0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
K4A4G165WF-BCTD

K4A4G165WF-BCTD

  • 厂商:

    SAMSUNG(三星)

  • 封装:

    FBGA96_7.5X13.3MM

  • 描述:

    仅4Gb F-die DDR4 SDRAM x16 FBGA96

  • 数据手册
  • 价格&库存
K4A4G165WF-BCTD 数据手册
Rev. 0.9, Sep. 2018 K4A4G165WF Preliminary 4Gb F-die DDR4 SDRAM x16 only 96FBGA with Lead-Free & Halogen-Free (RoHS compliant) datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. © 2018 Samsung Electronics Co., Ltd.GG All rights reserved. -1- 1.2V datasheet K4A4G165WF Preliminary Rev. 0.9 DDR4 SDRAM Revision History Revision No. 0.0 History - First SPEC release Draft Date Remark Editor 12th Jul, 2018 Target H.G.Lee J.Y.Bae 0.9 - Preliminary datasheet. 19th Sep, 2018 - Update note for Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range; after proper ZQ calibration table. - Add Output Driver Temperature and Voltage Sensitivity section. - Update note for Input/Output capacitance. - Update AC Timing table. 1. tDVWp : TBD -> 0.72 [UI] @ DDR-2933 2. tGEAR_setup/tGEAR_hold : TBD -> 2 [nCK] @ DDR-2933 3. Update notes. -2- Preliminary H.G.Lee J.Y.Bae K4A4G165WF datasheet Preliminary Rev. 0.9 DDR4 SDRAM Table Of Contents 4Gb F-die DDR4 SDRAM x16 only 1. ORDERING INFORMATION ............................................................................................................................................................... 4 2. KEY FEATURES ................................................................................................................................................................................. 4 3. PACKAGE PINOUT/MECHANICAL DIMENSION & ADDRESSING .................................................................................................. 5 3.1 x16 Package Pinout (Top view): 96ball FBGA Package.................................................................................................................5 3.2 FBGA Package Dimension (x16)....................................................................................................................................................6 4. INPUT/OUTPUT FUNCTIONAL DESCRIPTION ................................................................................................................................ 7 5. DDR4 SDRAM ADDRESSING ............................................................................................................................................................ 9 6. ABSOLUTE MAXIMUM RATINGS ...................................................................................................................................................... 10 6.1 DRAM Component Operating Temperature Range........................................................................................................................10 7. AC & DC OPERATING CONDITIONS ................................................................................................................................................ 10 8. AC AND DC INPUT MEASUREMENT LEVELS ................................................................................................................................. 11 8.1 AC And DC Logic Input Levels for Single-Ended Signals...............................................................................................................11 8.2 AC and DC Input Measurement Levels: VREF Tolerances............................................................................................................11 8.3 AC and DC Logic Input Levels for Differential Signals ...................................................................................................................12 8.3.1. Differential Signals Definition ..................................................................................................................................................12 8.3.2. Differential Swing Requirements for Clock (CK_t - CK_c) ......................................................................................................12 8.3.3. Single-ended Requirements for Differential Signals ...............................................................................................................13 8.3.4. Address, Command and Control Overshoot and Undershoot specifications..........................................................................14 8.3.5. Clock Overshoot and Undershoot Specifications....................................................................................................................15 8.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications........................................................................................16 8.4 Slew Rate Definitions......................................................................................................................................................................17 8.4.1. Slew Rate Definitions for Differential Input Signals (CK) ........................................................................................................17 8.4.2. Slew Rate Definition for Single-ended Input Signals (CMD/ADD) ..........................................................................................18 8.5 Differential Input Cross Point Voltage.............................................................................................................................................19 8.6 CMOS rail to rail Input Levels .........................................................................................................................................................20 8.6.1. CMOS rail to rail Input Levels for RESET_n ...........................................................................................................................20 8.7 AC and DC Logic Input Levels for DQS Signals.............................................................................................................................21 8.7.1. Differential signal definition .....................................................................................................................................................21 8.7.2. Differential swing requirements for DQS (DQS_t - DQS_c)....................................................................................................21 8.7.3. Peak voltage calculation method ............................................................................................................................................22 8.7.4. Differential Input Cross Point Voltage .....................................................................................................................................23 8.7.5. Differential Input Slew Rate Definition ....................................................................................................................................24 9. AC AND DC OUTPUT MEASUREMENT LEVELS ............................................................................................................................. 