0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STR-A6061HZ

STR-A6061HZ

  • 厂商:

    SANKEN(三垦)

  • 封装:

    DIP7

  • 描述:

    STR-A6061HZ

  • 数据手册
  • 价格&库存
STR-A6061HZ 数据手册
Off-Line PWM Controllers with Integrated Power MOSFET STR-A6000MZ/HZ Series Data Sheet Description Package The STR-A6000MZ/HZ series are power ICs for switching power supplies, incorporating a power MOSFET and a current mode PWM controller IC. The low standby power is accomplished by the automatic switching between the PWM operation in normal operation and the burst-oscillation under light load conditions. The product achieves high costperformance power supply systems with few external components. DIP8 Not to scale Selection Guide Features • Electrical Characteristics • Current Mode Type PWM Control • Brown-In and Brown-Out Function • Soft Start Function • Auto Standby Function STR-A606×MZ MOSFET VDSS(min.) 700 V Frequency fOSC(AVG) 67 kHz STR-A606×HZ 700 V 100 kHz Part Number No Load Power Consumption < 25mW • Operation Mode Normal Operation ---------------------------- PWM Mode Standby -------------------------- Burst Oscillation Mode • Random Switching Function • Slope Compensation Function • Leading Edge Blanking Function • Bias Assist Function • Protections ・Two Types of Overcurrent Protection (OCP): Pulseby-Pulse, built-in compensation circuit to minimize OCP point variation on AC input voltage ・Overload Protection with timer (OLP): Auto-restart ・Overvoltage Protection (OVP): Auto-restart ・Thermal Shutdown (TSD) with hysteresis: Autorestart • MOSFET ON Resistance and Output Power, POUT* Part Number RDS(ON) (max.) fOSC(AVG) = 67 kHz STR-A6069MZ BR1 L51 D51 T1 PC1 P STR-A6063MZ D/ST D/ST RA C5 S R52 U51 VCC C2 R56 (-) D U1 STR-A6000×Z RB S/OCP BR GND FB/OLP 1 RC 2 ROCP 3 4 C4 C3 24 W 26 W 17 W 14 W 19.5 W 31 W 21 W 37.5 W 26 W fOSC(AVG) = 100 kHz STR-A6069HZ 6.0 Ω 17 W STR-A6061HZ 3.95 Ω 20.5 W 2.3 Ω 25 W 11 W 30 W 15 W 35 W 20 W 40 W 19.5 W 23.5 W 28 W ambient. The peak output power can be 120 to 140 % of the value stated here. Core size, ON Duty, and thermal design affect the output power. It may be less than the value stated here. Applications C53 C52 R53 R2 5 NC 2.3 Ω 10 W R51 R55 C51 D1 D2 VOUT (+) R54 R1 C6 C1 7 15 W * The output power is actual continues power that is measured at 50 °C VAC 8 6.0 Ω STR-A6061MZ 3.95 Ω 18.5 W STR-A6063HZ Typical Application POUT POUT (Adapter) (Open frame) AC85 AC85 AC230V AC230V ~265V ~265V • White goods • Office Automation Equipment • Audio Visual Equipment • Industrial Equipment • Other SMPS PC1 CY TC_STR-A6000xZ_1_R2 STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 1 STR-A6000MZ/HZ Series Contents Description ----------------------------------------------------------------------------------- 1 Contents--------------------------------------------------------------------------------------- 2 1. Absolute Maximum Ratings --------------------------------------------------------- 3 2. Electrical Characteristics ------------------------------------------------------------ 4 3. Performance Curves ------------------------------------------------------------------ 5 3.1 Derating Curves --------------------------------------------------------------- 5 3.2 MOSFET Safe Operating Area Curves ---------------------------------- 6 3.3 Ambient Temperature versus Power Dissipation Curve ------------- 6 3.4 Transient Thermal Resistance Curves ----------------------------------- 7 4. Block Diagram ------------------------------------------------------------------------- 8 5. Pin Configuration Definitions ------------------------------------------------------- 8 6. Typical Application ------------------------------------------------------------------- 9 7. Physical Dimension ------------------------------------------------------------------- 10 8. Marking Diagram -------------------------------------------------------------------- 10 9. Operational Description ------------------------------------------------------------- 11 9.1 Startup Operation ----------------------------------------------------------- 11 9.2 Undervoltage Lockout (UVLO) ------------------------------------------- 12 9.3 Bias Assist Function --------------------------------------------------------- 12 9.4 Soft Start Function ---------------------------------------------------------- 12 9.5 Constant Output Voltage Control ---------------------------------------- 13 9.6 Leading Edge Blanking Function ---------------------------------------- 14 9.7 Random Switching Function ---------------------------------------------- 14 9.8 Automatic Standby Mode Function-------------------------------------- 14 9.9 Brown-In and Brown-Out Function ------------------------------------- 14 9.10 Overcurrent Protection (OCP) ------------------------------------------- 16 9.11 Overload Protection (OLP) ------------------------------------------------ 17 9.12 Overvoltage Protection (OVP) -------------------------------------------- 17 9.13 Thermal Shutdown (TSD) ------------------------------------------------- 18 10. Design Notes --------------------------------------------------------------------------- 18 10.1 External Components ------------------------------------------------------- 18 10.2 PCB Trace Layout and Component Placement ----------------------- 20 11. Pattern Layout Example ------------------------------------------------------------ 22 12. Reference Design of Power Supply ----------------------------------------------- 23 Important Notes ---------------------------------------------------------------------------- 26 STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 2 STR-A6000MZ/HZ Series 1. Absolute Maximum Ratings • The polarity value for current specifies a sink as "+," and a source as "−," referencing the IC. • Unless otherwise specified TA = 25 °C, 7 pin = 8 pin Parameter Symbol Test Conditions Pins Rating Units 1.8 Drain Peak Current (1) Maximum Switching Current IDPEAK (2) IDMAX Single pulse TA = − 40 ~ 125 °C 8−1 8−1 ILPEAK=1.8A Avalanche Energy (3)(4) EAS ILPEAK=1.78A 8−1 2.5 A6069MZ/HZ A A6063MZ/HZ 1.8 A6069MZ/HZ 2.5 A A6063MZ/HZ 24 A6069MZ/HZ 36 mJ A6061MZ/HZ A6063MZ/HZ 1−3 − 2 to 6 V BR Pin Voltage VBR 2−3 − 0.3 to 7.5 V BR Pin Sink Current IBR 2−3 1.0 mA FB/OLP Pin Voltage VFB 4−3 − 0.3 to 14 V FB/OLP Pin Sink Current IFB 4−3 1.0 mA VCC Pin Voltage VCC 5−3 32 V D/ST Pin Voltage VD/ST 8−3 − 1 to VDSS V 8−1 1.35 W (6) A6061MZ/HZ 4.0 VS/OCP S/OCP Pin Voltage A6061MZ/HZ 4.0 53 ILPEAK=2.15A Notes MOSFET Power Dissipation(5) PD1 Control Part Power Dissipation PD2 5−3 1.2 W Operating Ambient Temperature TOP − − 40 to 125 °C Storage Temperature Tstg − − 40 to 125 °C Channel Temperature Tch − 150 °C (1) Refer to 3.2MOSFET Safe Operating Area Curves The Maximum Switching Current is the drain current determined by the drive voltage of the IC and threshold voltage of the MOSFET, VGS(th). (3) Refer to Figure 3-2 Avalanche Energy Derating Coefficient Curve (4) Single pulse, VDD = 99 V, L = 20 mH (5) Refer to 3.3 TA-PD1Curve (6) When embedding this hybrid IC onto the printed circuit board (copper area in a 15 mm × 15 mm) (2) STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 3 STR-A6000MZ/HZ Series 2. Electrical Characteristics • The polarity value for current specifies a sink as "+," and a source as "−," referencing the IC. • Unless otherwise specified, TA = 25 °C, VCC = 18 V, 7 pin = 8 pin Parameter Symbol Test Conditions Pins Min. Typ. Max. Units Notes Power Supply Startup Operation Operation Start Voltage VCC(ON) 5−3 13.8 15.0 16.2 V Operation Stop Voltage(*) VCC(OFF) 5−3 7.6 8.5 9.2 V 5−3 − 1.5 2.5 mA 8–3 40 47 55 V Circuit Current in Operation Startup Circuit Operation Voltage Startup Current Startup Current Biasing Threshold Voltage Normal Operation Average Switching Frequency Switching Frequency Modulation Deviation VCC = 12 V VST(ON) ICC(ST) VCC = 13.5 V 5−3 − 4.5 − 2.5 − 1.2 mA VCC(BIAS) ICC = −500 µA 5−3 8.0 9.6 10.5 V 60 67 73 90 100 110 − 5.4 − − 8.4 − 4−3 − 170 − 130 − 85 µA fOSC(AVG) 8–3 Δf 8−3 A60××MZ kHz A60××HZ A60××MZ kHz A60××HZ Maximum Feedback Current IFB(MAX) Minimum Feedback Current IFB(MIN) 4−3 − 21 − 13 −5 µA Standby Operation FB/OLP Pin Oscillation Stop VFB(OFF) Threshold Voltage Brown-In / Brown-Out Function 4−3 1.06 1.16 1.26 V Brown-In Threshold Voltage VBR(IN) 2–3 5.43 5.60 5.77 V VBR(OUT) 2−3 4.65 4.80 4.95 V 2−3 6.5 6.9 7.3 V VBR(DIS) 2−3 0.4 0.6 0.8 V DMAX 8−3 70 75 80 % tBW − − 330 − ns − − 17.3 − DPC − 25.8 − Brown-Out Threshold Voltage BR Pin Clamp Voltage BR Function Disabling Threshold Voltage Protection Maximum ON Duty Leading Edge Blanking Time OCP Compensation Coefficient OCP Compensation ON Duty OCP Threshold Voltage at Zero ON Duty OCP Threshold Voltage at 36% ON Duty OCP Threshold Voltage in Leading Edge Blanking Time (*) ICC(ON) VCC = 12 V VBR(CLAMP) IBR = 100 µA mV/μs A60××MZ A60××HZ DDPC − − 36 − % VOCP(L) 1−3 0.735 0.795 0.855 V VOCP(H) 1−3 0.843 0.888 0.933 V VOCP(LEB) 1−3 − 1.69 − V VCC(BIAS) > VCC(OFF) always. STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 4 STR-A6000MZ/HZ Series Parameter Test Conditions Symbol Pins Min. Typ. Max. Units VFB(OLP) 4−3 6.8 7.3 7.8 V tOLP 4−3 55 75 90 ms ICC(OLP) 5−3 − 220 − µA VFB(CLAMP) 4−3 10.5 11.8 13.5 V VCC(OVP) 5−3 27.0 29.1 31.2 V Tj(TSD) − 127 145 − °C Tj(TSD)HYS − − 80 − °C OLP Threshold Voltage OLP Delay Time OLP Operation Current FB/OLP Pin Clamp Voltage OVP Threshold Voltage Thermal Shutdown Operating Temperature Thermal Shutdown Temperature Hysteresis MOSFET Drain-to-Source Breakdown Voltage Drain Leakage Current On-Resistance VDSS IDS = 300 µA 8−1 700 − − V IDSS VDS = 700 V 8−1 − − 300 µA − − 6.0 Ω − − 3.95 Ω − − 2.3 Ω RDS(ON) Switching Time IDS = 0.4 A 8−1 tf 8−1 − − 250 ns θch-C − − − 22 °C/W Notes A6069MZ /HZ A6061MZ /HZ A6063MZ /HZ Thermal Resistance Channel to Case 3. 3.1 Performance Curves Derating Curves 100 EAS Temperature Derating Coefficient (%) Safe Operating Area Temperature Derating Coefficient (%) 100 80 60 40 20 80 60 40 20 0 0 0 25 50 75 100 125 150 Channel Temperature, Tch (°C) Figure 3-1 SOA Temperature Derating Coefficient Curve STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 25 50 75 100 125 150 Channel Temperature, Tch (°C) Figure 3-2 Avalanche Energy Derating Coefficient Curve 5 STR-A6000MZ/HZ Series 3.2 MOSFET Safe Operating Area Curves ⚫ When the IC is used, the safe operating area curve should be multiplied by the temperature derating coefficient derived from Figure 3-1. ⚫ The broken line in the safe operating area curve is the drain current curve limited by on-resistance. ⚫ Unless otherwise specified, TA = 25 °C, Single pulse ⚫ STR-A6061MZ/HZ ⚫ STR-A6063MZ/HZ 1 1ms 0.1 0.1ms Drain Current, ID (A) S_STR-A6061xZ_R1 Drain Current, ID (A) 0.1ms 1 1ms S_STR-A6063xZ_R1 10 10 0.1 0.01 0.01 1 10 100 Drain-to-Source Voltage (V) 1000 1 10 100 Drain-to-Source Voltage (V) 1000 ⚫ STR-A6069MZ/HZ Drain Current, ID (A) 0.1ms 1 S_STR-A6069xZ_R1 10 1ms 0.1 0.01 1 10 100 1000 Drain-to-Source Voltage (V) 3.3 Ambient Temperature versus Power Dissipation Curve 1.4 PD1=1.35W 1.2 1 0.8 PD1_STR-A6000xZ_R2 Power Dissipation, PD1 (W) 1.6 0.6 0.4 0.2 0 0 25 50 75 100 125 Ambient Temperature, TA (°C ) 150 STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 6 STR-A6000MZ/HZ Series 3.4 Transient Thermal Resistance Curves ⚫ STR-A6061MZ/HZ TR_STR-A6061xZ_R1 Transient Thermal Resistance θch-c (°C/W) 100 10 1 0.1 0.01 1µ 10µ 100µ 1m 10m 100m 1s 10m 100m 1s 10m 100m 1s Time (s) ⚫ STR-A6063MZ/HZ TR_STR-A6063xZ_R1 Transient Thermal Resistance θch-c (°C/W) 100 10 1 0.1 0.01 1µ 10µ 100µ 1m Time (s) ⚫ STR-A6069MZ/HZ TR_STR-A6069xZ_R1 Transient Thermal Resistance θch-c (°C/W) 100 10 1 0.1 0.01 1µ 10µ 100µ 1m Time (s) STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 7 STR-A6000MZ/HZ Series 4. Block Diagram VCC 5 Startup UVLO BR 2 REG VREG OVP D/ST 7,8 TSD Brown-in Brown-out DRV PWM OSC S Q R OCP VREG VCC Drain peak current compensation OLP Feedback control FB/OLP 4 LEB S/OCP 1 GND 3 Slope compensation BD_STR-A6000xZ_R1 5. Pin Configuration Definitions S/OCP 1 8 D/ST BR 2 7 D/ST GND 3 6 FB/OLP 4 5 VCC Pin Name 1 S/OCP 2 BR 3 GND 4 FB/OLP 5 VCC 6 − 7 8 D/ST Descriptions Power MOSFET source and Overcurrent Protection (OCP) signal input Brown-In and Brown-Out detection voltage input Ground Constant voltage control signal input and Overload Protection (OLP) signal input Power supply voltage input for control part and Overvoltage Protection (OVP) signal input (Pin removed) Power MOSFET drain and startup current input STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 8 STR-A6000MZ/HZ Series 6. Typical Application • The following drawings show circuits enabled and disabled the Brown-In/Brown-Out Function. • The PCB traces the D/ST pins should be as wide as possible, in order to enhance thermal dissipation. • In applications having a power supply specified such that the D/ST pin has large transient surge voltages, a clamp snubber circuit of a capacitor-resistor-diode (CRD) combination should be added on the primary winding P, or a damper snubber circuit of a capacitor (C) or a resistor-capacitor (RC) combination should be added between the D/ST pin and the S/OCP pin. CRD Clamp snubber BR1 VAC VOUT (+) R54 R1 C6 RA L51 D51 T1 PC1 C1 R51 P R55 C51 D1 RB D2 8 C5 NC C53 C52 R53 R2 U51 5 7 D/ST D/ST R52 S VCC R56 D C2 (-) U1 STR-A6000×Z S/OCP BR GND FB/OLP C(RC) Damper snubber 1 RC 2 3 4 C4 C3 PC1 ROCP CY TC_STR-A6000xZ_2_R1 Figure 6-1 Typical application (enabled Brown-In/Brown-Out Function, DC line detection) CRD clamp snubber BR1 L51 D51 T1 VAC VOUT R54 R1 C6 PC1 C1 R51 P R55 C51 D1 S D2 8 D/ST D/ST C5 NC U51 VCC C2 C53 C52 R53 R2 5 7 R52 R56 D U1 GND STR-A6000 S/OCP BR GND FB/OLP C(RC) damper snubber 1 2 3 4 C3 ROCP PC1 CY TC_STR-A6000xZ_3_R1 Figure 6-2 Typical application (disabled Brown-In/Brown-Out Function) STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 9 STR-A6000MZ/HZ Series 7. Physical Dimension • DIP8 NOTES: 1) Dimension is in millimeters. 2) Pb-free. Device composition compliant with the RoHS directive. 8. Marking Diagram 8 Specific Device Code1 (See Table 8-1) Specific Device Code2 (See Table 8-1) S KY MD 1 Y is the last digit of the year of manufacture (0 to 9) M is the month of the year (1 to 9, O, N, or D) D is the period of days represented by: 1: the first 10 days of the month (1st to 10th) 2: the second 10 days of the month (11th to 20th) 3: the last 10–11 days of the month (21st to 31st) Control Number Table 8-1 Specific Device Code 1 A6069M A6061M A6063M A6069H A6061H A6063H Specific Device Code Specific Device Code 2 Z Z Z Z Z Z STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 Part Number STR-A6069MZ STR-A6061MZ STR-A6063MZ STR-A6069HZ STR-A6061HZ STR-A6063HZ 10 STR-A6000MZ/HZ Series 9. Operational Description 9.1.2 With Brown-In / Brown-Out Function • All of the parameter values used in these descriptions are typical values, unless they are specified as minimum or maximum. • With regard to current direction, "+" indicates sink current (toward the IC) and "–" indicates source current (from the IC). 