0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM393WPT

LM393WPT

  • 厂商:

    ROHM(罗姆)

  • 封装:

    TSSOP8

  • 描述:

    IC COMPARATOR DUAL GP 8TSSOP

  • 数据手册
  • 价格&库存
LM393WPT 数据手册
SIGNATURE SERIES Comparators LM393xxx LM2903xx LM339xx LM2901xx General Description Key Specifications Operating Supply Voltage: Single Supply Dual Supply Supply Current: LM393xxx/LM2903xx LM339xx/LM2901xx Input Bias Current: Input Offset Current: Temperature Range: LM393xx/LM339xxx LM2903xx/LM2901xx LM393xxx, LM2903xx, LM339xx, and LM2901xx monolithic ICs integrate two or four independent comparator circuits on a single chip and feature high gain, low power consumption, and an operating voltage range from 2V to 36V (single power supply). Features Operable with a Single Power Supply Wide Operating Supply Voltage Range Input / Output Ground Sense Low Supply Current Open Collector Wide Temperature Range Packages Consumer Electronics Current Sense Application Battery Monitor Multivibrator 0.4mA (Typ) 1.1mA (Typ) 25nA (Typ) 5nA (Typ) -40°C to + 85°C -40°C to +125°C W(Typ) x D(Typ) x H(Max) 4.90mm x 6.0mm x 1.55mm 3.00mm x 6.4mm x 1.10mm 3.00mm x 4.9mm x 0.95mm 8.65mm x 6.0mm x 1.55mm 5.00mm x 6.4mm x 1.10mm SO Package8 TSSOP8 Mini SO8 SO Package14 TSSOP14 Application +2V to +36V ±1V to ±18V Pin Configuration SO Package8: (SOP-J8) LM393DT LM393WDT LM2903DT TSSOP8: (TSSOP-B8) LM393PT LM393WPT LM2903PT Mini SO8: (TSSOP-B8J) LM393ST OUTPUT 1 1 INVERTING INPUT 1 2 NON-INVERTING INPUT 1 3 Vcc- 4 CH1 - + + CH2 + - 8 Vcc+ 7 OUTPUT 2 6 INVERTING INPUT 2 5 NON-INVERTING INPUT 2 Pin Description LM393xxx/LM2903xx Pin No. Pin Name Function 1 OUTPUT 1 CH1 Output 2 INVERTING INPUT 1 CH1 Inverting Input 3 NON-INVERTING INPUT 1 CH1 Non-inverting Input 4 Vcc Negative power supply 5 NON-INVERTING INPUT 2 CH2 Non-inverting Input 6 INVERTING INPUT 2 CH2 Inverting Input 7 OUTPUT 2 CH2 Output 8 Product structure - + Vcc Silicon monolithic integrated circuit www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 14 001 Positive power supply This product is not designed protection against radioactive rays. 1/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Pin Configuration SO Package14: LM339DT (SOP-J14) LM2901DT TSSOP14: (TSSOP-B14J) LM339PT LM2901PT OUTPUT 2 1 14 OUTPUT 3 OUTPUT 1 2 13 OUTPUT 4 Vcc+ 3 CH1 - + CH4 - + 12 Vcc INVERTING INPUT 1 4 11 NON-INVERTING INPUT 4 NON-INVERTING 5 INPUT 1 10 INVERTING INPUT 4 INVERTING 6 INPUT 2 NON-INVERTING INPUT 2 7 CH2 - + CH3 - + 9 NON-INVERTING INPUT 3 8 INVERTING INPUT 3 Pin Description LM339xx/LM2901xx Pin No. Pin Name Function 1 OUTPUT 2 CH2 Output 2 OUTPUT 1 CH1 Output + 3 Vcc 4 INVERTING INPUT 1 CH1 Inverting Input 5 NON-INVERTING INPUT 1 CH1 Non-inverting Input 6 INVERTING INPUT 2 CH2 Inverting Input 7 NON-INVERTING INPUT 2 CH2 Non-inverting Input 8 INVERTING INPUT 3 CH3 Inverting Input 9 NON-INVERTING INPUT 3 CH3 Non-inverting Input 10 INVERTING INPUT 4 CH4 Inverting Input 11 NON-INVERTING INPUT 4 CH4 Non-inverting Input 12 Vcc 13 OUTPUT 4 CH4 Output 14 OUTPUT 3 CH3 Output - www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 Positive power supply Negative power supply 2/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Circuit Diagram Vcc+ OUTPUT NON-INVERTING INPUT INVERTING INPUT Vcc- Figure 1. Circuit Diagram (each channel) Absolute Maximum Ratings (TA=25°C) Parameter Ratings Symbol LM393xxx Vcc+-Vcc Supply Voltage PD LM2903xx LM2901xx +36 SO Package8 Power Dissipation LM339xx 0.67 (Note 1,6) TSSOP8 0.62(Note 2,6) Mini SO8 0.58(Note 3,6) SO Package14 TSSOP14 Unit V - 0.67 (Note 1,6) - - 0.62(Note 2,6) - - - - - 1.02 (Note 4,6) - 1.02 - 0.84(Note 5,6) - 0.84(Note 5,6) W (Note 4,6) Differential Input Voltage(Note 7) VID +36 V Input Common-mode Voltage Range VICM (Vcc--0.3) to (Vcc-+36) V II -10 mA Operating Supply Voltage Vopr +2.0 to +36.0 (±1.0 to ±18.0) V Operating Temperature Range T opr Storage Temperature Range Tstg -55 to +150 °C Maximum Junction Temperature Tjmax +150 °C Input Current(Note 8) -40 to +85 -40 to +125 °C Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (Note 1) To use at temperature above TA=25°C reduce 5.4mW. (Note 2) To use at temperature above TA=25°C reduce 5.0mW. (Note 3) To use at temperature above TA=25°C reduce 4.7mW. (Note 4) To use at temperature above TA=25°C reduce 8.2mW. (Note 5) To use at temperature above TA=25°C reduce 6.8mW. (Note 6) Mounted on a FR4 glass epoxy PCB 70mm×70mm×1.6mm(Copper foil area less than 3%). (Note 7) The voltage difference between inverting input and non-inverting input is the differential input voltage. The input terminal voltage is set to more than Vcc . (Note 8) An excessive input current will flow when input voltages of less than Vcc -0.6V are applied. The input current can be set to less than the rated current by adding a limiting resistor. Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 3/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Electric Characteristics LM393xxx(Unless otherwise specified Vcc +=+5V, Vcc-=0V, TA=25°C) Limit Temperature Parameter Symbol Range Min Typ Input Offset Voltage (Note 9,10) VIO Input Offset Current (Note 9,10) IIO Input Bias Current (Note 9,10) IIB Large Signal Voltage Gain AV Supply Current (Note 10) (All Comparators) ICC Max 25°C - 1 7 Full range - - 9 25°C - 5 50 Full range - - 150 25°C - 25 250 Full range - - 400 25°C 25 200 - 25°C - 0.4 1 Full range - 1 2.5 + Unit Conditions mV Vcc+=5V to 30V, VO=1.4V VICM=0 to 1.5V nA VO=1.4V nA VO=1.4V + Input Common-mode Voltage Range (Note 10) VICM Output Saturation Voltage (Note 10) (Low Level Output Voltage) VOL Output Leakage Current (Note 10) (High Level Output Current) ILEAK Output Sink Current ISINK (Note 10,11) Small Signal Response Time Large Signal Response Time tRE tREL 25°C 0 - Vcc -1.5 Full range 0 - Vcc+-2.0 25°C - 250 400 Full range - - 700 25°C - 0.1 Full range - Full range V/mV mA V Vcc =15V VO=1.4V to 11.4V, RL=15k Vcc+=5V, No Load Vcc+=30V, No Load - mV VID=-1V, ISINK=4mA - nA - 1 A Vcc+=30V, VID=1V VO=30V 6 16 - mA 25°C - 1.3 - s 25°C - 300 - ns VID=-1V, VO=1.5V RL=5.1k , VRL=5V VIN=100mVp-p, Overdrive=5mV RL=5.1k , VRL=5V VIN=TTL input, VREF=1.4V (Note 9) Absolute value (Note 10) Full range: TA=-40°C to +85°C (Note 11) Consider the power dissipation of the IC under high temperature environment when selecting the output current value. There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 4/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Electric Characteristics - continued + - LM339xx(Unless otherwise specified Vcc =+5V, Vcc =0V, TA=25°C) Parameter Symbol Input Offset Voltage (Note 12,13) VIO Input Offset Current (Note 12,13) IIO Input Bias Current (Note 12,13) IIB Large Signal Voltage Gain AV Supply Current (Note 13) (All Comparators) ICC Temperature Range Limit Min Typ Max 25°C - 1 7 Full range - - 9 25°C - 5 50 Full range - - 150 25°C - 25 250 Full range - - 400 25°C 25 200 - 25°C - 1.1 2 Full range - 1.3 2.5 + Unit Conditions mV Vcc+=5V to 30V, VO=1.4V VICM=0 to 1.5V nA VO=1.4V nA VO=1.4V + Input Common-mode Voltage Range (Note 13) VICM Output Saturation Voltage (Note 13) (Low Level Output Voltage) VOL Output Leakage Current (Note 13) (High Level Output Current) ILEAK Output Sink Current (Note 13,14) ISINK Small Signal Response Time Large Signal Response Time tRE tREL 25°C 0 - Vcc -1.5 Full range 0 - Vcc+-2.0 25°C - 250 400 Full range - - 700 25°C - 0.1 - V/mV mA Vcc =15V VO=1.4V to 11.4V, RL=15k + Vcc =5V, No Load Vcc+=30V, No Load V - mV VID=-1V, ISINK=4mA nA Vcc =30V, VID=1V VO=30V Full range - - 1 A Full range 6 16 - mA 25°C - 1.3 - s 25°C - 300 - ns + VID=-1V, VO=1.5V RL=5.1k , VRL=5V VIN=100mVp-p, Overdrive=5mV RL=5.1k , VRL=5V VIN=TTL input, VREF=1.4V (Note 12) Absolute value (Note 13) Full range: TA=-40°C to +85°C (Note 14) Consider the power dissipation of the IC under high temperature environment when selecting the output current value. There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 5/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Electric Characteristics - continued + - LM2903xx(Unless otherwise specified Vcc =+5V, Vcc =0V, TA=25°C) Limit Temperature Parameter Symbol Range Min Typ Input Offset Voltage (Note 15,16) VIO Input Offset Current (Note 15,16) IIO Input Bias Current (Note 15,16) IIB Large Signal Voltage Gain AV Supply Current (Note 16) (All Comparators) ICC Max 25°C - 2 7 Full range - - 15 25°C - 5 50 Full range - - 150 25°C - 25 250 Full range - - 400 25°C 25 200 - 25°C - 0.4 1 Full range - 1 2.5 + Unit Conditions mV Vcc+=5V to 30V, VO=1.4V VICM=0 to 1.5V nA VO=1.4V nA VO=1.4V + Input Common-mode Voltage Range (Note 16) VICM Output Saturation Voltage (Note 16) (Low Level Output Voltage) VOL Output Leakage Current (Note 16) (High Level Output Current) ILEAK Output Sink Current (Note 16,17) ISINK Small Signal Response Time Large Signal Response Time tRE tREL 25°C 0 - Vcc -1.5 Full range 0 - Vcc+-2.0 25°C - 250 400 Full range - - 700 25°C - 0.1 - V/mV mA Vcc =15V VO=1.4V to 11.4V, RL=15k + Vcc =5V, No Load Vcc+=30V, No Load V - mV VID=-1V, ISINK=4mA nA Vcc =30V, VID=1V VO=30V Full range - - 1 A Full range 6 16 - mA 25°C - 1.3 - s 25°C - - 1.0 s + VID=-1V, VO=1.5V RL=5.1k , VRL=5V VIN=100mVp-p, Overdrive=5mV RL=5.1k , VRL=5V VIN=TTL input, VREF=1.4V VO at 95% (Note 15) Absolute value (Note 16) Full range: TA=-40°C to +125°C (Note 17) Consider the power dissipation of the IC under high temperature environment when selecting the output current value. There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 6/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Electric Characteristics - continued + - LM2901xx(Unless otherwise specified Vcc =+5V, Vcc =0V, TA=25°C) Limit Temperature Parameter Symbol Range Min Typ Input Offset Voltage (Note 15,16) VIO Input Offset Current (Note 15,16) IIO Input Bias Current (Note 15,16) IIB Large Signal Voltage Gain AV Supply Current (Note 16) (All Comparators) ICC Max 25°C - 1 7 Full range - - 15 25°C - 5 50 Full range - - 150 25°C - 25 250 Full range - - 400 25°C 25 200 - 25°C - 1.1 2 Full range - 1.3 2.5 + Unit Conditions mV Vcc+=5V to 30V, VO=1.4V VICM=0 to 1.5V nA VO=1.4V nA VO=1.4V + Input Common-mode Voltage Range (Note 16) VICM Output Saturation Voltage (Note 16) (Low Level Output Voltage) VOL Output Leakage Current (Note 16) (High Level Output Current) ILEAK Output Sink Current (Note 16,17) ISINK Small Signal Response Time Large Signal Response Time tRE tREL 25°C 0 - Vcc -1.5 Full range 0 - Vcc+-2.0 25°C - 250 400 Full range - - 700 25°C - 0.1 - V/mV mA Vcc =15V VO=1.4V to 11.4V, RL=15k + Vcc =5V, No Load Vcc+=30V, No Load V - mV VID=-1V, ISINK=4mA nA Vcc =30V, VID=1V VO=30V Full range - - 1 A Full range 6 16 - mA 25°C - 1.3 - s 25°C - - 1.0 s + VID=-1V, VO=1.5V RL=5.1k , VRL=5V VIN=100mVp-p, Overdrive=5mV RL=5.1k , VRL=5V VIN=TTL input, VREF=1.4V VO at 95% (Note 18) Absolute value (Note 19) Full range: TA=-40°C to +125°C (Note 20) Consider the power dissipation of the IC under high temperature environment when selecting the output current value. There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 7/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or general document. 