Dear customer
LAPIS Semiconductor Co., Ltd. ("LAPIS Semiconductor"), on the 1st day of October,
2020, implemented the incorporation-type company split (shinsetsu-bunkatsu) in which
LAPIS established a new company, LAPIS Technology Co., Ltd. (“LAPIS
Technology”) and LAPIS Technology succeeded LAPIS Semiconductor’s LSI business.
Therefore, all references to "LAPIS Semiconductor Co., Ltd.", "LAPIS Semiconductor"
and/or "LAPIS" in this document shall be replaced with "LAPIS Technology Co., Ltd."
Furthermore, there are no changes to the documents relating to our products other than
the company name, the company trademark, logo, etc.
Thank you for your understanding.
LAPIS Technology Co., Ltd.
October 1, 2020
FEDL610Q431-03
Issue Date: Mar.23, 2015
ML610Q431/ML610Q432
8-bit Microcontroller with a Built-in LCD driver
GENERAL DESCRIPTION
This LSI is a high-performance 8-bit CMOS microcontroller into which rich peripheral circuits, such as real-time clock,
synchronous serial port, UART, I2C bus interface (master), melody driver, battery level detect circuit, RC oscillation type A/D
converter, 12-bit successive approximation type A/D converter, and LCD driver, are incorporated around 8-bit CPU nX-U8/100.
The CPU nX-U8/100 is capable of efficient instruction execution in 1-intruction 1-clock mode by 3-stage pipe line architecture
parallel procesing. The Flash ROM that is installed as program memory achieves low-voltage low-power consumption operation
(read operation) equivalent to mask ROM and is most suitable for battery-driven applications.
The on-chip debug function that is installed enables program debugging and programming.
FEATURES
• CPU
− 8-bit RISC CPU (CPU name: nX-U8/100)
− Instruction system: 16-bit instructions
− Instruction set:
Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit
manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic
shift, and so on
− On-Chip debug function
− Minimum instruction execution time
30.5 µs (@32.768 kHz system clock)
0.24 4µs (@4.096 MHz system clock)
• Internal memory
− Internal 64KBbyte Flash ROM (32K×16 bits) (including unusable 1KByte TEST area)
− Internal 2KByte Data RAM (2048×8 bits), 1KByte Display Allocation RAM (1024 x 8bit)
− Internal 192Byte RAM for display
• Interrupt controller
− 2 non-maskable interrupt sources (Internal source: 1, External source: 1)
− 23 maskable interrupt sources (Internal sources: 19, External sources: 4)
• Time base counter
− Low-speed time base counter ×1 channel
Frequency compensation (Compensation range: Approx. −488ppm to +488ppm. Compensation accuracy: Approx.
0.48ppm)
− High-speed time base counter ×1 channel
• Watchdog timer
− Non-maskable interrupt and reset
− Free running
− Overflow period: 4 types selectable (125ms, 500ms, 2s, and 8s)
• Timers
− 8 bits × 4 channels (16-bit configuration available)
• 1 kHz timer
− 10 Hz/1 Hz interrupt function
1/37
FEDL610Q431-03
ML610Q431/ML610Q432
• Capture
− Time base capture × 2 channels (4096 Hz to 32 Hz)
• PWM
− Resolution 16 bits × 1 channel
• Real time clock
− Year, month, day, day of the week, hour, minute, and second registers
− Automatic leap year correction
− Regular interrupts (0.5 sec, 1 sec, 1 minute, 1 hour)
− Alarm interrupt × 2 channels (day of the week, hour, minute; month, day hour, minute)
• Synchronous serial port
− Master/slave selectable
− LSB first/MSB first selectable
− 8-bit length/16-bit length selectable
• UART
− TXD/RXD × 1 channel
− Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits
− Positive logic/negative logic selectable
− Built-in baud rate generator
• I2C bus interface
− Master function only
− Fast mode (400 kbps@4MHz), standard mode (100 kbps@4MHz, 50kbps@500kHz)
• Melody driver
− Scale: 29 types (Melody sound frequency: 508 Hz to 32.768 kHz)
− Tone length: 63 types
− Tempo: 15 types
− Buzzer output mode (4 output modes, 8 frequencies, 16 duty levels)
• RC oscillation type A/D converter
− 24-bit counter
− Time division × 2 channels
• Successive approximation type A/D converter
− 12-bit A/D converter
− Input × 2 channels
• General-purpose ports
− Non-maskable interrupt input port × 1 channel
− Input-only port × 6 channels (including secondary functions)
− Output-only port × 3 channels (including secondary functions)
− Input/output port
ML610Q431: 22 channels (including secondary functions)
ML610Q432: 14 channels (including secondary functions)
2/37
FEDL610Q431-03
ML610Q431/ML610Q432
• LCD driver
− Dot matrix can be supported.
ML610Q431: 1024 dots max. (64 seg × 16 com)
ML610Q432: 1536 dots max. (64 seg × 24 com)
− 1/1 to 1/24 duty
− 1/3 or 1/4 bias (built-in bias generation circuit)
− Frame frequency selecable (approx. 64 Hz, 73 Hz, 85 Hz, and 102 Hz)
− Bias voltage multiplying clock selectable (8 types)
− Contrast adjustment (1/3 bias: 32 steps, 1/4 bias: 20 steps)
− LCD drive stop mode, LCD display mode, all LCDs on mode, and all LCDs off mode selectable
− Programmable display allocation function (available only when 1/1~1/8 duty is selected)
• Reset
− Reset through the RESET_N pin
− Power-on reset generation when powered on
− Reset when oscillation stop of the low-speed clock is detected
− (“A”version(ML610Q431A/Q432A) don’t have the oscilation stop function.)
− Reset by the watchdog timer (WDT) overflow
• Power supply voltage detect function
− Judgment voltages:
One of 16 levels
− Judgment accuracy:
±2% (Typ.)
• Clock
− Low-speed clock: (This LSI can not guarantee the operation withoug low-speed clock)
Crystal oscillation (32.768 kHz)
− High-speed clock:
Built-in RC oscillation (500 kHz)
Built-in PLL oscillation (8.192 MHz ±2.5%), crystal/ceramic oscillation (4.096 MHz), external clock
− Selection of high-speed clock mode by software:
Built-in RC oscillation, built-in PLL oscillation, crystal/ceramic oscillation, external clock
• Power management
− HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).
− STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are
stopped.)
− Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, or 1/8 of the oscillation
clock)
− Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.
• Guaranteed operating range
− Operating temperature: −20°C to 70°C
− Operating voltage: VDD = 1.1V to 3.6V, AVDD = 2.2V to 3.6V
3/37
FEDL610Q431-03
ML610Q431/ML610Q432
• Product name – Supported Function
The line-up of the ML610Q431 and the ML610Q432 is below.
- Chip (Die) ML610Q431-xxxWA
ROM type
Low-speed oscillation
stop detect reset
Operating
temperature
Product availability
Flash ROM
Yes
-20°C to +70°C
Yes
ML610Q431A-xxxWA
Flash ROM
-
-20°C to +70°C
Yes
ML610Q432-xxxWA
Flash ROM
Yes
-20°C to +70°C
Yes
ML610Q432A-xxxWA
Flash ROM
-
-20°C to +70°C
Yes
-144-pin plastic
LQFP -
ROM type
Low-speed oscillation
stop detect reset
Operating
temperature
Product availability
ML610Q431-xxxTC
Flash ROM
Yes
-20°C to +70°C
Yes
ML610Q432-xxxTC
Flash ROM
Yes
-20°C to +70°C
Yes
ML610Q432A-xxxTC
Flash ROM
-
-20°C to +70°C
Yes
xxx: ROM code number (xxx of the blank product is NNN)
Q: Flash ROM version
A: Low-speed clock oscillation stop detection reset is disabled always (A version)
WA: Chip (Die),
TC: LQFP
4/37
FEDL610Q431-03
ML610Q431/ML610Q432
BLOCK DIAGRAM
ML610Q431 Block Diagram
Figure 1 show the block diagram of the ML610Q431.
"*" indicates the secondary function of each port.
CPU (nX-U8/100)
EPSW1~3
GREG
0~15
PSW
Timing
Controller
On-Chip
ICE
TEST
Instruction
Decoder
IN0*
CS0*
RS0*
RT0*
RCT0*
RCM*
IN1*
CS1*
RS1*
RT1*
AIN0, AIN1
PC
Instruction
Register
Program
Memory
(Flash)
64Kbyte
BUS
Controller
INT
1
RAM
2048byte
RESET &
TEST
Interrupt
Controller
INT
1
OSC
INT
4
Power
INT
1
INT
1
WDT
TBC
SCK0*
SIN0*
SOUT0*
UART
RXD0*
TXD0*
I2C
SDA*
SCL*
INT
1
INT
1
INT
1
PWM
1kHzTC
Capture
×2
RC-ADC
×2
INT
4
INT
1
12bit-ADC
BLD
PWM0*
INT
1
INT
5
Display RAM
192Byte
P20 to P22
P30 to P35
P40 to P47
PA0 to PA7
RTC
Display Allocation
RAM 1024Byte
MD0*
NMI
P00 to P03
P10 to P11
8bit Timer
×4
GPIO
INT
3
VPP
SSIO
Melody
AVDD
AVSS
VREF
EA
Data-bus
LSCLK*
OUTCLK*
VDDL
VDDX
DSR/CSR
SP
XT0
XT1
OSC0*
OSC1*
ECSR1~3
LR
ALU
VDD
VSS
RESET_N
ELR1~3
LCD
Driver
COM0 to COM15
LCD
BIAS
VL1, VL2, VL3, VL4
SEG0 to SEG63
C1, C2, C3, C4
Figure 1 ML610Q431 Block Diagram
5/37
FEDL610Q431-03
ML610Q431/ML610Q432
ML610Q432 Block Diagram
Figure 2 show the block diagram of the ML610Q432.