9.1 When BR pin voltage is more than VBR(DIS) = 0.6 V and less than VBR(IN) = 5.60 V, the Bias Assist Function (refer to Section 9.3) is disabled. Thus, VCC pin voltage repeats increasing to VCC(ON) and decreasing to VCC(OFF) (shown in Figure 9-3). When the BR pin voltage becomes VBR(IN) or more, the IC starts switching operation. BR1 Startup Operation Figure 9-1 shows the circuit around the IC. The IC incorporates the startup circuit. The circuit is connected to the D/ST pin. When the D/ST pin voltage reaches to Startup Circuit Operation Voltage, VST(ON) = 47 V, the startup circuit starts operation. During the startup process, the constant current, ICC(ST) = − 2.5 mA, charges C2 at the VCC pin. When the VCC pin voltage increases to VCC(ON) = 15.0 V, the control circuit starts operation. During the IC operation, the voltage rectified the auxiliary winding voltage, V D, of Figure 9-1 becomes a power source to the VCC pin. After switching operation begins, the startup circuit turns off automatically so that its current consumption becomes zero. The approximate value of auxiliary winding voltage is about 15 V to 20 V, taking account of the winding turns of D winding so that VCC pin voltage becomes Equation (1) within the specification of input and output voltage variation of power supply. C1 7, 8 D/ST U1 VCC (1) 9.1.1 Without Brown-In / Brown-Out Function (BR pin voltage is VBR(DIS) = 0.6 V or less) BR 2 GND VCC ( ON )-VCC ( INT) where, tSTART : Startup time of the IC (s) VCC(INT) : Initial voltage on the VCC pin (V) R2 VD D 3 Figure 9-1 VCC pin peripheral circuit (Without Brown-In / Brown-Out Function) VCC pin voltage VCC(ON) Drain current, ID Figure 9-2 Startup operation (Without Brown-In / Brown-Out Function) VCC pin voltage When VCC pin voltage increases to VCC(ON), the IC starts switching operation, As shown in Figure 9-2. The startup time of the IC is determined by C2 capacitor value. The approximate startup time tSTART (shown in Figure 9-2) is calculated as follows: I CC (ST ) D2 P tSTART The oscillation start timing of the IC depends on Brown-In / Brown-Out Function (refer to Section 9.9). t START = C2 × 5 C2 VCC ( BIAS ) (max .)  VCC  VCC ( OVP ) (min .) ⇒10.5 (V)  VCC  27.0 (V) T1 VAC (2) tSTART VCC(ON) VCC(OFF) BR pin voltage VBR(IN) Drain current, ID Figure 9-3 Startup operation (With Brown-In / Brown-Out Function) STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 11 STR-A6000MZ/HZ Series 9.2 Undervoltage Lockout (UVLO) Figure 9-4 shows the relationship of VCC pin voltage and circuit current ICC. When the VCC pin voltage decreases to VCC(OFF) = 8.5 V, the control circuit stops operation by the Undervoltage Lockout (UVLO) circuit, and reverts to the state before startup. Circuit current, ICC ICC(ON) When the VCC pin voltage is decrease to VCC(OFF) = 8.5 V in startup operation, the IC stops switching operation and a startup failure occurs. When the output load is light at startup, the output voltage may become more than the target voltage due to the delay of feedback circuit. In this case, the FB pin voltage is decreased by the feedback control. When the FB pin voltage decreases to VFB(OFF) or less, the IC stops switching operation and the VCC pin voltage decreases. When the VCC pin voltage decreases to VCC(BIAS), the Bias Assist Function is activated and the startup failure is prevented. VCC pin voltage Stop Start Startup success IC starts operation Target operating voltage Increase with rising of output voltage VCC(ON) VCC(BIAS) VCC(OFF) VCC(ON) VCC pin voltage Bias assist period VCC(OFF) Startup failure Time Figure 9-4 Relationship between VCC pin voltage and ICC Figure 9-5 9.3 VCC pin voltage during startup period Bias Assist Function By the Bias Assist Function, the startup failure is prevented. When FB pin voltage is the FB/OLP Pin Oscillation Stop Threshold Voltage, VFB(OFF)= 1.16 V or less and VCC pin voltage decreases to the Startup Current Biasing Threshold Voltage, VCC(BIAS) = 9.6 V, the Bias Assist Function is activated. When the Bias Assist Function is activated, the VCC pin voltage is kept almost constant voltage, VCC(BIAS) by providing the startup current, ICC(ST), from the startup circuit. Thus, the VCC pin voltage is kept more than VCC(OFF). Since the startup failure is prevented by the Bias Assist Function, the value of C2 connected to the VCC pin can be small. Thus, the startup time and the response time of the Overvoltage Protection (OVP) become shorter. The operation of the Bias Assist Function in startup is as follows. It is necessary to check and adjust the startup process based on actual operation in the application, so that poor starting conditions may be avoided. Figure 9-5 shows the VCC pin voltage behavior during the startup period. After the VCC pin voltage increases to VCC(ON) = 15.0 V at startup, the IC starts the operation. Then circuit current increases and the VCC pin voltage decreases. At the same time, the auxiliary winding voltage, VD, increases in proportion to output voltage. These are all balanced to produce the VCC pin voltage. 9.4 Soft Start Function Figure 9-6 shows the behavior of VCC pin voltage and drain current during the startup period. VCC pin voltage Startup of IC Startup of SMPS Normal opertion tSTART VCC(ON) VCC(OFF) Time D/ST pin current, ID Soft start period approximately 8.75 ms (fixed) Limited by OCP operation tLIM < tOLP (min.) Time Figure 9-6 VCC and ID behavior during startup The IC activates the soft start circuitry during the startup period. Soft start time is fixed to around 8.75 ms. during the soft start period, over current threshold is increased step-wisely (7 steps). This function reduces the voltage and the current stress of a power MOSFET and a STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 12 STR-A6000MZ/HZ Series secondary side rectifier diode. Since the Leading Edge Blanking Function (refer to Section 0) is deactivated during the soft start period, there is the case that ON time is less than the leading edge blanking time, tBW = 330 ns. After the soft start period, D/ST pin current, ID, is limited by the Overcurrent Protection (OCP), until the output voltage increases to the target operating voltage. This period is given as t LIM. In case tLIM is longer than the OLP Delay Time, tOLP, the output power is limited by the Overload Protection (OLP). Thus, it is necessary to adjust the value of output capacitor and the turn ratio of auxiliary winding D so that the t LIM is less than tOLP = 55 ms (min.). 