1. Absolute maximum ratings Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (1) Supply Voltage (Vcc+/ Vcc-) Indicates the maximum voltage that can be applied between the positive power supply pin and negative power supply pin without deterioration or destruction of characteristics of internal circuit. (2) Differential Input Voltage (VID) Indicates the maximum voltage that can be applied between non-inverting and inverting pins without damaging the IC. (3) Input Common-mode Voltage Range (VICM) Indicates the maximum voltage that can be applied to the non-inverting and inverting pins without deterioration or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics. (4) Operating and storage temperature ranges (Topr, Tstg) The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics. (5) Power dissipation (PD) Indicates the power that can be consumed by the IC when mounted on a specific board at ambient temperature 25°C(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in the package (maximum junction temperature) and the thermal resistance of the package. 2. Electrical characteristics (1) Input Offset Voltage (VIO) Indicates the voltage difference between non-inverting pin and inverting pins. It can be translated into the input voltage difference required for setting the output voltage at 0 V. (2) Input Offset Current (IIO) Indicates the difference of input bias current between the non-inverting and inverting pins. (3) Input Bias Current (IB) Indicates the current that flows into or out of the input pin. It is defined by the average of input bias currents at the non-inverting and inverting pins. (4) Large Signal Voltage Gain (AV) Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting pin and inverting pin. It is normally the amplifying rate (gain) with reference to DC voltage. AV = (Output Voltage) / (Differential Input Voltage) (5) Supply Current (ICC) Indicates the current that flows within the IC under specified no-load conditions. (6) Input Common-mode Voltage Range (VICM) Indicates the input voltage range where IC normally operates. (7) Output Saturation Voltage, Low Level Output Voltage (VOL) Signifies the voltage range that can be output under specific output conditions. (8) Output Leakage Current, High Level Output Current (ILEAK) Indicates the current that flows into the IC under specific input and output conditions. (9) Output Sink Current (ISINK) Denotes the maximum current that can be output from the IC under specific output conditions. (10) Response Time (tRE) Response time indicates the delay time between the input and output signal which is determined by the time difference from the fifty percent of input signal swing to the fifty percent of output signal swing. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 8/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves LM393xxx/LM2903xx 1.6 1.0 1.4 LM393DT LM393WDT 0.8 1.2 LM393PT LM393WPT LM2903DT 1.0 0.6 -40°C 0.8 LM2903PT 0.4 25°C 0.6 LM393ST 0.4 0.2 85°C 0.2 0.0 0 25 125°C 0.0 85 50 75 100 125 Ambient Temperature [°C] 150 0 Figure 2. Power Dissipation vs Ambient Temperature (Derating Curve) 10 20 30 Supply Voltage [V] 40 Figure 3. Supply Current vs Supply Voltage 200 1.6 1.4 150 1.2 125°C 1.0 85°C 100 0.8 25°C 36V 5V 0.6 50 0.4 -40°C 2V 0.2 0 0.0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 150 10 20 30 Supply Voltage [V] 40 Figure 5. Output Saturation Voltage vs Supply Voltage (ISINK=4mA) Figure 4. Supply Current vs Ambient Temperature (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM393 -40°C to 85°C LM2903 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 9/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM393xxx/LM2903xx 200 2.0 1.8 1.6 150 1.4 125°C 1.2 2V 25°C 1.0 100 0.8 5V 36V 85°C 0.6 50 -40°C 0.4 0.2 0.0 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 150 2 4 6 8 10 12 14 16 Output Sink Current [mA] 18 20 Figure 7. Output Saturation Voltage vs + Output Sink Current (Vcc =5V) Figure 6. Output Saturation Voltage vs Ambient Temperature ( ISINK=4mA) 8 40 6 4 30 5V -40°C 2 36V 20 0 25°C 85°C 125°C -2 2V 10 -4 -6 0 -8 -50 -25 0 25 50 75 0 100 125 150 Ambient Temperature [°C] 10 20 30 Supply Voltage [V] 40 Figure 9. Input Offset Voltage vs Supply Voltage Figure 8. Output Sink Current vs Ambient Temperature (VO=1.5V) (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM393 -40°C to 85°C LM2903 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 10/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM393xxx/LM2903xx 8 160 6 140 4 120 2V 2 100 0 5V -40°C 80 36V -2 60 -4 40 -6 25°C 85°C 125°C 20 -8 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 0 5 10 15 20 25 Supply Voltage [V] 30 35 Figure 11. Input Bias Current vs Supply Voltage Figure 10. Input Offset Voltage vs Ambient Temperature 50 160 40 140 30 120 20 100 10 36V 80 -40°C 25°C 0 85°C -10 60 125°C -20 40 5V -30 2V 20 -40 -50 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 150 10 20 30 Supply Voltage [V] 40 Figure 13. Input Offset Current vs Supply Voltage Figure 12. Input Bias