25 9.1 Output Driver DC Electrical Characteristics....................................................................................................................................25 9.1.1. Output Driver Temperature and Voltage Sensitivity................................................................................................................27 9.1.2. Alert_n output Drive Characteristic .........................................................................................................................................27 9.1.3. Output Driver Characteristic of Connectivity Test (CT) Mode.................................................................................................28 9.2 Single-ended AC & DC Output Levels............................................................................................................................................29 9.3 Differential AC & DC Output Levels................................................................................................................................................29 9.4 Single-ended Output Slew Rate .....................................................................................................................................................30 9.5 Differential Output Slew Rate .........................................................................................................................................................31 9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode .................................................................................................32 9.7 Test Load for Connectivity Test Mode Timing ................................................................................................................................33 10. SPEED BIN ....................................................................................................................................................................................... 34 10.1 Speed Bin Table Note...................................................................................................................................................................41 11. IDD AND IDDQ SPECIFICATION PARAMETERS AND TEST CONDITIONS ................................................................................. 42 11.1 IDD, IPP and IDDQ Measurement Conditions..............................................................................................................................42 11.2 4Gb DDR4 SDRAM F-die IDD SPECIFICATION TABLE.............................................................................................................57 12. INPUT/OUTPUT CAPACITANCE ..................................................................................................................................................... 59 13. ELECTRICAL CHARACTERISTICS & AC TIMING .......................................................................................................................... 61 13.1 Reference Load for AC Timing and Output Slew Rate .................................................................................................................61 13.2 tREFI.............................................................................................................................................................................................61 13.3 Clock Specification .......................................................................................................................................................................62 13.3.1. Definition for tCK(abs)...........................................................................................................................................................62 13.3.2. Definition for tCK(avg)...........................................................................................................................................................62 13.3.3. Definition for tCH(avg) and tCL(avg)....................................................................................................................................62 13.3.4. Definition for tERR(nper).......................................................................................................................................................62 14. TIMING PARAMETERS BY SPEED GRADE ................................................................................................................................... 63 14.1 Rounding Algorithms ...................................................................................................................................................................69 14.2 The DQ input receiver compliance mask for voltage and timing ..................................................................................................70 14.3 Command, Control, and Address Setup, Hold, and Derating .......................................................................................................74 14.4 DDR4 Function Matrix ..................................................................................................................................................................76 -3- Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 1. ORDERING INFORMATION [Table 1] Samsung 4Gb DDR4 F-die ordering information table Organization DDR4-2666 (19-19-19) 2) DDR4-3200 (22-22-22) 2) Package 256Mx16 K4A4G165WF-BCTD K4A4G165WF-BCWE 96FBGA NOTE : 1) Speed bin is in order of CL-tRCD-tRP. 2) Backward compatible to lower frequency 3) 13th digit stands for below. "C" : Commercial temp/Normal power 2. KEY FEATURES [Table 2] 4Gb DDR4 F-die Speed bins Speed tCK(min) DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-3200 11-11-11 13-13-13 15-15-15 17-17-17 19-19-19 22-22-22 1.25 1.071 0.937 0.833 0.75 0.625 ns Unit CAS Latency 11 13 15 17 19 22 nCK tRCD(min) 13.75 13.92 14.06 14.16 14.25 13.75 ns tRP(min) 13.75 13.92 14.06 14.16 14.25 13.75 ns tRAS(min) 35 34 33 32 32 32 ns tRC(min) 48.75 47.92 47.06 46.16 46.25 45.75 ns • JEDEC