0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LV1116N

LV1116N

  • 厂商:

    SANYO(三洋)

  • 封装:

  • 描述:

    LV1116N - Surround Processor ICs for Electronic Volume Control - Sanyo Semicon Device

  • 数据手册
  • 价格&库存
LV1116N 数据手册
Ordering number : EN8262A Bi-CMOS IC LV1116N/NV Overview Surround Processor ICs for Electronic Volume Control The LV1116N/NV are sound processor ICs developed for use in TV sets. They incorporate the surround processing functions including (AViSS), pseudo stereo function, (L+R) output, and the major functional blocks of an electronic volume control IC. Features • Input function SWs (stereo inputs [L, R]). • Line out pin (through output). • Input gain control (−6dB, −4dB, 0dB, 4dB, 6dB: 5 positions). • AViSS (ON/OFF/4-stage level control). • Tone control (BASS: ±20dB, TREBLE: ±18dB [in 2dB steps]). • Volume control (0dB to −14dB: 1dB steps/−14dB to −80dB: 2dB steps/−∞=−82dB). • Balance control. • Through mode/Mute mode. • Pseudo stereo function (ON/OFF/MONO). • L+R output with LPF (Mute + 7-stage level control: 8 positions). • I2C bus control. * Initial gain of L+R AMP can be controlled by the resistance value of external resistor. Specifications Maximum Ratings at Ta = 25°C Parameter Maximum supply voltage Allowable power dissipation 1 Allowable power dissipation 2 Operating temperature Storage temperature Symbol VCC max Pd max1 Pd max2 Topr Tstg Ta ≤ 70°C *, DIP Ta ≤ 70°C *, SSOP Conditions Ratings 10.5 700 550 -25 to +70 -40 to +125 Unit V mW mW °C °C Note *: Mounted on a specified board: 114.3mm×76.1mm×1.6mm, glass epoxy board Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use. Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer' s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer' s products or equipment. 12308 TI IM B8-8523,8524 / N2206 / 21805 JK No.8262-1/18 LV1116N/1116NV Operating Condtions at Ta = 25°C Parameter Recommended supply voltage Operating supply voltage 1 Operating supply voltage 2 Control data “H” level voltage “L” level voltage Pulse width Hold time Operating frequency VIH VIL tφw thold fopg 2.0 to 5.5 0.0 to 1.0 1.0 1.0 500 V V μs μs kHz Symbol VCC VCC opg1 VCC opg2 DIP SSOP Conditions Ratings 9.0 5.0 to 10.0 5.0 to 9.0 Unit V V V Electrical Characteristics at Ta = 25°C, VCC = 9.0V, fin = 1kHz, VIN = 300mVrms = 0dB, RL = 10kΩ (Input=L/R-A, Output=L/R-VROUT) Parameter Quiescent current Symbol ICCO VGT VOT THDT VNOT CTT VGF VOM THDM VNOM CTM VOS THDS VNOS VOS THDS VNOS VOS THDS VNOS GeqB GeqB EstepB GeqT GeqT EstepT Max. Boost/Cut, DIP Max. Boost/Cut, SSOP THD=1% DIN AUDIO DIN AUDIO DIN AUDIO 85 THD=1% DIN AUDIO DIN AUDIO DIN AUDIO 85 -1.6 2.0 Conditions Ratings min typ 48 max Unit mA Total through (Total through mode, Volume control: 0dB) Voltage gain Maximum output voltage Total harmonic distortion Output noise voltage Cross talk -0.6 2.6 0.03 -99 95 0.1 -85 +0.6 dB Vrms % dBV dB Matrix through (Matrix mode, Input gain: 0dB, Volume control: 0dB) Voltage gain Maximum output voltage Total harmonic distortion Output noise voltage Cross talk -1.7 1.5 -0.7 2.0 0.04 -95 93 0.1 -85 +0.7 dB Vrms % dBV dB MONO mode (MONO mode, Input gain: 0dB, Volume control: 0dB) Maximum output voltage Total harmonic distortion Output noise voltage THD=1% DIN AUDIO DIN AUDIO 1.5 2.0 0.04 -95 