1-1-3 DC/DC Converter ICs
SPI-8001TW/SPI-8002TW/SPI-8003TW 2-Output, Step-down Switching Mode
■Features
■Absolute Maximum Ratings*1
• 2 regulators combined in one package
Ratings
Symbol
Parameter
• Output current: 1.5A × 2 (HSOP 16 Pin
Surface mount package)
Input Voltage
• High efficiency: TYP80% (SPI-8001TW),
TYP78% (SPI-8002TW)
SPI-8002TW
SPI-8003TW
VIN
21
40
40
V
VCC
21
40
40
V
VC/E
21
40
40
Power Dissipation*2, *3
• Variable output voltage: 1.0 to 16V (SPI8001TW), 1.0 to 24V (SPI-8002TW)
• Built-in reference oscillator (250kHz): Enables
to downsize a choke-coil
Unit
SPI-8001TW
PD
V
3.0
W
Junction Temperature
Tj
+135
+150
Storage Temperature
Tstg
–40 to +135
–40 to +150
Thermal Resistance (junction to case)*2
θ j-c
9.0
°C/W
Thermal Resistance (junction to ambient air)*2
θ j-a
35.8
°C/W
°C
°C
*1: Absolute maximum ratings show the destructive limit. No parameter should exceed the ratings in transient or normal
operations.
*2: When mounted on glass-epoxy board 70cm2 (copper laminate area 30.8cm2).
*3: Limited by thermal protection.
ns
• Low circuit current consumption: ≤ 1µA (at
output OFF)
• High accuracy reference voltage: ±1%
es
ig
• Built-in foldback-overcurrent and thermal
protection circuits
D
• Built-in ON/OFF circuit (soft start available) –
per output
■Applications
ew
• Onboard local power supplies
• For stabilization of the secondary-side output voltage of switching power supplies
■Recommended Operating Conditions*1
rN
• OA equipment
Symbol
SPI-8001TW
VIN
VO+3
VCC
4.5
VC/E
VO
Output Current Range
IO
Tjop
Operating Temperature Range
Top
1
m
Operating Junction Temperature Range
20
20
16
SPI-8003TW
Unit
max.
min.
VO+3
38
VO+3
38
V
4.5
38
4.5
38
V
38
V
24
V
20
en
Output Voltage Range
min.
de
Input Voltage Range
SPI-8002TW
max.
d
min.
fo
Ratings
Parameter
38
1
1.5
24
1
1.5
max.
1.5
A
–30
+135
–30
+135
–30
+125
°C
–30
+135
–30
+135
–30
+85
°C
N
ot
R
ec
o
m
*1: Recommended operating conditions show the operating conditions required for the normal circuit function described in the electrical characteristics.
These conditions must be followed in actual use.
60
ICs
SPI-8001TW/SPI-8002TW/SPI-8003TW
■Electrical Characteristics*1
(Ta=25°C)
Ratings
Symbol
0.996
1.006
Conditions
max.
min.
1.016
0.996
1.006
1.016
0.966
±0.1
80
Conditions
Eff2
215
Conditions
10
Conditions
Overcurrent Protection
Starting Current
IS
60
VIN=15V, VCC=5V, IO=0V, VO≤12V
IIN (off)
8.5
1
Low Level Voltage
1
1
1
—
fo
0.8
VIN=VCC=15V
IC/EH
95
Conditions
VSSL
60
95
Conditions
µA
VC/E=20V
0.5
VIN=VCC=15V
VSSL=0V, VIN=VCC=15V
V
95
VC/E=20V
80
0.8
VIN=VCC=14V
0.5
Conditions
V
VIN=VCC=14V
d
de
Conditions
mA
2
0.8
ISSL
8.5
VIN=VCC=15V
VC/EL
mA
VCC=14V, IO=0V, SS1=SS2=0V
2
Conditions
µA
VIN=14V, VCC=5V, IO=0A, SS1=SS2=0V
—
2
µA
VIN=14V, VC/E=0V or Open
0.5
V
VIN=VCC=14V
60
80
60
80
µA
VSSL=0V, VIN=VCC=14V
m
Inflow Current
at Low
mA
VCC=14V, IO=0A
Conditions
en
Inflow Current
at High
8.5
4
VC/EH
mA
VIN=14V, VCC=5V, IO=0A, VO≤12V
VIN=14V, VC/E=0V or Open
m
Low Level Voltage
A
—
—
mV
4
VCC=15V, VC/E=0V or Open
Conditions
High Level Voltage
40
IIN (ssov)
ICC (ssov)
Quiescent Circuit Current 6
10
1
1
Conditions
Quiescent Circuit Current 5
40
VIN=15V, VC/E=0V or Open
ICC (off)
mV
VIN=VCC=14V
8.5
VCC=15V, IO=0A
60
1.6
4
Conditions
Quiescent Circuit Current 4
30
VIN=VCC=14V, VO=5V, IO=0.2 to 1.5A
4
Conditions
Quiescent Circuit Current 3
10
1.6
ICC
kHz
VIN=14V, IO=0.1A, COSC=100pF
60
VIN=VCC=15V
Conditions
%
400
VIN=VCC=9 to 18V, VO=5V, IO=1A
40
1.6
IIN
Quiescent Circuit Current 2
30
VIN=VCC=15V, VO=5V, IO=0.2 to 1.5A
Conditions
Quiescent Circuit Current 1
200
VIN=VCC=10 to 20V, VO=5V, IO=1A
VLOAD
Load Regulation
285
ns
30
%
81
es
ig
Line Regulation
250
mV/ °C
VIN=14V, VCC=5V, VO=5V, IO=0.5A, IIN : excluding ICC
VIN=VCC=15V, VO=5V, IO=0.5A
VLINE
V
VIN= VCC=14V, VO=5V, IO=0.5A, IIN : including ICC
81
Conditions
1.016
78
VIN=15V, VO=5V, IO=0.5A, VCC=5V, IIN: excluding ICC
250
1.006
VIN=14V, IO=0.1A, Ta=–30 to +125°C
78
83
fosc
max.
