0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
US6U37

US6U37

  • 厂商:

    ROHM(罗姆)

  • 封装:

  • 描述:

    US6U37 - 2.5V Drive NchSBD MOSFET - Rohm

  • 数据手册
  • 价格&库存
US6U37 数据手册
US6U37 Transistors 2.5V Drive Nch+SBD MOSFET US6U37 Structure Silicon N-channel MOSFET / Schottky barrier diode Dimensions (Unit : mm) TUMT6 Features 1) Nch MOSFET and schottky barrier diode are put in TUMT6 package. 2) High-speed switching, Low On-resistance. 3) Low voltage drive (2.5V drive). 4) Built-in Low VF schottky barrier diode. Abbreviated symbol : U37 Applications Switching Inner circuit (6) (5) (4) Package specifications Package Type US6U37 Code Basic ordering unit (pieces) Taping TR 3000 ∗1 (1) (2) ∗1 ESD protection diode ∗2 Body diode (3) ∗2 (1)Gate (2)Source (3)Cathode (4)Anode (5)Anode (6)Drain Absolute maximum ratings (Ta=25°C) Parameter Drain-source voltage Gate-source voltage Drain current Source current (Body diode) Channel temperature Power dissipation ∗1 Pw≤10µs, Duty cycle≤1% ∗2 Mounted on a ceramic board Continuous Pulsed Continuous Pulsed Symbol VDSS VGSS ID IDP ∗1 IS ISP ∗1 Tch PD ∗2 Limits 30 ±12 ±1.5 ±6.0 0.6 6.0 150 0.7 Unit V V A A A A °C W / ELEMENT Parameter Repetitive peak reverse voltage Reverse voltage Forward current Forward current surge peak Junction temperature Power dissipation ∗1 60Hz 1cycle ∗2 Mounted on ceramic board Symbol VRM VR IF IFSM Tj PD ∗1 Limits 25 20 0.7 10 150 0.5 Unit V V A A °C W / ELEMENT ∗2 0.2Max. 1/4 US6U37 Transistors Parameter Power dissipation Range of storage temperature ∗1 Mounted on a ceramic board Symbol PD ∗1 Tstg Limits 1.0 −55 to +150 Unit W / TOTAL °C Electrical characteristics (Ta=25°C) Parameter Symbol Min. − 30 − 0.5 − − − 1.5 − − − − − − − − − − Typ. − − − − 170 180 240 − 80 14 12 7 9 15 6 1.6 0.5 0.3 Max. ±10 − 1 1.5 240 250 340 − − − − − − − − 2.2 − − Unit µA V µA V mΩ mΩ mΩ S pF pF pF ns ns ns ns nC nC nC Conditions VGS=±12V, VDS=0V ID= 1mA, VGS=0V VDS= 30V, VGS=0V VDS= 10V, ID= 1mA ID= 1.5A, VGS= 4.5V ID= 1.5A, VGS= 4V ID= 1.5A, VGS= 2.5V VDS= 10V, ID= 1.5A VDS= 10V VGS=0V f=1MHz VDD 15V ID= 0.75A VGS= 4.5V RL 20Ω RG=10Ω VDD 15V, VGS= 4.5V ID= 1.5A RL 10Ω, RG= 10Ω IGSS Gate-source leakage Drain-source breakdown voltage V(BR) DSS IDSS Zero gate voltage drain current Gate threshold voltage VGS (th) Static drain-source on-state resistance Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Total gate charge Gate-source charge Gate-drain charge ∗Pulsed RDS (on)∗ Yfs Ciss Coss Crss td (on) tr td (off) tf Qg Qgs Qgd ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Parameter Symbol Min. Forward voltage VSD − Typ. − Max. 1.2 Unit V Conditions IS= 0.6A, VGS=0V Parameter Forward voltage Reverse current Symbol VF IR Min. − − Typ. − − Max. 0.49 200 Unit V µA IF= 0.7A VR= 20V Conditions 2/4 US6U37 Transistors Electrical characteristics curves 1000 Ta=25°C f=1MHz VGS=0V 1000 GATE-SOURCE VOLTAGE : VGS (V) SWITCHING TIME : t (ns) CAPACITANCE : C (pF) Ta=25°C VDD=15V VGS=4.5V RG=10Ω Pulsed tf 6 Ta=25°C VDD=15V RG=10Ω Pulsed 5 ID=1.5A Ciss 100 Crss Coss 100 