V
0.6
-40℃
0.6 0.4 0.2 0.0
5V 3V
400
0.4
105℃ 125℃
200
0.2
0 0 25 50 75 100 125 150
0.0 0 10
℃ AMBIENT TEMPERATURE : [Ta ][℃]
20 30 SUPPLY VOLTAGE [V]
40
-50
-25
0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 49 Derating Curve
40
MAXIMUM OUTPUT VOLTAGE [V]
-40℃ LM2904 family
Fig. 50 Supply Current – Supply Voltage
5
MAXIMUM OUTPUT VOLTAGE [V]
LM2904 family
Fig. 51 Supply Current – Ambient Temperature
50
-40℃ LM2904 family
OUTPUT SOURCE CURRENT [mA]
30
125℃
4 3
40
25℃
30
105℃
20
25℃
2 1 0
-50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
20
10
105℃
10
125℃
0 0 10 20 30 40
SUPPLY VOLTAGE [V]
0 0 1 2 3 4 OUTPUT VOLTAGE [V] 5
Fig. 52 Maximum Output Voltage – Supply Voltage (RL=10[kΩ])
50 OUTPUT SOURCE CURRENT [mA]
LM2904 family
Fig. 53 Fig. 54 Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage (VCC=5[V],RL=2[kΩ]) (VCC=5[V])
100
105℃ LM2904 family
30 OUTPUT SINK CURRENT [mA]
LM2904 family 15V
40
3V 5V
OUTPUT SINK CURRENT [mA]
10
125℃ -40℃
20
30
15V
1
5V
20
0.1
3V
25℃
10
10
0.01
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
0.001 0 0.4 0.8 1.2 1.6 OUTPUT VOLTAGE [V] 2
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 55 Output Source Current – Ambient Temperature (VOUT=0[V])
LM2904 family
Fig. 56 Output Sink Current – Output Voltage (VCC=5[V])
LM2904 family
Fig. 57 Output Sink Current – Ambient Temperature (VOUT=VCC)
LM2904 family
80
LOW LEVEL SINK CURRENT [ μ A]
-40℃ 25℃
80 LOW LEVEL SINK CURRENT [μ A] 70 60 50 40 30 20 10 0
5V
32V
8 INPUT OFFSET VOLTAGE [mV] 6
-40℃
70 60 50 40 30 20 10 0
0 5
4 2 0 -2 -4 -6 -8
105℃
25℃
125℃ 105℃
3V
125℃
Fig. 58 Low Level Sink Current - Supply Voltage (VOUT=0.2[V])
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
-50
-25
Fig. 59 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V])
0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
0
5
Fig. 60 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V])
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
8/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Reference Data LM2904 family
8 INPUT OFFSET VOLTAGE [mV] 6 INPUT BIAS CURRENT [nA] 4 2 0 -2 -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
5V 32V LM2904 family
Technical Note
50
LM2904 family
50
LM2904 family
40
-40℃ 25℃
3V
INPUT BIAS CURRENT [nA]
40
32V
30
30
20
20
3V 5V
10
125℃
105℃
10
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 61 Input Offset Voltage – Ambient Temperature (Vicm=0[V], VOUT=1.4[V])
50 40 30 20 10 0
LM2904 family
Fig. 62 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V])
8 INPUT OFFSET VOLTAGE [mV] 6 4 2 0 -2 -4 -6 -8
-40℃ 25℃ 105℃ 125℃ LM2904 family
Fig. 63 Input Bias Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V])
10 INPUT OFFSET CURRENT [nA]
LM2904 family
INPUT BIAS CURRENT[nA]
5
-40℃
25℃
0
125℃
105℃
-5
-10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
-10
-1 0 1 2 3 [V] INPUT VOLTAGE [Vin] 4 5
0
5
10
15
20
25
30
35
Fig. 64 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V])
10 INPUT OFFSET CURRENT [nA]
LM2904 family
Fig. 65 Input Offset Voltage – Common Mode Input Voltage (VCC=5[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90 80 70 60
105℃ 125℃ -40℃ 25℃ LM2904 family
Fig. 66 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V])
LM2904 family
SUPPLY VOLTAGE [V]
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100
5V 15V
5
3V
0
5V 32V
90 80 70 60
-5
-10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
4
6
8 10 12 SUPPLY VOLTAGE [V]
14
16
-50
-25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 67 Input Offset Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V])
LM2904 family
Fig. 68 Large Signal Voltage Gain – Supply Voltage (RL=2[kΩ])