Current vs Ambient Temperature (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM393 -40°C to 85°C LM2903 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 11/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM393xxx/LM2903xx 50 140 40 130 30 125°C 120 85°C 20 110 2V 10 25°C 100 0 -10 5V -40°C 90 36V -20 80 -30 70 -40 60 -50 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 150 10 20 30 Supply Voltage [V] 40 Figure 15. Large Signal Voltage Gain vs Supply Voltage Figure 14. Input Offset Current vs Ambient Temperature 140 160 130 140 36V 120 120 110 15V 100 85°C 5V 125°C 100 2V 90 -40°C 80 25°C 80 60 70 60 40 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 0 10 20 30 Supply Voltage [V] 40 Figure 17.Common-mode Rejection Ratio vs Supply Voltage Figure 16. Large Signal Voltage Gain vs Ambient Temperature (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM393 -40°C to 85°C LM2903 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 12/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM393xxx/LM2903xx 150 6 125 4 25°C 36V -40°C 100 85°C 2 125°C 5V 75 0 2V 50 -2 25 -4 0 -6 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 -1 0 1 2 3 Input Voltage [V] 4 5 Figure 19.Input Offset Voltage vs Input Voltage (Vcc+=5V) Figure 18. Common-mode Rejection Ratio vs Ambient Temperature 200 5 180 4 160 3 140 120 2 100 125°C 85°C 25°C -40°C 1 80 60 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 -100 150 Figure 20.Power Supply Rejection Ratio vs AmbientTemperature -80 -60 -40 -20 Overdrive Voltage [mV] 0 Figure 21. Response Time (Low to High) vs Overdrive Voltage (Vcc+=5V, VRL=5V, RL=5.1k ) (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM393 -40°C to 85°C LM2903 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 13/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM393xxx/LM2903xx 5 5 4 4 3 3 125°C 2 85°C 2 5mV overdrive 20mV overdrive 25°C -40°C 100mV overdrive 1 1 0 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 0 Figure 22. Response Time (Low to High) vs Ambient Temperature (Vcc+=5V, VRL=5V, RL=5.1k ) 20 40 60 80 Overdrive Voltage [mV] 100 Figure 23. Response Time (High to Low) vs Overdrive Voltage (Vcc+=5V, VRL=5V, RL=5.1k ) 5 4 3 5mV overdrive 2 20mV overdrive 100mV overdrive 1 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 Figure 24. Response Time (High to Low) vs Ambient Temperature (Vcc+=5V, VRL=5V, RL=5.1k ) (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM393 -40°C to 85°C LM2903 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 14/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM339xx/LM2901xx 2.0 1.2 1.8 LM339DT 1.0 1.6 LM339PT -40°C 1.4 0.8 25°C 1.2 LM2901DT 0.6 1.0 LM2901PT 0.8 0.4 0.6 0.4 0.2 85°C 125°C 0.2 0.0 0 25 0.0 85 50 75 100 125 Ambient Temperature [°C] 0 150 Figure 25. Power Dissipation vs Ambient Temperature (Derating Curve) 10 20 30 Supply Voltage [V] 40 Figure 26.Supply Current vs Supply Voltage 200 2.0 1.8 1.6 150 1.4 125°C 36V 85°C 1.2 1.0 100 5V 25°C 0.8 0.6 50 2V -40°C 0.4 0.2 0 0.0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 150 10 20 30 Supply Voltage [V] 40 Figure 28. Output Saturation Voltage vs Supply Voltage (ISINK=4mA) Figure 27.Supply Current vs Ambient Temperature (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM339 -40°C to 85°C LM2901 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 15/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM339xx/LM2901xx 200 2.0 1.8 1.6 150 1.4 125°C 1.2 2V 25°C 1.0 100 0.8 5V 36V 85°C 0.6 50 0.4 -40°C 0.2 0.0 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 150 2 4 6 8 10 12 14 16 Output Sink Current [mA] 18 20 Figure 30. Output Saturation Voltage vs + Output Sink Current (Vcc =5V) Figure 29. Output Saturation Voltage vs Ambient Temperature ( ISINK=4mA) 8 40 6 4 30 5V -40°C 2 36V 20 0 25°C 85°C 125°C -2 2V 10 -4 -6 0 -8 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [°C] 0 10 20 30 Supply Voltage [V] 40 Figure 32. Input Offset Voltage vs Supply Voltage Figure 31. Output Sink Current vs Ambient Temperature (VO=1.5V) (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM339 -40°C to 85°C LM2901 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 16/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM339xx/LM2901xx 8 160 6 140 4 120 2V 2 100 0 5V -40°C 80 36V -2 60 -4 40 -6 25°C 85°C 125°C 20 -8 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 0 10 20 30 Supply Voltage [V] 40 Figure 34. Input Bias Current vs Supply Voltage Figure 33. Input Offset Voltage vs Ambient Temperature 50 160 40 140 30 120 20 100 10 36V 80 -40°C 25°C 0 85°C -10 60 125°C -20 40 5V -30 2V 20 -40 -50 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 150 Figure 35. Input Bias Current vs Ambient Temperature 10 20 30 Supply Voltage [V] 40 Figure 36. Input Offset Current vs Supply Voltage (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM339 -40°C to 85°C LM2901 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 17/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM339xx/LM2901xx 50 140 40 130 30 125°C 120 85°C 20 110 10 2V 25°C 100 0 5V -10 -40°C 36V 90 -20 80 -30 70 -40 60 -50 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 0 150 Figure 37. Input Offset Current vs Ambient Temperature 10 20 30 Supply Voltage [V] 40 Figure 38. Large Signal Voltage Gain vs Supply Voltage 140 160 130 140 36V 120 120 110 15V 100 85°C 5V 125°C 100 2V 90 -40°C 80 25°C 80 60 