0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SC624ULTRT

SC624ULTRT

  • 厂商:

    SEMTECH

  • 封装:

  • 描述:

    SC624ULTRT - LED Light Management Unit Charge Pump, 4 LEDs, Dual LDOs,and SemWireTM Interface - Semt...

  • 数据手册
  • 价格&库存
SC624ULTRT 数据手册
SC624 LED Light Management Unit POWER MANAGEMENT Features Input supply voltage range — 3.0V to 5.5V Charge pump modes — 1x, 1.5x and 2x Four programmable current sinks with 32 steps from 0.5mA to 25mA Two programmable 200mA low-noise LDO regulators Charge pump frequency — 250kHz SemWireTM single wire interface — up to 75kbit/s Backlight current accuracy ±1.5% typical Backlight current matching ±0.5% typical Programmable fade-in/fade-out for main backlight Automatic sleep mode (LEDs off ) — IQ = 100μA Low shutdown current — 0.1μA (typical) Ultra-thin package — 3mm x 3mm x 0.6mm Lead-free and halogen-free WEEE and RoHS compliant Charge Pump, 4 LEDs, Dual LDOs, and SemWireTM Interface Description The SC624 is a high efficiency charge pump LED driver using Semtech’s proprietary mAhXLifeTM technology. Performance is optimized for use in single-cell Li-ion battery applications. The charge pump provides backlight current in conjunction with four matched current sinks. The load and supply conditions determine whether the charge pump operates in 1x, 1.5x, or 2x mode. An optional fading feature that gradually adjusts the backlight current is provided to simplify control software. The SC624 also provides two low-dropout, low-noise linear regulators for powering a camera module or other peripheral circuits. The SC624 uses the proprietary SemWireTM single wire interface. The interface controls all functions of the device, including backlight current and two LDO voltage outputs. The single wire implementation minimizes microcontroller and interface pin counts. In sleep mode, the device reduces quiescent current to 100μA while continuing to monitor the serial interface. The two LDOs can be enabled when the device is in sleep mode. Total current reduces to 0.1μA in shutdown. Applications Cellular phone backlighting PDA backlighting Camera I/O and core power Typical Application Circuit MAIN BACKLIGHT VBAT CIN 1 μF SemWire Interface VIN SWIF VOUT COUT 2.2μF BL1 BL2 BL3 BL4 LDO1 LDO2 C2+ C2C2 1μ F CLDO1 1μ F VLDO1 = 2.5V to 3.3V VLDO2 = 1.5V to 1.8V CLDO2 1μ F SC624 BYP CBYP 22nF GREF AGND PGND C1+ C1C1 1μ F US Patents: 6,504,422; 6,794,926 October 20, 2009 © 2009 Semtech Corporation 1 SC624 Pin Configuration Ordering Information Device C1+ C1C2+ VOUT Package MLPQ-UT-20 3×3 Evaluation Board SC624ULTRT(1)(2) SC624EVB VIN 20 19 18 17 16 C2PGND NC BL1 BL2 1 TOP VIEW 2 3 4 5 T 15 14 13 12 11 LDO1 LDO2 BYP NC SWIF Notes: (1) Available in tape and reel only. A reel contains 3,000 devices. (2) Lead-free packaging only. Device is WEEE and RoHS compliant, and halogen-free. 6 7 8 9 10 AGND MLPQ-UT-20; 3x3, 20 LEAD θJA = 35°C/W Marking Information 624 yyww xxxx yyww = Date Code xxxx = Semtech Lot No. GREF BL3 BL4 NC 2 SC624 Absolute Maximum Ratings VIN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0 VOUT (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0 C1+, C2+ (V) . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (VOUT + 0.3) Pin Voltage — All Other Pins (V) . . . . . . . . . -0.3 to (VIN + 0.3) VOUT Short Circuit Duration . . . . . . . . . . . . . . . . Continuous VLDO1, VLDO2 Short Circuit Duration. . . . . . . Continuous ESD Protection Level(1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Recommended Operating Conditions Ambient Temperature Range (°C) . . . . . . . . -40 < TA < +85 VIN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0 < VIN < 5.5 VOUT (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 < VOUT < 5.25 Voltage Difference between any two LEDs (V) . . . . . . < 1.2 Thermal Information Thermal Resistance, Junction to Ambient(2) (°C/W) . . . . 