standard 1.2V (1.14V~1.26V) • VDDQ = 1.2V (1.14V~1.26V) • VPP = 2.5V (2.375V~2.75V) • 800 MHz fCK for 1600Mb/sec/pin,933 MHz fCK for 1866Mb/sec/pin, 1067MHz fCK for 2133Mb/sec/pin, 1200MHz fCK for 2400Mb/sec/pin, 1333MHz fCK for 2666Mb/sec/pin, 1600MHz fCK for 3200Mb/sec/pin • 8 Banks (2 Bank Groups) • Programmable CAS Latency (posted CAS): 10,11,12,13,14,15,16,17,18,19,20,22,24 • Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12 (DDR4-1866),11,14 (DDR4-2133),12,16 (DDR4-2400), 14,18 (DDR42666) and 16,20 (DDR4-3200) • 8-bit pre-fetch • Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] • Bi-directional Differential Data-Strobe • Internal (self) calibration: Internal self calibration through ZQ pin (RZQ: 240 ohm ± 1%) • On Die Termination using ODT pin • Average Refresh Period 7.8us at lower than TCASE 85C, 3.9us at 85C < TCASE < 95 C The 4Gb DDR4 SDRAM F-die is organized as a 32Mbit x 16 I/Os x 8banks device. This synchronous device achieves high speed double-data-rate transfer rates of up to 3200Mb/sec/pin (DDR4-3200) for general applications. The chip is designed to comply with the following key DDR4 SDRAM features such as posted CAS, Programmable CWL, Internal (Self) Calibration, On Die Termination using ODT pin and Asynchronous Reset. All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the crosspoint of differential clocks (CK rising and CK falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. The address bus is used to convey row, column, and bank address information in a RAS/CAS multiplexing style. The DDR4 device operates with a single 1.2V (1.14V~1.26V) power supply, 1.2V(1.14V~1.26V) VDDQ and 2.5V (2.375V~2.75V) VPP. The 4Gb DDR4 F-die device is available in 96ball FBGAs(x16). • • • • • • • • • • • • • Asynchronous Reset Package: 96 balls FBGA - x16 All of Lead-Free products are compliant for RoHS All of products are Halogen-free CRC (Cyclic Redundancy Check) for Read/Write data security Command address parity check DBI (Data Bus Inversion) Gear down mode POD (Pseudo Open Drain) interface for data input/output Internal VREF for data inputs External VPP for DRAM Activating Power hPPR is supported NOTE : 1) This data sheet is an abstract of full DDR4 specification and does not cover the common features which are described in “DDR4 SDRAM Device Operation & Timing gram”. 2) The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. -4- Dia- Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 3. PACKAGE PINOUT/MECHANICAL DIMENSION & ADDRESSING 3.1 x16 Package Pinout (Top view): 96ball FBGA Package 1 2 3 A VDDQ VSSQ B VPP C VDDQ D 4 5 6 7 8 9 DQU0 DQSU_c VSSQ VDDQ A VSS VDD DQSU_t DQU1 VDD B DQU4 DQU2 DQU3 DQU5 VSSQ C VDD VSSQ DQU6 DQU7 VSSQ VDDQ D E VSS DMU_n/ DBIU_n VSSQ DML_n DBIL_n VSSQ VSS E F VSSQ VDDQ DQSL_c DQL1 VDDQ ZQ F G VDDQ DQL0 DQSL_t VDD VSS VDDQ G H VSSQ DQL4 DQL2 DQL3 DQL5 VSSQ H J VDD VDDQ DQL6 DQL7 VDDQ VDD J K VSS CKE ODT CK_t CK_c VSS K L VDD WE_n/ A14 ACT_n CS_n RAS_n VDD L M VREFCA BG0 A10/AP A12/BC_n CAS_n VSS M N VSS BA0 A4 A3 BA1 TEN N P RESET_n A6 A0 A1 A5 ALERT_n P R VDD A8 A2 A9 A7 VPP R T VSS A11 PAR NC A13 VDD T 1 Ball Locations (x16) A B C Populated ball Ball not populated D E F G H Top view (See the balls through the package) J K L M N P R T -5- 2 3 4 5 6 7 8 9 Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 3.2 FBGA Package Dimension (x16) Units : Millimeters 7.50  0.10 0.80 x 8 = 6.40 0.80 1.60 #A1 INDEX MARK 3.20 B 0.40 0.80 (Datum B) A B C D E F G H J K L M N P R T 0.80 x15 = 12.00 9 8 7 6 5 4 3 2 1 13.30 0.10 (Datum A) A 96 - 0.48 Solder ball (Post reflow 0.50 ± 0.05) 0.2 M A B 7.50 0.10 13.30 0.10 #A1 0.10MAX BOTTOM VIEW 0.37 0.05 TOP VIEW 1.10 0.10 -6- datasheet K4A4G165WF Preliminary Rev. 0.9 DDR4 SDRAM 4. INPUT/OUTPUT FUNCTIONAL DESCRIPTION [Table 3] Input/Output function description Symbol Type CK_t, CK_c Input Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK_t and negative edge of CK_c. CKE, (CKE1) Input Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit. After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence, they must be maintained during all operations (including Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK_t, CK_cSGODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh. CS_n, (CS1_n) Input Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. C0,C1,C2 Input Chip ID : Chip ID is only used for 3DS for 2,4,8high stack via TSV to select each slice of stacked component. Chip ID is considered part of the command code ODT, (ODT1) Input On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/ TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. For x16 configuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM. ACT_n Input Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14 Input Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being entered. Those pins have multi function. ForG example, for activation with ACT_n Low, those are Addressing like A16,A15 and A14 but for non-activation command with ACT_n High, those are Command pins for Read, Write and other command defined in command truth table DM_n/DBI_n/TDQS_t, (DMU_n/DBIU_n), (DML_n/DBIL_n) Input/Output Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is sampled on both edges of DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n is an input/ output identifing whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/ output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only supported in X8 BG0 - BG1 Input Bank Group Inputs : BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8 have BG0 and BG1 but X16 has only BG0 BA0 - BA1 Input Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines which mode register is to be accessed during a MRS cycle. Input Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/ Write commands to select one location out of the memory array in the respective bank. (A10/AP, A12/ BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions, see other rows.The address inputs also provide the op-code during Mode Register Set commands.A17 is only defined for the x4 configurations. A10 / AP Input Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW: no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by bank addresses. A12 / BC_n Input Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if burst chop (on-thefly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details. RESET_n Input Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC high and low at 80% and 20% of VDD. Input / Output Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at