0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LA5683T

LA5683T

  • 厂商:

    SANYO(三洋)

  • 封装:

  • 描述:

    LA5683T - Monolithic Linear IC 4ch Switching Regulator Control IC - Sanyo Semicon Device

  • 数据手册
  • 价格&库存
LA5683T 数据手册
Ordering number : EN8214 Monolithic Linear IC LA5683T Overview 4ch Switching Regulator Control IC The LA5683T is 4ch switching regulator control IC. Functions • Low-voltage operation (minimum 1.8V). • OUT1 and OUT2 can drive external PNP transistors. • OUT3 and OUT4 can drive external NPN transistors. • 4-independent-channel standby circuit built-in. • ±1% accuracy reference voltage. • Supports MOS transistor drive. • Channel 2 dead time internally set fixed, duty cycle = 100%. (The dead time for channels 1, 3, and 4 are set externally.) Specifications Maximum Ratings at Ta = 25°C Parameter Supply voltage 1 Allowable power dissipation Operating temperature Storage temperature Symbol VCC max Pd max Topr Tstg Independent IC Conditions Ratings 9 0.4 -20 to +85 -55 to +150 Unit V W °C °C Operating Conditions at Ta = 25°C Parameter Supply voltage 1 Supply voltage 2 Output sync current Reference voltage output current Timing resistor Timing capacity Triangular wave frequency Symbol VCC VBIAS ISINK max IREF RT CT fOSC Conditions Ratings 1.8 to 8 1.8 to 8 0 to 30 0 to 1 3 to 30 100 to 1000 0.1 to 1 Unit V V mA mA kΩ pF MHz Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications. SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein. 92706 / 40506 MS IM B8-7242 No.8214-1/12 LA5683T Electrical Characteristics at Ta = 25°C, VCC = VSTBY1 to 4 = 3V, SCP = 0V Parameter [Error amplifier] IN+ pin internal bias voltage Output L level voltage Output H level voltage [Protection circuit] Threshold voltage SCP pin current [Idle period adjustment block] Input bias current Threshold voltage 1 Threshold voltage 2 Threshold voltage 3 Threshold voltage 4 CH1 CH1 CH3 to CH4 CH3 to CH4 IB_DTC VTH1_DTC VTH2_DTC VTH3_DTC VTH4_DTC IN1− = 0V, duty cycle = 100% IN1− = 0V, duty cycle = 0% IN3, IN4− = 0V, duty cycle = 100% IN3, IN4− = 0V, duty cycle = 0% -15 0.67 0.35 0.72 0.4 -3 0.77 0.4 0.8 0.45 0.87 0.45 0.88 0.5 µA V V V V VSCP ISCP 1.1 1.25 3.9 1.4 V µA CH1 to CH4 CH1 to CH4 VB VLow_FB1 VHi _FB1 Pins IN1+, IN2+, IN3+, and IN4+ IN1− = 2.0 IFB1 = 20µA IN1− = 0V IFB1 = -20µA 2.25 0.500 0.506 0.512 1 V V V Symbol Conditions min Ratings typ max Unit [Software start block (CH1 to CH4)] Software start current Software start resistance CH1 to CH4 CH1 to CH4 ISF RSF IN1, 2− = 0V DTC1 = 0V VOUT1, 2 = 2.7V ICAPH = 0.5mA IN1, 2− = 0V DTC1 = 1.0V VOUT1, 2 = 2.3V [Output blocks and 4 (CH3 and