35 Maximum Junction Temperature (°C) . . . . . . . . . . . . . . +150 Storage Temperature Range (°C) . . . . . . . . . . . . -65 to +150 Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . . +260 Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended. NOTES: (1) Tested according to JEDEC standard JESD22-A114-B. (2) Calculated from package in still air, mounted to 3” x 4.5”, 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards. Electrical Characteristics Unless otherwise noted, TA = +25°C for Typ, -40ºC to +85°C for Min and Max, TJ(MAX) = 125ºC, VIN = 3.0V to 4.2V, CIN= C1= C2= 2.2μF, COUT = 4.7μF (ESR = 0.03Ω), ΔVF ≤ 1.2V(1) Parameter Supply Specifications Shutdown Current Symbol Conditions Min Typ Max Units IQ(OFF) Shutdown, VIN = 4.2V Sleep (LDOs off ), SWIF = VIN Sleep (LDOs on), SWIF = VIN, VIN > ( VLDO + 300mV), ILDO < 200mA 0.1 100 220 3.8 4.6 4.6 2 160 μA μA 340 4.65 5.85 5.85 mA Total Quiescent Current IQ Charge pump in 1x mode, 4 backlights on Charge pump in 1.5x mode, 4 backlights on Charge pump in 2x mode, 4 backlights on Fault Protection Output Short Circuit Current Limit Over-Temperature IOUT(SC) TOTP VOUT pin shorted to GND 300 160 mA °C 3 SC624 Electrical Characteristics (continued) Parameter Fault Protection (continued) Charge Pump Over-Voltage Protection VOVP VUVLO Undervoltage Lockout VUVLO-HYS 300 mV VOUT pin open circuit, VOUT = VOVP rising threshold Decreasing VIN 5.3 5.7 2.4 6.0 V V Symbol Conditions Min Typ Max Units Charge Pump Electrical Specifications Maximum Total Output Current Backlight Current Setting Backlight Current Accuracy Backlight Current Matching 1x Mode to 1.5x Mode Falling Transition Voltage 1.5x Mode to 1x Mode Hysteresis 1.5x Mode to 2x Mode Falling Transition Voltage 2x Mode to 1.5x Mode Hysteresis Current Sink Off-State Leakage Current Pump Frequency IOUT(MAX) IBL IBL_ACC IBL-BL V TRANS1x VHYST1x V TRANS1.5x VHYST1.5x IBLn fPUMP VIN > 3.4V, sum of all active LED currents, VOUT(MAX) = 4.2V Nominal setting for BL1 thru BL4 VIN = 3.7V, IBL = 12mA, TA = 25°C VIN = 3.7V, IBL = 12mA(2) IOUT = 40mA, IBLn = 10mA, VOUT = 3.2V IOUT = 40mA, IBLn = 10mA, VOUT = 3.2V IOUT = 40mA, IBLn = 10mA, VOUT = 4.0V(3) IOUT = 40mA, IBLn = 10mA, VOUT = 4.0V(3) VIN = VBLn = 4.2V VIN = 3.2V 100 0.5 -8 -3.5 ±1.5 ±0.5 3.27 25 +8 +3.5 mA mA % % V 250 mV 2.92 V 300 mV 0.1 250 1 μA kHz LDO Electrical Specifications LDO1 Voltage Setting VLDO1 VLDO2 VLDO1, VLDO2 Range of nominal settings in 100mV increments Range of nominal settings in 100mV increments VIN = 3.7V, ILDO = 1mA LDO1, ILDO1 = 1mA, VOUT = 2.8V Line Regulation ΔVLINE LDO2, ILDO2 = 1mA, VOUT = 1.8V 1.3 4.8 2.5 3.3 V LDO2 Voltage Setting LDO1, LDO2 Output Voltage Accuracy 1.5 1.8 V -3.5 ±3 +3.5 % 2.1 7.2 mV 4 SC624 Electrical Characteristics (continued) Parameter Symbol Conditions Min Typ Max Units LDO Electrical Specifications (continued) VLDO1 = 3.3V, VIN = 3.7V, ILDO1 = 1mA to 100 mA VLDO2 = 1.8V, VIN = 3.7V, ILDO2 = 1mA to 100 mA ILDO1 = 100mA 200 2.5V < VLDO1 < 3V, f < 1kHz, CBYP = 22nF, ILDO1 = 50mA, VIN = 3.7V with 0.5VP-P ripple f < 1kHz, CBYP = 22nF, ILDO2 = 50mA, VIN = 3.7V with 0.5VP-P ripple LDO1, 10Hz < f < 100kHz, CBYP = 22nF, CLDO = 1μF, ILDO1 = 50 mA, VIN = 3.7V, 2.5V < VLDO1 < 3V LDO2, 10Hz < f < 100kHz, CBYP = 22nF, CLDO = 1μF, ILDO2 = 50 mA, VIN = 3.7V 50 dB 60 100 25 mV 20 150 mV mA Load Regulation ΔVLOAD Dropout Voltage(4) Current Limit VD ILIM PSRRLDO1 PSRRLDO2 en-LDO1 Power Supply Rejection Ratio 100 μVRMS 50 1 μF Output Voltage Noise en-LDO2 Minimum Output Capacitor CLDO(MIN) Digital I/O Electrical Specifications (SWIF) Input High Threshold Input Low Threshold Input High Current Input Low Current SemWire Bit Rate SemWire Start-up Time(5) SemWire Disable Time(6) SemWire Data Latch Delay(7) VIH VIL IIH IIL fSWIF tEN tDIS DDL VIN = 5.5V VIN = 3.0V VIN = 5.5V VIN = 5.5V -1 -1 10 1 10 5 1.6 0.4 +1 +1 75 V V μA μA kbit/s ms ms bit Notes: (1) ΔVF is the voltage difference between any two LEDs. (2) Current matching equals ± [IBL(MAX) - IBL(MIN] / [IBL(MAX) + IBL(MIN)]. (3) Test voltage is VOUT = 4.0V — a relatively extreme LED voltage — to force a transition during test. Typically VOUT = 3.2V for white LEDs. (4) Dropout is defined as (VIN - VLDO1) when VLDO1 drops 100mV from nominal. Dropout does not apply to LDO2 since it has a maximum output voltage of 1.8V. (5) The SemWire start-up time is the minimum period that the SWIF pin must be held high to enable the part before commencing communication. (6) The SemWire disable time is the minimum period that the SWIF pin must be pulled low to shut the part down. (7) The SemWire data latch delay is the maximum duration after communication has ended before the register is updated. 5 SC624 Typical Characteristics Battery Current (4 LEDs) — 25mA Each 160 VOUT=3.66V, IOUT=100mA, 25°C Battery Current (4 LEDs) — 12mA Each 80 VOUT=3.50V, IOUT=48mA, 25°C 150 73 Battery Current (mA) Battery Current (mA) 140 66 130 59 120 110 52 100 4.2 4.0 3.8 3.6 VIN (V) 3.4 3.2 3.0 45 4.2 4.0 3.8 3.6 VIN (V) 3.4 3.2 3.0 Backlight Efficiency (4 LEDs) — 25mA Each 100 VOUT=3.66V, IOUT=100mA, 25°C Backlight Efficiency (4 LEDs) — 12mA Each 100 VOUT=3.50V, IOUT=48mA, 25°C 90 90 % Efficiency % Efficiency 80 80 70 70 60 60 50 4.2 4.0 3.8 3.6 VIN (V) 3.4 3.2 3.0 50 4.2 4.0 3.8 3.6 VIN (V) 3.4 3.2 3.0 Battery Current (4 LEDs) — 5.0mA Each 40 VOUT=3.33V, IOUT=20mA, 25°C 100 Backlight Efficiency (4 LEDs) — 5.0mA Each VOUT=3.33V, IOUT=20mA, 25°C 35 90 Battery Current (mA) % Efficiency 4.0 3.8 3.6 VIN (V) 3.4 3.2 3.0 30 80 25 70 20 60 15 4.2 50 4.2 4.0 3.8 3.6 VIN (V) 3.4 3.2 3.0 6 SC624 Typical Characteristics (continued) PSRR vs. Frequency (LDO1) 0 -10 -20 PSRR (dB) PSRR vs. Frequency (LDO2) 0 -10 -20 PSRR (dB) VIN=3.7V at 25°C, ILDO1=50mA, VLDO1=2.8V VIN=3.7V at 25°C, ILDO2=50mA, VLDO2=1.8V -30 -40 -50 -60 -70 10 100 Frequency (Hz) 1000 10000 -30 -40 -50 -60 -70 10 100 Frequency (Hz) 1000 10000 Load Regulation (LDO1) 24 VLDO1=3.3V, VIN=3.7V, 25°C Load Regulation (LDO2) 24 VLDO2=1.8V, VIN=3.7V, 25°C 16 Output Voltage Variation (mV) 16 Output Voltage Variation (mV) 8 8 0 0 -8 -8 -16 -24 0 30 60 ILDO1(mA) 90 120 150 -16 -24 0 30 60 ILDO2(mA) 90 120 150 7 SC624 Typical Characteristics (continued) Noise vs Load Current (LDO1) 100 VLDO1=2.8V, VIN=3.7V, 25°C 100 Noise vs Load Current (LDO2) VLDO2=1.8V, VIN=3.7V, 25°C 90 80 Noise (μV) 70 Noise (μV) 80 60 40 60 20 50 0 20 40 ILDO1 (mA) 60 80 100 0 0 20 40 ILDO2 (mA) 60 80 100 Line Regulation (LDO1) 2 VLDO1=2.8V, ILDO1=1mA, 25°C 2 Line Regulation (LDO2) VLDO2=1.8V, ILDO2=1mA, 25°C Output Voltage Variation (mV) 0 Output Voltage Variation (mV) 1 1 0 -1 -1 -2 -2 -3 4.2 -3 4.0 3.8 3.6 VIN (V) 3.4 3.2 3.0 4.2 4.0 3.8 3.6 VIN (V) 3.4 3.2 3.0 8 SC624 Typical Characteristics (continued) Load Transient Response (LDO1) — Rising Edge VIN=3.7V, VLDO1=2.8V, ILDO1=1 to 100mA Load Transient Response (LDO2) — Rising Edge VIN=3.7V, VLDO2=1.8V, ILDO2=1 to 100mA VLDO1 (50mV/div) VLDO2 (50mV/div) ILDO1 (100mA/div) ILDO2 (100mA/div) Time (20μs/div) Time (20μs/div) Load Transient Response (LDO1) — Falling Edge VIN=3.7V, VLDO1=2.8V, ILDO1=100 to 1mA VLDO1 (50mV/div) Load Transient Response (LDO2) — Falling Edge VIN=3.7V, VLDO2=1.8V, ILDO2=100 to 1mA VLDO2 (50mV/div) ILDO1 (100mA/div) ILDO2 (100mA/div) Time (200μs/div) Time (200μs/div) Output Short Circuit Current Limit VOUT=0V, VIN=4.2V, 25°C VBL1 (500mV/div) VOUT (1V/div) VOUT (2V/div) Output Open Circuit Protection VIN=3.7V, 25°C IOUT (100mA/div) IBL1 (20mA/div) Time (1ms/div) Time (200μs/div) 9 SC624 Pin Descriptions Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 T Pin Name C2PGND NC BL1 BL2 BL3 BL4 AGND GREF NC SWIF NC BYP LDO2 LDO1 VOUT C2+ C1+ VIN C1THERMAL PAD Pin Function Negative connection to bucket capacitor 2 — requires a 1μF capacitor connected to C2+ Ground pin for high current charge pump Unused pin — do not terminate Current sink output for main backlight LED 1 — leave this pin open if unused Current sink