SGM2324
PRODUCT DESCRIPTION
The SGM2324 has quad rail-to-rail output voltage feedback amplifiers in one package. It takes the minimum operating supply voltage down to 3V and the maximum recommended supply voltage is 5.5V. SGM2324 is specified over the extended -40°C to +85°C temperature range. The amplifier in SGM2324 provides 1MHz bandwidth; very low input bias currents of 10pA, these features enable SGM2324 to be used for integrators, photodiode amplifiers, and piezoelectric sensors. Rail-to-rail output feature is useful for designers to buffer ASIC in single-supply systems. Applications of SGM2324 include safety monitoring, portable equipment, battery and power supply control, signal conditioning and interfacing for transducers in low power systems. The SGM2324 is offered in SO-16, TSSOP-16, TSSOP-14 and SO-14 packages.
1MHz, Quad, General Purpose CMOS Operational Amplifier
FEATURES
• Low Cost • Rail-to-Rail Output 1.7mV Typical VOS • Unity Gain Stable • Gain Bandwidth Product: 1MHz • Very Low Input Bias Currents: 10pA • Input Common-Mode Voltage Range Includes Ground • Operates from 3V to 5.5V • Lead (Pb) Free Packages: SO-16, TSSOP-16, SO-14 and TSSOP-14
PIN CONFIGURATIONS (Top View)
APPLICATIONS
ASIC Input or Output Amplifier Sensor Interface Piezo Electric Transducer Amplifier Medical Instrumentation Mobile Communication Portable Systems Smoke Detectors Notebook PC PCMCIA Cards Battery–Powered Equipment DSP Interface
SG Micro Ltd. Tel: 86/10/51798160/80 www.sg-micro.com
REV. B
ELECTRICAL CHARACTERISTICS: VS = +5V
(At RL = 100KΩ connected to Vs/2, and VOUT = Vs/2, unless otherwise noted)
SGM2324 PARAMETER CONDITIONS TYP +25℃ INPUT CHARACTERISTICS Input Offset Voltage (VOS) Input Bias Current (IB) Input Offset Current (IOS) Common-Mode Rejection Ratio(CMRR) Open-Loop Voltage Gain( AOL) Input Offset Voltage Drift (∆VOS/∆T) OUTPUT CHARACTERISTICS Output Voltage Swing from Rail Output Current (IOUT) POWER SUPPLY 3.0 5.5 Power Supply Rejection Ratio (PSRR) Quiescent Current / Amplifier (IQ) DYNAMIC PERFORMANCE Gain-Bandwidth Product (GBP) Slew Rate (SR) Settling Time to 0.1%( tS) Overload Recovery Time Crosstalk G = +1 , 2V Output Step G = +1, 2 V Output Step VIN ·Gain = Vs 1kHz 1MHz NOISE PERFORMANCE Voltage Noise Density (en) f = 1kHz f = 10kHz 42.0 38.0 nV/ nV/
Hz
MIN/MAX OVER TEMPERATURE +25℃ -40℃ to +85℃ UNITS MIN / MAX
1.7 10 10 VS = 5V, VCM = - 0.1V to 3.3V RL = 2KΩ ,Vo = 0.1V to 4.9V RL =10KΩ ,Vo = 0.035V to 4.965V 88 100 110 3.5
10
12
mV pA pA
MAX TYP TYP MIN MIN MIN TYP
65 85 90
50 80 85
dB dB dB µV/℃
RL = 2KΩ RL = 10KΩ
0.8 0.008 43 28 24
V V mA
TYP TYP MIN
Operating Voltage Range Vs = +3V to + 5.5V VCM = (-VS) + 0.5V IOUT = 0 80 0.65
3.0 5.5 70 1.3
V V dB mA
MIN MAX MIN MAX
75 1.2
1 0.65 9.0 4.0 -80 -65
MHz V/µs µs µs dB dB
TYP TYP TYP TYP TYP TYP
TYP TYP
Hz
Specifications subject to changes without notice.