9.5 Constant Output Voltage Control The IC achieves the constant voltage control of the power supply output by using the current-mode control method, which enhances the response speed and provides the stable operation. FB/OLP pin voltage is internally added the slope compensation at the feedback control (refer to Section 4.Functionnal Block Diagram), and the target voltage, VSC, is generated. The IC compares the voltage, VROCP, of a current detection resistor with the target voltage, V SC, by the internal FB comparator, and controls the peak value of VROCP so that it gets close to VSC, as shown in Figure 9-7 and Figure 9-8. U1 S/OCP 1 GND 3 FB/OLP 4 PC1 ROCP VROCP Figure 9-7 C3 • Light load conditions When load conditions become lighter, the output voltage, VOUT, increases. Thus, the feedback current from the error amplifier on the secondary-side also increases. The feedback current is sunk at the FB/OLP pin, transferred through a photo-coupler, PC1, and the FB/OLP pin voltage decreases. Thus, VSC decreases, and the peak value of VROCP is controlled to be low, and the peak drain current of ID decreases. This control prevents the output voltage from increasing. • Heavy load conditions When load conditions become greater, the IC performs the inverse operation to that described above. Thus, VSC increases and the peak drain current of I D increases. This control prevents the output voltage from decreasing. In the current mode control method, when the drain current waveform becomes trapezoidal in continuous operating mode, even if the peak current level set by the target voltage is constant, the on-time fluctuates based on the initial value of the drain current. This results in the on-time fluctuating in multiples of the fundamental operating frequency as shown in Figure 9-9. This is called the subharmonics phenomenon. In order to avoid this, the IC incorporates the Slope Compensation Function. Because the target voltage is added a down-slope compensation signal, which reduces the peak drain current as the on-duty gets wider relative to the FB/OLP pin signal to compensate VSC, the subharmonics phenomenon is suppressed. Even if subharmonic oscillations occur when the IC has some excess supply being out of feedback control, such as during startup and load shorted, this does not affect performance of normal operation. IFB Target voltage without Slope Compensation FB/OLP pin peripheral circuit Target voltage including Slope Compensation - VSC + VROCP tON1 T FB Comparator Voltage on both sides of ROCP tON2 T T Figure 9-9 Drain current, ID, waveform in subharmonic oscillation Drain current, ID Figure 9-8 Drain current, ID, and FB comparator operation in steady operation STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 13 STR-A6000MZ/HZ Series 9.6 Leading Edge Blanking Function The constant voltage control of output of the IC uses the peak-current-mode control method. In the peak-current-mode control method, there is a case that a power MOSFET turns off due to unexpected response of the FB comparator or Overcurrent Protection circuit (OCP) to the steep surge current in turning on the power MOSFET. In order to prevent this response to the surge voltage in turning-on the power MOSFET, the Leading Edge Blanking Time, tBW = 330 ns is built-in. During tBW, the OCP threshold voltage becomes VOCP(LEB) = 1.69 V in order not to respond to the turn-on drain current surge (refer to Section 9.10). Output current, IOUT Below several kHz Drain current, ID Normal operation Figure 9-10 9.9 9.7 Random Switching Function The IC modulates its switching frequency randomly by superposing the modulating frequency on f OSC(AVG) in normal operation. This function reduces the conduction noise compared to others without this function, and simplifies noise filtering of the input lines of power supply. 9.8 Automatic Standby Mode Function Automatic standby mode is activated automatically when FB/OLP pin voltage decreases to VFB(OFF) = 1.16 V. The operation mode becomes burst oscillation, as shown in Figure 9-10. Burst oscillation mode reduces switching losses and improves power supply efficiency because of periodic non-switching intervals. Generally, to improve efficiency under light load conditions, the frequency of the burst oscillation mode becomes just a few kilohertz. Because the IC suppresses the peak drain current well during burst oscillation mode, audible noises can be reduced. If the VCC pin voltage decreases to VCC(BIAS) = 9.6 V during the transition to the burst oscillation mode, the Bias Assist Function is activated and stabilizes the Standby mode operation, because ICC(ST) is provided to the VCC pin so that the VCC pin voltage does not decrease to VCC(OFF). However, if the Bias Assist Function is always activated during steady-state operation including standby mode, the power loss increases. Therefore, the VCC pin voltage should be more than VCC(BIAS), for example, by adjusting the turns ratio of the auxiliary winding and secondary winding and/or reducing the value of R2 (refer to Section 10.1). Burst oscillation Standby operation Normal operation Auto Standby mode timing Brown-In and Brown-Out Function This function stops switching operation when it detects low input line voltage, and thus prevents excessive input current and overheating. This function turns on and off switching operation according to BR pin voltage detecting the AC input voltage. When the BR pin voltage becomes more than VBR(DIS) = 0.6 V, this function is activated. Figure 9-11 shows waveforms of the BR pin voltage and the drain currnet. Even if the IC is in the operating state that the VCC pin voltage is VCC(OFF) or more, when the AC input voltage decreases from steady-state and the BR pin voltage falls to VBR(OUT) = 4.80 V or less for the OLP Delay Time, tOLP = 75 ms, the IC stops switching operation. When the AC input voltage increases and the BR pin voltage reaches VBR(IN) = 5.60 V or more in the operating state that VCC pin voltage is VCC(OFF) or more, the IC starts switching operation. When the Brown-In and Brown-Out Function is unnecessary, connect the BR pin trace to the GND pin trace so that the BR pin voltage is VBR(DIS) or less. BR pin voltage VBR(IN) VBR(OUT) Drain current, ID Figure 9-11 tOLP BR pin voltage and drain current waveforms There are two types of detection method as follows: 9.9.1 DC Line Detection STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 14 STR-A6000MZ/HZ Series Figure 9-12 shows the BR pin peripheral circuit of DC line detection. There is a ripple voltage on C1 occurring at a half period of AC cycle. In order to detect each peak of the ripple voltage, the time constant of RC and C4 should be shorter than a half period of AC cycle. Since the cycle of the ripple voltage is shorter than tOLP, the switching operation does not stop when only the bottom part of the ripple voltage becomes lower than VBR(OUT). Thus it minimizes the influence of load conditions on the voltage detection. The components around the BR pin: ・ RA and RB are a few megohms. Because of high voltage applied and high resistance, it is recommended to select a resistor designed against electromigration or use a combination of resistors in series for that to reduce each applied voltage, according to the requirement of the application. ・ RC is a few hundred kilohms ・ C4 is 470 pF to 2200 pF for high frequency noise reduction BR1 VAC RA VDC U1 C1 RB 2 RC BR C4 GND 3 Parameter VBR(IN) Value (Typ.) 5.60 V VBR(OUT) 4.80 V Symbol Brown-In Threshold Voltage Brown-Out Threshold Voltage VDC(OP) can be expressed as the effective value of AC input voltage using Equation (4). VAC ( OP ) RMS = 1 2  VDC( OP ) (4) RA, RB, RC and C4 should be selected based on actual operation in the application. 