SCT2160KEHR
Datasheet
Automotive Grade N-channel SiC power MOSFET
lOutline
VDSS
1200V
RDS(on) (Typ.)
160mΩ
ID
22A
PD
165W
TO-247N
(1) (2)
(3)
lInner circuit
lFeatures
(1) Gate
(2) Drain
(3) Source
1) Low on-resistance
2) Fast switching speed
3) Fast reverse recovery
*1 Body Diode
4) Easy to parallel
5) Simple to drive
lPackaging specifications
6) Pb-free lead plating ; RoHS compliant
Package
TO-247N
7) Qualified to AEC-Q101
Packing
lApplication
Reel size (mm)
-
Tape width (mm)
-
• Automobile
Tube
Type
Basic ordering unit (pcs)
• Switch mode power supplies
Packing code
30
C11
Marking
SCT2160KE
lAbsolute maximum ratings (Ta = 25°C)
Parameter
Symbol
Value
Unit
VDSS
1200
V
Tc = 25°C
ID *1
22
A
Tc = 100°C
ID *1
16
A
55
A
VGSS
-6 to 22
V
VGSS_surge*3
-10 to 26
V
Power dissipation (Tc = 25°C)
PD
165
W
Junction temperature
Tj
175
°C
Tstg
-55 to +175
°C
Drain - Source voltage
Continuous drain current
Pulsed drain current
ID,pulse
Gate - Source voltage (DC)
Gate - Source surge voltage (Tsurge ˂ 300nsec)
Range of storage temperature
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・14・001
1/12
*2
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristics (Ta = 25°C)
Values
Parameter
Symbol
Drain - Source breakdown
voltage
V(BR)DSS
Conditions
Unit
Min.
Typ.
Max.
1200
-
-
V
Tj = 25°C
-
1
10
μA
Tj = 150°C
-
2
-
VGS = 0V, ID = 1mA
VDS = 1200V, VGS = 0V
Zero gate voltage
drain current
IDSS
Gate - Source leakage current
IGSS+
VGS = +22V, VDS = 0V
-
-
100
nA
Gate - Source leakage current
IGSS-
VGS = -6V, VDS = 0V
-
-
-100
nA
1.6
2.8
4.0
V
VGS (th)
Gate threshold voltage
VDS = VGS, ID = 2.5mA
lThermal resistance
Values
Parameter
Symbol
Unit
Min.
Typ.
Max.
Thermal resistance, junction - case
RthJC
-
0.70
0.91
°C/W
Thermal resistance, junction - ambient
RthJA
-
-
50
°C/W
Soldering temperature, wavesoldering for 10s
Tsold
-
-
265
°C
lTypical Transient Thermal Characteristics
Symbol
Value
Rth1
9.61E-02
Rth2
4.04E-01
Rth3
1.96E-01
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
Unit
K/W
2/12
Symbol
Value
Cth1
1.55E-03
Cth2
5.23E-03
Cth3
8.33E-02
Unit
Ws/K
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristics (Ta = 25°C)
Values
Parameter
Symbol
Conditions
Unit
Min.
Typ.
Max.
-
160
208
Tj = 125°C
-
226
-
f = 1MHz, open drain
-
13.7
-
Ω
S
VGS = 18V, ID = 7A
Static drain - source
on - state resistance
Gate input resistance
RDS(on) *4 Tj = 25°C
RG
Transconductance
gfs *4
VDS = 10V, ID = 7A
-
2.4
-
Input capacitance
Ciss
VGS = 0V
-
1200
-
Output capacitance
Coss
VDS = 800V
-
45
-
Reverse transfer capacitance
Crss
f = 1MHz
-
7
-
Effective output capacitance,
energy related
Co(er)
VGS = 0V
VDS = 0V to 500V
-
71
-
Turn - on delay time
td(on) *4
VDD = 400V, ID = 7A
-
23
-
VGS = 18V/0V
-
25
-
td(off) *4
RL = 57Ω
-
67
-
tf *4
RG = 0Ω
-
27
-
-
126
-
tr *4
Rise time
Turn - off delay time
Fall time
Turn - on switching loss
Turn - off switching loss
Eon *4
Eoff *4
VDD = 600V, ID=7A
VGS = 18V/0V
RG = 0Ω, L=500μH
*Eon includes diode
reverse recovery
mΩ
pF
pF
ns
μJ
-
55
-
lGate Charge characteristics (Ta = 25°C)
Values
Parameter
Symbol
Total gate charge
Qg *4
Gate - Source charge
Qgs
Gate - Drain charge
Qgd *4
Gate plateau voltage
V(plateau)
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
*4
Conditions
Unit
Min.