LM2904 family 32V
Fig. 69 Large Signal Voltage Gain – Ambient Temperature (RL=2[kΩ])
140 POWER SUPPLY REJECTION RATIO [dB] 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
LM2904 family
COMMON MODE REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO [dB]
140
140
36V
120
-40℃
25℃
120
100
100
80
105℃
80
5V 3V
125℃
60
60
40 0
40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 70 Common Mode Rejection Ratio – Supply Voltage
10 20 30 SUPPLY VOLTAGE [V]
40
Fig. 71 Common Mode Rejection Ratio – Ambient Temperature
Fig. 72 Power Supply Rejection Ratio – Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
9/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Reference Data LM2902 family
1000
LM2902 family
Technical Note
1.0
LM2902 family
1.0
SUPPLY CURRENT [mA]
LM2902 family
POWER DISSIPATION Pd [mW]
SUPPLY CURRENT [mA]
800
LM2902PWR LM2902KPWR LM2902KVQPWR
0.8
25℃
0.8
32V
600
0.6
-40℃
0.6 0.4 0.2 0.0
5V 3V
400
200
LM2902DR LM2902KDR LM2902KVQDR
0.4
0.2
105℃
125℃
0 0 25 50 75 100 125 150
0.0 0 10
℃ AMBIENT TEMPERATURE : [Ta ][℃]
20 30 SUPPLY VOLTAGE [V]
40
-50
-25
0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 73 Derating Curve
Fig. 74 Supply Current – Supply Voltage
5
MAXIMUM OUTPUT VOLTAGE [V]
LM2902 family
Fig. 75 Supply Current – Ambient Temperature
50
-40℃ LM2902 family
40
MAXIMUM OUTPUT VOLTAGE [V]
-40℃
LM2902 family
OUTPUT SOURCE CURRENT [mA]
30
125℃
4 3
40
25℃
30
105℃
20
105℃
25℃
2 1 0
-50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
20
10
10
125℃
0 0 10 20 30 40
SUPPLY VOLTAGE [V]
0 0 1 2 3 4 OUTPUT VOLTAGE [V] 5
Fig. 76 Maximum Output Voltage – Supply Voltage (RL=10[kΩ])
50 OUTPUT SOURCE CURRENT [mA]
LM2902 family
Fig. 77 Fig. 78 Maximum Output Voltage – Ambient Temperature Output Source Current – Output Voltage (VCC=5[V],RL=2[kΩ]) (VCC=5[V])
100
105℃ LM2902 family
30 OUTPUT SINK CURRENT [mA]
LM2902 family 15V
40
3V 5V
OUTPUT SINK CURRENT [mA]
10
125℃
20
30
15V
1
-40℃
5V
20
0.1
3V
25℃
10
10
0.01
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
0.001 0 0.4 0.8 1.2 1.6 OUTPUT VOLTAGE [V] 2
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 79 Output Source Current – Ambient Temperature (VOUT=0[V])
LM2902 family
Fig. 80 Output Sink Current – Output Voltage (VCC=5[V])
LM2902 family
Fig. 81 Output Sink Current – Ambient Temperature (VOUT=VCC)
LM2902 family
80
LOW LEVEL SINK CURRENT [ μ A]
-40℃ 25℃
80 LOW LEVEL SINK CURRENT [μ A] 70 60 50 40 30 20 10 0
5V
32V
8 INPUT OFFSET VOLTAGE [mV] 6
-40℃
70 60 50 40 30 20 10 0
0 5
4 2 0 -2
105℃
25℃
105℃
125℃
3V
125℃
-4 -6 -8
Fig. 82 Low Level Sink Current - Supply Voltage (VOUT=0.2[V])
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
-50
-25
Fig. 83 Low Level Sink Current - Ambient Temperature (VOUT=0.2[V])
0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
0
5
Fig. 84 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V])
10 15 20 25 SUPPLY VOLTAGE [V]
30
35
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
10/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Reference Data LM2902 family
8 INPUT OFFSET VOLTAGE [mV] 6 INPUT BIAS CURRENT [nA] 4 2 0 -2 -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35
5V 32V LM2902 family
Technical Note
50
LM2902 family
50
LM2902 family
40
-40℃ 25℃
3V
INPUT BIAS CURRENT [nA]
40
32V
30
30
20
20
3V 5V
10
125℃
105℃
10
0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 85 Input Offset Voltage – Ambient Temperature (Vicm=0[V], VOUT=1.4[V])
50 40 30 20 10 0
LM2902 family
Fig. 86 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V])
8 INPUT OFFSET VOLTAGE [mV] 6 4 2 0 -2 -4 -6 -8
-40℃ 25℃ 105℃ 125℃ LM2902 family
Fig. 87 Input Bias Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V])
10 INPUT OFFSET CURRENT [nA]
LM2902 family
INPUT BIAS CURRENT[nA]
5
-40℃
25℃
0
-5
105℃
125℃
-10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
-10
-1 0 1 2 3 [V] INPUT VOLTAGE [Vin] 4 5
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 88 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V])
10 INPUT OFFSET CURRENT [nA]
LM2902 family
Fig. 89 Input Offset Voltage – Common Mode Input Voltage (VCC=5[V])
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100 90
105℃ 125℃ -40℃ 25℃ LM2902 family
Fig. 90 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V])
LM2902 family
140 LARGE SIGNAL VOLTAGE GAIN [dB] 130 120 110 100
5V
15V
5
3V
0
5V 32V
90 80 70 60
-5
80 70 60
-10 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
4
6
8 10 12 SUPPLY VOLTAGE [V]
14
16
-50
-25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 91 Input Offset Current – Ambient Temperature (Vicm=0[V],VOUT=1.4[V])
LM2902 family
Fig. 92 Large Signal Voltage Gain – Supply Voltage (RL=2[kΩ])
LM2902 family
Fig. 93 Large Signal Voltage Gain – Ambient Temperature (RL=2[kΩ])
140
LM2902 family
COMMON MODE REJECTION RATIO [dB]
COMMON MODE REJECTION RATIO [dB]
140
140
32V
POWER SUPPLY REJECTION RATIO [dB]
36V
130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
120
-40℃
25℃
120
100
100
80
105℃
125℃
80
5V 3V
60
60
40 0 10 20 30 SUPPLY VOLTAGE [V] 40
40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃]
Fig. 94 Common Mode Rejection Ratio – Supply Voltage
Fig. 95 Common Mode Rejection Ratio – Ambient Temperature
Fig. 96 Power Supply Rejection Ratio – Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
11/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Circuit Diagram Vcc
Technical Note
INOUT IN+
GND
Fig.97 Circuit Diagram (each Op-Amp)
●Measurement Circuit 1 NULL Method Measurement Condition Measurement item Input Offset Voltage Input Offset Current Input Bias Current Large Signal Voltage Gain Common-mode Rejection Ratio Supply Voltage Rejection Ratio VF S1 S2 S3 LM358/LM324 family Vcc 5 5 5 15 15 5 5 5 30 GND 0 0 0 0 0 0 0 0 0 0 EK ‐1.4 ‐1.4 ‐1.4 ‐1.4 ‐1.4 -11.4 ‐1.4 ‐1.4 ‐1.4 ‐1.4 VICR 0 0 0 0 0 0 0 3.5 0 0 Vcc,GND,EK,VICR Unit:[V] LM2904/LM2902 family Calculation Vcc GND EK VICR 5 to 30 5 5 5 15 15 5 5 5 30 0 0 0 0 0 0 0 0 0 0 ‐1.4 ‐1.4 ‐1.4 ‐1.4 ‐1.4 -11.4 ‐1.4 ‐1.4 ‐1.4 ‐1.4 0 0 0 0 0 0 0 3.5 0 0 1 2 3 4 5 6
VF1 ON ON OFF 5 to 30 VF2 OFF OFF OFF VF3 OFF ON VF4 ON OFF VF5 VF6 VF7 VF8 VF9 VF10 ON ON ON OFF
ON ON ON OFF ON OFF
-Calculation- 1.Input Offset Voltage (VIO)
Vio VF1 1+ Rf /Rs [V]
0.1[μF]
2. Input offset current (IIO)
Iio VF2 - VF1 Ri (1+ Rf / Rs) [A]
S1 Rs VICR Ri Vcc
Rf 50[kΩ] 500[kΩ] VOUT EK
0.1[μF]
3.Input Bias Current (IIB)
[A] Ib 2× Ri (1+ Rf / Rs) VF4 - VF3
+15[V] 500[kΩ] DUT S3 1000[pF] GND RL -15[V]
50[Ω] 10[kΩ] 50[Ω] 10[kΩ] Rs Ri S2 Rf 50[kΩ]
4.Large Signal Voltage Gain (AVD)
AV 20× Log 10× (1+ Rf /Rs) [dB] VF6 - VF5
V
VF
5.Common-mode rejection ratio (CMRR)
CMRR 20× Log 3.5× (1+ Rf/ Rs) VF8-VF7 [dB]
6.Supply Voltage rejection ratio (KSVR)
PSRR = 20×Log △Vcc×(1+Rf/Rs) VF10 - VF9 [dB]
Fig.98 Measurement Circuit 1 (each Op-Amp)
△ Vcc=25V
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
12/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Measurement Circuit 2: Switch Condition SW No. Supply Current High Level Output Voltage Low Level Output Voltage Output Source Current Output Sink Current Slew Rate Unity-gain Bandwidth Product Equivalent Input Noise Voltage SW 1 SW 2 SW 3 SW 4 SW 5 SW 6 SW 7 SW 8 SW 9 SW 10 SW 11
Technical Note
SW 12
SW 13
SW 14
SW 15
OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF ON OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF ON OFF OFF OFF OFF ON OFF OFF ON