±0.1
VIN=VCC=15V, VO=5V, IO=0.5A, IIN: including ICC
Conditions
Unit
typ.
VIN=14V, IO=0.1A
VIN=10V, VO=1V, IO=0.1A, Ta=–30 to +135°C
Eff1
Oscillation Frequency
typ.
±0.1
Conditions
Efficiency 2*2
SPI-8003TW
min.
VIN=10V, VO=1V, IO=0.1A
∆VREF/∆T
Efficiency 1*2
SPI-8002TW
max.
ew
Temperature Coefficient
of Reference Voltage
SS Pin*3
typ.
D
VREF
Reference Voltage
C/E Pin
SPI-8001TW
min.
rN
Parameter
ec
o
*1: Electrical characteristics show the characteristic ratings guaranteed when operating the ICs under the measurement conditions described in the above table.
*2: Efficiency is calculated from the following formula.
N
ot
R
η (%) = VO·IO × 100
VIN·IIN
*3: Pin 6 and pin 11 are the SS pins. Soft start at power on can be performed with capacitors connected to these pins. The outputs can also be turned ON/OFF with these pins. The
outputs are stopped by setting the voltages of these pins to VSSL or lower. SS-pin voltages can be changed with open-collector drive circuits of transistors.
When using both the soft-start and ON/OFF functions together, the discharge currents from C4 and C5 flow into the ON/OFF control transistors respectively. Therefore, limit the
currents securely to protect the transistors if C4 and C5 capacitances are large. The SS pins are pulled up to the power supply in the ICs, so applying the external voltages are
prohibited.
ICs
61
1-1-3 DC/DC Converter ICs
■External Dimensions (HSOP16)
(Unit : mm)
1.35±–0.2
1+0.1/–0.05
(Between the root of leads and
back side)
(Heatsink thickness)
10.5±0.2
16
9
0 to 8°
8
2.5±0.2
Enlarged View of A
es
ig
2.75MAX
1
ns
0.9±0.3
10.5±0.3
2.0+0.2/–0.08
0 to 0.1
A
S
0.10
D
0.25+0.15/–0.05
S
ew
12.2±–0.2
(Gate remains: Not included in dimensions)
(11)
Pin Assignment
(SPI-8001TW, SPI-8002TW)
q AGND
o AGND
!0 VREF2
w VIN1
e VCC
!1 SS2
r SWout1
!2 DGND2
t DGND1
!3 SWout2
y SS1
!4 C/E
!5 VIN2
u VREF1
i N.C
!6 N.C
16
de
d
(4.5)
7.5±0.2
fo
(2)
rN
Pin Assignment
(SPI-8003TW)
q AGND
w VIN1
e VCC
r SWout1
t DGND1
y SS1
u VREF1
i COSC
9
AGND
ROSC
VREF2
SS2
DGND2
SWout2
C/E
VIN2
0.4+0.15/–0.05
en
1.27±0.25
o
!0
!1
!2
!3
!4
!5
!6
m
Product Mass : Approx.0.86g
R
ec
o
m
■Block Diagram
3
VCC
ot
VC/E
VIN
VIN
+
C1
SPI-8001TW/SPI-8002TW
+
3
VCC
C6
3V
14
Start
C/E
VREF
PReg
OSC
fdown
TSD
UVLO
15
VC/E
3V
C/E
Start
VREF
N
C4
6
SS1
7
VREF1
10
VIN1
PWM
Logic
–
–
Buffer-Amp
f down
cut
Amp
UVLO
DGND1
VIN2
AGND
L1
4
5
VO1
C2
C7
6
SS1
7
VREF1
3V
+
–
–
+
Buffer-Amp
C5
15
f down
cut
R1
2
SWOUT1
4
DGND1
5
Drive
+
–
–
Amp
VIN1
OCP
PWM
Logic
R5
+
Di1
OCP
3V
f down
cut
C9
SWOUT1
PWM
Rosc
Cosc
R7
Drive
+
–
–
+
TSD
8
2
OCP
3V
+
fdown
C4
1V
1V
R5
OSC
RESET
PReg
RESET
f down
cut
C1
SPI-8003TW
PWM
VIN2
AGND
L1
11
10
SS2
VREF2
PWM
Logic
+
–
C5
Buffer-Amp
AGND
+
–
–
+
–
Amp
SWOUT2
13
PWM
L2
VO2
DGND2
C3
12
R3
R4
62
ICs
R6
11
SS2
VREF2
+
Di2
AGND
1, 9
R2
12
Drive
C7
R1
R2
R6
C2
16
OCP
3V
VO1
+
Di1
PWM
Logic
+
–
C8
C6
Buffer-Amp
AGND
+
–
–
–
+
Amp
Drive
SWOUT2
14
PWM
L2
VO2
+
Di2
DGND2
C3
13
AGND
1, 9
R3
R4
C8
SPI-8001TW/SPI-8002TW/SPI-8003TW