Typ.
Max.
VDD = 400V
-
62
-
ID = 7A
-
14
-
VGS = 18V
-
20
-
VDD = 400V, ID = 7A
-
9.6
-
3/12
nC
V
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lBody diode electrical characteristics (Source-Drain) (Ta = 25°C)
Values
Parameter
Inverse diode continuous,
forward current
Symbol
Conditions
IS *1
Unit
Min.
Typ.
Max.
-
-
22
A
-
-
55
A
-
4.1
-
V
-
26
-
ns
-
39
-
nC
-
3.0
-
A
Tc = 25°C
Inverse diode direct current,
pulsed
ISM *2
Forward voltage
VSD *4
Reverse recovery time
trr *4
Reverse recovery charge
Qrr *4
Peak reverse recovery current
Irrm
VGS = 0V, IS = 7A
IF = 7A, VR = 400V
di/dt = 160A/μs
*4
*1 Limited only by maximum temperature allowed.
*2 PW 10μs, Duty cycle 1%
*3 Example of acceptable VGS waveform
*4 Pulsed
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristic curves
Fig.2 Maximum Safe Operating Area
Fig.1 Power Dissipation Derating Curve
100
180
PW = 100ms
PW = 1ms
140
Drain Current : ID [A]
Power Dissipation : PD [W]
160
120
100
80
60
PW = 10ms
PW = 100ms
10
1
Operation in this area
is limited by RDS(on)
40
Ta=25ºC
Single Pulse
20
0.1
0
25
75
125
0.1
175
Case Temperature : TC [ºC]
1
10
100
1000
10000
Drain - Source Voltage : VDS [V]
Transient Thermal Resistance : Rth [K/W]
Fig.3 Typical Transient Thermal
Resistance vs. Pulse Width
1
0.1
0.01
Ta=25ºC
Single Pulse
0.001
0.0001
0.001
0.01
0.1
1
10
Pulse Width : PW [s]
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
5/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristic curves
Fig.4 Typical Output Characteristics(I)
Fig.5 Typical Output Characteristics(II)
20
10
20V
18
18V
16
18V
8
16V
14
20V
9
14V
Drain Current : ID [A]
Drain Current : ID [A]
Ta=25ºC
Pulsed
12V
12
10
8
6
10V
6
10V
5
4
3
2
2
1
VGS= 8V
0
0
0
2
4
6
8
0
10
Drain - Source Voltage : VDS [V]
10
20V
18
12V
18V
16
16V
14V
14
10V
12
10
8
VGS= 8V
6
2
3
4
5
Fig.7 Tj = 150ºC Typical Output
Characteristics(II)
Drain Current : ID [A]
20
1
Drain - Source Voltage : VDS [V]
Fig.6 Tj = 150ºC Typical Output
Characteristics(I)
Drain Current : ID [A]
12V
14V
7
4
VGS= 8V
Ta=25ºC
Pulsed
16V
20V
18V
9
8
10V
16V
14V
7
12V
6
5
VGS= 8V
4
3
4
2
Ta=150ºC
Pulsed
2
Ta=150ºC
Pulsed
1
0
0
0
2
4
6
8
10
0
Drain - Source Voltage : VDS [V]
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
1
2
3
4
5
Drain - Source Voltage : VDS [V]
6/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristic curves
Fig.8 Typical Transfer Characteristics (I)
Fig.9 Typical Transfer Characteristics (II)
10
20
VDS= 10V
Plused
VDS= 10V
Plused
18
16
Drain Current : ID [A]
Drain Current : ID [A]
1
Ta=150ºC
Ta=75ºC
Ta=25ºC
Ta= -25ºC
0.1
0.01
14
12
10
8
Ta=150ºC
Ta=75ºC
Ta=25ºC
Ta= -25ºC
6
4
2
0.001
0
0
2
4
6
8
10 12 14 16 18 20
0
4
6
8
10 12 14 16 18 20
Gate - Source Voltage : VGS [V]
Gate - Source Voltage : VGS [V]
Fig.10 Gate Threshold Voltage
vs. Junction Temperature
Fig.11 Transconductance vs. Drain Current
5
10
VDS = 10V
ID = 3mA
4.5
VDS= 10V
Plused
Transconductance : gfs [S]
Gate Threshold Voltage : VGS(th) [V]
2
4
3.5
3
2.5
2
1.5
1
1
0.1
Ta=150ºC
Ta=75ºC
Ta=25ºC
Ta= -25ºC
0.5
0.01
0.01
0
-50
0
50
100
150
200
Junction Temperature : Tj [ºC]
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0.1
1
10
Drain Current : ID [A]
7/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristic curves
0.6
Ta=25ºC
Pulsed
0.5
0.4
0.3
ID = 15A
0.2
ID = 7A
0.1