9.9.2 AC Line Detection Figure 9-13 shows the BR pin peripheral circuit of AC line detection. In order to detect the AC input voltage, the time constant of RC and C4 should be longer than the period of AC cycle. Thus the response of the BR pin detection becomes slow compared with the DC line detection. This method detects the AC input voltage, and thus it minimizes the influence from load conditions. Also, this method is free of influence from C1 charging and discharging time. BR1 VAC RA 3 VCC RS Figure 9-12 DC line detection VDC Neglecting the effect of both input resistance and forward voltage of rectifier diode, the reference value of C1 voltage when the Brown-In and Brown-Out Function is activated is calculated as follows:  R + RB   VDC( OP ) = VBR ( TH)  1 + A R C   (3) where, VDC(OP) : C1 voltage when the Brown-In and BrownOut Function is activated VBR(TH) : Any one of threshold voltage of the BR pin (see Table 9-1) Table 9-1 BR pin threshold voltage U1 RB C1 2 RC Figure 9-13 BR C4 GND 3 AC line detection The components around the BR pin: ・ RA and RB are a few megohms. Because of high voltage applied and high resistance, it is recommended to select a resistor designed against electromigration or use a combination of resistors in series for that to reduce each applied voltage, according to the requirement of the application. ・ RC is a few hundred kilohms ・ RS must be adjusted so that the BR pin voltage is more than VBR(DIS) = 0.6 V when the VCC pin voltage is VCC(OFF) = 8.5 V ・ C4 is 0.22 μF to 1 μF for averaging AC input voltage and high frequency noise reduction Neglecting the effect of input resistance is zero, the STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 15 STR-A6000MZ/HZ Series reference effective value of AC input voltage when the Brown-In and Brown-Out Function is activated is calculated as follows: VAC ( OP ) RMS  R + RB   =  VBR ( TH)  1 + A R C  2   C(RC) Damper snubber T1 D51 C1 C51 (5 ) where, VAC(OP)RMS : The effective value of AC input voltage when the Brown-In and Brown-Out Function is activated VBR(TH) : Any one of threshold voltage of the BR pin (see Table 9-1) 7, 8 D/ST U1 ROCP RA, RB, RC and C4 should be selected based on actual operation in the application. Overcurrent Protection (OCP) detects each drain peak current level of a power MOSFET on pulse-by-pulse basis, and limits the output power when the current level reaches to OCP threshold voltage. During the Leading Edge Blanking Time, the OCP threshold voltage becomes VOCP(LEB) = 1.69 V which is higher than the normal OCP threshold voltage as shown in Figure 9-14. Changing to this threshold voltage prevents the IC from responding to the surge voltage in turning-on the power MOSFET. This function operates as protection at the condition such as output windings shorted or unusual withstand voltage of secondary-side rectifier diodes. When the power MOSFET turns on, the surge voltage width of the S/OCP pin should be less than tBW, as shown in Figure 9-14. In order to prevent surge voltage, pay extra attention to ROCP trace layout (refer to Section 10.2). In addition, if a C (RC) damper snubber of Figure 9-15 is used, reduce the capacitor value of damper snubber. tBW VOCP(LEB) VOCP’ Figure 9-15 Damper snubber < Input Compensation Function > ICs with PWM control usually have some propagation delay time. The steeper the slope of the actual drain current at a high AC input voltage is, the larger the detection voltage of actual drain peak current is, compared to VOCP. Thus, the peak current has some variation depending on the AC input voltage in OCP state. In order to reduce the variation of peak current in OCP state, the IC incorporates a built-in Input Compensation Function. The Input Compensation Function is the function of correction of the OCP threshold voltage depending with AC input voltage, as shown in Figure 9-16. When AC input voltage is low (ON Duty is broad), the OCP threshold voltage is controlled to become high. The difference of peak drain current become small compared with the case where the AC input voltage is high (ON Duty is narrow). 1.0 OCP Threshold Voltage after compensation, VOCP' 9.10 Overcurrent Protection (OCP) C(RC) Damper snubber S/OCP 1 VOCP(H) VOCP(L) DDPC=36% 0.5 0 50 DMAX=75% 100 ON Duty (%) Surge pulse voltage width at turning-on Figure 9-14 Figure 9-16 Relationship between ON Duty and Drain Current Limit after compensation S/OCP pin voltage STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 16 STR-A6000MZ/HZ Series The compensation signal depends on ON Duty. The relation between the ON Duty and the OCP threshold voltage after compensation VOCP' is expressed as Equation (6). When ON Duty is broader than 36 %, the VOCP' becomes a constant value VOCP(H) = 0.888 V U1 GND FB/OLP 3 IFB 4 VCC 5 D2 R2 PC1 VOCP ' = VOCP ( L) + DPC  ONTime C3 ONDuty = VOCP ( L) + DPC  f OSC( AVG ) C2 D (6) where, VOCP(L): OCP Threshold Voltage at Zero ON Duty (V) DPC: OCP Compensation Coefficient (mV/μs) ONTime: On-time of a power MOSFET (μs) ONDuty: On duty of a power MOSFET (%) fOSC(AVG): Average PWM Switching Frequency (kHz) Figure 9-17 FB/OLP pin peripheral circuit Non-switching interval VCC pin voltage VCC(ON) VCC(OFF) 9.11 Overload Protection (OLP) Figure 9-17 shows the FB/OLP pin peripheral circuit, and Figure 9-18 shows each waveform for Overload Protection (OLP) operation. When the peak drain current of ID is limited by Overcurrent Protection operation, the output voltage, VOUT, decreases and the feedback current from the secondary photo-coupler becomes zero. Thus, the feedback current, IFB, charges C3 connected to the FB/OLP pin and FB/OLP pin voltage increases. When the FB/OLP pin voltage increases to VFB(OLP) = 7.3 V or more for the OLP delay time, tOLP = 75 ms or more, the OLP is activated, the IC stops switching operation. During OLP operation, the Bias Assist Function is disabled. Thus, VCC pin voltage decreases to VCC(OFF), the control circuit stops operation. After that, the IC reverts to the initial state by UVLO circuit, and the IC starts operation when the VCC pin voltage increases to VCC(ON) by startup current. Thus, the intermittent operation by UVLO is repeated in OLP state. This intermittent operation reduces the stress of parts such as a power MOSFET and a secondary side rectifier diode. In addition, this operation reduces power consumption because the switching period in this intermittent operation is short compared with oscillation stop period. When the abnormal condition is removed, the IC returns to normal operation automatically. FB/OLP pin voltage tOLP VFB(OLP) tOLP Drain current, ID Figure 9-18 OLP operational waveforms 9.12 Overvoltage Protection (OVP) When the voltage between the VCC pin and the GND pin increases to VCC(OVP) = 29.1 V or more, Overvoltage Protection (OVP) is activated and the IC stops switching operation. During OVP operation, the Bias Assist Function is disabled, the intermittent operation by UVLO is repeated (refer to Section 9.11). When the fault condition is removed, the IC returns to normal operation automatically (refer to Figure 9-19). When VCC pin voltage is provided by using auxiliary winding of transformer, the overvoltage