"*" indicates the secondary function of each port.
CPU (nX-U8/100)
EPSW1~3
GREG
0~15
PSW
Timing
Controller
On-Chip
ICE
TEST
Instruction
Decoder
IN0*
CS0*
RS0*
RT0*
RCT0*
RCM*
IN1*
CS1*
RS1*
RT1*
VREF
EA
PC
Instruction
Register
Program
Memory
(Flash)
64Kbyte
BUS
Controller
INT
1
RAM
2048byte
RESET &
TEST
Interrupt
Controller
INT
1
OSC
INT
4
Power
INT
1
INT
1
WDT
TBC
SCK0*
SIN0*
SOUT0*
UART
RXD0*
TXD0*
I2C
SDA*
SCL*
INT
1
INT
1
INT
1
PWM
1kHzTC
Capture
×2
RC-ADC
×2
INT
4
INT
1
12bit-ADC
BLD
PWM0*
INT
1
INT
5
MD0*
NMI
P00 to P03
P10 to P11
8bit Timer
×4
GPIO
INT
3
VPP
SSIO
Melody
AVDD
AVSS
AIN0, AIN1
DSR/CSR
Data-bus
LSCLK*
OUTCLK*
VDDL
VDDX
LR
SP
XT0
XT1
OSC0*
OSC1*
ECSR1~3
ALU
VDD
VSS
RESET_N
ELR1~3
P20 to P22
P30 to P35
RTC
Display Allocation
RAM 1024Byte
Display RAM
192Byte
P40 to P47
LCD
Driver
COM0 to COM23
LCD
BIAS
VL1, VL2, VL3, VL4
SEG0 to SEG63
C1, C2, C3, C4
Figure 2 ML610Q432 Block Diagram
6/37
FEDL610Q431-03
ML610Q431/ML610Q432
PIN CONFIGURATION
SEG46
(NC)
(NC)
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
(NC)
SEG16
(NC)
SEG15
ML610Q431 LQFP144 Pin Layout
108pin
72pin
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
109pin
73pin
SEG47
VDD
VPP
SEG48
SEG49
SEG50
SEG51
SEG52
SEG53
SEG54
SEG55
SEG56
SEG57
SEG58
SEG59
SEG60
SEG61
SEG62
SEG63
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
AVDD
VREF
AVSS
AIN0
AIN1
L610Q431
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
144pin
1pin
P03
(NC)
P02
P01
P00
NMI
VSS
P20
P21
P22
P40
P41
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P32
P33
P34
P35
VDDX
(NC)
XT0
(NC)
XT1
VSS
VDDL
VDD
P10
(NC)
P11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
3
14
144
C4
C3
C2
C1
VL4
VL3
VL2
VL1
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM12
COM13
COM14
COM15
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
TEST
37pin
36pin
(NC): No Connection
Figure 3 ML610Q431 LQFP144 Pin Configuration
7/37
FEDL610Q431-03
ML610Q431/ML610Q432
SEG46
(NC)
(NC)
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
(NC)
SEG16
(NC)
SEG15
ML610Q432 LQFP144 Pin Layout
108pin
72pin
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
109pin
73pin
SEG47
VDD
VPP
SEG48
SEG49
SEG50
SEG51
SEG52
SEG53
SEG54
SEG55
SEG56
SEG57
SEG58
SEG59
SEG60
SEG61
SEG62
SEG63
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
AVDD
VREF
AVSS
AIN0
AIN1
L610Q432
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
144pin
1pin
P03
(NC)
P02
P01
P00
NMI
VSS
P20
P21
P22
P40
P41
RESET_N
P42
P43
P44
P45
P46
P47
P30
P31
P32
P33
P34
P35
VDDX
(NC)
XT0
(NC)
XT1
VSS
VDDL
VDD
P10
(NC)
P11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
C4
C3
C2
C1
VL4
VL3
VL2
VL1
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
TEST
37pin
36pin
(NC): No Connection
Figure 4 ML610Q432 LQFP144 Pin Configuration
8/37
FEDL610Q431-03
ML610Q431/ML610Q432
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
ML610Q431 Chip Pin Layout & Dimension
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
SEG16
SEG15
C4
C3
C2
C1
VL4
VL3
VL2
VL1
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM12
COM13
COM14
COM15
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
TEST
P11/OSC1
4.23mm
P01 1
P00 2
NMI 3
Vss 4
P20 5
P21 6
P22 7
P40 8
P41 9
RESET_N 10
P42 11
P43 12
P44 13
P45 14
P46 15
P47 16
P30 17
P31 18
P32 19
P33 20
P34 21
P35 22
VDDX 23
XT0 24
XT1 25
Vss 26
VDDL 27
VDD 28
P10/OSC029
SEG46
SEG47
VDD
VPP
SEG48
SEG49
SEG50
SEG51
SEG52
SEG53
SEG54
SEG55
SEG56
SEG57
SEG58
SEG59
SEG60
SEG61
SEG62
SEG63
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
AVDD
VREF
AVSS
AIN0
AIN1
P03
P02
3.33mm
Chip size:
PAD count:
Minimum PAD pitch:
PAD aperture:
Chip thickness:
Voltage of the rear side of chip:
3.33 mm × 4.23 mm
136 pins
100 µm
80 µm × 80 µm
350 µm
VSS level
Figure 5 ML610Q431 Chip Layout & Dimension
9/37
FEDL610Q431-03
ML610Q431/ML610Q432
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
ML610Q432 Chip Pin Layout & Dimension
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
SEG16
SEG15
C4
C3
C2
C1
VL4
VL3
VL2
VL1
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
TEST
P11/OSC1
4.23mm
P01 1
P00 2
NMI 3
Vss 4
P20 5
P21 6
P22 7
P40 8
P41 9
RESET_N 10
P42 11
P43 12
P44 13
P45 14
P46 15
P47 16
P30 17
P31 18
P32 19
P33 20
P34 21
P35 22
VDDX 23
XT0 24
XT1 25
Vss 26
VDDL 27
VDD 28
P10/OSC029
SEG46
SEG47
VDD
VPP
SEG48
SEG49
SEG50
SEG51
SEG52
SEG53
SEG54
SEG55
SEG56
SEG57
SEG58
SEG59
SEG60
SEG61
SEG62
SEG63
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
AVDD
VREF
AVSS
AIN0
AIN1
P03
P02
3.33mm
Chip size:
PAD count:
Minimum PAD pitch:
PAD aperture:
Chip thickness:
Voltage of the rear side of chip:
3.33 mm × 4.23 mm
136 pins
100 µm
80 µm × 80 µm
350 µm
VSS level
Figure 6 ML610Q432 Chip Layout & Dimension
10/37
FEDL610Q431-03
ML610Q431/ML610Q432
ML610Q431 Pad Coordinates
Table 1 ML610Q431 Pad Coordinates
Chip Center: X=0,Y=0
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
PAD
No.