output for main backlight LED 2 — leave this pin open if unused Current sink output for main backlight LED 3 — leave this pin open if unused Current sink output for main backlight LED 4 — leave this pin open if unused Analog ground pin — connect to ground and separate from PGND current Ground reference — connect to ground Unused pin — do not terminate SemWire single wire interface pin — used to enable/disable the device and to set up all internal registers (refer to Register Map and SemWire Interface sections) Unused pin — do not terminate Bypass pin for voltage reference — connect with a 22nF capacitor to AGND Output of LDO2 — connect with a 1μF capacitor to AGND Output of LDO1 — connect with a 1μF capacitor to AGND Charge pump output — all LED anode pins should be connected to this pin — requires a 2.2μF capacitor to PGND Positive connection to bucket capacitor 2 — requires a 1μF capacitor connected to C2Positive connection to bucket capacitor 1 — requires a 1μF capacitor connected to C1Battery voltage input — connect with a 1μF capacitor to PGND Negative connection to bucket capacitor 1 — requires a 1μF capacitor connected to C1+ Thermal pad for heatsinking purposes — connect to ground plane using multiple vias — not connected internally 10 SC624 Block Diagram C1+ 18 C120 C2+ 17 C21 VOUT VIN 19 VIN mAhXLifeTM Fractional Charge Pump (1x, 1.5x, 2x) 16 2 VOUT PGND SWIF 11 SemWireTM Digital Interface and Logic Control 9 Oscillator 4 5 6 Current Setting DAC 7 BL1 BL2 BL3 BL4 GREF BYP 13 Bandgap Reference Voltage Setting DAC 3 VIN NC NC NC 10 12 LDO1 15 LDO1 VIN LDO2 AGND 8 14 LDO2 11 SC624 Applications Information General Description This design is optimized for handheld applications supplied from a single Li-Ion cell and includes the following key features: between the C1+ and C1- pins and the other must be connected between the C2+ and C2- pins as shown in the typical application circuit diagram. These capacitors should be equal in value, with a minimum capacitance of 1μF to support the charge pump current requirements. The device also requires a 1μF capacitor on the VIN pin and a 2.2μF capacitor on the VOUT pin to minimize noise and support the output drive requirements. Capacitors with X7R or X5R ceramic dielectric are strongly recommended for their low ESR and superior temperature and voltage characteristics. Y5V capacitors should not be used as their temperature coefficients make them unsuitable for this application. • • • • A high efficiency fractional charge pump that supplies power to all LEDs Four matched current sinks that control LED backlighting current, with 0.5mA to 25mA per LED Two adjustable LDOs with outputs ranging from 2.5V to 3.3V for LDO1 and 1.5V to 1.8V for LDO2, adjustable in 100mV increments A SemWire single wire interface that provides control of all device functions LED Backlight Current Sinks The backlight current is set via the SemWire interface. The current is regulated to one of 32 values between 0.5mA and 25mA. The step size varies depending upon the current setting. Between 0.5mA and 12mA, the step size is 0.5mA. The step size increases to 1mA for settings between 12mA and 15mA and 2mA for settings greater than 15mA. This feature allows finer adjustment for dimming functions in the low current setting range and coarse adjustment at higher current settings where small current changes are not visibly noticeable in LED brightness. All backlight current sinks have matched currents, even when there is variation in the forward voltages (ΔVF ) of the LEDs. A ΔVF of 1.2V is supported when the input voltage is at 3.0V. Higher ΔVF LED mis-match is supported when VIN is higher than 3.0V. All current sink outputs are compared and the lowest output is used for setting the voltage regulation at the VOUT pin. This is done to ensure that sufficient bias exists for all LEDs. The backlight LEDs default to the off state upon powerup. For backlight applications