■Typical Connection Diagram
VIN
VCC
2
6
5
VCC
SWout1
L1
4
2
V01
Ch1
SS1
R1
Di1
7
6
+
C2
IREF1
DGND1
C4
15
C1
VIN2
5
R2
C4
V02
VC1
Ch1
Di1
7
C2
IREF1
VIN2
SWout2
14
VC2
Ch2
VREF2
10
12
+
C3
IREF2
DGND2
R6
C8
R4
AGND
C5
13
SS2
1, 9
GND
CORC
8
: 1kΩ
: 47 µH
: SJPB-H6
C1
C2, C3
C4
C5, C6
C7, C8
: 220 µF/50V
: 470 µF/25V
: 1 µF/50V
: 1 µF/10V
: 0.1 µF/50V
rN
ew
R5, R6
L1, L2
Di1, Di2
(Sanken)
GND
D
: 220 µF/50V
: 470 µF/25V
: 1 µF
: 0.1 µF
11
IREF2
C9
C1
C2, C3
C4, C5
C6, C7, C8
VREF2
DGND2
AGND
C6
1, 9
GND
Ch2
Di2
R3
ns
12
L2
R3
Di2
es
ig
R6
SS2
C7
R2
SPI-8003TW
16
C1
L2
11
R1
+
DGND1
C5
13
L1
4
SWout1
SS1
+
SWout2
C/E
VIN1
VREF1
R5
C7
SPI-8000TW
+
C6
C/E
VIN1
15
3
VREF1
R5
VC/F
VIN
VC/E
14
3
+
C3
C8
R4
RCSC
10
R7
C9
L1, L2
R2, R4
R5, R6
Di1, Di2
GND
: 100pF/10V
: 47 µH
: 1kΩ
: 1kΩ
: SJPB-H6 (Sanken)
m
m
en
de
d
fo
Diodes Di1, Di2
• Be sure to use Schottky-barrier diodes for Di1 and Di2.
If other diodes like fast recovery diodes are used, IC may be destroyed because of the reverse voltage generated by the recovery voltage or ON voltage.
Choke coils L1, L2
• If the winding resistance of the choke coil is too high, the efficiency may drop below the rated value.
• As the overcurrent protection starting current is about 2.0A, take care concerning heat radiation from the choke coil caused by magnetic saturation due to
overload or short-circuited load.
• Use a closed-magnetic-path coil to prevent interference between the channels SWout1 and SWout2.
Capacitors C1, C2, C3
• As large ripple currents flow through C1, C2 and C3, use high-frequency and low-impedance capacitors suitable for switching mode power supplies.
Especially when the impedance of C2 and C3 are high, the switching waveforms may become abnormal at low temperatures. For C2 and C3, do not use
capacitors with extremely low equivalent series resistance (ESR) such as OS capacitors or tantalum capacitors, which may cause abnormal oscillation.
Resistors R1, R2, R3, R4
• R1, R2, R3 and R4 are resistors for setting output voltages. Set the resistors so that IREF is approx. 1 mA. For example, R1 and R2 can be calculated as
shown below.
(VO1–VREF1)
(VO1–V)
VREF1
1
.=
=
(Ω), R2=
=
1(KΩ)
1×10–3
IREF1 1×10–3 .
IREF1
ec
o
R1=
R
To create the optimum operating conditions, place the components as close as possible to each other.
ot
■Ta-PD Characteristics
N
3.5
Power Dissipation PD (W)
3.0
θ j-a (Copper Laminate Area)
35.8°C/W (30.8 cm2)
38.2°C/W (15.6 cm2)
PD = VO·IO
42.6°C/W (8.64 cm2)
2.5
100
VO
–1 – VF·IO 1–
ηχ
VIN
52.3°C/W (3.34 cm2)
2.0
VO :
VIN :
IO :
ηχ :
VF :
69.2°C/W (0.84 cm2)
1.5
1.0
0.5
0.0
–25
0
25
50
75
100
Output Voltage
Input Voltage
Output Current
Efficiency (%)
D1 Forward Voltage
SJPB-H6···0.45V (IO=1A)
125 135 150
Ambient Temperature Ta (°C)
Note 1: The efficiency depends on the input voltage and the output current. Therefore, obtain the value from the efficiency graph and substitute the percentage in the formula above.
Note 2: Thermal design for D1 must be considered separately.
ICs
63