1
P01
-1400
-1978
51
SEG7
1528
200
2
P00
-1300
-1978
52
SEG8
1528
300
3
NMI
-1200
-1978
53
SEG9
1528
4
VSS
-1100
-1978
54
SEG10
5
P20
-1000
-1978
55
SEG11
6
P21
-900
-1978
56
7
P22
-800
-1978
8
P40
-700
9
P41
-600
10
RESET_N
11
Pad
Name
X
(μm)
Y
(μm)
101
VPP
-1528
1600
102
SEG48
-1528
1500
400
103
SEG49
-1528
1400
1528
500
104
SEG50
-1528
1300
1528
600
105
SEG51
-1528
1200
SEG12
1528
700
106
SEG52
-1528
1100
57
SEG13
1528
800
107
SEG53
-1528
1000
-1978
58
SEG14
1528
900
108
SEG54
-1528
900
-1978
59
VL1
1528
1000
109
SEG55
-1528
800
-500
-1978
60
VL2
1528
1100
110
SEG56
-1528
700
P42
-400
-1978
61
VL3
1528
1200
111
SEG57
-1528
600
12
P43
-300
-1978
62
VL4
1528
1300
112
SEG58
-1528
500
13
P44
-200
-1978
63
C1
1528
1400
113
SEG59
-1528
400
14
P45
-100
-1978
64
C2
1528
1500
114
SEG60
-1528
300
15
P46
0
-1978
65
C3
1528
1600
115
SEG61
-1528
200
16
P47
100
-1978
66
C4
1528
1700
116
SEG62
-1528
100
17
P30
200
-1978
67
SEG15
1528
1800
117
SEG63
-1528
0
18
P31
300
-1978
68
SEG16
1528
1900
118
COM0
-1528
-100
19
P32
400
-1978
69
SEG17
1400
1978
119
COM1
-1528
-200
20
P33
500
-1978
70
SEG18
1300
1978
120
COM2
-1528
-300
21
P34
600
-1978
71
SEG19
1200
1978
121
COM3
-1528
-400
22
P35
700
-1978
72
SEG20
1100
1978
122
COM4
-1528
-500
23
VDDX
800
-1978
73
SEG21
1000
1978
123
COM5
-1528
-600
24
XT0
900
-1978
74
SEG22
900
1978
124
COM6
-1528
-700
25
XT1
1000
-1978
75
SEG23
800
1978
125
COM7
-1528
-800
26
VSS
1100
-1978
76
SEG24
700
1978
126
COM8
-1528
-900
27
VDDL
1200
-1978
77
SEG25
600
1978
127
COM9
-1528
-1000
28
VDD
1300
-1978
78
SEG26
500
1978
128
COM10
-1528
-1100
29
P10
1400
-1978
79
SEG27
400
1978
129
COM11
-1528
-1200
30
P11
1528
-1900
80
SEG28
300
1978
130
AVDD
-1528
-1300
31
TEST
1528
-1800
81
SEG29
200
1978
131
VREF
-1528
-1400
32
PA0
1528
-1700
82
SEG30
100
1978
132
AVSS
-1528
-1500
33
PA1
1528
-1600
83
SEG31
0
1978
133
AIN0
-1528
-1600
34
PA2
1528
-1500
84
SEG32
-100
1978
134
AIN1
-1528
-1700
35
PA3
1528
-1400
85
SEG33
-200
1978
135
P03
-1528
-1800
36
PA4
1528
-1300
86
SEG34
-300
1978
136
P02
-1528
-1900
37
PA5
1528
-1200
87
SEG35
-400
1978
38
PA6
1528
-1100
88
SEG36
-500
1978
39
PA7
1528
-1000
89
SEG37
-600
1978
40
COM15
1528
-900
90
SEG38
-700
1978
41
COM14
1528
-800
91
SEG39
-800
1978
42
COM13
1528
-700
92
SEG40
-900
1978
43
COM12
1528
-600
93
SEG41
-1000
1978
44
SEG0
1528
-500
94
SEG42
-1100
1978
45
SEG1
1528
-400
95
SEG43
-1200
1978
46
SEG2
1528
-300
96
SEG44
-1300
1978
47
SEG3
1528
-200
97
SEG45
-1400
1978
48
SEG4
1528
-100
98
SEG46
-1528
1900
49
SEG5
1528
0
99
SEG47
-1528
1800
50
SEG6
1528
100
100
VDD
-1528
1700
11/37
FEDL610Q431-03
ML610Q431/ML610Q432
ML610Q432 Pad Coordinates
Table 2 ML610Q432 Pad Coordinates
Chip Center: X=0,Y=0
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
PAD
No.
Pad
Name
X
(μm)
Y
(μm)
1
P01
-1400
-1978
51
SEG7
1528
200
2
P00
-1300
-1978
52
SEG8
1528
300
101
VPP
-1528
1600
102
SEG48
-1528
3
NMI
-1200
-1978
53
SEG9
1528
1500
400
103
SEG49
-1528
4
VSS
-1100
-1978
54
SEG10
1400
1528
500
104
SEG50
-1528
5
P20
-1000
-1978
55
1300
SEG11
1528
600
105
SEG51
-1528
1200
6
P21
-900
-1978
7
P22
-800
-1978
56
SEG12
1528
700
106
SEG52
-1528
1100
57
SEG13
1528
800
107
SEG53
-1528
8
P40
-700
1000
-1978
58
SEG14
1528
900
108
SEG54
-1528
9
P41
900
-600
-1978
59
VL1
1528
1000
109
SEG55
-1528
10
800
RESET_N
-500
-1978
60
VL2
1528
1100
110
SEG56
-1528
700
11
P42
-400
-1978
61
VL3
1528
1200
111
SEG57
-1528
600
12
P43
-300
-1978
62
VL4
1528
1300
112
SEG58
-1528
500
13
P44
-200
-1978
63
C1
1528
1400
113
SEG59
-1528
400
14
P45
-100
-1978
64
C2
1528
1500
114
SEG60
-1528
300
15
P46
0
-1978
65
C3
1528
1600
115
SEG61
-1528
200
16
P47
100
-1978
66
C4
1528
1700
116
SEG62
-1528
100
17
P30
200
-1978
67
SEG15
1528
1800
117
SEG63
-1528
0
18
P31
300
-1978
68
SEG16
1528
1900
118
COM0
-1528
-100
19
P32
400
-1978
69
SEG17
1400
1978
119
COM1
-1528
-200
20
P33
500
-1978
70
SEG18
1300
1978
120
COM2
-1528
-300
21
P34
600
-1978
71
SEG19
1200
1978
121
COM3
-1528
-400
22
P35
700
-1978
72
SEG20
1100
1978
122
COM4
-1528
-500
23
VDDX
800
-1978
73
SEG21
1000
1978
123
COM5
-1528
-600
24
XT0
900
-1978
74
SEG22
900
1978
124
COM6
-1528
-700
25
XT1
1000
-1978
75
SEG23
800
1978
125
COM7
-1528
-800
26
VSS
1100
-1978
76
SEG24
700
1978
126
COM8
-1528
-900
27
VDDL
1200
-1978
77
SEG25
600
1978
127
COM9
-1528
-1000
28
VDD
1300
-1978
78
SEG26
500
1978
128
COM10
-1528
-1100
29
P10
1400
-1978
79
SEG27
400
1978
129
COM11
-1528
-1200
30
P11
1528
-1900
80
SEG28
300
1978
130
AVDD
-1528
-1300
31
TEST
1528
-1800
81
SEG29
200
1978
131
VREF
-1528
-1400
32
COM23
1528
-1700
82
SEG30
100
1978
132
AVSS
-1528
-1500
33
COM22
1528
-1600
83
SEG31
0
1978
133
AIN0
-1528
-1600
34
COM21
1528
-1500
84
SEG32
-100
1978
134
AIN1
-1528
-1700
35
COM20
1528
-1400
85
SEG33
-200
1978
135
P03
-1528
-1800
36
COM19
1528
-1300
86
SEG34
-300
1978
136
P02
-1528
-1900
37
COM18
1528
-1200
87
SEG35
-400
1978
38
COM17
1528
-1100
88
SEG36
-500
1978
39
COM16
1528
-1000
89
SEG37
-600
1978
40
COM15
1528
-900
90
SEG38
-700
1978
41
COM14
1528
-800
91
SEG39
-800
1978
42
COM13
1528
-700
92
SEG40
-900
1978
43
COM12
1528
-600
93
SEG41
-1000
1978
44
SEG0
1528
-500
94
SEG42
-1100
1978
45
SEG1
1528
-400
95
SEG43
-1200
1978
46
SEG2
1528
-300
96
SEG44
-1300
1978
47
SEG3
1528
-200
97
SEG45
-1400
1978
48
SEG4
1528
-100
98
SEG46
-1528
1900
49
SEG5
1528
0
99
SEG47
-1528
1800
50
SEG6
1528
100
100
VDD
-1528
1700
12/37
FEDL610Q431-03
ML610Q431/ML610Q432
PIN LIST
PAD No.
Primary function
Q432 Q431 Pin name
I/O
4,26
4,26
Vss
28,
100
28,
100
VDD
27
27
VDDL
23
23
VDDX
101
101
VPP
132
132
AVSS
130
130
AVDD
59
59
VL1
60
60
VL2
61
61
VL3
62
62
VL4
63
63
C1
64
64
C2
65
65
C3
66
66
C4
31
31
TEST
10
10
RESET_
N
I
24
24
XT0
I
25
25
XT1
O
131
131
VREF
Function
Negative power
supply pin
Secondary function
Tertiary function
Pin name
I/O
Function
Reset input pin
Low-speed clock
oscillation pin
Low-speed clock
oscillation pin
Reference power
supply pin for
successive
approximation type
ADC
Positive power supply
pin
Power supply pin for
internal logic
(internally generated)
Power supply pin for
low-speed oscillation
(internally generated)
Power supply pin for
Flash ROM
Negative power
supply pin for
successive
approximation type
ADC
Positive power supply
pin for successive
approximation type
ADC
Power supply pin for
LCD bias (internally
generated)
Power supply pin for
LCD bias (internally
generated)
Power supply pin for
LCD bias (internally
generated)
Power supply pin for
LCD bias (internally
generated)
Capacitor connection
pin for LCD bias
generation
Capacitor connection
pin for LCD bias
generation
Capacitor connection
pin for LCD bias
generation
Capacitor connection
pin for LCD bias
generation
Input/output pin for
I/O
testing
Pin name I/O
Function
13/37
FEDL610Q431-03
ML610Q431/ML610Q432
PAD No.