using less than four LEDs, any unused output must be left open and the unused LED driver must remain disabled. When writing to the Backlight Enable Control register, a zero (0) must be written to the corresponding bit of any unused output. High Current Fractional Charge Pump The backlight outputs are supported by a high efficiency, high current fractional charge pump output at the VOUT pin. The charge pump multiplies the input voltage by 1, 1.5, or 2 times. The charge pump switches at a fixed frequency of 250kHz in 1.5x and 2x modes and is disabled in 1x mode to save power and improve efficiency. The mode selection circuit automatically selects the 1x, 1.5x or 2x mode based on circuit conditions. Circuit conditions such as low input voltage, high output current, or high LED voltage place a higher demand on the charge pump output. A higher numerical mode may be needed momentarily to maintain regulation at the VOUT pin during intervals of high demand, such as the droop at the VIN pin during a supply voltage transient. The charge pump responds to these momentary high demands, setting the charge pump to the optimum mode (1x, 1.5x or 2x), as needed to deliver the output voltage and load current while optimizing efficiency. Hysteresis is provided to prevent mode toggling. The charge pump requires two bucket capacitors for low ripple operation. One capacitor must be connected 12 SC624 Applications Information (continued) Backlight Quiescent Current The quiescent current required to operate all four backlights is reduced by 1.5mA when backlight current is set to 4.0mA or less. This feature results in higher efficiency under light-load conditions. Further reduction in quiescent current will result from using fewer than four LEDs. consumption by turning off the clock and the charge pump while continuing to monitor the serial interface for commands. Both LDOs can be powered up while in sleep mode. SemWire Single Wire Interface Functions All device functions can be controlled via the SemWire single wire interface. The interface is described in detail in the SemWire Interface section of the datasheet. Fade-In and Fade-Out Backlight brightness can be set to automatically fade-in when current is set to increase and fade-out when current is set to decrease. When enabled with a new current setting, the current will step through each incremental setting between the old and new values. The result is a visually smooth change in brightness with a rate of fade that can be set to 8, 16, 24, or 32 ms per step. Protection Features The SC624 provides several protection features to safeguard the device from catastrophic failures. These features include: Programmable LDO Outputs Two low dropout (LDO) regulators are provided for camera module I/O and core power. Each LDO has at least 100mA of available load current with ±3.5% accuracy. The minimum current limit is 200mA, so outputs greater than 100mA are possible at somewhat reduced accuracy. A 1μF, low ESR capacitor should be used as a bypass capacitor on each LDO output to reduce noise and ensure stability. In addition, it is recommended that a minimum 22nF capacitor be connected from the BYP pin to ground to minimize noise and achieve optimum power supply rejection. A larger capacitor can be used for this function, but at the expense of increasing turnon time. Capacitors with X7R or X5R ceramic dielectric are strongly recommended for their low ESR and superior temperature and voltage characteristics. Y5V capacitors should not be used as their temperature coefficients make them unsuitable for this application. • • • • • Output Open Circuit Protection Over-Temperature Protection Charge Pump Output Current Limit LDO Current Limit LED Float Detection Output Open Circuit Protection Over-Voltage Protection (OVP) is provided at the VOUT pin to prevent the charge pump from producing an excessively high output voltage. In the event of an open circuit at