ON OFF OFF OFF ON OFF ON OFF OFF OFF OFF ON OFF OFF OFF
Input voltage 3[V]
SW4 SW5 SW6 R2 R3 Vcc A
0.5[V] Input waveform t
- Output voltage
SW1 RS SW2 R1 SW3 SW7 SW8 SW9 GND A ~ VINVIN+ ~ RL CL V ~ V VOUT
+
SW10 SW11 SW12 SW13 SW14 SW15
SR = ΔV / Δt 3[V]
ΔV 0.5[V] Δt t
Output waveform
Fig.99 Measurement Circuit 2 (each Op-Amp)
Fig.100 Slew Rate Input Waveform
●Measurement Circuit 3: Cross-talk Attenuation
R2=100[kΩ] Vcc=+2.5[V]
R2=100[kΩ]
Vcc=+2.5[V]
R1=1[kΩ] CH1
R1=1[kΩ] other CH
VIN R1//R2 GND=-2.5[V]
V
VOUT1 =0.5 [Vrms]
R1//R2
GND=-2.5[V]
V
VOUT2
VO1/VO2=20×log
100×VOUT1 VOUT2
Fig.101 Measurement Circuit 3
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
13/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Description of Electrical Characteristics
Described below are descriptions of the relevant electrical terms Please note that item names, symbols and their meaning may differ form those on another manufacturer’s documents.
Technical Note
1. Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (Vcc/GND) Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (VID) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (VICR) Signifies the maximum voltage that can be supplied to the non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead. 1.4 Operating temperature range and storage temperature range (Topr, Tstg) The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics. 1.5 Power dissipation (Pd) Indicates the power that can be consumed by a specific mounted board at ambient temperature (25℃). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance. 2. Electric characteristics 2.1 Input offset voltage (VIO) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V. 2.2 Input offset voltage drift (αVIO) Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation. 2.3 Input offset current (IIO) Indicates the difference of the input bias current between the non-inverting and inverting terminals. 2.4 Input offset current drift (αIIO) Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation. 2.5 Input bias current (IIB) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.6 Circuit current (ICC) Indicates the current of the IC itself that flows under specific conditions and during no-load steady state. 2.7 High level output voltage/low level output voltage (VOH/VOL) Signifying the voltage range that can be output by under specific load conditions, it is in general divided into high level output voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit. 2.8 Differential voltage amplification (AVD) The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AVD = (output voltage fluctuation) / (input offset fluctuation) 2.9 Input common-mode voltage range (VICR) Indicates the input voltage range under which the IC operates normally. 2.10 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation) 2.11 Power supply rejection ratio (KSVR) Denotes the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation). KSVR = (change in power supply voltage) / (input offset fluctuation) 2.12 Output source current/ output sink current (IOH/IOL) The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source current indicates the current flowing out of IC, and the output sink current the current flowing into the IC. 2.13 Cross talk attenuation (VO1/VO2) Expresses the amount of fluctuation in the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel. 2.14 Slew rate at unity gain (SR) Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied. 2.15 Unity gain bandwidth (B1) The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of the op-amp is 1 (maximum frequency, unity gain frequency).