0
6
8
10
12
14
16
18
20
Fig.13 Static Drain - Source On - State
Resistance vs. Junction Temperature
Static Drain - Source On-State Resistance
: RDS(on) [Ω]
Static Drain - Source On-State Resistance
: RDS(on) [Ω]
Fig.12 Static Drain - Source On - State
Resistance vs. Gate Source Voltage
22
Gate - Source Voltage : VGS [V]
0.4
0.35
VGS= 18V
Plused
0.3
0.25
ID = 15A
0.2
0.15
ID = 7A
0.1
0.05
0
-50
0
50
100
150
200
Junction Temperature : Tj [ºC]
Static Drain - Source On-State Resistance
: RDS(on) [Ω]
Fig.14 Static Drain - Source On - State
Resistance vs. Drain Current
1
VGS= 18V
Plused
Ta=150ºC
Ta=125ºC
Ta=75ºC
Ta=25ºC
Ta= -25ºC
0.1
0.1
1
10
100
Drain Current : ID [A]
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
8/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristic curves
Fig.15 Typical Capacitance
vs. Drain - Source Voltage
Fig.16 COSS Stored Energy
20
1000
COSS Stored Energy : EOSS [mJ]
Capacitance : C [pF]
10000
Ciss
100
Coss
10
Ta=25ºC
f = 1MHz
VGS = 0V
Crss
Ta=25ºC
18
16
14
12
10
8
6
4
2
1
0
0.1
1
10
100
1000
0
Drain - Source Voltage : VDS [V]
200
400
600
800
Drain - Source Voltage : VDS [V]
Fig.18 Dynamic Input Characteristics
10000
20
tf
1000
td(off)
Ta = 25ºC
VDD = 400V
VGS = 18V
RG= 0Ω
Pulsed
Gate - Source Voltage : VGS [V]
Switching Time : t [ns]
Fig.17 Switching Characteristics
100
td(on)
10
tr
1
Ta = 25ºC
VDD= 400V
ID= 7A
Pulsed
15
10
5
0
0.1
1
10
100
0
20
30
40
50
60
70
Total Gate Charge : Qg [nC]
Drain Current : ID [A]
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
10
9/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristic curves
Fig.19 Typical Switching Loss
vs. Drain - Source Voltage
Fig.20 Typical Switching Loss
vs. Drain Current
800
Ta = 25ºC
ID= 7A
VGS = 18V/0V
RG= 0Ω
L=500μH
200
Switching Energy : E [μJ]
Switching Energy : E [μJ]
250
Eon
150
100
Eoff
Ta = 25ºC
VDD= 600V
VGS = 18V/0V
RG= 0Ω
L=500μH
700
600
Eon
500
400
300
Eoff
200
50
100
0
0
0
200
400
600
800
1000
0
Drain - Source Voltage : VDS [V]
5
10
15
20
25
Drain Current : ID [A]
Fig.21 Typical Switching Loss
vs. External Gate Resistance
Switching Energy : E [μJ]
350
Ta = 25ºC
VDD= 600V
ID= 7A
VGS = 18V/0V
L=500μH
300
250
Eon
200
150
Eoff
100
50
0
0
5
10
15
20
25
30
External Gate Resistance : RG [W]
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
10/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lElectrical characteristic curves
Fig.23 Reverse Recovery Time
vs.Inverse Diode Forward Current
100
1000
VGS=0V
Pulsed
Reverse Recovery Time : trr [ns]
Inverse Diode Forward Current : IS [A]
Fig.22 Inverse Diode Forward Current
vs. Source - Drain Voltage
10
1
Ta=150ºC
Ta=75ºC
Ta=25ºC
Ta= -25ºC
0.1
0.01
Ta=25ºC
di / dt = 160A / μs
VR = 400V
VGS = 0V
Pulsed
100
10
0
1
2
3
4
5
6
7
8
1
Source - Drain Voltage : VSD [V]
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
10
100
Inverse Diode Forward Current : IS [A]
11/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Datasheet
SCT2160KEHR
lMeasurement circuits
Fig.1-1 Switching Time Measurement Circuit
Fig.1-2 Switching Waveforms
Fig.2-1 Gate Charge Measurement Circuit
Fig.2-2 Gate Charge Waveform
Fig.3-1 Switching Energy Measurement Circuit
Fig.3-2 Switching Waveforms
Eon = ID×VDS
Same type
device as
D.U.T.
VDS
Irr
Eoff = ID×VDS
Vsurge
D.U.T.
ID
ID
Fig.4-1 Reverse Recovery Time Measurement Circuit Fig.4-2 Reverse Recovery Waveform
D.U.T.
www.rohm.com
© 2019 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
12/12
TSQ50211-SCT2160KEHR
22.Feb.2019 - Rev.001
Notice
Notes
1) The information contained herein is subject to change without notice.
2) Before you use our Products, please contact our sales representative and verify the latest specifications.
3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.
Therefore, in order to prevent personal injury or fire arising from failure, please take safety
measures such as complying with the derating characteristics, implementing redundant and
fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no
responsibility for any damages arising out of the use of our Poducts beyond the rating specified by
ROHM.
4) Examples of application circuits, circuit constants and any other information contained herein are
provided only to illustrate the standard usage and operations of the Products. The peripheral
conditions must be taken into account when designing circuits for mass production.
5) The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly,
any license to use or exercise intellectual property or other rights held by ROHM or any other
parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of
such technical information.
6) The Products specified in this document are not designed to be radiation tolerant.
7) For use of our Products in applications requiring a high degree of reliability (as exemplified
below), please contact and consult with a ROHM representative : transportation equipment (i.e.
cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety
equipment, medical systems, and power transmission systems.
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace
equipment, nuclear power control systems, and submarine repeaters.
9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with
the recommended usage conditions and specifications contained herein.
10) ROHM has used reasonable care to ensure the accuracy of the information contained in this
document. However, ROHM does not warrants that such information is error-free, and ROHM
shall have no responsibility for any damages arising from any inaccuracy or misprint of such
information.
11) Please use the Products in accordance with any applicable environmental laws and regulations,
such as the RoHS Directive. For more details, including RoHS compatibility, please contact a
ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting
non-compliance with any applicable laws or regulations.
12) When providing our Products and technologies contained in this document to other countries,
you must abide by the procedures and provisions stipulated in all applicable export laws and
regulations, including without limitation the US Export Administration Regulations and the Foreign
Exchange and Foreign Trade Act.
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of
ROHM.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
R1107 S
Datasheet
General Precaution
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.
ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s
representative.
3.
The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or
concerning such information.
Notice – WE
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.001