td(off) 4 3 2 10 10 td(on) tr 1 0 1 0.01 0.1 1 10 100 1 0.01 0.1 1 10 0 0.5 1 1.5 2 DRAIN-SOURCE VOLTAGE : VDS (V) DRAIN CURRENT : ID (A) TOTAL GATE CHARGE : Qg (nC) Fig.1 Typical Capacitance vs. Drain-Source Voltage Fig.2 Switching Characteristics Fig.3 Dynamic Input Characteristics 10 STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on)(Ω) VDS=10V Pulsed 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 7 ID=0.75A ID=1.5A Ta=25°C Pulsed 10 VGS=0V Pulsed 1 Ta=125°C 75°C 25°C −25°C SOURCE CURRENT : IS (A) DRAIN CURRENT : ID (A) 1 Ta=125°C 75°C 25°C −25°C 0.1 0.1 0.01 0.001 0.0 0.5 1.0 1.5 2.0 2.5 8 9 10 0.01 0.0 0.5 1.0 1.5 GATE-SOURCE VOLTAGE : VGS (V) GATE-SOURCE VOLTAGE : VGS (V) SOURCE-DRAIN VOLTAGE : VSD (V) Fig.4 Typical Transfer Characteristics Fig.5 Static Drain-Source On-State Resistance vs. Gate source Voltage Fig.6 Source Current vs. Source-Drain Voltage 10 STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on) (Ω) STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on) (Ω) STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS (on) (Ω) VGS=4.5V Pulsed 10 VGS=4.0V Pulsed 10 VGS=2.5V Pulsed 1 Ta=125°C 75°C 25°C −25°C 1 Ta=125°C 75°C 25°C −25°C 1 Ta=125°C 75°C 25°C −25°C 0.1 0.01 0.1 1 10 0.1 0.01 0.1 1 10 0.1 0.01 0.1 1 10 DRAIN CURRENT : ID (A) DRAIN CURRENT : ID (A) DRAIN CURRENT : ID (A) Fig.7 Static Drain-Source On-State Resistance vs. Drain Current ( Ι ) Fig.8 Static Drain-Source On-State Resistance vs. Drain Current ( ΙΙ ) Fig.9 Static Drain-Source On-State Resistance vs. Drain Current ( ΙΙΙ ) 3/4 US6U37 Transistors 100000 REVERSE CURRENT : IR [uA] 10000 1000 100 10 1 0.1 0.01 0 5 10 15 20 25 REVERSE VOLTAGE : VR [V] Ta= - 25℃ Ta = 75℃ Ta = 25℃ 1 Pulsed Ta = 125℃ pulsed FORWARD CURRENT : IF(A) 0.1 Ta = 125℃ Ta = 75℃ Ta = 25℃ 0.01 Ta= - 25℃ 0.001 0 0.1 0.2 0.3 0.4 0.5 0.6 FORWARD VOLTAGE : VF(V) Fig.10 Reverse Current vs. Reverse Fig.11 Forward Current vs. Forward Voltage Measurement circuit Pulse Width VGS ID RL D.U.T. VDS VGS VDS 50% 10% 10% 90% 50% 10% RG VDD td(on) ton 90% tr td(off) toff 90% tf Fig.12 Switching Time Test Circuit Fig.13 Switching Time Waveforms VG VGS ID RL VDS VGS Qgs Qg IG (Const.) D.U.T. RG VDD Qgd Charge Fig.14 Gate Charge Measurement Circuit Fig.15 Gate Charge Waveform Notice 1. SBD has a large reverse leak current compared to other type of diode. Therefore; it would raise a junction temperature, and increase a reverse power loss. Further rise of inside temperature would cause a thermal runaway. This built-in SBD has low VF characteristics and therefore, higher leak current. Please consider enough the surrounding temperature, generating heat of MOSFET and the reverse current. 2. This product might cause chip aging and breakdown under the large electrified environment. Please consider to design ESD protection circuit. 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2008 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster@ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix1-Rev2.0
US6U37 价格&库存

很抱歉,暂时无法提供与“US6U37”相匹配的价格&库存,您可以联系我们找货

免费人工找货