Primary function
Q432 Q431 Pin name
I/O
Function
Successive
approximation type
ADC input
Successive
approximation type
ADC input
Non-maskable
interrupt pin
Input port, External
interrupt 0, Capture 0
input
Input port, External
interrupt 1, Capture 1
input
Input port, External
interrupt 2, UART0
receive
Secondary function
Tertiary function
Pin name
I/O
Function
Pin name I/O
Function
133
133
AIN0
I
134
134
AIN1
I
3
3
NMI
I
2
2
P00/EXI
0/CAP0
I
1
1
P01/EXI
1/CAP1
I
136
136
P02/EXI
2/RXD0
I
135
135
P03/
EXI3
I
Input port, External
interrupt 3
29
29
P10
I
Input port
OSC0
I
High-speed oscillation
30
30
P11
I
Input port
OSC1
O
High-speed oscillation
5
5
P20/
LED0
O
Output port
LSCLK
O
Low-speed clock output
6
6
P21/
LED1
O
Output port
OUTCLK
O
High-speed clock
output
7
7
P22/
LED2
O
Output port
MD0
O
Melody output
17
17
P30
I/O Input/output port
IN0
I
18
18
P31
I/O Input/output port
CS0
O
19
19
P32
I/O Input/output port
RS0
O
20
20
P33
I/O Input/output port
RT0
O
21
21
P34
I/O Input/output port
RCT0
O
PWM0
O
22
22
P35
I/O Input/output port
RCM
O
8
8
P40
SDA
I/O
9
9
P41
I/O Input/output port
I/O Input/output port
RC type ADC0
oscillation input pin
RC type ADC0
reference capacitor
connection pin
RC type ADC0
reference resistor
connection pin
RC type ADC0 resistor
sensor connection pin
RC type ADC0
resistor/capacitor
sensor connection pin
RC type ADC
oscillation monitor
I2C data input/output
SCL
I/O
I2C clock input/output
11
11
P42
12
12
P43
13
13
P44/T02
P0CK
14
14
P45/T13
P1CK
15
15
P46
16
16
PWM output
RXD0
I
UART data input
SOUT0
SSIO data input
I
I/O SSIO synchronous clock
O SSIO data output
TXD0
O
UART data output
PWM0
O
PWM output
IN1
I
RC type ADC1
oscillation input pin
SIN0
I
SSIO0 data input
CS1
O
SCK0
I/O
SSIO0 synchronous
clock
I/O Input/output port
RS1
O
SOUT0
O
SSIO0 data output
P47
I/O Input/output port
RT1
O
32
PA0
I/O
33
PA1
I/O
34
PA2
I/O
35
PA3
I/O
36
PA4
I/O
37
PA5
I/O
I/O Input/output port
I/O Input/output port
Input/output port,
Timer 0/Timer
I/O
2/PWM0 external
clock input
Input/output port,
I/O Timer 1/Timer 3
external clock input
Input/output port
Input/output port
Input/output port
Input/output port
Input/output port
Input/output port
RC type ADC1
reference capacitor
connection pin
RC type ADC1
reference resistor
connection pin
RC type ADC1 resistor
sensor connection pin
SIN0
SCK0
14/37
FEDL610Q431-03
ML610Q431/ML610Q432
PAD No.
Primary function
Q432 Q431 Pin name
I/O
Function
Secondary function
Tertiary function
Pin name
I/O
Function
Pin name I/O
Function
124
124
COM6
O
LCD common pin
125
125
COM7
O
LCD common pin
126
126
COM8
O
LCD common pin
127
127
COM9
O
LCD common pin
38
PA6
I/O
39
PA7
I/O
Input/output port
Input/output port
118
118
COM0
O
LCD common pin
119
119
COM1
O
LCD common pin
120
120
COM2
O
LCD common pin
121
121
COM3
O
LCD common pin
122
122
COM4
O
LCD common pin
123
123
COM5
O
LCD common pin
128
128
COM10
O
LCD common pin
129
129
COM11
O
LCD common pin
43
43
COM12
O
LCD common pin
42
42
COM13
O
LCD common pin
41
41
COM14
O
LCD common pin
40
40
COM15
O
LCD common pin
39
COM16
O
LCD common pin
38
COM17
O
LCD common pin
37
COM18
O
LCD common pin
36
COM19
O
LCD common pin
35
COM20
O
LCD common pin
34
COM21
O
LCD common pin
33
COM22
O
LCD common pin
32
COM23
O
LCD common pin
44
44
SEG0
O
LCD segment pin
45
45
SEG1
O
LCD segment pin
46
46
SEG2
O
LCD segment pin
47
47
SEG3
O
LCD segment pin
48
48
SEG4
O
LCD segment pin
49
49
SEG5
O
LCD segment pin
50
50
SEG6
O
LCD segment pin
51
51
SEG7
O
LCD segment pin
52
52
SEG8
O
LCD segment pin
53
53
SEG9
O
LCD segment pin
54
54
SEG10
O
LCD segment pin
55
55
SEG11
O
LCD segment pin
56
56
SEG12
O
LCD segment pin
57
57
SEG13
O
LCD segment pin
58
58
SEG14
O
LCD segment pin
67
67
SEG15
O
LCD segment pin
68
68
SEG16
O
LCD segment pin
69
69
SEG17
O
LCD segment pin
70
70
SEG18
O
LCD segment pin
71
71
SEG19
O
LCD segment pin
72
72
SEG20
O
LCD segment pin
73
73
SEG21
O
LCD segment pin
74
74
SEG22
O
LCD segment pin
75
75
SEG23
O
LCD segment pin
76
76
SEG24
O
LCD segment pin
77
77
SEG25
O
LCD segment pin
O
LCD segment pin
78
78
SEG26
15/37
FEDL610Q431-03
ML610Q431/ML610Q432
PAD No.
Primary function
Q432 Q431 Pin name
I/O
Function
Secondary function
Pin name
I/O
Function
Tertiary function
Pin name I/O
Function
79
79
SEG27
O
LCD segment pin
80
80
SEG28
O
LCD segment pin
81
81
SEG29
O
LCD segment pin
82
82
SEG30
O
LCD segment pin
83
83
SEG31
O
LCD segment pin
84
84
SEG32
O
LCD segment pin
85
85
SEG33
O
LCD segment pin
86
86
SEG34
O
LCD segment pin
87
87
SEG35
O
LCD segment pin
88
88
SEG36
O
LCD segment pin
89
89
SEG37
O
LCD segment pin
90
90
SEG38
O
LCD segment pin
91
91
SEG39
O
LCD segment pin
92
92
SEG40
O
LCD segment pin
93
93
SEG41
O
LCD segment pin
94
94
SEG42
O
LCD segment pin
95
95
SEG43
O
LCD segment pin
96
96
SEG44
O
LCD segment pin
97
97
SEG45
O
LCD segment pin
98
98
SEG46
O
LCD segment pin
99
99
SEG47
O
LCD segment pin
102
102
SEG48
O
LCD segment pin
103
103
SEG49
O
LCD segment pin
104
104
SEG50
O
LCD segment pin
105
105
SEG51
O
LCD segment pin
106
106
SEG52
O
LCD segment pin
107
107
SEG53
O
LCD segment pin
108
108
SEG54
O
LCD segment pin
109
109
SEG55
O
LCD segment pin
110
110
SEG56
O
LCD segment pin
111
111
SEG57
O
LCD segment pin
112
112
SEG58
O
LCD segment pin
113
113
SEG59
O
LCD segment pin
114
114
SEG60
O
LCD segment pin
115
115
SEG61
O
LCD segment pin
116
116
SEG62
O
LCD segment pin
117
117
SEG63
O
LCD segment pin
16/37
FEDL610Q431-03
ML610Q431/ML610Q432
PIN DESCRIPTION
Pin name
I/O
Description
Primary/
Secondary/
Tertiary
Logic
—
Negative
—
—
—
—
Secondary
Secondary
—
—
Secondary
—
Secondary
—
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
Primary
Positive
System
Reset input pin. When this pin is set to a “L” level, system reset mode is
set and the internal section is initialized. When this pin is set to a “H” level
subsequently, program execution starts. A pull-up resistor is internally
connected.
XT0
I Crystal connection pin for low-speed clock.
XT1
O A 32.768 kHz crystal oscillator (see measuring circuit 1) is connected to
this pin. Capacitors CDL and CGL are connected across this pin and VSS
as required.
OSC0
I Crystal/ceramic connection pin for high-speed clock.
OSC1
O A crystal or ceramic is connected to this pin (4.1 MHz max.). Capacitors
CDH and CGH (see measuring circuit 1) are connected across this pin
and VSS.
This pin is used as the secondary function of the P10 pin(OSC0) and P11
pin(OSC1).
LSCLK
O Low-speed clock output pin. This pin is used as the secondary function of
the P20 pin.
OUTCLK
O High-speed clock output pin. This pin is used as the secondary function of
the P21 pin.
General-purpose input port
RESET_N
I
General-purpose input port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
P10-P11
I General-purpose input port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
General-purpose output port
P20-P22
O General-purpose output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
General-purpose input/output port
P30-P35
I/O General-purpose input/output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
P40-P47
I/O General-purpose input/output port.
Since these pins have secondary functions, the pins cannot be used as a
port when the secondary functions are used.
PA0-PA7
I/O General-purpose input/output port.
These pins are for the ML610Q431, but are not provided in the
ML610Q432.
P00-P03
I
17/37
FEDL610Q431-03
ML610Q431/ML610Q432
Pin name
Primary/
Secondary/
Tertiary
Logic
Secondary
Positive
Primary/Se
condary
Positive
Secondary
Positive
Secondary
Positive
I/O Synchronous serial clock input/output pin. This pin is used as the tertiary
function of the P41 or P45 pin.
I Synchronous serial data input pin. This pin is used as the tertiary function
of the P40 or P44 pin.
O Synchronous serial data output pin. This pin is used as the tertiary
function of the P42 or P46 pin.
Tertiary
—
Tertiary
Positive
Tertiary
Positive
PWM0 output pin. This pin is used as the tertiary function of the P43 or
P34 pin.
PWM0 external clock input pin. This pin is used as the primary function of
the P44 pin.
Tertiary
Positive
Primary
—
External non-maskable interrupt input pin. An interrupt is generated on
both edges.
External maskable interrupt input pins. Interrupt enable and edge
selection can be performed for each bit by software. These pins are used
as the primary functions of the P00-P03 pins.
Primary
Positive/
negative
Positive/
negative
Capture trigger input pins. The value of the time base counter is captured
in the register synchronously with the interrupt edge selected by software.