VOUT, the charge pump runs in open loop and the voltage rises up to the OVP limit. OVP operation is hysteretic, meaning the charge pump will momentarily turn off until VOUT is sufficiently reduced. The maximum OVP threshold is 6.0V, allowing the use of a ceramic output capacitor rated at 6.3V with no fear of over-voltage damage. Over-Temperature Protection The Over-Temperature (OT) protection circuit helps prevent the device from overheating and experiencing a catastrophic failure. When the junction temperature exceeds 160°C, the device goes into thermal shutdown with all outputs disabled until the junction temperature is reduced. All register information is retained during thermal shutdown. Shutdown State The device is disabled when the SWIF pin is low. All registers are reset to default condition when SWIF is low. Sleep Mode When all LEDs are off, sleep mode is activated. This is a reduced current mode that helps minimize overall current 13 SC624 Applications Information (continued) Charge Pump Output Current Limit The device also limits the charge pump current at the VOUT pin (typically 300mA). LDO Current Limit The device limits the output currents of LDO1 and LDO2 to help prevent it from overheating and to protect the loads. The minimum limit is 200mA, so load current greater than the rated 100mA can be used with degraded accuracy and larger dropout without tripping the current limit. LED Float Detection Float detect is a fault detection feature of the LED current sink outputs. If an output is programmed to be enabled and an open circuit fault occurs at any current sink output, that output will be disabled to prevent a sustained output OVP condition from occurring due to the resulting open loop. Float detect ensures device protection but does not ensure optimum performance. Unused LED outputs must be disabled to prevent an open circuit fault from occurring. 14 SC624 Applications Information (continued) PCB Layout Considerations The layout diagram in Figure 1 illustrates a proper two-layer PCB layout for the SC624 and supporting components. Following fundament al layout rules is critical for achieving the performance specified in the Electrical Characteristics table. The following guidelines are recommended when developing a PCB layout: • • • • • Place all bypass and decoupling capacitors — C1, C2, CIN, COUT, CLDO1, CLDO2, and CBYP as close to the device as possible. All charge pump current passes through VIN, VOUT, and the bucket capacitor connection pins. Ensure that all connections to these pins make use of wide traces so that the resistive drop on each connection is minimized. The thermal pad should be connected to the ground plane using multiple vias to ensure proper thermal connection for optimal heat transfer. • • Make all ground connections to a solid ground plane as shown in the example layout (Figure 3). If a ground layer is not feasible, the following groupings should be connected: PGND — CIN, COUT AGND — Ground Pad, CLDO1, CLDO2, CBYP If no ground plane is available, PGND and AGND should be routed back to the negative battery terminal as separate signals using thick traces. Joining the two ground returns at the terminal prevents large pulsed return currents from mixing with the low-noise return currents of the LDOs. Both LDO output traces should be made as wide as possible to minimize resistive losses. GND CIN C1 C2 VOUT C1+ C2+ VOUT COUT CLDO1 LDO1 VIN C2- GND VIN C1- PGND LDO2 CLDO2 Figure 2 — Layer 1 NC SC624 BYP BL1 NC BL2 SWIF CBYP AGND BL3 BL4 GREF Figure 1 — Recommended PCB Layout NC Figure 3 — Layer 2 15 SC624 Register Map Address D7 D6 D5 D4 D3 D2 D1 D0 Reset Value 0x00 Description Backlight Current Control Backlight Enable Control LDO Control 0x00 FADE_1 FADE_0 FADE_EN BL_4 BL_3 BL_2 BL_1 BL_0 0x01 0x03 0(1) 0(1) 0(1) LDO2_2 0(1) LDO2_1 0(1) LDO2_0 BLEN_4 LDO1_3 BLEN_3 LDO1_2 BLEN_2 LDO1_1 BLEN_1 LDO1_0 0x00 0x00 Notes: (1) 0 = always write a 0 