CH4)] OUT pin source current OUT pin sink current OUT pin high level voltage OUT pin low level voltage [Triangular wave form generator block] Current setting pin voltage Output current Output current ratio Oscillation frequency [Reference voltage block] Reference voltage Line regulation Load regulation [STBY circuit] On voltage Off voltage Pin input current [All circuits] Operating-time current drain Standby-time current drain ICC1 ICC2 FB1, 2, 3, 4 = 1.5V DTC1, 3, 4 = 1.5V VSTBY1 to 3 = 0V 15 18 1 mA µA VON_STBY VOFF_STBY IIN_STBY VSTBY1 to 4 = 3V 1.15 0.2 70 V V µA VREF VLN_REF VLD_REF IREF = -1mA VCC = 1.8V to 8V IREF = -0.1mA to -1mA 1.244 1.257 1.270 10 10 V mV mV VT_RT IOH_CT ∆IO_CT fOSC1 RT = 5.6kΩ VCT = 0.5V, RT = 5.6kΩ 0.8 380 1.190 1.260 230 1.0 440 1.2 500 kHz 1.330 V µA IOUT34_SOUR IOUT34_SINK VOUT34_Hi VOUT34_Low VOUT3, 4 = 0.9V DTC3, 4 = 1.0V IN3, 4 = 0V VOUT3, 4 = 0.3V DTC3, 4 = 1.0V IN3, 4 = 1.0V IOUT3, 4 = -10mA DTC3, 4 = 1.0V IN3, 4 = 0V IOUT3, 4 = 10mA DTC3, 4 = 0V IN3, 4 = 1.0V 20 30 2 0.2 30 40 mA mA V V CSOFT = 0V 3.16 160 3.95 200 4.74 240 µA kΩ [Output blocks 1 and 2 (CH1 and CH2)] OUT pin source current OUT pin sink current IOUT12_SOUR IOUT12_SINK 10 35 45 55 mA mA No.8214-2/12 LA5683T Package Dimensions unit : mm 3253B 9.75 36 19 1.2 Pd max - Ta Allowable power dissipation, Pd max - W 1.0 Mounted on a thermal evaluation board 0.90 0.8 5.6 7.6 0.5 0.6 (0.5) (0.63) 1 0.18 18 0.15 Independent IC 0.4 0.47 0.40 1.2max (1.0) 0.2 0.21 0.08 0 --20 0 20 40 60 80 100 ILA07007 Ambient temperature, Ta - °C SANYO : TSSOP36(275mil) Pin Assignment No.8214-3/12 LA5683T Block Diagram and Application Circuit Examples 1 2-dry-battery (1.8V to 3.2V) configuration C4=0.022µF C5=1µF 25 28 C17=10µF VREF VCC SCP R3=18.66kΩ R2=15kΩ VCC SCP DTC1 33 VREF CAPH1 9 Q1 : CPH3121 Co1=2.2µF T1 1 4 D2 : SBS005 VO1A=15V/15mA C18=33pF 34 + + IN1FB1 35 36 C1=1000pF 3 D1 : 2 SBS004 6 Co4=3.3µF Co3=3.3µF VO1=3.3V/140mA to VO1 R4b=1.3kΩ R4a=5.1kΩ R5=27kΩ CAPL1 + OUT1 Rb1=180Ω 7, 8 5 D3 : SBS004 Co5=3.3µF R6=100Ω 30 31 VO1B=-7.5V/10mA Cb1=4700pF C10=1µF CAPH2 4 CAPL2 + + 7 6 IN2FB2 3 + VS OUT2 to VO2 R7b=0Ω R8=5.1kΩ R7a=10kΩ C2=1000pF C9=0.047µF CSOFT1 32 Q2 : CPH3121 Co7=4.7µF L4 : 22µH Co9=10µF VO2=1.5V/200mA 2 1 D5 : SBS004 R9=100Ω C11=0.047µF R10= 10kΩ C12=1µF Rb2=180Ω VBIAS CSOFT2 5 16 C3=10µF Cb2=4700pF to VO3 R12b=1.1kΩ R13=5.1kΩ R12a=27kΩ C19=33pF R11=16kΩ 14 DTC3 + + - + + - OUT3 L6=6.8µH Co10=4.7µF D6 : SBS004 Co12=10µF Q100 : CPH3307 VO3=3.3V/500mA Ro4=100kΩ 17 Ro5=1kΩ Ro10=1kΩ R14=100Ω 11 12 IN3FB3 C13=0.047µF C14=1µF Q3 : MCH3409 Ro7=47kΩ CSOFT3 13 Ro6=47kΩ to STBY3 R17b=5.6kΩ R18=5.1kΩ R17a=110kΩ R15= 9.75kΩ to VO4 C20=33pF Q101 : CPH3215 R16=16kΩ 15 DTC4 + + - + + - OUT4 19 Co14=4.7µF L9 : 10µH D7 : SBS005 Co16=10µF R19=100Ω 22 21 FB4 Ro9=100kΩ IN4- Q102 : CPH3308 VO4=12V/100mA C16=2.2µF CSOFT4 20 to STBY4 18 GND STBY STBY4 STBY1 STBY2 STBY3 RT Ro12=47kΩ Ro11=47kΩ C15=0.047µF Q4 : MCH3409 OSC C8=560pF CT2 C7=560pF CT1 Q103 : CPH3215 29 8 10 23 C6=0.01µF R1=5.6kΩ 27 24 26 ILA07050 T1 = Sumida product L4 = TDK product: RLF5018-220MR63 L6 = TDK product: SLF6028-6R8M1R5 L9 = Toko product: 636CY-100M Co17=0.47µF Co13=0.47µF No.8214-4/12 LA5683T Application Circuit Examples 2 4-dry battery (3.5V to 6.5V) configuration C4=0.022µF C5=1µF C17=10µF 25 VREF VCC SCP 28 R3=18.66kΩ R2=15kΩ VCC SCP DTC1 33 VREF CAPH1 9 Q3 : MCH3309 Co10=4.7µF L7 : 47µH Co13=10µF VO2=1.5V/200mA C18=33pF 34 CAPL1 + + IN1FB1 35 + OUT1 36 C1=1000pF to VO2 R4b=0kΩ R4a=5.1kΩ R5=10kΩ D6 : SBS004 30 R6=1kΩ 31 C10=1µF C9=0.047µF CSOFT1 32 CAPH2 4 CAPL2 + + 7 IN2FB2 3 + VS OUT2 2 1 C2=1000pF to VO1 R7b=1.3Ω R8=5.1kΩ R7a=27kΩ Q2 : MCH3309 Co7=4.7µF L4 : 22µH Co9=10µF VO1=3.3V/500mA D5 : SBS004 R9=1kΩ 6 C11=0.047µF R10= 10kΩ C12=1µF CSOFT2 5 VBIAS 16 C3=10µF to VO3 R12b=1.1kΩ R13=5.1kΩ R12a=27kΩ C19=33pF R11=16kΩ 14 DTC3 + + - + + - OUT3 T1 Co1=2.2µF 4 D2 : SBS005 VO3A=15V/15mA 17 Co4=3.3µF 12 C13=0.047µF C14=1µF FB3 7, 8 5 6 CSOFT3 13 Q1 : MCH3409 DTC4 D3 : SBS004 Co5=3.3µF Co3=3.3µF R14=100Ω 11 IN3- 1 3 D1 : 2 SBS004 VO3=3.3V/140mA VO3B=-7.5V/10mA R17b=5.6kΩ R18=5.1kΩ R17a=110kΩ R15= 9.75kΩ to VO4 C20=33pF R16=16kΩ 15 + + - + + - OUT4 19 Co14=4.7µF L9 : 10µH D7 : SBS005 Co16=10µF R19=100Ω 22 FB4 21 Ro9=100kΩ IN4- Q102 : CPH3308 VO4=12V/100mA Ro10=1kΩ C16=2.2µF CSOFT4 20 GND STBY OSC STBY4 RT C7=560pF CT1 C8=560pF CT2 to STBY4 18 Ro12=47kΩ Ro11=47kΩ C15=0.047µF Q4 : MCH3409 Q103 : CPH3215 STBY1 STBY2 29 8 STBY3 10 23 C6=0.01µF R1=5.6kΩ 27 24 26 Co17=0.47µF ILA07051 T1 = Sumida product L4 = TDK product: RLF5018-220MR63 L7 = Toko product: 636CY-470M L9 = Toko product: 636CY-100M No.8214-5/12 LA5683T Application Circuit Examples 3 1-lithium ion battery (2.5V to 4.2V) configuration C4=0.022µF C5=1µF 25 28 R3=18.66kΩ R2=15kΩ VCC SCP DTC1 33 VREF 9 Q3 : MCH3309 Co10=4.7µF C17=10µF VREF VCC SCP L7 : 47µH Co13=10µF VO2=1.5V/200mA C18=33pF to VO2 R4b=0Ω R4a=5.1kΩ R5=10kΩ + + IN1FB1 + OUT1 36 30 R6=1kΩ 31 C10=1µF C9=0.047µF CSOFT1 32 CAPH2 4 CAPL2 + + 7 IN2FB2 3 + VS OUT2 2 1 C2=1000pF to VO1 R7b=1.3kΩ R8=5.1kΩ R7a=27kΩ C1=1000pF CAPH1 34 CAPL1 35 D6 : SBS004 Q2 : MCH3309 Co7=4.7µF L3 : 22µH Co8=4.7µF L4 : 15µH D5 : SBS004 Co9=10µF VO1=3.3V/500mA R9=1kΩ 6 C11=0.047µF R10= 10kΩ C12=1µF CSOFT2 5 VBIAS 16 C3=10µF to VO3 R12b=1.1kΩ R13=5.1kΩ R12a=27kΩ C19=33pF R11=16kΩ 14 DTC3 + + - + + - OUT3 T1 Co1=2.2µF 4 D2 : SBS005 VO3A=15V/15mA 17 Co4=3.3µF 12 C13=0.047µF R15= 9.75kΩ C14=1µF FB3 7, 8 5 6 CSOFT3 13 Q1 : MCH3409 DTC4 D3 : SBS004 Co5=3.3µF Co3=3.3µF R14=100Ω 11 IN3- 1 3 D1 : 2 SBS004 VO3=3.3V/140mA VO3B=-7.5V/10mA to VO4 R17b=5.6kΩ R18=5.1kΩ R17a=110kΩ C20=33pF R16=16kΩ 15 + + - + + - OUT4 19 Co14=4.7µF L9 : 10µH D7 : SBS005 Co16=10µF R19=100Ω 22 21 FB4 Ro9=100kΩ IN4- Q102 : CPH3308 VO4=12V/100mA Ro11=47kΩ Ro10=1kΩ C15=0.047µF C16=2.2µF Q4 : MCH3409 to STBY4 CSOFT4 20 GND STBY OSC STBY4 C7=560pF CT1 C8=560pF CT2 18 Ro12=47kΩ Q103 : CPH3215 STBY1 STBY2 STBY3 RT 29 8 10 23 C6=0.01µF R1=5.6kΩ 27 24 26 ILA07052 T1 = Sumida product L3 = TDK product: RLF5018-220MR63 L4 = TDK product: RLF5018-150MR63 L7 = Toko product: 636CY-470M L9 = Toko product: 636CY-100M Co17=0.47µF No.8214-6/12 LA5683T SCP Pin Charging of the SCP block starts when FB1 to FB4 are set to a low level due to a load shorting and the protection circuit is activated if the block does not reset itself within the preset time tSCP (the protection circuit then turns off the whole OUT channels). SCP[V] Charge with ISCP 1.25[V] Charging tSCP SCP operation SCP Charging CSCP × VSCP tSCP = ISCP [S] Dead Time Setup • The dead time of channel 1 can be set by the voltage at DTC1. VREF Waveform of triangular wave input to PWM comparator VTH1_DTC DTC1 VDTC1 VTH2_DTC VDTC1 The duty cycle D1 is calculated as follows: D1 = VDTC1 − VTH2_DTC VTH1_DTC − VTH2_DTC × 100[ % ] • Channel 2 The dead time of channe 2 is fixed internally and the setting duty is 100%. No.8214-7/12 LA5683T • Channel 3 The dead time of channel 3 can be set by the voltage at DTC3. VREF Waveform of triangular wave input to PWM comparator VTH3_DTC DTC3 VDTC3 VDTC3 VTH4_DTC The duty cycle D3 is calculated as follows: D3 = VDTC3 − VTH4_DTC VTH3_DTC − VTH4_DTC × 100[ % ] • Channel 4 The dead time of channel 4 can be set in the same manner as that of channel 3. No.8214-8/12 LA5683T Procedure for Setting the Software Start Time • Channel 1 (the procedure is the same for channels 2, 3, and 4.) The software start time of channel 1 is set by the capacitance of the capacitor connected between pin CSOFT1 to CSOFT4 and GND. • VB=0.5[V] • VSOFT VCSOFT [V] Software start time tSOFT [S] Charging Set output voltage (VO): constant Set output voltage (VO) VCC IN- CSOFT CSOFT t SOFT = -CSOFT × R SF 1n(1 - VB R SF × ISF ) [S] * The formula is for channel 1. The software start time for channels 2 to 4 can be calculated in the same manner. VB=0.5V RSF 200kΩ ISF=3.95µA No.8214-9/12 LA5683T CT1 and CT2 The waveform of CT1 is 180 degrees