These pins are used as the primary functions of the P00 pin(CAP0) and
P01 pin(CAP1).
Primary
External clock input pin used for both Timer 0 and Timer 2. The clocks for
these timers are selected by software. This pin is used as the primary
function of the P44 pin.
External clock input pin used for both Timer 1 and Timer 3. The clocks for
these timers are selected by software. This pin is used as the primary
function of the P45 pin.
Primary
I/O
UART
TXD0
O
RXD0
I
Description
UART data output pin. This pin is used as the secondary function of the
P43 pin.
UART data input pin. This pin is used as the secondary function of the
P42 or the primary function of the P02 pin.
2
I C bus interface
2
SDA
I/O I C data input/output pin. This pin is used as the secondary function of the
P40 pin. This pin has an NMOS open drain output. When using this pin as
2
a function of the I C, externally connect a pull-up resistor.
2
SCL
O I C clock output pin. This pin is used as the secondary function of the P41
pin. This pin has an NMOS open drain output. When using this pin as a
2
function of the I C, externally connect a pull-up resistor.
Synchronous serial (SSIO)
SCK0
SIN0
SOUT0
PWM
PWM0
T02P0CK
O
I
External interrupt
NMI
I
EXI0-3
I
Capture
CAP0
I
CAP1
I
Timer
T02P0CK
T13P1CK
I
I
Melody
MD0
O
Melody/buzzer signal output pin. This pin is used as the secondary
function of the P22 pin.
LED drive
LED0-2
O
NMOS open drain output pins to drive LED. These pins are used as the
primary function of the P20-P22 pins.
Primary
Primary
Positive/
negative
Positive/
negative
—
Primary
—
Secondary Positive/
negative
Primary
Positive/
negative
18/37
FEDL610Q431-03
ML610Q431/ML610Q432
Pin name
I/O
Description
RC oscillation type A/D converter
IN0
I Channel 0 oscillation input pin. This pin is used as the secondary function
of the P30 pin.
CS0
O Channel 0 reference capacitor connection pin. This pin is used as the
secondary function of the P31 pin.
RS0
O This pin is used as the secondary function of the P32 pin which is the
reference resistor connection pin of Channel 0.
RT0
O Resistor sensor connection pin of Channel 0 for measurement. This pin is
used as the secondary function of the P33 pin.
RCT0
O Resistor/capacitor sensor connection pin of Channel 0 for measurement.
This pin is used as the secondary function of the P34 pin.
RCM
O RC oscillation monitor pin. This pin is used as the secondary function of
the P35 pin.
IN1
I Oscillation input pin of Channel 1. This pin is used as the secondary
function of the P44 pin.
CS1
O Reference capacitor connection pin of Channel 1. This pin is used as the
secondary function of the P45 pin.
RS1
O Reference resistor connection pin of Channel 1. This pin is used as the
secondary function of the P46 pin.
RT1
O Resistor sensor connection pin for measurement of Channel 1. This pin is
used as the secondary function of the P47 pin.
Successive approximation type A/D converter
AVSS
— Negative power supply pin for successive approximation type A/D
converter.
AVDD
— Positive power supply pin for successive approximation type A/D
converter.
VREF
— Reference power supply pin for successive approximation type A/D
converter.
AIN0
I Channel 0 analog input for successive approximation type A/D converter.
AIN1
I Channel 1 analog input for successive approximation type A/D converter.
LCD drive signal
COM0-15
O Common output pins.
COM16-23
O Common output pins.
These pins are for the ML610Q432, but are not provided in the
ML610Q431.
SEG0-63
O Segment output pin.
LCD driver power supply
VL1
— Power supply pins for LCD bias (internally generated). Capacitors Ca, Cb,
VL2
— Cc, and Cd (see measuring circuit 1) are connected between VSS and VL1,
V
— VL2, VL3, and VL4, respectively.
L3
VL4
C1
C2
C3
C4
For testing
TEST
Power supply
VSS
VDD
VDDL
—
—
—
—
—
Power supply pins for LCD bias (internally generated). Capacitors C12
and C34 (see measuring circuit 1) are connected between C1 and C2 and
between C3 and C4, respectively.
I/O Input/output pin for testing. A pull-down resistor is internally connected.
—
—
—
VDDX
—
VPP
—
Negative power supply pin.
Positive power supply pin.
Positive power supply pin (internally generated) for internal logic.
Capacitors CL0 and CL1 (see measuring circuit 1) are connected between
this pin and VSS.
Plus-side power supply pin (internally generated) for low-speed oscillation.
Capacitor Cx (see measuring circuit 1) is connected between this pin and
VSS.
Power supply pin for programming Flash ROM. A pull-up resistor is
internally connected.
Primary/
Secondary/
Tertiary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Secondary
Logic
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
19/37
FEDL610Q431-03
ML610Q431/ML610Q432
TERMINATION OF UNUSED PINS
Table 3 shows methods of terminating the unused pins.
Table 3
Pin
VPP
AVDD
AVSS
VREF
AIN0, AIN1
VL1, VL2, VL3, VL4
C1, C2, C3, C4
RESET_N
TEST
NMI
P00 to P03
P10 to P11
P20 to P22
P30 to P35
P40 to P47
PA0 to PA7
COM0 to 23
SEG0 to 63
Termination of Unused Pins
Recommended pin termination
Open
VSS
VSS
VSS
Open
Open
Open
Open
Open
Open
VDD or VSS
VDD
Open
Open
Open
Open
Open
Open
Note:
It is recommended to set the unused input ports and input/output ports to the inputs with pull-down resistors/pull-up resistors or
the output mode since the supply current may become excessively large if the pins are left open in the high impedance input
setting.
20/37
FEDL610Q431-03
ML610Q431/ML610Q432
ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
(VSS = AVSS = 0V)
Parameter
Symbol
Condition
Rating
Unit
Power supply voltage 1
VDD
Ta = 25°C
−0.3 to +4.6
V
Power supply voltage 2
AVDD
Ta = 25°C
−0.3 to +4.6
V
Power supply voltage 3
VPP
Ta = 25°C
−0.3 to +9.5
V
Power supply voltage 4
VDDL
Ta = 25°C
−0.3 to +3.6
V
Power supply voltage 5
VDDX
Ta = 25°C
−0.3 to +3.6
V
Power supply voltage 6
VL1
Ta = 25°C
−0.3 to +1.75
V
Power supply voltage 7
VL2
Ta = 25°C
−0.3 to +3.5
V
Power supply voltage 8
VL3
Ta = 25°C
−0.3 to +5.25
V
Power supply voltage 9
VL4
Ta = 25°C
−0.3 to +7.0
V
Input voltage
VIN
Ta = 25°C
−0.3 to VDD+0.3
V
Output voltage
VOUT
Ta = 25°C
−0.3 to VDD+0.3
V
Output current 1
IOUT1
Port3–A, Ta = 25°C
−12 to +11
mA
Output current 2
IOUT2
Port2, Ta = 25°C
−12 to +20
mA
Power dissipation
PD
Ta = 25°C
122
mW
Storage temperature
TSTG
−55 to +150
°C
RECOMMENDED OPERATING CONDITIONS
(VSS = AVSS = 0V)
Parameter
Operating temperature
Operating voltage
Symbol
Condition
Range
Unit
TOP
−20 to +70
°C
VDD
1.1 to 3.6
AVDD
2.2 to 3.6
30k to 36k
30k to 650k
30k to 4.2M
1.0±30%
0.1±30%
V
Operating frequency (CPU)
fOP
Capacitor externally connected to
VDDL pin
CL0
CL1
VDD = 1.1 to 3.6V
VDD = 1.3 to 3.6V
VDD = 1.8 to 3.6V
Capacitor externally connected to
VDDX pin
CX
0.1±30%
µF
Capacitors externally connected to
VL1, 2, 3, 4 pins
Ca, b, c, d
1.0±30%
µF
Capacitors externally connected
across C1 and C2 pins and across
C3 and C4 pins
C12, C34
1.0±30%
µF
Hz
µF
21/37
FEDL610Q431-03
ML610Q431/ML610Q432
CLOCK GENERATION CIRCUIT OPERATING CONDITIONS
(VSS = 0V)
Parameter
Low-speed crystal oscillation
frequency
Recommended equivalent series
resistance value of low-speed
crystal oscillation
Low-speed crystal oscillation
*1
external capacitor
Min.
Rating
Typ.
Max.
32.768k
Hz
RL
40k
Ω
0
CDL/CGL
CL=6pF of
crystal
*2
oscillation
CL=9pF of
crystal
oscillation
CL=12pF of
crystal
oscillation
6
12
Symbol
Condition
fXTL
Unit
pF
High-speed crystal/ceramic
fXTH
4.0M / 4.096M
Hz
oscillation frequency
High-speed crystal oscillation
CDH
24
pF
external capacitor
CGH
24
*1
: The external CDL and CGL need to be adjusted in consideration of variation of internal loading capacitance CD and CG, and
other additional capacitance such as PCB layout.
*2
: When using a crystal oscillator CL = 6pF, there is a possibility that can not be adjusted by external CDL and CGL.
OPERATING CONDITIONS OF FLASH ROM
Parameter
Operating temperature
Operating voltage
Write cycles
Data retention
Symbol
TOP
VDD
VDDL
VPP
CEP
YDR
Condition
At write/erase
*1
At write/erase
*1
At write/erase
*1
At write/erase
Range
0 to +40
2.75 to 3.6
2.5 to 2.75
7.7 to 8.3
80
10
(VSS = AVSS = 0V)
Unit
°C
V
cycles
years
*1
:When writing to and erasing on the flash Memory, the voltage in the specified range needs to be supplied to the VDDL pin.