0.5 -85 Vrms % dBV Surround (Surround mode-A, Input gain: 0dB, Volume control: 0dB) Maximum output voltage Total harmonic distortion Output noise voltage THD=1% DIN AUDIO DIN AUDIO 1.5 2.0 0.2 -92 0.5 -85 Vrms % dBV Pseudo stereo (Pseudo stereo mode, Input gain: 0dB, Volume control: 0dB) Maximum output voltage Total harmonic distortion Output noise voltage THD=1% DIN AUDIO DIN AUDIO 1.5 2.0 0.07 -92 0.5 -85 Vrms % dBV Bass band EQ (Matrix through mode, Input gain: 0dB, Volume control: 0dB) Control Range 1 Control Range 2 Step resolution Max. Boost/Cut, DIP Max. Boost/Cut, SSOP ±18 ±17 1.0 ±20 ±20 2.0 ±22 ±23 3.0 dB dB dB Treble band EQ (Matrix through mode, Input gain: 0dB, Volume control: 0dB) Control Range 1 Control Range 2 Step resolution ±16 ±15 1.0 ±18 ±18 2.0 ±20 ±21 3.0 dB dB dB Continued on next page. No.8262-2/18 LV1116N/1116NV Continued from preceding page. Parameter Symbol Conditions Ratings min -2.3 THD=1% DIN AUDIO DIN AUDIO 2.0 typ -1.3 2.5 0.03 -99 0.1 -85 max -0.3 Unit L+R output (Output=L+R-OUT, Step=0dB, L+R_Step=Step4) Gain Maximum output voltage Total harmonic distortion Output noise voltage VGF VOF THDF VNOF dB Vrms % dBV Note: The output wave form becomes big depending on the surround or tone control setting. Please make sure the output waveform is not distorted. If the waveform is distorted, reduce the gain setting of surround, tone control, or input signal level. Package Dimensions unit : mm (typ) 3170A 32.4 36 19 [LV1116N] 0.95 3.0 3.95max 0.51min (3.25) 1.78 0.48 (1.1) SANYO : DIP36S(400mil) Package Dimensions unit : mm (typ) 3247A 36 19 [LV1116NV] 5.6 1 0.3 18 0.2 15.0 SANYO : SSOP36(275mil) 0.1 (0.7) 0.8 1.7max (1.5) 0.5 7.6 0.25 1 18 10.16 8.6 No.8262-3/18 LV1116N/1116NV Block Diagram No.8262-4/18 LV1116N/1116NV I2C BUS Control Signal tHIGH tR tF SCL tLOW tHD:DAT tSU:DAT tSU:STA SDA tHD:STA tSU:STO tBUF Figure1 I2C BUS Control Signal timing chart I2C BUS register 1) The explanation of I2C Bus I2C Bus (Inter IC Bus) is the bus system which the PHILIPS company developed. It does controls such as the start, the stop by two control signals of SDA (Serial Data) and SCL (Serial Clock). The output of each signal is open drain and forms out of wired OR. S: Start condition P: Stop condition ACK: Acknowledge Data is transmitted in the MSB first. 1 unit is composed of 8 bits and ACK is put back from the slave to confirm. Slave IC reads data with rising edge of SCL. Master IC changes data by falling edge in SCL. 2) The control register Table1 Slave Address MSB 1 1 1 0 1 1 1 LSB 0 Note; LV1116N/NV are reception exclusive use. It depends and it uses LSB by the "0" fixation. Table2 I2C Bus transmission Function Input control/Gain control Volume control Output/Surround/MODE control Tone control [Bass] Tone control [TREBLE] Sub Address BINARY 0000 0001 0000 0010 0000 0011 0000 0100 0000 0101 HEX 01 02 03 04 05 0 0 D7 0 D6 0 L+R out gain 0 0 0 0 D5 D4 Gain Volume Surround Bass TREBLE MODE Data D3 D2 D1 Input D0 Channel Table3 Input Selection Sub Address A7 Mute In A In B In C 0 0 0 0 0 0 0 1 A6 A5 A4 A3 A2 A1 A0 D7 0 0 0 0 D6 0 0 0 0 D5 * * * * D4 * * * * Data D3 * * * * D2 0 0 0 0 D1 0 0 1 1 D0 0 1 0 1 Table4 Gain control Sub Address A7 -6dB -4dB 0dB +4dB +6dB 0 0 0 0 0 0 0 1 A6 A5 A4 A3 A2 A1 A0 D7 0 0 0 0 0 D6 0 0 0 0 