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
14/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Derating Curves
800 1000
Technical Note
POWER DISSIPATION Pd [mW]
POWER DISSIPATION Pd [mW]
LM358DGKR LM358DR
600
LM2904PWR LM2904VQPWR LM2904DGKR LM2904DR LM2904VQDR
800
LM2902PWR LM2902KPWR LM2902KQVPWR LM2902DR LM2902KDR LM2902KQVDR LM324PWR
LM358PWR
600
400
400
200
200
LM324DR LM324KDR
0 0 25 50
70
0 100 125 150 0 25 50
70
75
75
100
125
150
AMBIENT TEMPERATURE [℃]
AMBIENT TEMPERATURE [℃]
LM358DR/PWR/DGKR LM2904DR/PWR/DGKR/VQDR/VQPWR Power Dissipation
LM324DR/PWR/KDR LM2902DR/PWR/KDR/KPWR/KQDR/KQPWR Power Dissipation
Package SOIC8 (*8) TSSOP8 (*6) MSOP8/VSSOP8 (*7)
Pd[W] 450 500 470
θja [℃/W] 3.6 4.0 3.76
θja = (Tj-Ta)/Pd[℃/W]
Package SOIC14 TSSOP14
Pd[W] 610 870
θja [℃/W] 4.9 7.0
Fig.102 Derating Curves ●Precautions
1) Unused circuits When there are unused circuits, it is recommended that they be connected as in Figure 103, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR). 2) Input terminal voltage Applying GND + 32V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. 3) Power supply (single / dual) The op-amp operates when the voltage is applied between Vcc and GND. Therefore, the single supply op-amp can be used as a dual supply op-amp as well.
V cc
- connect to V icm +
GND
Fig.103 Disable circuit example
4) Power dissipation (Pd) Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise of chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under the actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuits between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output and GND may also result in IC destruction. 6) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 7) Radiation This IC is not designed to withstand radiation. 8) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo) effects. 9) IC operation The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of Vcc and GND, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output terminal and GND and increasing the bias current for Class A operation will suppress crossover distortion. 10) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. 11) Output capacitor Discharge of the external output capacitor to Vcc is possible via internal parasitic elements when Vcc is shorted to GND, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1μF.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
15/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR ●Ordering part number
Technical Note
L
M
2
9
0
2
K
ESD tolerance application
K : 2kV None : Normal
V
Q
D
Package type
D : SOIC P W : TSSOP DGK : MSOP/VSSOP
R
R : Real
Family name LM358 LM324 LM2902 LM2904
Operating Voltage
VQ : 32V None : 26V
SOIC8
4.9±0.2 (MAX 5.25 include BURR) ° 4° +6° −4
0.45Min.
Tape Quantity Direction of feed Embossed carrier tape 2500pcs
8
7
6
5
6.0±0.3
3.9±0.2
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
1
2
3
4
0.545
1.375±0.1
0.2±0.1 S
0.175
1.27
0.42±0.1 0.1 S
1pin (Unit : mm) Reel
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SOIC14
8.65 ± 0.1 (Max 9.0 include BURR)
14 8
° 4° +6° −4
Tape Quantity
Embossed carrier tape 2500pcs
6.0 ± 0.2 3.9 ± 0.1
0.65± 0.15
1.05± 0.2
Direction of feed
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
0.515
1.65MAX
1
1PIN MARK
7
+0.05 0.22 −0.03
S 1.375 ± 0.075 0.175 ± 0.075
1.27
+0.05 0.42 −0.04
0.08 S 0.08 M
1pin (Unit : mm) Reel
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
TSSOP8
3.0 ± 0.1 (MAX 3.35 include BURR)
8 7 6 5
4±4
Tape Quantity
Embossed carrier tape 2500pcs
6.4 ± 0.2 4.4 ± 0.1
0.5 ± 0.15
Direction of feed
1.0 ± 0.2
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
1
2
3
4
1.2MAX
0.525
1PIN MARK S
+0.05 0.145 −0.03
1.0 ± 0.05
0.1 ± 0.05
0.08 S +0.05 0.245 −0.04 0.65
0.08
M
1pin (Unit : mm) Reel
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
16/17
2011.06 - Rev.B
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR
Technical Note
TSSOP14
5.0±0.1 (Max 5.35 include BURR) 4 ±4
14 8
Tape Quantity Direction of feed Embossed carrier tape 2500pcs
6.4±0.2 4.4±0.1
0.5±0.15
0.55
1
7
1PIN MARK S
+0.05 0.145 −0.03
1.2MAX
1.0±0.05
0.1±0.05
0.08 S 0.65 +0.05 0.245 −0.04 0.08
M
1.0±0.2
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
1pin (Unit : mm) Reel
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
MSOP / VSSOP8
3.0 ± 0.1 (MAX 3.35 include BURR)
8 7 6 5
4±4
Tape Quantity
Embossed carrier tape 2500pcs
4.9 ± 0.2
3.0 ± 0.1
0.45 ± 0.15
Direction of feed
0.95 ± 0.2
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the upper left when you hold
)
1
2
3
1PIN MARK S
4
1.1MAX
0.525
+0.05 0.145 −0.03
0.85±0.05
0.1±0.05
0.08 S +0.05 0.32 −0.04 0.65 0.08
M
1pin (Unit : mm) Reel
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
17/17
2011.06 - Rev.B
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.
R1120A