the end of Data Burst. Any DQ from DQ0~DQ3 may indicate the internal Vref level during test via Mode Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor specific datasheets to determine which DQ is used. RAS_n/A16. CAS_n/ A15. WE_n/A14 A0 - A17 DQ Function -7- datasheet K4A4G165WF Preliminary Rev. 0.9 DDR4 SDRAM [Table 3] Input/Output function description Symbol DQS_t, DQS_c, DQSU_t, DQSU_c, DQSL_t, DQSL_c TDQS_t, TDQS_c PAR ALERT_n TEN Type Function Input / Output Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c, DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended. Output Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/ TDQS_c that is applied to DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/ TDQS will provide the data mask function or Data Bus Inversion depending on MR5; A11,12,10and TDQS_c is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11 = 0 in MR1. Input Command and Address Parity Input: DDR4 Supports Even Parity check in DRAM with MR setting. Once it’s enabled via Register in MR5, then DRAM calculates Parity with ACT_n,RAS_n/A16,CAS_n/A15,WE_n/ A14,BG0-BG1,BA0-BA1,A17-A0, and C0-C2 (3DS devices). Command and address inputs shall have parity check performed when commands are latched via the rising edge of CK_t and when CS_n is low. Input/Output Alert : It has multi functions such as CRC error flag, Command and Address Parity error flag as Output signal. If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. If there is error in Command Address Parity Check, then Alert_n goes LOW for relatively long period until on going DRAM internal recovery transaction to complete. During Connectivity Test mode, this pin works as input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin must be bounded to VDD on board. Input Connectivity Test Mode Enable: Required on X16 devices and optional input on x4/x8 with densities equal to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins. It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. No Connect: No internal electrical connection is present. NC VDDQ Supply DQ Power Supply: 1.2 V +/- 0.06 V VSSQ Supply DQ Ground VDD Supply Power Supply: 1.2 V +/- 0.06 V VSS Supply Ground VPP Supply DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max) VREFCA Supply Reference voltage for CA ZQ Supply Reference Pin for ZQ calibration NOTE : 1) Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination. -8- datasheet K4A4G165WF Preliminary Rev. 0.9 DDR4 SDRAM 5.0 DDR4 SDRAM ADDRESSING 2Gb Addressing Table Configuration 128Mb x16 # of Bank Groups 2 BG Address BG0 Bank Address in a BG BA0~BA1 Bank Address Row Address A0~A13 Column Address A0~A9 Page size 2KB 4Gb Addressing Table Configuration 256Mb x16 # of Bank Groups Bank Address 2 BG Address BG0 Bank Address in a BG BA0~BA1 Row Address A0~A14 Column Address A0~A9 Page size 2KB 8Gb Addressing Table Configuration 512Mb x16 # of Bank Groups Bank Address 2 BG Address BG0 Bank Address in a BG BA0~BA1 Row Address A0~A15 Column Address A0~A9 Page size 2KB NOTE : 1) Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered. Page size is per bank, calculated as follows: page size = 2 COLBITS * ORG8 where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits -9- Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 6.0 ABSOLUTE MAXIMUM RATINGS [Table 4] Absolute Maximum DC Ratings Symbol VDD VDDQ VPP VIN, VOUT TSTG Parameter Rating Units NOTE Voltage on VDD pin relative to Vss -0.3 ~ 1.5 V 1,3 Voltage on VDDQ pin relative to Vss -0.3 ~ 1.5 V 1,3 Voltage on VPP pin relative to Vss -0.3 ~ 3.0 V 4 Voltage on any pin except VREFCA relative to Vss -0.3 ~ 1.5 V 1,3,5 -55 to +100 °C 1,2 Storage Temperature NOTE : 1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability 2) Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3) VDD and VDDQ must be within 300mV of each other at all times; and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREFCA may be equal to or less than 300mV 4) VPP must be equal or greater than VDD/VDDQ at all times. 5) Overshoot area above 1.5 V is specified in 8.3.4 Address, Command and Control Overshoot and Undershoot specifications, 8.3.5 Clock Overshoot and Undershoot Specifications and 8.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications. 6.1 DRAM Component Operating Temperature Range [Table 5] Temperature Range Symbol Parameter rating Unit NOTE TOPER Operating Temperature Range 0 to 95 C 1, 2, 3 NOTE : 1) Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. 2) The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions. 3) Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range. 7.0 AC & DC OPERATING CONDITIONS [Table 6] Recommended DC Operating Conditions Symbol Parameter Rating Min. Typ. Max. Unit NOTE VDD Supply Voltage 1.14 1.2 1.26 V 1,2,3 VDDQ Supply Voltage for Output 1.14 1.2 1.26 V 1,2,3 VPP Peak-to-Peak Voltage 2.375 2.5 2.75 V 3 NOTE : 1) Under all conditions VDDQ must be less than or equal to VDD. 2) VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 3) DC bandwidth is limited to 20MHz. - 10 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.0 AC AND DC INPUT MEASUREMENT LEVELS 8.1 AC And DC Logic Input Levels for Single-Ended Signals [Table 7] Single-ended AC and DC Input Levels for Command and Address Symbol VIH.CA(DC75) VIH.CA(DC65) VIL.CA(DC75) VIL.CA(DC65) VIH.CA(AC100) VIH.CA(AC90) VIL.CA(AC100) VIL.CA(AC90) VREFCA(DC) Parameter DC input logic high DC input logic low AC input logic high AC input logic low Reference Voltage for ADD, CMD inputs DDR4-1600/1866/2133/2400 DDR4-2666/2933/3200 Min. Max. Min. Max. VREFCA+ 0.075 VDD - - - - VREFCA+ 0.065 VDD VSS VREFCA-0.075 - - - - VSS VREFCA-0.065 VREF + 0.1 Note 2 - - - - VREF + 0.09 Note 2 Note 2 VREF - 0.1 - - - - Note 2 VREF - 0.09 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD Unit NOTE V V V V V 1 1 2,3 NOTE : 1) See “Overshoot and Undershoot Specifications” on section 8.3 AC and DC Logic Input Levels for Differential Signals. 2) The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV) 3) For reference : approx. VDD/2 ± 12mV. 8.2 AC and DC Input Measurement Levels: VREF Tolerances. The DC-tolerance limits and ac-noise limits for the reference voltages VREFCA is illustrated in Figure 1. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD. voltage VDD VSS time Figure 1. Illustration of VREF(DC) tolerance and VREF AC-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 1. This clarifies, that DC-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF AC-noise. Timing and voltage effects due to AC-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. - 11 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.3 AC and DC Logic Input Levels for Differential Signals 8.3.1 Differential Signals Definition tDVAC VIH.DIFF.AC.MIN Differential Input Voltage (CK-CK) (CK_t - CK_c) VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 2. Definition of differential ac-swing and “time above ac-level” tDVAC NOTE: 1) Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope. 2) Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope. 8.3.2 Differential Swing Requirements for Clock (CK_t - CK_c) [Table 8] Differential AC and DC Input Levels Symbol Parameter DDR4 -1600/1866/2133 Min Max DDR4 -2400 DDR4-2666 Min Max Min Max DDR4-2933 Min Max DDR4-3200 Min Max uni NOT t E VIHdiff differential input high +0.150 NOTE 3 +0.135 NOTE 3 +0.135 NOTE 3 +0.125 NOTE 3 TBD NOTE 3 V 1 VILdiff differential input low NOTE 3 -0.150 NOTE 3 -0.135 NOTE 3 -0.135 NOTE 3 -0.125 NOTE 3 TBD V 1 NOTE 3 2 x (VIH(AC) VREF) NOTE 3 2 x (VIH(AC) VREF) NOTE 3 2 x (VIH(AC) VREF) NOTE 3 2 x (VIH(AC) VREF) NOTE 3 V 2 2 x (VIL(AC) VREF) NOTE 3 2 x (VIL(AC) VREF) NOTE 3 2 x (VIL(AC) VREF) NOTE 3 2 x (VIL(AC) VREF) NOTE 3 2 x (VIL(AC) VREF) V 2 VIHdiff(AC) 2 x (VIH(AC) differential input high ac VREF) VILdiff(AC) differential input low ac NOTE 3 NOTE : 1) Used to define a differential signal slew-rate. 2) for CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD and VREFCA; 3) These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. [Table 9] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 200mV min max > 4.0 120 - 4.0 115 - 3.0 110 - 2.0 105 - 1.8 100 - 1.6 95 - 1.4 90 - 1.2 85 - 1.0 80 - < 1.0 80 - - 12 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.3.3 Single-ended Requirements for Differential Signals Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals. CK_t and CK_c have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH.CA(AC) / VIL.CA(AC)) for ADD/CMD signals) in every half-cycle. Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g., if Different value than VIH.CA(AC100)/VIL.CA(AC100) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK_c. VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK VSEL max VSEL VSS or VSSQ time Figure 3. Single-ended requirement for differential signals. Note that, while ADD/CMD signal requirements are with respect to VrefCA, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. [Table 10] Single-ended Levels for CK_t, CK_c Symbol Parameter VSEH VSEL DDR4-1600/1866/2133 DDR4-2400/2666 DDR4-2933 DDR4-3200 Un NOT it E Min Max Min Max Min Max Min Max Single-ended high-level for CK_t, CK_c (VDD/ 2)+0.100 NOTE3 (VDD/ 2)+0.95 NOTE3 (VDD/ 2)+0.85 NOTE3 TBD NOTE3 V 1, 2 Single-ended low-level for CK_t, CK_c NOTE3 (VDD/2)0.100 NOTE3 (VDD/2)0.95 NOTE3 (VDD/2)0.85 NOTE3 TBD V 1, 2 NOTE : 1) For CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD; 2) VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; 3) These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. - 13 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.3.4 Address, Command and Control Overshoot and Undershoot specifications [Table 11] AC overshoot/undershoot specification for Address, Command and Control pins Symbol Parameter Specification DDR41600 DDR41866 DDR42133 DDR42400 DDR42666 DDR42933 DDR43200 Unit Maximum peak amplitude above VAOS VAOSP 0.06 V Upper boundary of overshoot area AAOS1 VAOS VDD +0.24 V Maximum peak amplitude allowed for undershoot VAUS 0.30 V Maximum overshoot area per 1 tCK above VAOS AAOS2 0.0083 0.0071 0.0062 0.0055 0.0055 0.0055 0.0055 V-ns Maximum overshoot area per 1 tCK between VDD AAOS1 and VAOS 0.2550 0.2185 0.1914 0.1699 0.1699 0.1699 0.1699 V-ns AAUS 0.2644 0.2265 0.1984 0.1762 0.1762 0.1762 0.1762 V-ns Maximum undershoot area per 1 tCK below VSS NOT E 1 (A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n/A16,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0) NOTE : 1) The value of VAOS matches VDD absolute max as defined in Table 4 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 4. VAOSP VAOS Volts (V) VDD AAOS2 AAOS1 1 tCK VSS AAUS VAUS Figure 4. Address, Command and Control Overshoot and Undershoot Definition - 14 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.3.5 Clock Overshoot and Undershoot Specifications [Table 12] AC overshoot/undershoot specification for Clock Symbol Parameter Specification DDR41600 DDR41866 DDR42133 DDR42400 DDR42666 DDR42933 DDR43200 Unit Maximum peak amplitude above VCOS VCOSP 0.06 V Upper boundary of overshoot area ADOS1 VCOS VDD +0.24 V Maximum peak amplitude allowed for undershoot VCUS 0.30 V Maximum overshoot area per 1 UI above VCOS ACOS2 0.0038 0.0032 0.0028 0.0025 0.0025 0.0025 0.0025 V-ns Maximum overshoot area per 1 UI between VDD ACOS1 and VDOS 0.1125 0.0964 0.0844 0.0750 0.0750 0.0750 0.0750 V-ns ACUS 0.1144 0.0980 0.0858 0.0762 0.0762 0.0762 0.0762 V-ns Maximum undershoot area per 1 UI below VSS NOT E 1 (CK_t, CK_c) NOTE : 1) The value of VCOS matches VDD absolute max as defined in Table 4 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 4. VCOSP VCOS Volts (V) VDD ACOS2 ACOS1 1 UI VSS ACUS VCUS Figure 5. Clock Overshoot and Undershoot Definition - 15 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications [Table 13] AC overshoot/undershoot specification for Data, Strobe and Mask Specification Parameter Symbol DDR41600 DDR41866 DDR42133 DDR42400 DDR42666 DDR42933 DDR43200 Unit NOT E Maximum peak amplitude above VDOS VDOSP 0.16 V Upper boundary of overshoot area ADOS1 VDOS VDDQ + 0.24 V 1 Lower boundary of undershoot area ADUS1 VDUS 0.30 V 2 Maximum peak amplitude below VDUS VDUSP 0.10 0.10 0.10 0.10 0.10 0.10 0.10 V Maximum overshoot area per 1 UI above VDOS ADOS2 0.0150 0.0129 0.0113 0.0100 0.0100 0.0100 0.0100 V-ns Maximum overshoot area per 1 UI between VDDQ and VDOS ADOS1 0.1050 0.0900 0.0788 0.0700 0.0700 0.0700 0.0700 V-ns Maximum undershoot area per 1 UI between VSSQ and VDUS1 ADUS1 0.1050 0.0900 0.0788 0.0700 0.0700 0.0700 0.0700 V-ns Maximum undershoot area per 1 UI below VDUS ADUS2 0.0150 0.0129 0.0113 0.0100 0.0100 0.0100 0.0100 V-ns NOTE : 1) The value of VDOS matches (VIN, VOUT) max as defined in Table 4 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 4. 