70 60 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 40 0 10 20 30 Supply Voltage [V] 40 Figure 40. Common-mode Rejection Ratio vs Supply Voltage Figure 39. Large Signal Voltage Gain vs Ambient Temperature (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM339 -40°C to 85°C LM2901 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 18/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM339xx/LM2901xx 150 6 125 4 25°C 36V 100 2 75 0 85°C -40°C 125°C 5V 2V 50 -2 25 -4 0 -6 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 -1 0 1 2 3 Input Voltage [V] 4 5 Figure 42. Input Offset Voltage vs Input Voltage (Vcc+=5V) Figure 41. Common-mode Rejection Ratio vs Ambient Temperature 200 5 180 4 160 3 140 120 2 100 125°C 1 85°C 25°C -40°C 80 0 -100 60 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 -80 -60 -40 -20 Overdrive Voltage [mV] 0 Figure 44. Response Time (Low to High) vs Overdrive Voltage (Vcc+=5V, VRL=5V, RL=5.1k ) Figure 43. Power Supply Rejection Ratio vs Ambient Temperature (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM339 -40°C to 85°C LM2901 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 19/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Typical Performance Curves - continued LM339xx/LM2901xx 5 5 4 4 3 3 125°C 2 85°C 2 5mV overdrive 25°C 20mV overdrive -40°C 100mV overdrive 1 1 0 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 0 20 40 60 80 Overdrive Voltage [mV] 100 Figure 46. Response Time (High to Low) vs Overdrive Voltage (Vcc+=5V, VRL=5V, RL=5.1k ) Figure 45. Response Time (Low to High) vs Ambient Temperature (Vcc+=5V, VRL=5V, RL=5.1k ) 5 4 3 5mV overdrive 2 20mV overdrive 100mV overdrive 1 0 -50 -25 0 25 50 75 100 Ambient Temperature [°C] 125 150 Figure 47. Response Time (High to Low) vs Ambient Temperature (Vcc+=5V, VRL=5V, RL=5.1k ) (*)The above characteristics are measurements of typical sample, they are not guaranteed. LM339 -40°C to 85°C LM2901 -40°C to www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 125°C 20/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Application Information Measurement Circuit 1 NULL Method Measurement Condition + - Vcc ,Vcc ,EK,VICM unit Parameter VF SW1 SW2 SW3 Vcc+ Vcc- EK VICM Calculation Input Offset Voltage VF1 ON ON ON 5 to 30 0 -1.4 0 1 Input Offset Current VF2 OFF OFF ON 5 0 -1.4 0 2 VF3 OFF ON VF4 ON OFF ON ON Input Bias Current VF5 Large Signal Voltage Gain VF6 5 0 -1.4 0 5 0 -1.4 0 15 0 -1.4 0 15 0 -11.4 0 ON ON -Calculation1. Input Offset Voltage (VIO) VIO = 2. Input Offset Current (IIO) IIO = 3. Input Bias Current (IB) IB = 4. Large Signal Voltage Gain (AV) AV = 20Log 10 × (1+RF/RS) |VF5-VF6| |VF1| 1+RF/RS V 3 4 [V] |VF2-VF1| [A] RI ×(1+RF/RS) |VF4-VF3| 2 × RI ×(1+RF/RS) [A] [dB] 0.1µF RF=50k SW1 Vcc 15V EK RS=50 0.1µF 500k + RI=10k VO 500k DUT NULL SW3 RS=50 1000pF RI=10k RL VICM 50k SW2 Vcc - VF VRL -15V Figure 48. Measurement Circuit 1 (each Comparator) www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 21/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Application Information - continued Measurement Circuit 2: Switch Condition SW No. Supply Current - SW1 SW2 SW3 SW4 SW5 SW6 SW7 ON OFF ON OFF OFF OFF OFF Output Sink Current VO=1.5V ON OFF ON OFF ON ON OFF Output Saturation Voltage ISINK=4mA ON OFF ON OFF OFF OFF ON Output Leakage Current VO=36V ON OFF ON OFF OFF OFF ON ON ON OFF ON OFF ON OFF RL=5.1k Response Time VRL=5V Vcc+ A SW1 SW4 SW2 SW3 Vcc- SW5 SW6 SW7 RL A VIN+ VIN- VRL V VO Figure 49. Measurement Circuit 2 (each Comparator) Input Voltage Input Voltage 1.405V VREF=1.4V 1.5V ov=5mV Overdrive Voltage Overdrive Voltage VREF=1.4V ov=5mV 1.3V t t Input wave Input wave Output Voltage Vcc Output Voltage + Vcc + + + Vcc /2 0V Vcc /2 0V tRE (Low to High) tRE (High to Low) t Figure 50. Response Time www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 22/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Example of Circuit Reference voltage is VININ + Vcc VRL VREF RL IN OUT Reference voltage t VREF Vcc - OUT High When the input voltage is bigger than reference voltage, output voltage is high. When the input voltage is smaller than reference voltage, output voltage is low. Low t IN Reference voltage is VIN+ Vcc+ Reference voltage VREF VRL VREF RL OUT t IN OUT Vcc - High When the input voltage is smaller than reference voltage, output voltage is high. When the input voltage is bigger than reference voltage, output voltage is low. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 23/34 Low t TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Power Dissipation Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and consumable power. Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold resin or lead frame of the package. Thermal resistance, represented by the symbol JA°C/W, indicates this heat dissipation capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance. Figure 51(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the Thermal resistance ( JA), given the ambient temperature (TA), maximum junction temperature (TJmax), and power dissipation (PD). (TJmax TA) / PD °C/W JA = The Derating curve in Figure 51(b) indicates the power that the IC can consume with reference to ambient temperature. Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal resistance ( JA), which depends on the chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc. This may also vary even when the same package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Figure 51(c) and (d) shows an example of the derating curve for LM393xxx, LM2903xx, LM339xx, and LM2901xx. Power dissipation of LSI [W] PDmax JA=(TJmax-TA)/ PD °C/W P2 JA2 < JA1 Ambient temperature TA [ °C ] JA2 P1 TJmax JA1 0 25 Chip surface temperature TJ [ °C ] 50 75 100 125 150 Ambient temperature TA [ °C ] (b) Derating Curve (a) Thermal Resistance 1.2 1.0 (Note 21) LM339DT(Note 24) LM393DT (Note 21) LM393WDT 0.8 1.0 (Note 25) LM339PT LM393PT(Note 22) LM393WPT(Note 22) 0.6 0.8 LM2901DT(Note 24) (Note 21) LM2901PT(Note 25) LM2903DT LM2903PT 0.6 (Note 22) 0.4 0.4 LM393ST(Note 23) 0.2 0.2 0.0 0 85 25 50 75 100 125 Ambient Temperature [°C] 0.0 0 150 (Note 22) 5.0 150 (d) LM339xx/LM2901xx (c) LM393xxx/LM2903xx (Note 21) 5.4 85 25 50 75 100 125 Ambient Temperature [°C] (Note 23) 4.7 (Note 24) 8.2 (Note 25) 6.8 Unit mW/°C When using the unit above TA=25°C, subtract the value above per Celsius degree. Power dissipation is the value when FR4 glass epoxy board 70mm ×70mm ×1.6mm (cooper foil area below 3%) is mounted. Figure 51. Thermal Resistance and Derating Curve www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 24/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the P D stated in this specification is when the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the P D rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 25/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Operational Notes – continued 11. Regarding Input Pins of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B C E Pin A N P+ N P N P+ N Parasitic Element N P+ N P N P+ B N C E Parasitic Element P Substrate P Substrate Parasitic Element Pin B B GND GND Parasitic Element GND GND Parasitic element or Transistor Figure 52. Example of Monolithic IC Structure 12. Unused Circuits When there are unused circuits it is recommended that they be connected as in Figure 53, setting the non-inverting input pin to a potential within the in-phase input voltage range (VICM). Vcc+ Please keep this potential in VICM OPEN VICM VccFigure 53. Disable Circuit Example 13. Input Voltage Applying Vcc- + 36V to the input pin is possible without causing deterioration of the electrical characteristics or destruction, regardless of the supply voltage. However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common-mode input voltage range of the electric characteristics. 14. Power Supply (single/dual) + The comparator operates when the specified voltage supplied is between Vcc and Vcc . Therefore, the single supply comparator can be used as a dual supply comparator as well. 15. Terminal short-circuits When the output and Vcc+ pins are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction. 16. IC Handling Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezo resistance effects. www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 26/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Physical Dimension, Tape and Reel information Package Name SO Package8 (SOP-J8) 8ETIERH6IIPMRJSVQEXMSR" 8ETI )QFSWWIHGEVVMIVXETI 5YERXMX] TGW (MVIGXMSR SJJIIH ) 8LIHMVIGXMSRMWXLITMRSJTVSHYGXMWEXXLIYTTIVPIJX[LIR]SYLSPH VIIPSRXLIPIJXLERHERH]SYTYPPSYXXLIXETISRXLIVMKLXLERH (MVIGXMSRSJJIIH TMR 6IIP www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 3VHIVUYERXMX]RIIHWXSFIQYPXMTPISJXLIQMRMQYQUYERXMX] 27/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Physical Dimension, Tape and Reel Information – continued Package Name TSSOP8 (TSSOP-B8) 8ETIERH6IIPMRJSVQEXMSR" 8ETI )QFSWWIHGEVVMIVXETI 5YERXMX] TGW (MVIGXMSR SJJIIH ) 8LIHMVIGXMSRMWXLITMRSJTVSHYGXMWEXXLIYTTIVPIJX[LIR]SYLSPH VIIPSRXLIPIJXLERHERH]SYTYPPSYXXLIXETISRXLIVMKLXLERH 6IIP www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 (MVIGXMSRSJJIIH TMR 3VHIVUYERXMX]RIIHWXSFIQYPXMTPISJXLIQMRMQYQUYERXMX] 28/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Physical Dimension, Tape and Reel Information – continued Package Name Mini SO8 (TSSOP-B8J) 8ETIERH6IIPMRJSVQEXMSR" 8ETI )QFSWWIHGEVVMIVXETI 5YERXMX] TGW (MVIGXMSR SJJIIH ) 8LIHMVIGXMSRMWXLITMRSJTVSHYGXMWEXXLIYTTIVPIJX[LIR]SYLSPH VIIPSRXLIPIJXLERHERH]SYTYPPSYXXLIXETISRXLIVMKLXLERH 6IIP www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 (MVIGXMSRSJJIIH TMR 3VHIVUYERXMX]RIIHWXSFIQYPXMTPISJXLIQMRMQYQUYERXMX] 29/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Physical Dimension, Tape and Reel Information – continued Package Name SO Package14 (SOP-J14) 8ETIERH6IIPMRJSVQEXMSR" 8ETI )QFSWWIHGEVVMIVXETI 5YERXMX] TGW (MVIGXMSR SJJIIH ) 8LIHMVIGXMSRMWXLITMRSJTVSHYGXMWEXXLIYTTIVPIJX[LIR]SYLSPH VIIPSRXLIPIJXLERHERH]SYTYPPSYXXLIXETISRXLIVMKLXLERH (MVIGXMSRSJJIIH TMR 6IIP www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 3VHIVUYERXMX]RIIHWXSFIQYPXMTPISJXLIQMRMQYQUYERXMX] 30/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Physical Dimension, Tape and Reel Information – continued Package Name TSSOP14 (TSSOP-B14J) 8ETIERH6IIPMRJSVQEXMSR" 8ETI )QFSWWIHGEVVMIVXETI 5YERXMX] TGW (MVIGXMSR SJJIIH ) 8LIHMVIGXMSRMWXLITMRSJTVSHYGXMWEXXLIYTTIVPIJX[LIR]SYLSPH VIIPSRXLIPIJXLERHERH]SYTYPPSYXXLIXETISRXLIVMKLXLERH 6IIP www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 (MVIGXMSRSJJIIH TMR 3VHIVUYERXMX]RIIHWXSFIQYPXMTPISJXLIQMRMQYQUYERXMX] 31/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Ordering Information L M x Part Number LM393DT LM393WDT LM393PT LM393WPT LM393ST LM339DT LM339PT