conditions such as output voltage detection circuit open can be detected because the VCC pin voltage is proportional to output voltage. The approximate value of output voltage VOUT(OVP) in OVP condition is calculated by using Equation (7). VOUT(OVP) = VOUT ( NORMAL ) VCC ( NORMAL )  29.1(V) (7) where, VOUT(NORMAL): Output voltage in normal operation VCC(NORMAL): VCC pin voltage in normal operation STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 17 STR-A6000MZ/HZ Series 10. Design Notes VCC pin voltage VCC(OVP) VCC(ON) 10.1 External Components VCC(OFF) Take care to use properly rated, including derating as necessary and proper type of components. Drain current, ID Figure 9-19 • Input and Output Electrolytic Capacitor Apply proper derating to ripple current, voltage, and temperature rise. Use of high ripple current and low impedance types, designed for switch mode power supplies, is recommended. OVP operational waveforms 9.13 Thermal Shutdown (TSD) Figure 9-20 shows the Thermal Shutdown (TSD) operational waveforms. When the temperature of control circuit increases to Tj(TSD) = 145 °C or more, TSD is activated, and the IC stops switching operation. After that, VCC pin voltage decreases. When the VCC pin voltage decreases to VCC(BIAS), the Bias Assist Function is activated and the VCC pin voltage is kept to over the VCC(OFF). When the temperature reduces to less than Tj(TSD)−Tj(TSD)HYS, the Bias Assist Function is disabled and the VCC pin voltage decreases to VCC(OFF). At that time, the IC stops operation by the UVLO circuit and reverts to the state before startup. After that, the startup circuit is activated, the VCC pin voltage increases to VCC(ON), and the IC starts switching operation again. In this way, the intermittent operation by TSD and UVLO is repeated while there is an excess thermal condition. When the fault condition is removed, the IC returns to normal operation automatically. • S/OCP Pin Peripheral Circuit In Figure 10-1, ROCP is the resistor for the current detection. A high frequency switching current flows to ROCP, and may cause poor operation if a high inductance resistor is used. Choose a low inductance and high surgetolerant type. CRD clamp snubber BR1 T1 VAC P D1 RB D2 8 D/ST D/ST R2 5 7 C5 NC VCC C2 D U1 S/OCP BR GND FB/OLP C(RC) Damper snubber 1 RC Junction Temperature, Tj R1 C6 RA C1 Figure 10-1 2 3 4 C4 C3 PC1 ROCP The IC peripheral circuit Tj(TSD) Tj(TSD)−Tj(TSD)HYS Bias assist function ON ON OFF OFF VCC pin voltage VCC(ON) VCC(BIAS) VCC(OFF) • BR pin peripheral circuit Because RA and RB (see Figure 10-1) are applied high voltage and are high resistance, the following should be considered according to the requirement of the application: ▫ Select a resistor designed against electromigration, or ▫ Use a combination of resistors in series for that to reduce each applied voltage Drain current ID See Section 9.9 about the AC input voltage detection function and the components around the BR pin. Figure 9-20 TSD operational waveforms • FB/OLP Pin Peripheral Circuit C3 (see Figure 10-1) is for high frequency noise rejection and phase compensation, and should be STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 18 STR-A6000MZ/HZ Series connected close to the FB/OLP pin and the GND pin. The value of C3 is recommended to be about 2200 pF to 0.01 µF, and should be selected based on actual operation in the application. • VCC Pin Peripheral Circuit The value of C2 is generally recommended to be 10 µF to 47 μF (refer to Section 9.1 Startup Operation, because the startup time is determined by the value of C2). In actual power supply circuits, there are cases in which VCC pin voltage fluctuates in proportion to the output current, IOUT (see Figure 10-2), and the Overvoltage Protection (OVP) on the VCC pin may be activated. This happens because C2 is charged to a peak voltage on the auxiliary winding D, which is caused by the transient surge voltage coupled from the primary winding when a power MOSFET turns off. For alleviating C2 peak charging, it is effective to add some value R2, of several tenths of ohms to several ohms, in series with D2 (see Figure 10-1). The optimal value of R2 should be determined using a transformer matching what will be used in the actual application, because the variation of the auxiliary winding voltage is affected by the transformer structural design. VCC pin voltage Without R2 With R2 be selected based on actual operation in the application. L51 T1 VOUT (+) D51 PC1 R55 C51 S R54 R51 R52 C53 C52 R53 U51 R56 (-) Figure 10-3 Peripheral circuit around secondary shunt regulator (U51) • Transformer Apply proper design margin to core temperature rise by core loss and copper loss. Because the switching currents contain high frequency currents, the skin effect may become a consideration. Choose a suitable wire gauge in consideration of the RMS current and a current density of 4 to 6 A/mm 2. If measures to further reduce temperature are still necessary, the following should be considered to increase the total surface area of the wiring: ▫ Increase the number of wires in parallel. ▫ Use litz wires. ▫ Thicken the wire gauge. Output current, IOUT Figure 10-2 Variation of VCC pin voltage and power • Snubber Circuit If the surge voltage of VDS is large, the circuit should be added as follows (see Figure 10-1); ・ A clamp snubber circuit of a capacitor-resistor- diode (CRD) combination should be added on the primary winding P. ・ A damper snubber circuit of a capacitor (C) or a resistor-capacitor (RC) combination should be added between the D/ST pin and the S/GND pin. When the damper snubber circuit is added, this components should be connected near the D/ST pin and the S/OCP pin. • Phase Compensation A typical phase compensation circuit with a secondary shunt regulator (U51) is shown in Figure 10-3. C52 and R53 are for phase compensation. The value of C52 and R53 are recommended to be around 0.047μF to 0.47μF and 4.7 kΩ to 470 kΩ, respectively. They should In the following cases, the surge of VCC pin voltage becomes high. ▫ The surge voltage of primary main winding, P, is high (low output voltage and high output current power supply designs) ▫ The winding structure of auxiliary winding, D, is susceptible to the noise of winding P. When the surge voltage of winding D is high, the VCC pin voltage increases and the Overvoltage Protection (OVP) may be activated. In transformer design, the following should be considered; ▫ The coupling of the winding P and the secondary output winding S should be maximized to reduce the leakage inductance. ▫ The coupling of the winding D and the winding S should be maximized. ▫ The coupling of the winding D and the winding P should be minimized. In the case of multi-output power supply, the coupling of the secondary-side stabilized output winding, S1, and the others (S2, S3…) should be maximized to improve the line-regulation of those STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 19 STR-A6000MZ/HZ Series outputs. Figure 10-4 shows the winding structural examples of two outputs. Winding structural example (a): S1 is sandwiched between P1 and P2 to maximize the coupling of them for surge reduction of P1 and P2. D is placed far from P1 and P2 to minimize the coupling to the primary for the surge reduction of D. Winding