to these bits Register and Bit Definitions Backlight Current Control Register (0x00) This register is used to set the currents for the backlight current sinks, as well as to enable and set the fade step rate. These current sinks need to be enabled in the Backlight Enable Control register to be active. FADE[1:0] These bits are used to set the rise/fall rate between two backlight currents as follows: FADE_1 0 0 1 1 FADE_0 0 1 0 1 Fade Feature Rise/Fall Rate (ms/step) 32 24 16 8 value to a new value set by bits BL[4:0] at a rate of 8ms to 32ms per step. A new backlight level cannot be written during an ongoing fade operation, but an ongoing fade operation may be cancelled by resetting the fade bit. Clearing the fade bit during an ongoing fade operation changes the backlight current immediately to the value of BL[4:0]. The number of counts to complete a fade operation equals the difference between the old and new backlight values to increment or decrement the BL[4:0] bits. If the fade bit is cleared, the current level will change immediately without the fade delay. The rate of fade may be changed dynamically, even while a fade operation is active, by writing new values to the FADE_1 and FADE_0 bits. The total fade time is determined by the number of steps between old and new backlight values, multiplied by the rate of fade in ms/step. The longest elapsed time for a full scale fade-out of the backlight is nominally 1.024 seconds when the default interval of 32ms is used. The number of steps in changing the backlight current will be equal to the change in binary count of bits BL[4:0]. FADE_EN This bit is used to enable or disable the fade feature. When the fade function is enabled and a new backlight current is set, the backlight current will change from its current 16 SC624 Register and Bit Definitions (continued) BL[4:0] These bits are used to set the current for the backlight current sinks. All enabled backlight current sinks will sink the same current, as shown in Table 1. Table 1 — Backlight Current Control Bits BL_4 BL_3 BL_2 BL_1 BL_0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 BL Enable Control Register (0x01) This register is used to enable the backlight current sinks. BLEN[4:1] These bits are used to enable current sinks (active high, default low). BLEN_4 — Enable bit for backlight BL4 BLEN_3 — Enable bit for backlight BL3 BLEN_2 — Enable bit for backlight BL2 BLEN_1 — Enable bit for backlight BL1 When enabled, the current sinks will carry the current set by the backlight current control bits BL[4:0], as shown in Table 1. Backlight Current (mA) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 13 14 15 17 19 21 23 25 17 SC624 Register and Bit Definitions (continued) LDO Control Register (0x03) This register is used to enable the LDOs and to set their output voltages. LDO2[2:0] These bits are used to set the output voltage of LDO2, as shown in Table 2. Table 2 — LDO2 Control Bits 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 OFF 3.3V 3.2V 3.1V 3.0V 2.9V 2.8V 2.7V 2.6V 2.5V OFF LDO1[3:0] These bits set the output voltage of LDO1, as shown in Table 3. Table 3 — LDO1 Control Bits LDO1_3 LDO1_2 LDO1_1 LDO1_0 LDO1 Output Voltage LDO2_2 0 0 0 0 1 LDO2_1 0 0 1 1 0 LDO2_0 0 1 0 1 0 LDO2 Output Voltage OFF 1.8V 1.7V 1.6V 1.5V OFF 0 0 0 0 0 0 0 1 1 101 through 111 are not used 1010 through 1111 are not used 18 SC624 SemWire Interface Semwire Interface Functions The SWIF pin is a write-only single wire interface. It provides the capability to address up to 32 registers to control device functionality. The protocol for using this interface is described in the following subsections. Driving the SWIF Pin The SWIF pin should be driven by a GPIO from the system microcontroller. The output level can be configured as either a push-pull driver (TTL or CMOS levels) or as an open drain driver with an external pull-up resistor. Enabling the Device The SWIF pin must be