The VPP pin has an internal pull-down resistor.
22/37
FEDL610Q431-03
ML610Q431/ML610Q432
DC CHARACTERISTICS (1/5)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified) (1/5)
Rating
Measuring
Parameter
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
Typ.
Typ.
Ta = 25°C
500
kHz
−10%
+10%
VDD = 1.3
500kHz RC oscillation
fRC
frequency
to 3.6V
Typ.
Ta = −20 to
Typ.
500
kHz
+70°C
−25%
+25%
LSCLK = 32.768kHz
Typ.
Typ.
4
PLL oscillation frequency*
fPLL
8.192
MHz
VDD = 1.8 to 3.6V
-2.5%
+2.5%
Low-speed crystal oscillation
TXTL
0.3
2
s
2
start time*
500kHz RC oscillation start
TRC
50
500
µs
time
1
High-speed crystal oscillation
TXTH
VDD = 1.8 to 3.6V
―
2
20
3
start time*
PLL oscillation start time
TPLL
VDD = 1.8 to 3.6V
―
1
10
ms
Low-speed oscillation stop
TSTOP
0.2
3
20
*1
detect time
Reset pulse width
PRST
200
µs
Reset noise elimination
PNRST
0.3
pulse width
Power-on reset activation
TPOR
10
ms
power rise time
1
* : When low-speed crystal oscillation stops for a duration more than the low-speed oscillation stop detect time, the system is
reset to shift to system reset mode. ML610Q431A/ML610Q432A does not have this function.
2
* : Use 32.768KHz Crystal Oscillator C-001R (Epson Toyocom) with capacitance CGL/CDL=0pF.
3
* : Use 4.096MHz Crystal Oscillator HC49SFWB (Kyocera).
4
* : 1024 clock average.
[Reset pulse width]
VIL1
RESET_N
VIL1
PRST
Reset pulse width (PRST)
[Power-on reset activation power rise time]
0.9xVDD
VDD
0.1xVDD
TPOR
Power-on reset activation power rise time (TPOR )
23/37
FEDL610Q431-03
ML610Q431/ML610Q432
DC CHARACTERISTICS (2/5)
Parameter
VL1 voltage
VL1 temperature
deviation
VL1 voltage
dependency
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified) (2/5)
Rating
Measuring
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
CN4–0 = 00H
0.89
0.94
0.99
CN4–0 = 01H
0.91
0.96
1.01
CN4–0 = 02H
0.93
0.98
1.03
CN4–0 = 03H
0.95
1.00
1.05
CN4–0 = 04H
0.97
1.02
1.07
CN4–0 = 05H
0.99
1.04
1.09
CN4–0 = 06H
1.01
1.06
1.11
CN4–0 = 07H
1.03
1.08
1.13
CN4–0 = 08H
1.05
1.10
1.15
CN4–0 = 09H
1.07
1.12
1.17
CN4–0 = 0AH
1.09
1.14
1.19
CN4–0 = 0BH
1.11
1.16
1.21
CN4–0 = 0CH
1.13
1.18
1.23
CN4–0 = 0DH
1.15
1.20
1.25
CN4–0 = 0EH
1.17
1.22
1.27
CN4–0 = 0FH
1.19
1.24
1.29
VDD = 3.0V,
V
VL1
Tj = 25°C
CN4–0 = 10H
1.21
1.26
1.31
CN4–0 = 11H
1.23
1.28
1.33
CN4–0 = 12H
1.25
1.30
1.35
CN4–0 = 13H
1.27
1.32
1.37
*1
CN4–0 = 14H
1.29
1.34
1.39
*1
CN4–0 = 15H
1.31
1.36
1.41
1
*1
CN4–0 = 16H
1.33
1.38
1.43
*1
CN4–0 = 17H
1.35
1.40
1.45
*1
CN4–0 = 18H
1.37
1.42
1.47
*1
CN4–0 = 19H
1.39
1.44
1.49
*1
CN4–0 = 1AH
1.41
1.46
1.51
*1
CN4–0 = 1BH
1.43
1.48
1.53
*1
CN4–0 = 1CH
1.45
1.50
1.55
*1
CN4–0 = 1DH
1.47
1.52
1.57
*1
CN4–0 = 1EH
1.49
1.54
1.59
*1
CN4–0 = 1FH
1.51
1.56
1.61
∆VL1
VDD = 3.0V
−1.5
mV/°C
∆VL1
VDD = 1.3 to 3.6V
5
20
mV/V
VDD = 3.0V, Tj = 25°C
300kΩ load (VL4−VSS)
1/3 bias
VDD = 3.0V,
1/4 bias
Tj = 25°C
300kΩ load
1/3 bias
(VL4−VSS)
1/4 bias
Typ.
−10%
VL1×2
Typ.
+4%
Typ.
−10%
Typ.
+4%
Typ.
−10%
VL1×2
VL1×3
VL1×3
VL1×4
600
VL2 voltage
VL2
VL3 voltage
VL3
VL4 voltage
VL4
LCD bias voltage
generation time
TBIAS
V
Typ.
+5%
ms
1
* : When using 1/4 bias, the VL1 voltage is set to typ. 1.32 V (same voltage as in CN4–0 = 13H).
24/37
FEDL610Q431-03
ML610Q431/ML610Q432
DC CHARACTERISTICS (3/5)
Parameter
BLD threshold
voltage
BLD threshold
voltage
temperature
deviation
Supply current 1
Supply current 2
Supply current 3
Supply current 4
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified) (3/5)
Rating
Measuring
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
LD2–0 = 0H
1.35
LD2–0 = 1H
1.4
LD2–0 = 2H
1.45
LD2–0 = 3H
1.5
LD2–0 = 4H
1.6
LD2–0 = 5H
1.7
LD2–0 = 6H
1.8
LD2–0 = 7H
1.9
Typ.
Typ.
V
VDD = 1.35 to 3.6V
VBLD
−2%
+2%
LD2–0 = 8H
2.0
LD2–0 = 9H
2.1
LD2–0 = 0AH
2.2
LD2–0 = 0BH
2.3
LD2–0 = 0CH
2.4
LD2–0 = 0DH
2.5
LD2–0 = 0EH
2.7
LD2–0 = 0FH
2.9
∆VBLD
IDD1
IDD2
IDD3
IDD4
0.1
Ta =
25°C
Ta = -20
to +70°C
0.15
0.50
2.50
CPU: In HALT state (LTBC, RTC:
3 5
Operating* * ).
High-speed oscillation: Stopped.
LCD/BIAS circuits: Stopped.
Ta =
25°C
0.5
1.3
Ta = -20
to +70°C
3.5
CPU: In 32.768kHz operating
1 3
state.* *
High-speed oscillation: Stopped.
2
LCD/BIAS circuits: Operating.*
Ta =
25°C
5
7
Ta = -20
to +70°C
12
Ta =
25°C
70
85
Ta = -20
to +70°C
Ta =
25°C
VDD = 1.35 to 3.6V
CPU: In STOP state.
Low-speed/high-speed oscillation:
stopped.
CPU: In 500kHz CR operating
state.
2
LCD/BIAS circuits: Operating.*
%/°C
µA
1
µA
µA
µA
100
CPU: In 4.096MHz operating
0.8
1.0
2 3
state.* *
PLL: In oscillating state.
Supply current 5
IDD5
mA
Ta = -20
2
LCD/BIAS circuits: Operating. *
1.2
to +70°C
VDD = 1.8 to 3.6V
CPU: In 4.096MHz operating
Ta =
2
state.*
1.5
1.6
25°C
3 4
PLL: In oscillating state. * *
Supply current 6
IDD6
mA
A/D: In operating state.
Ta = -20
2
LCD/BIAS circuits: Operating. *
2.5
to +70°C
VDD = AVDD = 3.0V
1
* : CPU operating rate is 100% (No HALT state).
2
* : All SEGs: off waveform, No LCD panel load, 1/3 bias, 1/3 duty, Frame frequency: Approx. 64 Hz, Bias voltage multiplying
clock: 1/128 LSCLK (256Hz)
3
* : Use 32.768KHz Crystal Oscillator C-001R (Epson Toyocom) with capacitance CGL/CDL=0pF.
4
* : Use 4.096MHz Crystal Oscillator HC49SFWB (Kyocera).
5
* : Significant bits of BLKCON0~BLKCON4 registers are all “1”.