structural example (b) P1 and P2 are placed close to S1 to maximize the coupling of S1 for surge reduction of P1 and P2. D and S2 are sandwiched by S1 to maximize the coupling of D and S1, and that of S1 and S2. This structure reduces the surge of D, and improves the line-regulation of outputs. Bobbin Margin tape P1 S1 P2 S2 D Margin tape Winding structural example (a) and thus it should be as wide trace and small loop as possible. If C1 and the IC are distant from each other, placing a capacitor such as film capacitor (about 0.1 μF and with proper voltage rating) close to the transformer or the IC is recommended to reduce impedance of the high frequency current loop. (2) Control Ground Trace Layout Since the operation of the IC may be affected from the large current of the main trace that flows in control ground trace, the control ground trace should be separated from main trace and connected at a single point grounding of the point A in Figure 10-5 as close to the ROCP pin as possible. (3) VCC Trace Layout: This is the trace for supplying power to the IC, and thus it should be as small loop as possible. If C2 and the IC are distant from each other, placing a capacitor such as film capacitor Cf (about 0.1 μF to 1.0 μF) close to the VCC pin and the GND pin is recommended. (4) ROCP Trace Layout ROCP should be placed as close as possible to the S/OCP pin. The connection between the power ground of the main trace and the IC ground should be at a single point ground (point A in Figure 10-5) which is close to the base of ROCP. Bobbin Margin tape P1 S1 D S2 S1 P2 Margin tape (5) Peripheral components of the IC The components for control connected to the IC should be placed as close as possible to the IC, and should be connected as short as possible to the each pin. Winding structural example (b) Figure 10-4 Winding structural examples 10.2 PCB Trace Layout and Component Placement Since the PCB circuit trace design and the component layout significantly affects operation, EMI noise, and power dissipation, the high frequency PCB trace should be low impedance with small loop and wide trace. In addition, the ground traces affect radiated EMI noise, and wide, short traces should be taken into account. Figure 10-5 shows the circuit design example. (1) Main Circuit Trace Layout This is the main trace containing switching currents, (6) Secondary Rectifier Smoothing Circuit Trace Layout: This is the trace of the rectifier smoothing loop, carrying the switching current, and thus it should be as wide trace and small loop as possible. If this trace is thin and long, inductance resulting from the loop may increase surge voltage at turning off a power MOSFET. Proper rectifier smoothing trace layout helps to increase margin against the power MOSFET breakdown voltage, and reduces stress on the clamp snubber circuit and losses in it. (7) Thermal Considerations Because the power MOSFET has a positive thermal coefficient of RDS(ON), consider it in thermal design. Since the copper area under the IC and the D/ST pin trace act as a heatsink, its traces should be as wide as possible. STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 20 STR-A6000MZ/HZ Series (6) Main trace of secondary side should be wide trace and small loop (1) Main trace should be wide trace and small loop D51 T1 R1 C6 RA C1 P (7)Trace of D/ST pin should beDST wide for heat release C51 D1 RB S D2 8 D/ST D/ST C5 R2 5 7 NC C2 VCC D U1 STR-A6000×Z (3) Loop of the power supply should be small S/OCP BR GND FB/OLP 1 2 3 4 ROCP C3 C4 RC PC1 (5)The components connected to the IC should be as close to the IC as possible, and should be connected as short as possible CY A (4)ROCP should be as close to S/OCP pin as possible. (2) Control GND trace should be connected at a single point as close to the ROCP as possible Figure 10-5 Peripheral circuit example around the IC STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 21 STR-A6000MZ/HZ Series 11. Pattern Layout Example The following show the PCB pattern layout example and the schematic of circuit using STR-A6000MZ/HZ series. The PCB pattern layout example is made usable to other ICs in common. The parts in Figure 11-2 are only used. Figure 11-1 PCB circuit trace layout example T1 L52 D52 CN51 1 OUT2(+) 2 OUT2(-) 3 OUT1(+) 4 OUT1(-) R59 C57 R58 C55 R61 C56 R60 CN1 1 F1 L1 JW51 JW52 JW54 JW6 C1 D1 C12 C2 D4 C13 L51 L2 D2 TH1 D51 D3 C3 C4 P1 C5 3 R51 C54 R1 R55 R52 PC1 R2 S1 R54 C51 C53 D7 C52 U51 JW2 R57 R53 R56 R7 D2 JW10 R6 U1 8 7 D/ST D/ST 5 NC JW4 D8 R3 JW31 D1 C9 C8 STR-A6000×Z C31 C32 BR 1 2 GND FB/OLP C11 3 JW3 JW8 JW7 C6 C7 Figure 11-2 2 OUT4(-) JW21 U21 D21 1 IN R4 OUT4(+) JW53 4 JW11 R5 1 R31 C10 S/OCP CN31 D31 VCC CP1 JW9 C21 CN21 3 OUT GND 2 C22 1 OUT3(+) 2 OUT3(-) R21 Circuit schematic for PCB circuit trace layout STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 22 STR-A6000MZ/HZ Series 12. Reference Design of Power Supply As an example, the following show the power supply specification, the circuit schematic, the bill of materials, and the transformer specification. ⚫ Circuit schematic IC STR-A6069HZ Input voltage AC85V to AC265V Maximum output power 7.5 W Output voltage 5V Output current 1.5 A (max.) ⚫ Circuit schematic 1 F1 L1 D1 D2 D4 D3 L2 TH1 L51 T1 D51 3 C1 3 C4 R1 C3 R51 C55 R4 S1 C2 R55 R52 C53 PC1 D5 5V/1.5A R54 R57 C51 P1 R53 C52 S2 U51 5 8 7 D/ST D/ST D6 R2 R56 4 R8 NC VCC C5 U1 C8 D STR-A6000×Z R9 S/OCP BR 1 2 GND FB/OLP 3 4 PC1 R7 R3 C7 C6 C9 TC_STR-A6000xZ_3_R3 STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 23 STR-A6000MZ/HZ Series ⚫ Bill of materials Symbol F1 Part type Ratings(1) Recommended Sanken Parts Symbol Fuse AC250V, 3A R4 (3) Ratings(1) Part type Metal oxide 330kΩ, 1W General 330kΩ L1 (2) CM inductor 3.3mH R7 L2 (2) Inductor 470μH R8 (3) General 2.2MΩ TH1 (2) R9 (3) General 2.2MΩ NTC thermistor Short D1 General 600V, 1A EM01A PC1 Photo-coupler PC123 or equiv D2 General 600V, 1A EM01A U1 IC - D3 General 600V, 1A EM01A T1 Transformer See the specification D4 General 600V, 1A EM01A L51 Inductor 5μH D5 Fast recovery 1000V, 0.5A EG01C D51 Schottky 90V, 4A D6 Fast recovery 200V, 1A AL01Z C51 Electrolytic 680μF, 10V Film, X2 0.047μF, 275V C52 Ceramic 0.1μF, 50V C2 Electrolytic 10μF, 400V C53 Electrolytic 330µF, 10V C3 Electrolytic 10μF, 400V C55 Ceramic 1000pF, 1kV C4 Ceramic 1000pF, 630V R51 General 220Ω C5 Electrolytic 22μF, 50V R52 General 1.5kΩ General 22kΩ C1 (2) (2) (2) C6 (2) Ceramic 0.01μF R53 C7 (2) Ceramic 1000pF R54 General, 1% Short C8 (2) Ceramic Open R55 General, 1% 10kΩ C9 (2) Ceramic, Y1 2200pF, 250V R56 General, 1% 10kΩ R1 (2) General Open R57 General Open R2 (2) General 4.7Ω U51 Shunt regulator VREF=2.5V TL431 or equiv General 1.5Ω, 1/2W R3 Recommended Sanken Parts STRA6069HZ FMB-G19L (1) Unless otherwise specified, the voltage rating of capacitor is 50 V or less and the power rating of resistor is 1/8 W or less. It is necessary to be adjusted based on actual operation in the application. (3) Resistors applied high DC voltage and of high resistance are recommended to select resistors designed against electromigration or use combinations of resistors in series for that to reduce each applied voltage, according to the requirement of the application. (2) STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 24 STR-A6000MZ/HZ Series ⚫ Transformer specification ▫ Primary inductance, LP ▫ Core size ▫ Al-value ▫ Winding specification :704 μH :EI-16 :132 nH/N2 (Center gap of about 0.26 mm) Symbol Number of turns (T) Primary winding P1 73 2UEW-φ0.18 Auxiliary winding D 17 2UEW-φ0.18×2 Output winding S1 6 TEX-φ0.3×2 Output winding S2 6 TEX-φ0.3×2 Winding Wire diameter(mm) VDC D S2 S1 S1 P1 Bobbin GND VOUT (-) D Cross-section view Two-layer, solenoid winding Single-layer, solenoid winding Single-layer, solenoid winding Single-layer, solenoid winding (+) 5V P1 D/ST VCC Construction S2 ●: Start at this pin STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 25 STR-A6000MZ/HZ Series Important Notes ● All data, illustrations, graphs, tables and any other information included in this document (the “Information”) as to Sanken’s ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● products listed herein (the “Sanken Products”) are current as of the date this document is issued. The Information is subject to any change without notice due to improvement of the Sanken Products, etc. Please make sure to confirm with a Sanken sales representative that the contents set forth in this document reflect the latest revisions before use. The Sanken Products are intended for use as components of general purpose electronic equipment or apparatus (such as home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Prior to use of the Sanken Products, please put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken. When considering use of the Sanken Products for any applications that require higher reliability (such as transportation equipment and its control systems, traffic signal control systems or equipment, disaster/crime alarm systems, various safety devices, etc.), you must contact a Sanken sales representative to discuss the suitability of such use and put your signature, or affix your name and seal, on the specification documents of the Sanken Products and return them to Sanken, prior to the use of the Sanken Products. The Sanken Products are not intended for use in any applications that require extremely high reliability such as: aerospace equipment; nuclear power control systems; and medical equipment or systems, whose failure or malfunction may result in death or serious injury to people, i.e., medical devices in Class III or a higher class as defined by relevant laws of Japan (collectively, the “Specific Applications”). Sanken assumes no liability or responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, resulting from the use of the Sanken Products in the Specific Applications or in manner not in compliance with the instructions set forth herein. In the event of using the Sanken Products by either (i) combining other products or materials or both therewith or (ii) physically, chemically or otherwise processing or treating or both the same, you must duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility. Although Sanken is making efforts to enhance the quality and reliability of its products, it is impossible to completely avoid the occurrence of any failure or defect or both in semiconductor products at a certain rate. You must take, at your own responsibility, preventative measures including using a sufficient safety design and confirming safety of any equipment or systems in/for which the Sanken Products are used, upon due consideration of a failure occurrence rate and derating, etc., in order not to cause any human injury or death, fire accident or social harm which may result from any failure or malfunction of the Sanken Products. Please refer to the relevant specification documents and Sanken’s official website in relation to derating. No anti-radioactive ray design has been adopted for the Sanken Products. The circuit constant, operation examples, circuit examples, pattern layout examples, design examples, recommended examples, all information and evaluation results based thereon, etc., described in this document are presented for the sole purpose of reference of use of the Sanken Products. Sanken assumes no responsibility whatsoever for any and all damages and losses that may be suffered by you, users or any third party, or any possible infringement of any and all property rights including intellectual property rights and any other rights of you, users or any third party, resulting from the Information. No information in this document can be transcribed or copied or both without Sanken’s prior written consent. Regarding the Information, no license, express, implied or otherwise, is granted hereby under any intellectual property rights and any other rights of Sanken. Unless otherwise agreed in writing between Sanken and you, Sanken makes no warranty of any kind, whether express or implied, including, without limitation, any warranty (i) as to the quality or performance of the Sanken Products (such as implied warranty of merchantability, and implied warranty of fitness for a particular purpose or special environment), (ii) that any Sanken Product is delivered free of claims of third parties by way of infringement or the like, (iii) that may arise from course of performance, course of dealing or usage of trade, and (iv) as to the Information (including its accuracy, usefulness, and reliability). In the event of using the Sanken Products, you must use the same after carefully examining all applicable environmental laws and regulations that regulate the inclusion or use or both of any particular controlled substances, including, but not limited to, the EU RoHS Directive, so as to be in strict compliance with such applicable laws and regulations. You must not use the Sanken Products or the Information for the purpose of any military applications or use, including but not limited to the development of weapons of mass destruction. In the event of exporting the Sanken Products or the Information, or providing them for non-residents, you must comply with all applicable export control laws and regulations in each country including the U.S. Export Administration Regulations (EAR) and the Foreign Exchange and Foreign Trade Act of Japan, and follow the procedures required by such applicable laws and regulations. Sanken assumes no responsibility for any troubles, which may occur during the transportation of the Sanken Products including the falling thereof, out of Sanken’s distribution network. Although Sanken has prepared this document with its due care to pursue the accuracy thereof, Sanken does not warrant that it is error free and Sanken assumes no liability whatsoever for any and all damages and losses which may be suffered by you resulting from any possible errors or omissions in connection with the Information. Please refer to our official website in relation to general instructions and directions for using the Sanken Products, and refer to the relevant specification documents in relation to particular precautions when using the Sanken Products. All rights and title in and to any specific trademark or tradename belong to Sanken and such original right holder(s). DSGN-CEZ-16003 Confidential STR-A6000MZ/HZ-DSE Rev.1.4 SANKEN ELECTRIC CO., LTD. Jan. 13, 2022 https://www.sanken-ele.co.jp/en © SANKEN ELECTRIC CO., LTD. 2014 26
STR-A6061HZ 价格&库存

很抱歉,暂时无法提供与“STR-A6061HZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货