2
SGM2324
PACKAGE/ORDERING INFORMATION
MODEL ORDER NUMBER SGM2324YS/TR SGM2324 SGM2324YTS/TR SGM2324YS14/TR SGM2324YTS14/TR PACKAGE DESCRIPTION SO-16 TSSOP-16 SO-14 TSSOP-14 PACKAGE OPTION Tape and Reel, 2500 Tape and Reel, 3000 Tape and Reel, 2500 Tape and Reel, 3000 MARKING INFORMATION SGM2324YS SGM2324YTS SGM2324YS14 SGM2324YTS14
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, V+ to V- . . . . . . . . . . . . . . . . . . . . . . . 6V Storage Temperature Range . . . . . . . . . -65℃ to +150℃ Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 160℃ Operating Temperature Range . . . . . . . . -40℃ to +85℃ Package Thermal Resistance @ TA = 25℃ SO-16, θJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82℃/W TSSOP-16, θJA . . . . . . . . . . . . . . . . . . . . . . . . . . . 105℃/W Lead Temperature Range (Soldering 10 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260℃ ESD Susceptibility HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000V MM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400V
CAUTION
This integrated circuit can be damaged by ESD. SG Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
NOTES 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
3
SGM2324
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃, VS = +5V, and RL = 100KΩ connected to Vs/2, unless otherwise noted. Small-Signal Step Response
G = +1 CL = 100pF RL = 100KΩ
Large-Signal Step Response
G = +1 CL = 100pF RL = 100KΩ
50mV/div
200mV/div
2µs/div
5µs/div
Overload Recovery Time
60
Small-Signal Overshoot vs.Load Capacitance
2.5V
Small-Signal Overshoot(%)
Vs = 5V G = -5 VIN = 500mV
50 40 30 20 10 0
G=-5 RFB=100KΩ
0V 500mV
0V Time(2µs/div)
10 100 1000 Load Capacitance(pF) 10000
On Response vs.Frequency 3
6 5 Output Voltage(Vp-p)
Maximum Output Voltage vs.Frequency
Maximum Output Voltage Without Slew-Rate Induced Distortion
0 On Response(dB)
4 3 2 1 0 VS = 5V G = -5 RL = 100kΩ CL=100pF 1 10 100 1000 Frequency(kHz) 10000
-3 VS = 5V G = +1 VIN = 0.2VP-P CL=100pF RL = 100kΩ 1 10 100 Frequency(KHz) 1000 10000
-6
-9
4
SGM2324
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃, VS = +5V, and RL = 100KΩ connected to Vs/2, unless otherwise noted.
Input Voltage Noise Spectral Density vs.Frequency 1000 Voltage Noise(nV/ √Hz)
CMRR And PSRR vs.Frequency 100 90 80 CMRR,PSRR(dB) 70 60 50 40 30 20 10 0 1 10 100 Frequency(kHz) 1000 10000
10 0.01
PSRR
100
CMRR
0.1
1 Frequency(kHz)
10
100
Quiescent Current vs.Temperature 1.4 1.2 Quiescent Current(mA) 1 0.8 0.6 0.4 0.2 0 -40 -20 0 20 40 Temperature(℃) 60 80
100 -40 -20 Open–Loop Gain(dB) 140 130 120 110 150
Open-Loop Gain vs.Temperature
RL = 2k Ω
RL = 10kΩ
0 20 40 Temperature(℃)
60
80
PSRR vs.Temperature 110 105 100 PSRR(dB) 95 90 85 80 -40 -25 -10 5 20 35 50 Temperature(℃) 65 80
CMRR vs.Temperature 200 160 120 80 40 0 -40 -25 -10 5 20 35 50 Temperature(℃) 65 80
5
CMRR(dB)
SGM2324
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃, VS = +5V, and RL = 100KΩ connected to Vs/2, unless otherwise noted.