LM2903DT LM2903PT LM2901DT LM2901PT x x x x x T ESD Tolerance Package type Packaging and forming specification applicable D : S.O package T: Embossed tape and reel W : 2kV None : Normal P : SSOP S : Mini SO Line-up Topr Channels Normal 2 -40°C to +85°C 2kV 4 Normal 2 -40°C to +125°C Normal 4 www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 SO Package8 Reel of 2500 Orderable Part Number LM393DT TSSOP8 Reel of 2500 LM393PT Mini SO8 Reel of 2500 LM393ST SO Package8 Reel of 2500 LM393WDT ESD Package TSSOP8 Reel of 2500 LM393WPT SO Package14 Reel of 2500 LM339DT TSSOP14 Reel of 2500 LM339PT SO Package8 Reel of 2500 LM2903DT TSSOP8 Reel of 2500 LM2903PT SO Package14 Reel of 2500 LM2901DT TSSOP14 Reel of 2500 LM2901PT 32/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Marking Diagram SOP-J8(TOP VIEW) TSSOP-B8(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK TSSOP-B8J(TOP VIEW) SOP-J14(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK TSSOP-B14J (TOP VIEW) Part Number Marking LOT Number 1PIN MARK Product Name Package Type DT LM393 LM339 LM2903 LM2901 SO Package8 (SOP-J8) PT TSSOP8 (TSSPO-B8) ST Mini SO8 (TSSOP-B8J) WDT SO Package8 (SOP-J8) WPT TSSOP8 (TSSPO-B8) DT SO Package14 (SOP-J14) PT TSSOP14 (TSSOP-B14J) DT SO Package8 (SOP-J8) PT TSSOP8 (TSSPO-B8) DT SO Package14 (SOP-J14) PT TSSOP14 (TSSOP-B14J) www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 Marking 33/34 393 339 2903 2901 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 LM393xxx Datasheet LM2903xx LM339xx LM2901xx Land Pattern Data All dimensions in mm Land length Land width 2 b2 PKG Land pitch e Land space MIE SO Package8 (SOP-J8) SO Package14 (SOP-J14) 1.27 3.90 1.35 0.76 TSSOP8 (TSSPO-B8) TSSOP14 (TSSOP-B14J) 0.65 4.60 1.20 0.35 Mini SO8 (TSSOP-B8J) 0.65 3.20 1.15 0.35 SOP-J8, TSSOP-B8, TSSOP-B8J, SOP-J14, TSSOP-B14J MIE 2 Revision History Date Revision 6.July.2015 001 Changes New Release www.rohm.com © 2015 ROHM Co., Ltd. All rights reserved. TSZ22111 15 001 34/34 TSZ02201-0RFR0G200530-1-2 6.July.2015 Rev.001 Notice Precaution on using ROHM Products  3YV4VSHYGXWEVIHIWMKRIHERHQERYJEGXYVIHJSVETTPMGEXMSRMRSVHMREV]IPIGXVSRMGIUYMTQIRXW WYGLEW%:IUYMTQIRX 3% IUYMTQIRX XIPIGSQQYRMGEXMSR IUYMTQIRX LSQI IPIGXVSRMG ETTPMERGIW EQYWIQIRX IUYMTQIRX IXG   -J ]SY 2SXI MRXIRHXSYWISYV4VSHYGXWMRHIZMGIWVIUYMVMRKI\XVIQIP]LMKLVIPMEFMPMX] WYGLEWQIHMGEPIUYMTQIRX XVERWTSVX IUYMTQIRXXVEJJMGIUYMTQIRXEMVGVEJXWTEGIGVEJXRYGPIEVTS[IVGSRXVSPPIVWJYIPGSRXVSPPIVWGEVIUYMTQIRXMRGPYHMRKGEV EGGIWWSVMIW WEJIX] HIZMGIW IXG  ERH [LSWI QEPJYRGXMSR SV JEMPYVI QE] GEYWI PSWW SJ LYQER PMJI FSHMP] MRNYV] SV WIVMSYWHEQEKIXSTVSTIVX] w7TIGMJMG%TTPMGEXMSRWx TPIEWIGSRWYPX[MXLXLI63,1WEPIWVITVIWIRXEXMZIMREHZERGI 9RPIWWSXLIV[MWIEKVIIHMR[VMXMRKF]63,1MREHZERGI63,1WLEPPRSXFIMRER][E]VIWTSRWMFPISVPMEFPIJSVER] HEQEKIWI\TIRWIWSVPSWWIWMRGYVVIHF]]SYSVXLMVHTEVXMIWEVMWMRKJVSQXLIYWISJER]63,1vW4VSHYGXWJSV7TIGMJMG %TTPMGEXMSRW 2SXI 1IHMGEP)UYMTQIRX'PEWWMJMGEXMSRSJXLI7TIGMJMG%TTPMGEXMSRW .%4%2 97% )9 ',-2% '0%77 '0%77 F '0%77 '0%77 '0%77  '0%77   63,1 HIWMKRW ERH QERYJEGXYVIW MXW 4VSHYGXW WYFNIGX XS WXVMGX UYEPMX] GSRXVSP W]WXIQ ,S[IZIV WIQMGSRHYGXSV TVSHYGXWGERJEMPSVQEPJYRGXMSREXEGIVXEMRVEXI4PIEWIFIWYVIXSMQTPIQIRXEX]SYVS[RVIWTSRWMFMPMXMIWEHIUYEXI WEJIX]QIEWYVIWMRGPYHMRKFYXRSXPMQMXIHXSJEMPWEJIHIWMKREKEMRWXXLITL]WMGEPMRNYV]HEQEKIXSER]TVSTIVX][LMGL EJEMPYVISVQEPJYRGXMSRSJSYV4VSHYGXWQE]GEYWI8LIJSPPS[MRKEVII\EQTPIWSJWEJIX]QIEWYVIW ?EA-RWXEPPEXMSRSJTVSXIGXMSRGMVGYMXWSVSXLIVTVSXIGXMZIHIZMGIWXSMQTVSZIW]WXIQWEJIX] ?FA-RWXEPPEXMSRSJVIHYRHERXGMVGYMXWXSVIHYGIXLIMQTEGXSJWMRKPISVQYPXMTPIGMVGYMXJEMPYVI  3YV 4VSHYGXW EVI HIWMKRIH ERH QERYJEGXYVIH JSV YWI YRHIV WXERHEVH GSRHMXMSRW ERH RSX YRHIV ER] WTIGMEP SV I\XVESVHMREV] IRZMVSRQIRXW SV GSRHMXMSRW EW I\IQTPMJMIH FIPS[ %GGSVHMRKP] 63,1 WLEPP RSX FI MR ER] [E] VIWTSRWMFPI SV PMEFPI JSV ER] HEQEKIW I\TIRWIW SV PSWWIW EVMWMRKJVSQXLI YWI SJ ER] 63,1vW 4VSHYGXW YRHIVER] WTIGMEP SV I\XVESVHMREV] IRZMVSRQIRXW SV GSRHMXMSRW  -J ]SY MRXIRH XS YWI SYV 4VSHYGXW YRHIV ER] WTIGMEP SV I\XVESVHMREV] IRZMVSRQIRXW SV GSRHMXMSRW EW I\IQTPMJMIH FIPS[  ]SYV MRHITIRHIRX ZIVMJMGEXMSR ERH GSRJMVQEXMSR SJ TVSHYGXTIVJSVQERGIVIPMEFMPMX]IXGTVMSVXSYWIQYWXFIRIGIWWEV] ?EA9WISJSYV4VSHYGXWMRER]X]TIWSJPMUYMHMRGPYHMRK[EXIVSMPWGLIQMGEPWERHSVKERMGWSPZIRXW ?FA9WISJSYV4VSHYGXWSYXHSSVWSVMRTPEGIW[LIVIXLI4VSHYGXWEVII\TSWIHXSHMVIGXWYRPMKLXSVHYWX ?GA9WISJSYV4VSHYGXWMRTPEGIW[LIVIXLI4VSHYGXWEVII\TSWIHXSWIE[MRHSVGSVVSWMZIKEWIWMRGPYHMRK'P ,72,73ERH23 ?HA9WISJSYV4VSHYGXWMRTPEGIW[LIVIXLI4VSHYGXWEVII\TSWIHXSWXEXMGIPIGXVMGMX]SVIPIGXVSQEKRIXMG[EZIW ?IA9WISJSYV4VSHYGXWMRTVS\MQMX]XSLIEXTVSHYGMRKGSQTSRIRXWTPEWXMGGSVHWSVSXLIVJPEQQEFPIMXIQW ?JA7IEPMRKSVGSEXMRKSYV4VSHYGXW[MXLVIWMRSVSXLIVGSEXMRKQEXIVMEPW ?KA9WISJSYV4VSHYGXW[MXLSYXGPIERMRKVIWMHYISJJPY\ IZIRMJ]SYYWIRSGPIERX]TIJPY\IWGPIERMRKVIWMHYISJ JPY\ MW VIGSQQIRHIH  SV;EWLMRK SYV 4VSHYGXW F] YWMRK [EXIV SV [EXIVWSPYFPIGPIERMRK EKIRXW JSV GPIERMRK VIWMHYIEJXIVWSPHIVMRK ?LA9WISJXLI4VSHYGXWMRTPEGIWWYFNIGXXSHI[GSRHIRWEXMSR  8LI4VSHYGXWEVIRSXWYFNIGXXSVEHMEXMSRTVSSJHIWMKR  4PIEWIZIVMJ]ERHGSRJMVQGLEVEGXIVMWXMGWSJXLIJMREPSVQSYRXIHTVSHYGXWMRYWMRKXLI4VSHYGXW   -R TEVXMGYPEV MJ E XVERWMIRX PSEH E PEVKI EQSYRX SJ PSEH ETTPMIH MR E WLSVX TIVMSH SJ XMQI WYGL EW TYPWI MW ETTPMIH GSRJMVQEXMSR SJ TIVJSVQERGIGLEVEGXIVMWXMGW EJXIVSRFSEVH QSYRXMRKMWWXVSRKP] VIGSQQIRHIH %ZSMH ETTP]MRKTS[IV I\GIIHMRKRSVQEPVEXIHTS[IVI\GIIHMRKXLITS[IVVEXMRKYRHIVWXIEH]WXEXIPSEHMRKGSRHMXMSRQE]RIKEXMZIP]EJJIGX