25/37
FEDL610Q431-03
ML610Q431/ML610Q432
DC CHARACTERISTICS (4/5)
Parameter
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified) (4/5)
Rating
Measuring
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
Output voltage 1
nd
(P20–P22/2
function is
selected)
(P30–P35)
(P40–P47)
*1
(PA0–PA7)
Output voltage 2
nd
(P20–P22/2
function is Not
selected)
Output voltage 3
(P40–P41)
Output voltage 4
(COM0–15)
*2
(COM16–23)
(SEG0–63)
Output leakage
(P20–P22)
(P30–P35)
(P40–P47)
*1
(PA0–PA7)
IOH1 = −0.5mA, VDD = 1.8 to 3.6V
VDD−0.5
IOH1 = -0.1mA, VDD = 1.3 to 3.6V
VDD−0.3
IOH1 = -0.03mA, VDD = 1.1 to 3.6V
VDD−0.3
IOL1 = +0.5mA, VDD = 1.8 to 3.6V
IOL1 = +0.1mA, VDD = 1.3 to 3.6V
0.5
0.5
IOL1 = +0.03mA, VDD = 1.1 to 3.6V
0.3
VOH2
IOH1 = −0.5mA, VDD = 1.8 to 3.6V
IOH1 = -0.1mA, VDD = 1.3 to 3.6V
IOH1 = -0.03mA, VDD = 1.1 to 3.6V
VDD−0.5
VDD−0.3
VDD−0.3
VOL2
IOL2 = +5mA, VDD = 1.8 to 3.6V
0.5
VOL3
IOL3 = +3mA, VDD = 2.0 to 3.6V
2
(when I C mode is selected)
0.4
VOH4
IOH4 = −0.2mA, VL1=1.2V
VL4−0.2
VOMH4
IOMH4 = +0.2mA, VL1=1.2V
VL3+0.2
VOMH4S
IOMH4S = −0.2mA, VL1=1.2V
VL3−0.2
VOM4
IOM4 = +0.2mA, VL1=1.2V
VL2+0.2
VOM4S
IOM4S = −0.2mA, VL1=1.2V
VL2−0.2
VOML4
IOML4 = +0.2mA, VL1=1.2V
VL1+0.2
VOML4S
IOML4S = −0.2mA, VL1=1.2V
VL1−0.2
VOL4
IOL4 = +0.2mA, VL1=1.2V
0.2
IOOH
VOH = VDD (in high-impedance state)
1
VOH1
VOL1
IOOL
IIH1
Input current 1
(RESET_N)
Input current 1
(TEST)
IIL1
IIH1
IIL1
Input current 2
(NMI)
(P00–P03)
(P10–P11)
(P30–P35)
(P40–P47)
*1
(PA0–PA7)
VOL = VSS (in high-impedance state)
VIH1 = VDD
VDD = 1.8 to 3.6V
VIL1 = VSS
VDD = 1.3 to 3.6V
VDD = 1.1 to 3.6V
VDD = 1.8 to 3.6V
VDD = 1.3 to 3.6V
VIH1 = VDD
VDD = 1.1 to 3.6V
VIL1 = Vss
IIH2
VIH2 = VDD
(when pulled-down)
IIL2
VIL2 = VSS
(when pulled-up)
−1
0
−600
−600
−600
20
10
2
-1
−300
−300
−300
300
300
300
1
−20
-10
-2
600
600
600
VDD = 1.8 to 3.6V
2
30
200
VDD = 1.3 to 3.6V
VDD = 1.1 to 3.6V
VDD = 1.8 to 3.6V
VDD = 1.3 to 3.6V
VDD = 1.1 to 3.6V
0.2
0.01
−200
−200
−200
30
30
−30
−30
−30
200
200
−2
-0.2
-0.01
IIH2Z
VIH2 = VDD (in high-impedance state)
1
IIL2Z
VIL2 = VSS (in high-impedance state)
−1
V
2
µA
3
µA
4
1
* : ML610Q431 only
2
* : ML610Q432 only
26/37
FEDL610Q431-03
ML610Q431/ML610Q432
DC CHARACTERISTICS (5/5))
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified) (5/5)
Rating
Measuring
Symbol
Condition
Unit
circuit
Min.
Typ.
Max.
Parameter
Input voltage 1
(RESET_N)
(TEST)
(NMI)
(P00–P03)
(P10–P11)
(P31–P35)
(P40–P43)
(P45–P47)
*1
(PA0–PA7)
Hysteresis width
(RESET_N)
(TEST_N)
(NMI)
(P00–P03)
(P10–P11)
(P31–P35)
(P40–P43)
(P45–P47)
*1
(PA0–PA7)
VDD = 1.3 to 3.6V
0.7
×VDD
VDD
VDD = 1.1 to 3.6V
0.7
×VDD
VDD
VDD = 1.3 to 3.6V
0
0.3
×VDD
VDD = 1.1 to 3.6V
0
0.2
×VDD
VDD = 2.0 to 3.6V
0.05
×VDD
0.18
×VDD
0.4
×VDD
VDD = 1.1 to 3.6V
0.02
×VDD
0.18
×VDD
0.4
×VDD
VIH2
0.7
×VDD
VDD
VIL2
0
0.3
×VDD
CIN
f = 10kHz
Vrms = 50mV
Ta = 25°C
5
VIH1
VIL1
V
5
pF
∆VT
Input voltage 2
(P30, P44)
Input pin
capacitance
(NMI)
(P00–P03)
(P10–P11)
(P30–P35)
(P40–P47)
*1
(PA0–PA7)
1
* : ML610Q431 only
HYSTERESIS WIDTH
∆VT
Input signal
VDD
VSS
Internal signal
VDDL
VSS
27/37
FEDL610Q431-03
ML610Q431/ML610Q432
MEASURING CIRCUITS
MEASURING CIRCUIT 1
XT0
C4
XT1
C3
C2
C34
32.768kHz crystal
CGH
P10/OSC0
C12
C1
CDH
CV:
1µF
CL0:
1µF
CL1:
0.1µF
CX:
0.1µF
Ca,Cb,Cc,Cd:
1µF
C12,C34:
1µF
CGH:
24pF
CDH:
24pF
32.768kHz crystal:
C-001R (Epson Toyocom)
4.096MHz crystal:
HC49SFWB (Kyocera)
P11/OSC1
4.096MHz
crystal
VDD AVDD VREFVDDL
VDDX VL1 VL2 VL3 VL4 VSS AVSS
A
CV
CL1 CL0 CX Ca Cb Cc Cd
MEASURING CIRCUIT 2
(*2)
VIL
Input pins
(*1)
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
V
VL4 AVDDVREF VSSAVSS
(*1) Input logic circuit to determine the specified measuring conditions.
(*2) Measured at the specified output pins.
28/37
FEDL610Q431-03
ML610Q431/ML610Q432
MEASURING CIRCUIT 3
(*2)
VIL
Input pins
(*1)
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
A
VL4 AVDDVREF VSSAVSS
*1: Input logic circuit to determine the specified measuring conditions.
*2: Measured at the specified output pins.
MEASURING CIRCUIT 4
Input pins
Output pins
(*3)
A
VDD VDDL VDDX VL1
VL2
VL3
VL4 AVDD VREF VSSAVSS
*3: Measured at the specified output pins.
VIL
Input pins
(*1)
Output pins
VIH
VDD VDDL VDDX VL1
VL2
VL3
Waveform monitoring
MEASURING CIRCUIT 5
VL4 AVDDVREF VSSAVSS
*1: Input logic circuit to determine the specified measuring conditions.
29/37
FEDL610Q431-03
ML610Q431/ML610Q432
AC CHARACTERISTICS (External Interrupt)
(VDD = 1.1 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
External interrupt disable period
TNUL
Interrupt: Enabled (MIE = 1),
CPU: NOP operation
System clock: 32.768kHz
76.8
106.8
µs
P00–P03
(Rising-edge interrupt)
tNUL
P00–P03
(Falling-edge interrupt)
tNUL
NMI, P00–P03
(Both-edge interrupt)
tNUL
AC CHARACTERISTICS (UART)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
Transmit baud rate
tTBRT
1
BRT*
1
s
1
BRT*
BRT*
1
BRT*
s
−3%
+3%
*1: Baud rate period (including the error of the clock frequency selected) set with the UART0 baud rate register (UA0BRTL,H)
and the UART0 mode register 0 (UA0MOD0).
Receive baud rate
tRBRT
tTBRT
TXD0*
tRBRT
RXD0*
*: Indicates the secondary function of the port.
30/37
FEDL610Q431-03
ML610Q431/ML610Q432
AC CHARACTERISTICS (Synchronous Serial Port)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
2
When RC oscillation is active*
10
µs
(VDD = 1.3 to 3.6V)
SCLK input cycle
tSCYC
(slave mode)
When high-speed oscillation is
1
µs
3
active* (VDD = 1.8 to 3.6V)
SCLK output cycle
1
tSCYC
SCLK*
s
(master mode)
2
When RC oscillation is active*
4
µs
(VDD = 1.3 to 3.6V)
SCLK input pulse width
tSW
(slave mode)
When high-speed oscillation is
0.4
µs
3
active* (VDD = 1.8 to 3.6V)
1
1
1
SCLK*
SCLK*
SCLK*
SCLK output pulse width
tSW
s
(master mode)
×0.4
×0.5
×0.6
2
When RC oscillation is active*
500
(VDD = 1.3 to 3.6V)
SOUT output delay time
ns
tSD
(slave mode)
When high-speed oscillation is
240
3
active* (VDD = 1.8 to 3.6V)
2
When RC oscillation is active*
500
(VDD = 1.3 to 3.6V)
SOUT output delay time
ns
tSD
(master mode)
When high-speed oscillation is
240
3
active* (VDD = 1.8 to 3.6V)
SIN input
setup time
tSS
80
ns
(slave mode)
2
When RC oscillation is active*
500
SIN input
(VDD = 1.3 to 3.6V)
setup time
ns
tSS
When high-speed oscillation is
(master mode)
240
3
active* (VDD = 1.8 to 3.6V)
2
When RC oscillation is active*
300
(VDD = 1.3 to 3.6V)
SIN input
tSH
ns
hold time
When high-speed oscillation is
80
3
active* (VDD = 1.8 to 3.6V)
1
* : Clock period selected with S0CK3–0 of the serial port 0 mode register (SIO0MOD1)
2
* : When RC oscillation is selected with OSCM1–0 of the frequency control register (FCON0)
3
* : When Crystal/ceramic oscillation, built-in PLL oscillation, or external clock input is selected with OSCM1–0 of the frequency
control register (FCON0)
tSCYC
tSW
tSW
SCLK0*
tSD
SD
SOUT0*
tSS
tSH
SIN0*
*: Indicates the secondary function of the port.