2) The value of VDUS matches (VIN, VOUT) min as defined in Table 4 Absolute Maximum DC Ratings VDOSP VDOS Volts (V) VDDQ ADOS2 ADOS1 1 UI VSSQ ADUS1 VDUSP ADUS2 Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition - 16 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.4 Slew Rate Definitions 8.4.1 Slew Rate Definitions for Differential Input Signals (CK) Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7. [Table 14] Differential Input Slew Rate Definition Measured Description Defined by from to Differential input slew rate for rising edge (CK_t - CK_c) VILdiffmax VIHdiffmin [VIHdiffmin - VILdiffmax] / DeltaTRdiff Differential input slew rate for falling edge (CK_t - CK_c) VIHdiffmin VILdiffmax [VIHdiffmin - VILdiffmax] / DeltaTFdiff NOTE : 1) The differential signal (i,e.,CK_t - CK_c) must be linear between these thresholds. Differential Input Voltage(i,e, CK_t - CK_c) Delta TRdiff VIHdiffmin 0 VILdiffmax Delta TFdiff Figure 7. Differential Input Slew Rate Definition for CK_t, CK_c - 17 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.4.2 Slew Rate Definition for Single-ended Input Signals (CMD/ADD) Delta TRsingle V IHCA(AC) Min V IHCA(DC) Min VREFCA(DC) V ILCA(DC) Max V ILCA(AC) Max Delta TFsingle Figure 8. Single-ended Input Slew Rate definition for CMD and ADD NOTE : 1) Single-ended input slew rate for rising edge = {VIHCA(AC)Min - VILCA(DC)Max} / Delta TR single. 2) Single-ended input slew rate for falling edge = {VIHCA(DC)Min - VILCA(AC)Max} / Delta TF single. 3) Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope. 4) Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope. - 18 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.5 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals (CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS. VDD CK_t Vix VDD/2 Vix CK_c VSEL VSEH VSS Figure 9. Vix Definition (CK) [Table 15] Cross Point Voltage for Differential Input Signals (CK) Symbol - VlX(CK) Symbol - VlX(CK) Symbol - VlX(CK) DDR4-1600/1866/2133 Parameter Area of VSEH, VSEL Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c min VSEL < VDD/2 145mV VDD/2 + 100mV VDD/2 + 145mV < =< VSEH =< VDD/ VSEH 2 + 145mV -120mV -(VDD/2 - VSEL) + 25mV (VSEH - VDD/2) 25mV Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c min Differential Input Cross Point Voltage relative to VDD/2 for CK_t, CK_c max VSEL < VDD/2 - 145 mV VDD/2 - 145 mV =< VSEL =< VDD/2 - 100 mV VDD/2 + 100 mV =< VSEH =< VDD/2 + 145 mV VDD/2 + 145 mV < VSEH -120mV - (VDD/2 - VSEL) + 25 mV (VSEH - VDD/2) 25 mV 120mV DDR4-2666/2933/3200 Parameter Area of VSEH, VSEL 120mV DDR4-2400 Parameter Area of VSEH, VSEL max VDD/2 - 145mV =< VSEL =< VDD/2 100mV min max VSEL < VDD/2 - 145 mV VDD/2 - 145 mV =< VSEL =< VDD/2 - 100 mV VDD/2 + 100 mV =< VSEH =< VDD/2 + 145 mV VDD/2 + 145 mV < VSEH -110 mV - (VDD/2 - VSEL) + 30 mV (VSEH - VDD/2) - 30 mV 110mV - 19 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.6 CMOS rail to rail Input Levels 8.6.1 CMOS rail to rail Input Levels for RESET_n [Table 16] CMOS rail to rail Input Levels for RESET_n Parameter Symbol Min Max Unit NOTE AC Input High Voltage VIH(AC)_RESET 0.8*VDD VDD V 6 DC Input High Voltage VIH(DC)_RESET 0.7*VDD VDD V 2 DC Input Low Voltage VIL(DC)_RESET VSS 0.3*VDD V 1 AC Input Low Voltage VIL(AC)_RESET VSS 0.2*VDD V 7 Rising time TR_RESET - 1.0 us 4 RESET pulse width tPW_RESET 1.0 - us 3,5 NOTE : 1) After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset. 2) Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset asserting RESET_n signal LOW. 3) RESET is destructive to data contents. 4) No slope reversal (ringback) requirement during its level transition from Low to High. 5) This definition is applied only “Reset Procedure at Power Stable”. 6) Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings. 7) Undershoot might occur. It should be limited by Absolute Maximum DC Ratings. tPW_RESET 0.8*VDD 0.7*VDD 0.3*VDD 0.2*VDD TR_RESET Figure 10. RESET_n Input Slew Rate Definition - 20 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.7 AC and DC Logic Input Levels for DQS Signals 8.7.1 Differential signal definition Figure 11. Definition of differential DQS Signal AC-swing Level 8.7.2 Differential swing requirements for DQS (DQS_t - DQS_c) [Table 17] Differential AC and DC Input Levels for DQS Symbol Parameter DDR4-1600/1866/ 2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Min Max Min Max Min Max Min Max Min Max Unit Note VIHDiffPeak VIH.DIFF.Peak Voltage 186 Note2 160 Note2 150 Note2 145 Note2 140 Note2 mV 1 VILDiffPeak VIL.DIFF.Peak Voltage Note2 -186 Note2 -160 Note2 -150 -145 Note2 -140 Note2 mV 1 NOTE : 1) Used to define a differential signal slew-rate. 2) These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended signals. - 21 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.7.3 Peak voltage calculation method The peak voltage of Differential DQS signals are calculated in a following equation. VIH.DIFF.Peak Voltage = Max(f(t)) VIL.DIFF.Peak Voltage = Min(f(t)) f(t) = VDQS_t - VDQS_c Single Ended Input Voltage : DQS_t and DQS_c The Max(f(t)) or Min(f(t)) used to determine the midpoint which to reference the +/-35% window of the exempt non-monotonic signaling shall be the smallest peak voltage observed in all ui’s. DQS_t Max(f(t)) Min(f(t)) +35% +35% DQS_c Time Figure 12. Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling - 22 - +50% +50% Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.7.4 Differential Input Cross Point Voltage To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet the requirements in Table 18. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) is measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid of the DQS_t and DQS_c signals. VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals. A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within +/- 35% of the midpoint of either VIH.DIFF.Peak Voltage (DQS_t rising) or VIL.DIFF.Peak Voltage (DQS_c rising), refer to Figure 12. A secondary horizontal tangent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition’s horizontal tangent is derived from its negative slope to zero slope transition (point A in Figure 13) and a ring-back’s horizontal tangent derived from its positive slope to zero slope transition (point B in Figure 13) is not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope to zero slope transition (point C in Figure 13) and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (point D in Figure 13) is not a valid horizontal tangent C DQS_t VIX_DQS,RF VIX_DQS,FR VDQSmid VIX_DQS,RF VIX_DQS,FR B DQS_c VDQS_trans D VDQS_trans/2 DQS_t,DQS_c : Single-ended Input Voltages Lowest horizontal tangent above VDQSmid of the transitioning signals A Highest horizontal tanget below VDQSmid of the transitioning signals VSSQ Figure 13. Vix Definition (DQS) [Table 18] Cross point voltage for DQS differential input signals Symbol Vix_DQS_ratio DDR4-1600/1866/2133/ 2400 Parameter DQS_t and DQS_c crossing relative to the midpoint of the DQS_t and DQS_c signal swings VDQSmid_to_Vcent VDQSmid offset relative to Vcent_DQ(midpoint) DDR4-2666/2933/3200 Unit Note 25 % 1, 2 min (VIHdiff,50) mV 3, 4, 5 Min Max Min Max - 25 - - min (VIHdiff,50) - NOTE : 1) Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals. 2) VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs drivers and paths are matched. 