TVSHYGXTIVJSVQERGIERHVIPMEFMPMX]   (IVEXI4S[IV(MWWMTEXMSR 4H HITIRHMRKSR%QFMIRXXIQTIVEXYVI 8E ;LIRYWIHMRWIEPIHEVIEGSRJMVQXLIEGXYEP EQFMIRXXIQTIVEXYVI   'SRJMVQXLEXSTIVEXMSRXIQTIVEXYVIMW[MXLMRXLIWTIGMJMIHVERKIHIWGVMFIHMRXLITVSHYGXWTIGMJMGEXMSR   63,1WLEPPRSXFIMRER][E]VIWTSRWMFPISVPMEFPIJSVJEMPYVIMRHYGIHYRHIVHIZMERXGSRHMXMSRJVSQ[LEXMWHIJMRIHMR XLMWHSGYQIRX Precaution for Mounting / Circuit board design  ;LIRELMKLP]EGXMZILEPSKIRSYW GLPSVMRIFVSQMRIIXG JPY\MWYWIHXLIVIWMHYISJJPY\QE]RIKEXMZIP]EJJIGXTVSHYGX TIVJSVQERGIERHVIPMEFMPMX]   -RTVMRGMTPIXLIVIJPS[WSPHIVMRKQIXLSHQYWXFIYWIHSREWYVJEGIQSYRXTVSHYGXWXLIJPS[WSPHIVMRKQIXLSHQYWX FI YWIH SR E XLVSYKL LSPI QSYRX TVSHYGXW -J XLI JPS[ WSPHIVMRK QIXLSH MW TVIJIVVIH SR E WYVJEGIQSYRX TVSHYGXW TPIEWIGSRWYPX[MXLXLI63,1VITVIWIRXEXMZIMREHZERGI *SVHIXEMPWTPIEWIVIJIVXS63,11SYRXMRKWTIGMJMGEXMSR Notice-PGA-E 63,1'S0XH%PPVMKLXWVIWIVZIH Rev.001 Precautions Regarding Application Examples and External Circuits  -JGLERKIMWQEHIXSXLIGSRWXERXSJERI\XIVREPGMVGYMXTPIEWIEPPS[EWYJJMGMIRXQEVKMRGSRWMHIVMRKZEVMEXMSRWSJXLI GLEVEGXIVMWXMGW SJ XLI 4VSHYGXW ERH I\XIVREP GSQTSRIRXW MRGPYHMRK XVERWMIRX GLEVEGXIVMWXMGW EW [IPP EW WXEXMG GLEVEGXIVMWXMGW  =SYEKVIIXLEXETTPMGEXMSRRSXIWVIJIVIRGIHIWMKRWERHEWWSGMEXIHHEXEERHMRJSVQEXMSRGSRXEMRIHMRXLMWHSGYQIRX EVI TVIWIRXIH SRP] EW KYMHERGI JSV 4VSHYGXW YWI  8LIVIJSVI MR GEWI ]SY YWI WYGL MRJSVQEXMSR ]SY EVI WSPIP] VIWTSRWMFPIJSVMXERH]SYQYWXI\IVGMWI]SYVS[RMRHITIRHIRXZIVMJMGEXMSRERHNYHKQIRXMRXLIYWISJWYGLMRJSVQEXMSR GSRXEMRIHMRXLMWHSGYQIRX  63,1WLEPPRSXFIMRER][E]VIWTSRWMFPISVPMEFPIJSVER]HEQEKIWI\TIRWIWSVPSWWIW MRGYVVIHF]]SYSVXLMVHTEVXMIWEVMWMRKJVSQXLIYWISJWYGLMRJSVQEXMSR Precaution for Electrostatic 8LMW4VSHYGXMWIPIGXVSWXEXMGWIRWMXMZITVSHYGX[LMGLQE]FIHEQEKIHHYIXSIPIGXVSWXEXMGHMWGLEVKI4PIEWIXEOITVSTIV GEYXMSR MR ]SYV QERYJEGXYVMRK TVSGIWW ERH WXSVEKI WS XLEX ZSPXEKI I\GIIHMRK XLI 4VSHYGXW QE\MQYQ VEXMRK [MPP RSX FI ETTPMIHXS4VSHYGXW4PIEWIXEOIWTIGMEPGEVIYRHIVHV]GSRHMXMSR IK+VSYRHMRKSJLYQERFSH]IUYMTQIRXWSPHIVMVSR MWSPEXMSRJVSQGLEVKIHSFNIGXWWIXXMRKSJ-SRM^IVJVMGXMSRTVIZIRXMSRERHXIQTIVEXYVILYQMHMX]GSRXVSP  Precaution for Storage / Transportation  4VSHYGXTIVJSVQERGIERHWSPHIVIHGSRRIGXMSRWQE]HIXIVMSVEXIMJXLI4VSHYGXWEVIWXSVIHMRXLITPEGIW[LIVI ?EA XLI4VSHYGXWEVII\TSWIHXSWIE[MRHWSVGSVVSWMZIKEWIWMRGPYHMRK'P,72,73ERH23 ?FA XLIXIQTIVEXYVISVLYQMHMX]I\GIIHWXLSWIVIGSQQIRHIHF]63,1 ?GA XLI4VSHYGXWEVII\TSWIHXSHMVIGXWYRWLMRISVGSRHIRWEXMSR ?HA XLI4VSHYGXWEVII\TSWIHXSLMKL)PIGXVSWXEXMG  )ZIRYRHIV63,1VIGSQQIRHIHWXSVEKIGSRHMXMSRWSPHIVEFMPMX]SJTVSHYGXWSYXSJVIGSQQIRHIHWXSVEKIXMQITIVMSH QE]FIHIKVEHIH-XMWWXVSRKP]VIGSQQIRHIHXSGSRJMVQWSPHIVEFMPMX]FIJSVIYWMRK4VSHYGXWSJ[LMGLWXSVEKIXMQIMW I\GIIHMRKXLIVIGSQQIRHIHWXSVEKIXMQITIVMSH   7XSVI  XVERWTSVX GEVXSRWMR XLI GSVVIGXHMVIGXMSR [LMGL MW MRHMGEXIH SR E GEVXSR [MXL E W]QFSP3XLIV[MWIFIRX PIEHW QE]SGGYVHYIXSI\GIWWMZIWXVIWWETTPMIH[LIRHVSTTMRKSJEGEVXSR   9WI4VSHYGXW[MXLMRXLIWTIGMJMIHXMQIEJXIVSTIRMRKELYQMHMX]FEVVMIVFEK&EOMRKMWVIUYMVIHFIJSVIYWMRK4VSHYGXWSJ [LMGLWXSVEKIXMQIMWI\GIIHMRKXLIVIGSQQIRHIHWXSVEKIXMQITIVMSH Precaution for Product Label 56GSHITVMRXIHSR63,14VSHYGXWPEFIPMWJSV63,1vWMRXIVREPYWISRP] Precaution for Disposition ;LIRHMWTSWMRK4VSHYGXWTPIEWIHMWTSWIXLIQTVSTIVP]YWMRKEREYXLSVM^IHMRHYWXV][EWXIGSQTER] Precaution for Foreign Exchange and Foreign Trade act 7MRGI GSRGIVRIHKSSHW QMKLX FI JEPPIR YRHIV PMWXIHMXIQW SJI\TSVX GSRXVSPTVIWGVMFIHF]*SVIMKR I\GLERKIERH*SVIMKR XVEHIEGXTPIEWIGSRWYPX[MXL63,1MRGEWISJI\TSVX Precaution Regarding Intellectual Property Rights  %PP MRJSVQEXMSR ERH HEXE MRGPYHMRK FYX RSX PMQMXIH XS ETTPMGEXMSR I\EQTPI GSRXEMRIH MR XLMW HSGYQIRX MW JSV VIJIVIRGI SRP]63,1HSIWRSX[EVVERXXLEXJSVIKSMRKMRJSVQEXMSRSVHEXE[MPPRSXMRJVMRKIER]MRXIPPIGXYEPTVSTIVX]VMKLXWSVER] SXLIVVMKLXWSJER]XLMVHTEVX]VIKEVHMRKWYGLMRJSVQEXMSRSVHEXE  63,1 WLEPP RSX LEZI ER] SFPMKEXMSRW [LIVI XLI GPEMQW EGXMSRW SV HIQERHW EVMWMRK JVSQ XLI GSQFMREXMSR SJ XLI 4VSHYGXW[MXLSXLIVEVXMGPIWWYGLEWGSQTSRIRXWGMVGYMXWW]WXIQWSVI\XIVREPIUYMTQIRX MRGPYHMRKWSJX[EVI   2SPMGIRWII\TVIWWP]SVMQTPMIHMWKVERXIHLIVIF]YRHIVER]MRXIPPIGXYEPTVSTIVX]VMKLXWSVSXLIVVMKLXWSJ63,1SVER] XLMVHTEVXMIW[MXLVIWTIGXXSXLI4VSHYGXWSVXLIMRJSVQEXMSRGSRXEMRIHMRXLMWHSGYQIRX4VSZMHIHLS[IZIVXLEX63,1 [MPPRSXEWWIVX MXWMRXIPPIGXYEP TVSTIVX]VMKLXWSVSXLIVVMKLXWEKEMRWX ]SYSV ]SYVGYWXSQIVW XS XLI I\XIRXRIGIWWEV]XS QERYJEGXYVISVWIPPTVSHYGXWGSRXEMRMRKXLI4VSHYGXWWYFNIGXXSXLIXIVQWERHGSRHMXMSRWLIVIMR Other Precaution  8LMWHSGYQIRXQE]RSXFIVITVMRXIHSVVITVSHYGIHMR[LSPISVMRTEVX[MXLSYXTVMSV[VMXXIRGSRWIRXSJ63,1   8LI 4VSHYGXW QE] RSX FI HMWEWWIQFPIH GSRZIVXIH QSHMJMIH VITVSHYGIH SVSXLIV[MWI GLERKIH [MXLSYXTVMSV [VMXXIR GSRWIRXSJ63,1  -RRSIZIRXWLEPP]SY YWIMR ER] [E] [LEXWSIZIVXLI4VSHYGXWERHXLIVIPEXIHXIGLRMGEPMRJSVQEXMSRGSRXEMRIHMRXLI 4VSHYGXWSVXLMWHSGYQIRXJSVER]QMPMXEV]TYVTSWIWMRGPYHMRKFYXRSXPMQMXIHXSXLIHIZIPSTQIRXSJQEWWHIWXVYGXMSR [IETSRW  8LI TVSTIV REQIW SJ GSQTERMIW SVTVSHYGXWHIWGVMFIHMR XLMWHSGYQIRX EVI XVEHIQEVOW SV VIKMWXIVIH XVEHIQEVOWSJ 63,1MXWEJJMPMEXIHGSQTERMIWSVXLMVHTEVXMIW  Notice-PGA-E 63,1'S0XH%PPVMKLXWVIWIVZIH Rev.001 (EXEWLIIX General Precaution Notice – WE Rev.001
LM393WPT 价格&库存

很抱歉,暂时无法提供与“LM393WPT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LM393WPT
    •  国内价格 香港价格
    • 1+1.187191+0.14798
    • 10+1.1557410+0.14406
    • 50+1.1321550+0.14112
    • 100+1.10857100+0.13818
    • 500+1.10857500+0.13818
    • 1000+1.100711000+0.13720
    • 2000+1.100712000+0.13720
    • 4000+1.100714000+0.13720

    库存:50