0 D5 0 0 0 1 1 D4 1 1 0 1 1 Data D3 1 0 0 0 1 D2 * * * * * D1 * * * * * D0 * * * * * No.8262-5/18 LV1116N/1116NV Table5 Mode control Sub Address A7 Total Matrix Mono Pseudo 0 0 0 0 0 0 1 1 A6 A5 A4 A3 A2 A1 A0 D7 * * * * D6 * * * * D5 * * * * D4 * * * * Data D3 * * * * D2 * * * * D1 0 0 1 1 D0 0 1 0 1 Table6 Surround control Sub Address A7 OFF MODE-C MODE-B MODE-A MODE-F MODE-E MODE-D * * * 0 0 0 0 0 0 1 1 A6 A5 A4 A3 A2 A1 A0 D7 * * * * D6 * * * * D5 * * * * D4 0 0 0 0 1 1 1 Data D3 0 1 1 0 1 1 0 D2 0 1 0 1 1 0 1 * * D1 * * * * D0 * * * * Note; At the time of forced mono mode, there is not surround effect. Note; Output gain = Step1 < Step7 Table7 L+R Output Gain control Sub Address A7 MUTE Step1 Step2 Step3 Step4 Step5 Step6 Step7 0 0 0 0 0 0 1 1 A6 A5 A4 A3 A2 A1 A0 D7 0 0 0 0 1 1 1 1 D6 0 0 1 1 0 0 1 1 D5 0 1 0 1 0 1 0 1 D4 * * * * * * * * Data D3 * * * * * * * * D2 * * * * * * * * D1 * * * * * * * * D0 * * * * * * * * Note; Output gain = Step1 < Step7 Table8 Tone control [Bass control] Sub Address A7 +20dB +18dB +16dB +14dB +12dB +10dB +8dB +6dB +4dB +2dB 0dB -2dB -4dB -6dB -8dB -10dB -12dB -14dB -16dB -18dB -20dB 0 0 0 0 0 1 0 0 A6 A5 A4 A3 A2 A1 A0 D7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D4 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 Data D3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 D2 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 D1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 No.8262-6/18 LV1116N/1116NV Table9 Tone control [TREBLE control] Sub Address A7 +18dB +16dB +14dB +12dB +10dB +8dB +6dB +4dB +2dB 0dB -2dB -4dB -6dB -8dB -10dB -12dB -14dB -16dB -18dB 0 0 0 0 0 1 0 1 A6 A5 A4 A3 A2 A1 A0 D7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 Data D3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 D2 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 D1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 D0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Table10 Volume control Sub Address A7 0dB -1dB -2dB -3dB -4dB -5dB -6dB -7dB -8dB -9dB -10dB -11dB -12dB -13dB -14dB -16dB -18dB -20dB -22dB -24dB -26dB -28dB -30dB -32dB -34dB -36dB -38dB -40dB -42dB -44dB -46dB -48dB -50dB -52dB 0 0 0 0 0 0 1 0 A6 A5 A4 A3 A2 A1 A0 D7 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * D6 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 Data D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Continued on next page. No.8262-7/18 LV1116N/1116NV Continued from preceding page. Sub Address A7 -54dB -56dB -58dB -60dB -62dB -64dB -66dB -68dB -70dB -72dB -74dB -76dB -78dB -80dB -∞dB 0 0 0 0 0 0 1 0 A6 A5 A4 A3 A2 A1 A0 D7 * * * * * * * * * * * * * * * D6 * * * * * * * * * * * * * * * D5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Data D3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 D2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 D1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Table11 Volume channel control Sub Address A7 L-ch R-ch L/R 0 0 0 0 0 0 1 0 A6 A5 A4 A3 A2 A1 A0 D7 0 1 1 D6 1 0 1 D5 * * * D4 * * * Data D3 * * * D2 * * * D1 * * * D0 * * * It is the flow chart of theprogram which controls LV1116N/NV. Ex.1: It is the order, sets an initial and input port control. When doing an initial setting Start Slave_Address (EEH) Transmits