3) The maximum limit shall not exceed the smaller of VIHdiff minimum limit or 50mV. 4) VIX measurements are only applicable for transitioning DQS_t and DQS_c signals when toggling data, preamble and high-z states are not applicable conditions. 5) The parameter VDQSmid is defined for simulation and ATE testing purposes, it is not expected to be tested in a system. - 23 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 8.7.5 Differential Input Slew Rate Definition Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in Figure 13 and Figure 14. Figure 14. Differential Input Slew Rate Definition for DQS_t, DQS_c NOTE : 1) Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope. 2) Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope. [Table 19] Differential Input Slew Rate Definition for DQS_t, DQS_c Measured Description Defined by From To Differential input slew rate for rising edge (DQS_t - DQS_c) VILDiff_DQS VIHDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff Differential input slew rate for falling edge (DQS_t - DQS_c) VIHDiff_DQS VILDiff_DQS |VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff [Table 20] Differential Input Level for DQS_t, DQS_c Symbol Parameter VIHDiff_DQS Differential Input High VILDiff_DQS Differential Input Low DDR4-1600/1866/2133 Min DDR4-2400/2666 Max Min 136 - - -136 DDR4-2933 Max Min 130 - - -130 DDR4-3200 Max Unit NOTE Max Min 115 - 110 - mV - -115 - -110 mV [Table 21] Differential Input Slew Rate for DQS_t, DQS_c Symbol Parameter SRIdiff Differential Input Slew Rate DDR4-1600/1866/2133/2400 DDR4-2666/2933/3200 Min Max Min Max 3 18 2.5 18 - 24 - Unit V/ns NOTE datasheet K4A4G165WF Preliminary Rev. 0.9 DDR4 SDRAM 9.0 AC AND DC OUTPUT MEASUREMENT LEVELS 9.1 Output Driver DC Electrical Characteristics The DDR4 driver supports two different Ron values. These Ron values are referred as strong(low Ron) and weak mode(high Ron). A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows: The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows: RONPu = VDDQ -Vout I out under the condition that RONPd is off RONPd = Vout I out under the condition that RONPu is off Chip In Drive Mode Output Drive To other circuity like RCV, ... VDDQ IPu RONPu DQ RONPd Iout IPd Vout VSSQ Figure 15. Output driver - 25 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM [Table 22] Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range; after proper ZQ calibration RONNOM Resistor Vout Min Nom Max Unit NOTE RON34Pd 34 RON34Pu RON48Pd 48 VOLdc= 0.5*VDDQ 0.73 1 1.1 RZQ/7 1,2 VOMdc= 0.8* VDDQ 0.83 1 1.1 RZQ/7 1,2 VOHdc= 1.1* VDDQ 0.83 1 1.25 RZQ/7 1,2 VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/7 1,2 VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/7 1,2 VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/7 1,2 VOLdc= 0.5*VDDQ 0.73 1 1.1 RZQ/5 1,2 VOMdc= 0.8* VDDQ 0.83 1 1.1 RZQ/5 1,2 VOHdc= 1.1* VDDQ 0.83 1 1.25 RZQ/5 1,2 1,2 VOLdc= 0.5* VDDQ 0.9 1 1.25 RZQ/5 VOMdc= 0.8* VDDQ 0.9 1 1.1 RZQ/5 1,2 VOHdc= 1.1* VDDQ 0.8 1 1.1 RZQ/5 1,2 Mismatch between pull-up and pull-down, MMPuPd VOMdc= 0.8* VDDQ -10 - 17 % 1,2,3,4 Mismatch DQ-DQ within byte variation pull-up, MMPudd VOMdc= 0.8* VDDQ - - 10 % 1,2,4 Mismatch DQ-DQ within byte variation pull-dn, MMPddd VOMdc= 0.8* VDDQ - - 10 % 1,2,4 RON48Pu NOTE : 1) The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity. 9.1.1 Output Driver Temperature and Voltage Sensitivity 2) Pull-up and pull-dn output driver impedances are recommended to be calibrated at 0.8 * VDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.5 * VDDQ and 1.1 * VDDQ. 3) Measurement definition for mismatch between pull-up and pull-down, MMPuPd : Measure RONPu and RONPD both at 0.8*VDD separately; Ronnom is the nominal Ron value MMPuPd = RONPu -RONPd RONNOM *100 4) RON variance range ratio to RON Nominal value in a given component, including DQS_t and DQS_c. MMPudd = MMPddd = RONPuMax -RONPuMin RONNOM RONPdMax -RONPdMin RONNOM *100 *100 5) This parameter of x16 device is specified for Upper byte and Lower byte. - 26 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 9.1.1 Output Driver Temperature and Voltage Sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to the equations and tables below. ΔT = T - T(@calibration); ΔV = VDDQ - VDDQ(@ calibration); VDD = VDDQ [Table 23] Output Driver Sensitivity Definitions Symbol Min Max Unit RONPU@ VOH(DC) 0.6 - dRONdTH × |ΔT| - dRONdVH × |ΔV| 1.1 - dRONdTH × |ΔT| + dRONdVH × |ΔV| RZQ/6 RON@ VOM(DC) 0.9 - dRONdTM × |ΔT| - dRONdVM × |ΔV| 1.1 + dRONdTM × |ΔT| + dRONdVM × |ΔV| RZQ/6 RONPD@ VOL(DC) 0.6 - dRONdTL × |ΔT| - dRONdVL × |ΔV| 1.1 + dRONdTL × |ΔT| + dRONdVL × |ΔV| RZQ/6 [Table 24] Output Driver Temperature and Voltage Sensitivity Voltage and Temperature Range Symbol Unit Min Max dRONdTM 0 1.5 %/°C dRONdVM 0 0.15 %/mV dRONdTL 0 1.5 %/°C dRONdVL 0 0.15 %/mV dRONdTH 0 1.5 %/°C dRONdVM 0 0.15 %/mV 9.1.2 Alert_n output Drive Characteristic A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows: RONPd = Vout l Iout l under the condition that RONPu is off Alert Driver DRAM Alert RONPd Iout IPd Vout VSSQ Resistor RONPd Vout Min Max Unit NOTE VOLdc= 0.1* VDDQ 0.3 1.2 34Ω 1 VOMdc = 0.8* VDDQ 0.4 1.2 34Ω 1 VOHdc = 1.1* VDDQ 0.4 1.4 34Ω 1 NOTE: 1) VDDQ voltage is at VDDQ DC. - 27 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 9.1.3 Output Driver Characteristic of Connectivity Test (CT) Mode Following Output driver impedance RON will be applied Test Output Pin during Connectivity Test (CT) Mode. The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows: RONPu_CT = RONPd_CT = VDDQ-VOUT l Iout l VOUT l Iout l Chip In Driver Mode Output Driver VDDQ IPu_CT To other circuity like RCV,... RON Pu_CT DQ Iout RON Pd_CT Vout IPd_CT VSSQ Figure 16. Output Driver RONNOM_CT Resistor RONPd_CT 34 RONPu_CT Vout Max Units NOTE VOBdc = 0.2 x VDDQ 1.9 34 1 