pulled from low to high for a period of greater than 1ms (tEN) to enable the device into the sleep state. In the sleep state, the device bandgap is active, UVLO monitoring is active, and the serial interface is monitored for communication. Automatic Sleep State If the backlight current sinks are disabled, the device automatically enters the sleep state in order to minimize the current draw from the battery. When in sleep mode, the charge pump and oscillator are both disabled. The LDOs remain on if enabled. Disabling the Device The SWIF pin must be pulled from high to low for a period greater than 10ms (tDIS) in order to shut down the device. In this state the device remains disabled until the SWIF pin is pulled high for a period greater than 1ms. All registers return to the default state. SemWire Communication Protocol and Timing The following six step communication sequence controls all device functions when the device is enabled. 1. OSC On — The SWIF pin is toggled low for one bit duration and high for one bit duration in order to enable the oscillator. The oscillator is turned off in the sleep state to minimize quiescent current. 2. Sample — The SWIF pin is toggled low for one bit duration and high for one bit duration. During this time, the device samples the bit rate and determines the bit rate at which the register address and data values that follow will arrive. The sample rate is at least 20 times the bit rate ensuring robust communication synchronization. 3. Start — The SWIF pin is pulled low for one bit duration, which starts communication with the target register. 4. Address — The next 5 bits are the address of the target register — MSB first, LSB last. 5. Data — The next 8 bits are the data written to the target register — MSB first, LSB last. 6. Standby — After the last data bit is sent, the SWIF pin is pulled high for 5 bit durations to return the device to standby before another data write can take place. If all LEDs are disabled, the device will go back to sleep mode. NOTE: The bit rate must be set by the host controller to a rate that is between the minimum and maximum frequencies listed in the Electrical Characteristics section. 19 SC624 SemWire Interface (continued) Single Write Operation Device Disabled Device Enabled Into Sleep OSC On Sample Register Address Data 5 Resume high Sleep if bits all LEDs Min. are off Device Disabled when low for tDIS Start A4 t > tEN A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 t > DDL t > tDIS Concatenated Write Operation OSC On Sample Register Address Data OSC On (Repeated) D2 D1 D0 t > DDL Sample Start A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 Start To concatenate write operations, repeat Osc On, Sample and Start after the DO bit of the previous sequence as shown. 20 SC624 Outline Drawing — MLPQ-UT-20 3x3 A D B DIMENSIONS INCHES MILLIMETERS DIM MIN NOM MAX MIN NOM MAX A A1 A2 b D D1 E E1 e L N aaa bbb .020 .000 .024 .002 0.50 0.00 0.60 0.05 (.006) .006 .008 .010 .114 .118 .122 .061 .067 .071 .114 .118 .122 .061 .067 .071 .016 BSC .012 .016 .020 20 .003 .004 (0.1524) 0.15 0.20 0.25 2.90 3.00 3.10 1.55 1.70 1.80 2.90 3.00 3.10 1.55 1.70 1.80 0.40 BSC 0.30 0.40 0.50 20 0.08 0.10 PIN 1 INDICATOR (LASER MARK) E A2 A aaa C A1 e LxN E/2 E1 2 1 N SEATING PLANE C D1 D/2 bxN bbb NOTES: 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). CAB 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS . 3. DAP is 1.90 x 190mm. 21 SC624 Land Pattern — MLPQ-UT-20 3x3 H R DIM C G H K P R X Y Z DIMENSIONS INCHES (.114) .083 .067 .067 .016 .004 .008 .031 .146 MILLIMETERS (2.90) 2.10 1.70 1.70 0.40 0.10 0.20 0.80 3.70 (C) K G Z Y X P NOTES: 1. 2. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE. 3. Contact Information Semtech Corporation Power Management Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111 Fax: (805) 498-3804 www.semtech.com 22
SC624ULTRT 价格&库存

很抱歉,暂时无法提供与“SC624ULTRT”相匹配的价格&库存,您可以联系我们找货

免费人工找货