Start_Sub_Address (01H) Transmits Input = Ch-A Gain = 0dB Sub_Address1_Data (01H) Transmits Sub_Address2_Data (D6H) Transmits Lch = Rch = -30dB Matrix mode Surround off L+R mute Bass Band +6dB Sub_Address3_Data (01H) Transmits Sub_Address4_Data (03H) Transmits Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note: The data to transmit is ex.. No.8262-8/18 LV1116N/1116NV Ex.2: It is the order, sets a volume control data, when Lch and Rch are same data. When doing a volume setting (Lch = Rch) Start Slave_Address (EEH) Transmits Start_Sub_Address (02H) Transmits Sub_Address2_Data (D6H) Transmits Lch = Rch = -30dB Matrix mode Surround off L+R mute Bass Band +6dB Sub_Address3_Data (01H) Transmits Sub_Address4_Data (03H) Transmits Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, input control and input gain control. Ex.3: It is the order, sets a volume control data, when Lch and Rch are other data. When doing a volume setting (Lch = -28dB, Rch = -32dB) Start Slave_Address (EEH) Transmits Start_Sub_Address (02H) Transmits Sub_Address2_Data (55H) Transmits Sub_Address3_Data (01H) Transmits Sub_Address4_Data (03H) Transmits Sub_Address5_Data (13H) Transmits Slave_Address (EEH) Transmits Start_Sub_Address (02H) Transmits Sub_Address2_Data (97H) Transmits Sub_Address3_Data (01H) Transmits Sub_Address4_Data (03H) Transmits Sub_Address5_Data (13H) Transmits End Rch = -32dB Matrix mode Surround off L+R mute Bass Band +6dB Treble Band -6dB Lch = -28dB Matrix mode Surround off L+R mute Bass Band +6dB Treble Band -6dB Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, input control and input gain control. No.8262-9/18 LV1116N/1116NV Ex.4: It is the order, sets a mode control, surround and output control data. When doing a mode setting Start Slave_Address (EEH) Transmits Start_Sub_Address (03H) Transmits Matrix mode Surround off L+R mute Bass Band +6dB Sub_Address3_Data (01H) Transmits Sub_Address4_Data (03H) Transmits Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, input control, input gain control and volume control. Ex.5: It is the order, sets a mode control, bass band control data. When doing a bass band setting Start Slave_Address (EEH) Transmits Start_Sub_Address (04H) Transmits Sub_Address4_Data (03H) Transmits Bass Band +6dB Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, input, gain, volume, and output mode control. Ex.6: It is the order, sets a mode control, treble band control data. When doing a treble band setting Start Slave_Address (EEH) Transmits Start_Sub_Address (05H) Transmits Sub_Address5_Data (13H) Transmits End Treble Band -6dB Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, Except this treble band data. No.8262-10/18 AGND Lch-B Lch-C L-DC VSS ST-2 HPFC R-TC1 L-BC1 L-BC2 L-OUT L-VROUT L+R LPF Lch-A L Line out Sample Application Circuit 36 35 34 33 32 23 31 30 29 28 27 26 25 24 22 LV1116N/1116NV LV1116N/1116NV 1 2 5 R LINE out ST-1 LPFC R-DC 3 6 7 8 Rch-B Rch-C 4 9 R-TC1 10 R-BC1 11 R-BC2 12 R-OUT GND Rch-A 1F + CLK DATA 1F 21 20 19 13 + 14 R-VROUT 15 L+R 16 VREF 17 VCC VDD 18 No.8262-11/18 LV1116N/1116NV Pin Functions Pin No 1 2 35 3 34 4 33 5 GND INPUT-A(R) INPUT-A(L) INPUT-B(R) INPUT-B(L) INPUT-C(R) INPUT-C(L) LINE-OUT(R) VREF Function SW Output ro=50kΩ Function Voltage 0 VREF Input Impedance ri=50kΩ Remarks Internal equivalent circuit 32 LINE-OUT(L) 6 DC Cut(R) VREF DC offset cancellation capacitor connection pin 31 DC Cut(L) 6 31 7 ST-1 VREF Pseudo stereo phase shift capacitor connection pin 30 ST-2 7 30 8 AViSS LPF VREF Capacitor connection pin for surround low pass filter 8 9 TREBLE(R) VREF Capacitor connection pin for configuring treble filter 28 TREBLE(L) 9 10 27 11 26 12 BASS-1(R) BASS-1(L) BASS-2(R) BASS-2(L) OUT(R) VREF Output Impedance ro=50kΩ VREF Bass band filter configuration capacitor and resistor connection pins 28 11 26 10 27 12 25 OUT(L) 25 Continued on next page. No.8262-12/18 LV1116N/1116NV Continued from preceding page. Pin No 13 Function EVR-IN(R) Voltage VREF Input Impedance ri=50kΩ Remarks Internal equivalent circuit 13 24 24 EVR-IN(L) 14 EVR-OUT(R) VREF Output Impedance ro=50kΩ 14 23 23 EVR-OUT(L) 15 L+R OUT VREF Output Impedance ro=10kΩ 15 16 VREF 0.5VCC Reference voltage VCC 16 17 18 19 20 21 22 VCC VDD I2C-DATA I C-CLK VSS L+R LPF 2 VCC VDD I2C control data input 0 VREF Internal resistor 22 29 AViSS HPF VREF 29 36 ANALOG GND VREF 36 No.8262-13/18 LV1116N/1116NV Treble / Bass Band Block Equivalent Circuit Diagram From L-Input Block + SW2 SW1 0dB ±2dB ±4dB ±6dB ±8dB ±10dB ±12dB ±14dB ±16dB ±18dB R1=10.633kΩ R2=8.446kΩ R3=6.709kΩ R4=5.329kΩ R5=4.233kΩ R6=3.363kΩ R7=2.671kΩ R8=2.122kΩ R9=1.665kΩ R10=6.510kΩ Total=51.7kΩ 0dB ±2dB ±4dB ±6dB ±8dB ±10dB ±12dB ±14dB ±16dB ±18dB ±20dB R12=100Ω L-TC1 L-BC2 R1=15.220kΩ R2=12.089kΩ R3=9.603kΩ R4=7.628kΩ R5=6.059kΩ R6=4.813kΩ R7=3.823kΩ R8=3.037kΩ R9=2.412kΩ R10=1.916kΩ R11=100Ω Total=66.7kΩ SW4 SW1 SW3 + SW2 SW4 SW3 To L-OUT Block L-BC1 Same for Right channel During boost, SW1 and SW3 are ON, during cut, SW2 and SW4 are ON, when 0dB, 0dBSW and SW2 and SW3 are ON. L+R Block Equivalent Circuit Diagram From L-VROUT + - R1=50kΩ Mute + - R4=10kΩ L+R R2=50kΩ From R-VROUT + Step1 Step2 Step3 Step4 Step5 Step6 Step7 R3=50kΩ R5=10.284kΩ R6=8.169kΩ R7=6.489kΩ R8=5.154kΩ R9=4.094kΩ R10=3.252kΩ R11=12.559kΩ Total=50kΩ L+R_LPF AGND ILV00257 No.8262-14/18 LV1116N/1116NV Tone Circuit Constant Calculation Examples Treble Band Circuit: The shelving characteristics can be obtained for the treble band. The equivalent circuit and calculation formula during boost are indicated below. • Calculation example 1 Specification Set frequency: f = 10000Hz Gain during maximum boost: G+18dB = 17.5dB Let us use R1 = 6.51kΩ and R2 = 45.19kΩ The above constants are inserted in the following formula G = 20 × Log10 1+ R2 R12+(1/ ω C)2 1 C= 2πf R2 10G/20-1 2 + R2 R1 C -R12 1 = 2π10000 45190 7.50 - 1 2 ≈6500 (pF) 2 - 6510 Bass Band Circuit: The equivalent circuit and the formula for calculating the external RC with a mean frequency of 100Hz are shown below. • Calculation example 1 specification Mean frequency: f0 = 100Hz Gain during maximum boost: G+20dB = 20dB Let us use R1 = 0kΩ and R2 = 66.7kΩ, and C1 = C2 = C. We obtain R3 from G = 20dB G = 20 × Log10 1+ R2 2 (10G+20dB/20 - 1) R2 2R3 = 66700 2 (10 - 1) ≈3.6kΩ C1 C2 + R1 R2 R3 R3 = We obtain C from mean frequency f0 = 100Hz f0 = 2π 1 (R3R2C1C2) 1 2πf0 R3R2 = 1 66700 × 3600 ≈0.1μF C= 2π × 100 We obtain Q Q= R3R2 2R3 × 1 R3R2 ≈2.15 Note item when using (1) When turning on the power, the setting inside is unsettled. Before setting control data, it does a