VOLdc = 0.5 x VDDQ 2.0 34 1 VOMdc = 0.8 x VDDQ 2.2 34 1 VOHdc = 1.1 x VDDQ 2.5 34 1 VOBdc = 0.2 x VDDQ 2.5 34 1 VOLdc = 0.5 x VDDQ 2.2 34 1 VOMdc = 0.8 x VDDQ 2.0 34 1 VOHdc = 1.1 x VDDQ 1.9 34 1 NOTE : 1) Connectivity test mode uses un-calibrated drivers, showing the full range over PVT. No mismatch between pull up and pull down is defined. - 28 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 9.2 Single-ended AC & DC Output Levels [Table 25] Single-ended AC & DC Output Levels Symbol Parameter VOH(DC) DC output high measurement level (for IV curve linearity) VOM(DC) DDR4-1600/1866/2133/2400/2666/2933/3200 Units 1.1 x VDDQ V NOTE DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V VOH(AC) AC output high measurement level (for output SR) (0.7 + 0.15) x VDDQ V 1 VOL(AC) AC output low measurement level (for output SR) (0.7 - 0.15) x VDDQ V 1 NOTE : 1) The swing of ± 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test load of 50Ω to VTT = VDDQ. 9.3 Differential AC & DC Output Levels [Table 26] Differential AC & DC Output Levels Symbol Parameter DDR4-1600/1866/2133/2400/2666/2933/3200 Units NOTE VOHdiff(AC) AC differential output high measurement level (for output SR) +0.3 x VDDQ V 1 VOLdiff(AC) AC differential output low measurement level (for output SR) -0.3 x VDDQ V 1 NOTE : 1) The swing of ± 0.3 × VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test load of 50Ω to VTT = VDDQ at each of the differential outputs. - 29 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 9.4 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 27 and Figure 17. [Table 27] Single-ended Output Slew Rate Definition Measured Description Defined by From To Single ended output slew rate for rising edge VOL(AC) VOH(AC) [VOH(AC)-VOL(AC)] / Delta TRse Single ended output slew rate for falling edge VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / Delta TFse NOTE : 1) Output slew rate is verified by design and characterization, and may not be subject to production test. VOH(AC) VTT VOL(AC) delta TFse delta TRse Figure 17. Single-ended Output Slew Rate Definition [Table 28] Single-ended Output Slew Rate Parameter Single ended output slew rate Symbol SRQse DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Min Max Min Max Min Max Min Max Min Max Min Max Min Max 4 9 4 9 4 9 4 9 4 9 4 9 4 9 Units V/ns Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting NOTE : 1) In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane. -Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low). -Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 9 V/ns applies - 30 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 9.5 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table 29 and Figure 18. [Table 29] Differential Output Slew Rate Definition Measured Description Defined by From To Differential output slew rate for rising edge VOLdiff(AC) VOHdiff(AC) [VOHdiff(AC)-VOLdiff(AC)] / Delta TRdiff Differential output slew rate for falling edge VOHdiff(AC) VOLdiff(AC) [VOHdiff(AC)-VOLdiff(AC)] / Delta TFdiff NOTE: 1) Output slew rate is verified by design and characterization, and may not be subject to production test. VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 18. Differential Output Slew Rate Definition [Table 30] Differential Output Slew Rate Parameter Differential output slew rate Symbol SRQdiff DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Min Max Min Max Min Max Min Max Min Max Min Max Min Max 8 18 8 18 8 18 8 18 8 18 8 18 8 18 Description: SR: Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) diff: Differential Signals For Ron = RZQ/7 setting - 31 - Units V/ns Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode. [Table 31] Single-ended AC & DC Output Levels of Connectivity Test Mode Symbol DDR4-1600/1866/2133/2400/2666/2933/ Unit 3200 Parameter Notes VOH(DC) DC output high measurement level (for IV curve linearity) 1.1 x VDDQ V VOM(DC) DC output mid measurement level (for IV curve linearity) 0.8 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.5 x VDDQ V VOB(DC) DC output below measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR) VTT + (0.1 x VDDQ) V 1 VOL(AC) AC output below measurement level (for output SR) VTT - (0.1 x VDDQ) V 1 Unit Notes NOTE : 1) The effective test load is 50Ω terminated by VTT = 0.5 * VDDQ. VOH(AC) VTT 0.5 * VDDQ VOL(AC) TF_output_CT TR_output_CT Figure 19. Output Slew Rate Definition of Connectivity Test Mode [Table 32] Single-ended Output Slew Rate of Connectivity Test Mode Parameter DDR4-1600/1866/2133/2400/2666/2933/3200 Symbol Min Max Output signal Falling time TF_output_CT - 10 ns/V Output signal Rising time TR_output_CT - 10 ns/V - 32 - Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 9.7 Test Load for Connectivity Test Mode Timing The reference load for ODT timings is defined in Figure 20. VDDQ CT_INPUTS DQ, DM DQSL_t, DQSL_c DQSU_t, DQSU_c DQS_t, DQS_c DUT Rterm = 50 ohm VSSQ Timing Reference Points Figure 20. Connectivity Test Mode Timing Reference Load - 33 - 0.5*VDDQ Preliminary Rev. 0.9 datasheet K4A4G165WF DDR4 SDRAM 10.0 SPEED BIN [Table 33] DDR4-1600 Speed Bins and Operations Speed Bin DDR4-1600 CL-nRCD-nRP 11-11-11 Parameter Symbol Internal read command to first data Internal read command to first data with read DBI enabled ACT to internal read or write delay time Normal CWL = 9,11 CL = 9 ns 13 tAA(min) + 2nCK tAA(max) +2nCK ns 13 - ns 13 - ns 13 9 x tREFI ns 13 - ns 13 1.6 ns 1,2,3,4,12,15 13.75 (13.50)5),13) 13.75 (13.50)5),13) tRAS ACT to ACT or REF command period CWL = 9 tAA_DBI tRP ACT to PRE command period 18.00 max 15) (13.50)5),13) tRCD PRE command period NOTE min 13.75 tAA Unit 35 48.75 tRC (48.50)5),13) Read DBI CL = 11 (Optional) 5) tCK(AVG) 1.5 (Optional)5),13) CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4,12 CL = 10 CL = 12 tCK(AVG) Reserved ns 1,2,3,4 CL = 11 CL = 13 tCK(AVG) 1.25
K4A4G165WF-BCTD 价格&库存

很抱歉,暂时无法提供与“K4A4G165WF-BCTD”相匹配的价格&库存,您可以联系我们找货

免费人工找货
K4A4G165WF-BCTD
  •  国内价格
  • 1+16.43740
  • 10+15.17300
  • 100+13.90860
  • 1000+12.64420

库存:42

K4A4G165WF-BCTD
  •  国内价格
  • 1+15.55200
  • 10+13.30560
  • 30+11.89080
  • 112+10.45440
  • 448+9.79560
  • 1008+9.51480

库存:1084

K4A4G165WF-BCTD
  •  国内价格
  • 1+12.82062
  • 10+12.31402
  • 100+10.79422
  • 500+10.49026

库存:882

K4A4G165WF-BCTD
  •  国内价格
  • 1+12.12640
  • 112+12.01200

库存:42

K4A4G165WF-BCTD
    •  国内价格
    • 1+16.63200
    • 10+14.22960
    • 30+12.71650
    • 112+11.18040
    • 448+10.47590
    • 1008+10.17560

    库存:1130