out of phase with that of CT2. Their frequency cannot be set independently. The capacitance of the capacitors to be connected to pins CT1 and CT2 must be the same. • Setting the oscillation frequency (1) The oscillation frequency of the oscillator can be set by selecting the capacitance of the capacitors connected to pins CT1 and CT2 (see Figure 1). (2) The oscillation frequency can also be determined by the resistance of the resistor connected to the RT pin (see Figure 2). 2000 1800 Figure 1 Oscillation Frequency vs. Timing Capacitance Characteristics Ta=25°C Reference data 1400 Figure 2 Oscillation Frequency vs. Timing Resistance Characteristics Reference data Ta=25°C VCC=3.0V CT1/CT2=560pF Oscillation frequency, f - kHz 1600 1400 1200 1000 800 600 400 200 0 7 100 2 3 5 7 1k CT1 and CT2 have the same capacitance. Oscillation frequency, f - kHz VCC=3.0V RT=5.6kΩ 1200 1000 800 600 400 200 0 1.0 2 3 5 Capacitors CT1 and CT2 Capacitance - pF 10k ILA07008 7 2 3 5 7 Resistor RT Resistance - kΩ 10 2 3 5 ILA07009 Sample Circuits Sample Circuit That Makes Use of VBIAS (1) This IC can be used to implement the circuit that is shown below since the power to the channels 3 and 4 output stages is supplied via VBIAS. Apply VO1 that is dropped to 3.3V in channel 1 to VBIAS. A voltage of approx. VBIAS3-1 volt develops at VOUT3, so that the IC can drive MOS transistors in a low-voltage environment like this sample circuit. VBIAS VCC L Schottky barrier diode VO3=3.3V OUT3 SW VOUT3 MCH3409 VCC VBIAS Circuit Example 1 MCH3309 to IN3− Schottky barrier diode L VO1=3.3V to IN1− to OUT1 No.8214-10/12 LA5683T Sample Circuit That Makes Use of VBIAS (2) This IC can be used to implement the circuit that is shown below since the power to the channels 3 and 4 output stages is supplied via VBIAS. Apply the power voltage to VBIAS through the path that is made up of VCC, L to Schottky diode (through path formation). Then feed the stabilized voltage VO3 that is raised to 3.3V in channel 3 to VBIAS. A voltage of approx. VBIAS3-1 volt develops at VOUT3, so that the IC can drive MOS transistors in a low-voltage environment like this sample circuit. Fed to VBIAS VBIAS Schottky barrier diode VCC L OUT3 SW VOUT3 MCH3409 VO3=3.3V to IN3− VBIAS Circuit Example 2 Using the IC in a Step-down Circuit (CH1 and CH2) The IC detects a short-circuit condition and activates the SCP when VCC falls below the preset voltage VO+VF in such a step-down application as the one shown below. VF (diode forward voltage) VCC VO1 VO1 VF IN+ SCP activated VCC OUT 1.8V VCC When stepping down VCC
LA5683T 价格&库存

很抱歉,暂时无法提供与“LA5683T”相匹配的价格&库存,您可以联系我们找货

免费人工找货