mute. (2) To prevent the digital noise of the high frequency influence a terminal. (SCL, SDA) It can be protected by a signal line in the ground pattern or by the shielding cable. (3) To prevent the noise in changing a mode, please set the mute ON. No.8262-15/18 LV1116N/1116NV Volume Control Step Characteristics 0 10 Vcc = 9.0V Vin = 0dBV Input = VRIN Output = VROUT Gain - Frequency Vcc = 9.0V Vin = -10dBV Input = L/R Ch-A Output = L/R OUT Volume attenuation (dB) -10 -20 -30 -40 -50 -60 -70 -80 -90 -90 8 Gain Attenetion (dB) -60 -50 -40 -30 -20 -10 0 6 4 2 0 -2 -4 -6 -8 -10 -80 -70 Step Setting (dB) -6 -4 -2 0 2 Gain Step (dB) 4 6 Bass Band Frequency Characteristics 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 10 100 1000 10000 100000 Vcc = 9.0V Vin = -20dBV C = 0.1uF R = 3.6kΩ Input = L/R Ch-A Output = L/R OUT Treble Band Frequency Characteristics 5 0 -5 Vcc = 9.0V Vin = -20dBV C = 2700pF Input = L/R Ch-A Output = L/R OUT Gain (dBV) Gain (dBV) -10 -15 -20 -25 -30 -35 -40 -45 10 100 1000 10000 100000 Frequency (Hz) Frequency (Hz) Surround Mode Frequency Characteristics -5 Vcc = 9.0V Vin = -20dBV Input = L/R Ch-A Output = L/R OUT L+R Frequency Characteristics 10 0 -10 Vcc = 9.0V Vin = 0dBV Input = VRIN Output = VROUT -10 Gain (dBV) Gain (dBV) 10 100 1000 10000 100000 -15 -20 -20 -30 -40 -50 -25 -60 10 100 1000 10000 100000 Frequency (Hz) Pseud Lch vs Rch Phese Shift vs Frequency Characteristics 180 Vcc = 9.0V Vin = -20dBV Input = L/R Ch-A Output = L/R OUT Frequency (Hz) Vcc - Vomax Characteristics (1) 100.0 Phase Shift (DEG ) Vomax (dBV) 10.0 Total 90 Matrix 1.0 THD = 1% Input = L/R Ch-A Output = L/R OUT 0 10 100 0.1 Frequency (Hz) 1000 10000 100000 5 6 7 8 Vcc (V) 9 10 No.8262-16/18 LV1116N/1116NV THD - Vin characteristics 1 1 THD - Vin characteristics (Surround) Vcc=9.0V fin=1kHz Mode_A Total harmonic distotion (%) Total harmonic distotion (%) Vcc=9.0V fin=1kHz 0.1 0.1 0.01 Total Matrix Mono Psudo 0.01 0.001 -40 -30 -20 -10 0 0.001 -40 -30 -20 -10 0 Vin (dBV) Vin (dBV) THD - Frequency Characteistics 1 1 THD - Supply Voltage Characteristics Vin=-10dBV fin=1kHz Total harmonic distotion (%) Total harmonic distotion (%) Vcc=9.0V Vin=-10dBV 0.1 Total Matrix Mono Psudo Surround 0.1 Total Matrix Mono Psudo Surround 0.01 100 1000 10000 100000 0.01 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 Frequency (Hz) Supply Voltage (V) VCC - VREF 6.0 5.5 5.0 3.1 4.5 4.0 3.5 3.0 2.5 2.0 1.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 2.5 4.0 5.0 6.0 3.3 VCC - VDD VREF (V) VDD (V) 2.9 2.7 7.0 8.0 9.0 10.0 11.0 VCC (V) VCC (V) VCC - AGND 6.0 5.5 5.0 65.0 60.0 55.0 VCC - ICCO 4.0 3.5 3.0 2.5 2.0 1.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 ICCO (mA) AGND (V) 4.5 50.0 45.0 40.0 35.0 30.0 25.0 20.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 VCC (V) VCC (V) No.8262-17/18 LV1116N/1116NV SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein. SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd. Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use. Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. This catalog provides information as of January, 2008. Specifications and information herein are subject to change without notice. PS No.8262-18/18
LV1116N 价格&库存

很抱歉,暂时无法提供与“LV1116N”相匹配的价格&库存,您可以联系我们找货

免费人工找货