31/37
FEDL610Q431-03
ML610Q431/ML610Q432
AC CHARACTERISTICS (I2C Bus Interface: Standard Mode 100kHz)
(VDD = 1.8 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
SCL clock frequency
fSCL
0
100
kHz
SCL hold time
tHD:STA
4.0
µs
(start/restart condition)
SCL ”L” level time
tLOW
4.7
µs
SCL ”H” level time
tHIGH
4.0
µs
SCL setup time
tSU:STA
4.7
µs
(restart condition)
SDA hold time
tHD:DAT
0
3.45
µs
SDA setup time
tSU:DAT
0.25
µs
SDA setup time
tSU:STO
4.0
µs
(stop condition)
Bus-free time
tBUF
4.7
µs
AC CHARACTERISTICS (I2C Bus Interface: Fast Mode 400kHz)
(VDD = 1.8 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
SCL clock frequency
fSCL
0
400
kHz
SCL hold time
tHD:STA
0.6
µs
(start/restart condition)
SCL ”L” level time
tLOW
1.3
µs
SCL ”H” level time
tHIGH
0.6
µs
SCL setup time
tSU:STA
0.6
µs
(restart condition)
SDA hold time
tHD:DAT
0
0.9
µs
SDA setup time
tSU:DAT
0.1
µs
SDA setup time
tSU:STO
0.6
µs
(stop condition)
Bus-free time
tBUF
1.3
µs
Start
condition
Restart
condition
Stop
condition
P40/SDA
P41/SCL
tHD:STA
tLOW
tHIGH
tSU:STA tHD:STA
tSU:DAT
tHD:DAT
tSU:STO
tBUF
32/37
FEDL610Q431-03
ML610Q431/ML610Q432
AC CHARACTERISTICS (RC Oscillation A/D Converter)
(VDD = 1.3 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
RS0, RS1,
Resistors for oscillation
RT0,
CS0, CT0, CS1 ≥ 740pF
1
kΩ
RT0-1,RT1
fOSC1
Resistor for oscillation = 1kΩ
209.4
330.6
435.1
kHz
Oscillation frequency
fOSC2
Resistor for oscillation = 10kΩ
41.29
55.27
64.16
kHz
VDD = 1.5V
fOSC3
Resistor for oscillation = 100kΩ
4.71
5.97
7.06
kHz
Kf1
RT0,
RT0-1,
RT1
=
1kHz
5.567
5.982
6.225
RS to RT oscillation frequency
*1
ratio
Kf2
RT0, RT0-1, RT1 = 10kHz
0.99
1
1.01
VDD = 1.5V
Kf3
RT0, RT0-1, RT1 = 100kHz
0.104
0.108
0.118
fOSC1
Resistor for oscillation = 1kΩ
407.3
486.7
594.6
kHz
Oscillation frequency
fOSC2
Resistor for oscillation = 10kΩ
49.76
59.28
72.76
kHz
VDD = 3.0V
fOSC3
Resistor for oscillation = 100kΩ
5.04
5.993
7.04
kHz
Kf1
RT0,
RT0-1,
RT1
=
1kHz
8.006
8.210
8.416
RS to RT oscillation frequency
*1
ratio
Kf2
RT0, RT0-1, RT1 = 10kHz
0.99
1
1.01
VDD = 3.0V
Kf3
RT0, RT0-1, RT1 = 100kHz
0.100
0.108
0.115
*1: Kfx is the ratio of the oscillation frequency by the sensor resistor to the oscillation frequency by the reference resistor on the same
conditions.
fOSCX(RT0-1−CS0 oscillation)
fOSCX(RS0−CS0 oscillation)
,
IN0 CS0 RCT0
(*1)
VIL
*1: Input logic circuit to
determine the specified
measuring conditions.
VDDL
fOSCX(RT1−CS1 oscillation)
fOSCX(RS1−CS1 oscillation)
VDDX
RT1
RT0, RT0-1, RT1: 1kΩ /10kΩ/100kΩ
RS0, RS1: 10kΩ
CS0, CT0, CS1: 560pF
CVR0, CVR1: 820pF
IN1 CS1 RS1 RT1
RCM
VDD
CV
RT0
RS0
RS0 RT0
Input pins
VIH
,
CVR1
RT0-1
CT0
CS0
CVR0
RS1
fOSCX(RT0−CS0 oscillation)
fOSCX(RS0−CS0 oscillation)
(x = 1, 2, 3)
CS1
Kfx =
Frequency measurement
(fOSCX)
AVDD VREFVSS AVSS
CL1 CL0 CX
Note:
- Please have the shortest layout for the common node (wiring patterns which are connected to the external capacitors, resistors
and IN0/IN1 pin), including CVR0/CVR1. Especially, do not have long wire between IN0/IN1 and RS0/RS1. The coupling
capacitance on the wires may occur incorrect A/D conversion. Also, please do not have signals which may be a source of noise
around the node.
- When RT0/RT1 (Thermistor and etc.) requires long wiring due to the restricted placement, please have VSS(GND) trace next to
the signal.
- Please make wiring to components (capacitor, resisteor and etc.) necessory for objective measurement. Wiring to reserved
components may affect to the A/D conversion operation by noise the components itself may have.
33/37
FEDL610Q431-03
ML610Q431/ML610Q432
Electrical Characteristics of Successive Approximation Type A/D Converter
(VDD = 1.8 to 3.6V, AVDD = 2.2 to 3.6V, VSS = AVSS = 0V, Ta = −20 to +70°C, unless otherwise specified)
Rating
Parameter
Symbol
Condition
Unit
Min.
Typ.
Max.
Resolution
n
12
bit
2.7V ≤ VREF ≤ 3.6V
−4
+4
Integral non-linearity error
IDL
2.2V ≤ VREF ≤ 2.7V
−6
+6
2.7V ≤ VREF ≤ 3.6V
−3
+3
Differential non-linearity error
LSB
DNL
2.2V ≤ VREF ≤ 2.7V
−5
+5
Zero-scale error
VOFF
−6
+6
Full-scale error
FSE
−6
+6
Reference voltage
VREF
2.2
AVDD
V
SACK = 0
25
(HSCLK = 375kHz to 625kHz)
Conversion time
tCONV
φ/CH
SACK = 1
112
(HSCLK = 1.5MHz to 4.2MHz)
φ: Period of high-speed clock (HSCLK)
AVDD
Reference
voltage
VREF
VDD
VDDL
1µF
1µF
A
0.1µF
−
1µF
RI≤5kΩ
+
Analog input
0.1µF
VDDX
AIN0,
AIN1
0.1µF
VSS
AVSS
34/37
FEDL610Q431-03
ML610Q431/ML610Q432
Package Dimensions
(Unit: mm)
Notes for Mounting the Surface Mount Type Package
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore,
before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package
code and desired mounting conditions (reflow method, temperature and times).
35/37
FEDL610Q431-03
ML610Q431/ML610Q432
REVISION HISTORY
Page
Document No.
FEDL610Q431-01
FEDL610Q431-02
FEDL610Q431-03
Date
Previous
Edition
Current
Edition
Description
Jun.29,2010
―
3
4
5
―
3
4
5
23
23
33
All
33
All
3
4
―
22
21
23
35
37
2
2
Formally edition 1.0
The product name of A version is abbed.
Terminal name CRT0 is corrected to RCT0.
Terminal name CRT0 is corrected to RCT0.
Typ value"0" of a BLD threshold voltage temperature
deviation is corrected to "0.1."
Substitution of a packege dimensions.
Change header and footer.
Change from "Shipment" to "Product name - Supported
Function"
Add CLOCK GENERATION CIRCUIT OPERATING
CONDITIONS
Change "RESET" to "Reset pulse width (PRST) " and
"Power-on reset activation power rise time (TPOR) ".
Change description in Notes.
Corrected a typo.
“100kbps@1MHz HSCLK” is corrected to
100kbps@4MHz HSCLK.
Feb.8,2011
Mar.23,2015
36/37
FEDL610Q431-03
ML610Q431/ML610Q432
Notes
1) The information contained herein is subject to change without notice.
2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can
break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure,
please take safety measures such as complying with the derating characteristics, implementing redundant and fire
prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for
any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate
the standard usage and operations of the Products.The peripheral conditions must be taken into account when designing
circuits for mass production.
4) The technical information specified herein is intended only to show the typical functions of the Products and examples of
application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property
rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this
document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights
owned by third parties, arising out of the use of such technical information.
5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems,
gaming/entertainment sets) as well as the applications indicated in this document.
6) The Products specified in this document are not designed to be radiation tolerant.
7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and
consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary
communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and
power transmission systems.
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power
control systems, and submarine repeaters.
9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the
recommended usage conditions and specifications contained herein.
10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document.
However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have
no responsibility for any damages arising from any inaccuracy or misprint of such information.
11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive.
For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no
responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
12) When providing our Products and technologies contained in this document to other countries, you must abide by the
procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US
Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.
Copyright
2010 – 2015 LAPIS Semiconductor Co., Ltd.
2-4-8 Shinyokohama, Kouhoku-ku,
Yokohama 222-8575, Japan
http://www.lapis-semi.com/en/
37/37