Quiescent And Short-Circuit Current vs.Supply Voltage 1 0.8 0.6 IQ 0.4 0.2 0 2.5 3 3.5 4 4.5 Supply Voltage(V) 5 ISC 40 20 0 5.5 100 80 60 Short-Circuit Current(mA)
Quiescent Current(mA)
6
SGM2324
APPLICATION NOTES
Driving Capacitive Loads
The SGM2324 can directly drive 250pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor RISO and the load capacitor CL form a zero to increase stability. The bigger the RISO resistor value, the more stable VOUT will be. Note that this method results in a loss of gain accuracy because RISO forms a voltage divider with the RLOAD.
Power-Supply Bypassing and Layout
The SGM2324 operates from a single +3V to +5.5V supply or dual ±1.5V to ±2.75V supplies. For single-supply operation, bypass the power supply VDD with a 0.1µF ceramic capacitor which should be placed close to the VDD pin. For dual-supply operation, both the VDD and the VSS supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.
VDD VDD 10µF
10µF 0.1µF
0.1µF
RISO ¼ SGM2324 VIN CL VOUT
Vn Vn ¼ SGM2324 Vp VOUT ¼ SGM2324 Vp 10µF
VOUT
Figure 1. Indirectly Driving Heavy Capacitive Load An improvement circuit is shown in Figure 2, It provides DC accuracy as well as AC stability. RF provides the DC accuracy by connecting the inverting signal with the output, CF and RIso serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier’s inverting input, thereby preserving phase margin in the overall feedback loop.
VSS(GND)
0.1µF
VSS
Figure 3. Amplifier with Bypass Capacitors
CF RF RISO ¼ SGM2324 VIN CL RL VOUT
Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier’s gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.
7
SGM2324
Typical Application Circuits
Differential Amplifier
The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then VOUT = ( Vp – Vn ) × R2 / R1 + Vref.
Low Pass Active Filter
The low pass filter shown in Figure 6 has a DC gain of ( - R2 / R1 ) and the –3dB corner frequency is 1/2πR2C. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.
R2 Vn Vp R3 R4 Vref
Figure 4. Differential Amplifier
C R2 R1
R1 ¼ SGM2324 VOUT
VIN
¼ SGM2324
VOUT
R3 = R1 // R2
Figure 6. Low Pass Active Filter
Instrumentation Amplifier
The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance.
R2 R1 ¼ SGM2324 Vn ¼ SGM2324 Vp ¼ SGM2324 Vref R3 R4 VOUT
Figure 5. Instrumentation Amplifier
8
SGM2324
PACKAGE OUTLINE DIMENSIONS
SO-16
D C
Symbol
A A1 A2 b c D E E1 e L θ
E1 E
Dimensions In Millimeters Min Max
1.350 1.750 0.100 0.250 1.350 1.550 0.330 0.510 0.170 0.250 9.800 10.20 3.800 4.000 5.800 6.200 1.270 (BSC) 0.400 1.270 0° 8°
Dimensions In Inches Min Max
0.053 0.069 0.004 0.010 0.053 0.061 0.013 0.020 0.007 0.010 0.386 0.402 0.150 0.157 0.228 0.244 0.050 (BSC) 0.016 0.050 0° 8°
L θ e A2 A1 b A
9
SGM2324
PACKAGE OUTLINE DIMENSIONS
TSSOP-16
A b
Symbol
E1 E
Dimensions In Millimeters Min Max
5.100 4.500 0.300 0.200 6.550 1.100 0.800 1.000 0.020 0.150 0.65 (BSC) 0.500 0.700 0.25(TYP) 1° 7° 4.900 4.300 0.190 0.090 6.250
Dimensions In Inches Min Max
0.193 0.169 0.007 0.004 0.246 0.201 0.177 0.012 0.008 0.258 0.043 0.031 0.039 0.001 0.006 0.026 (BSC) 0.020 0.028 0.01(TYP) 1° 7°
PIN #1 IDENT. e A2 A
C θ D L H A1
A
D E b c E1 A A2 A1 e L H θ
10
SGM2324
PACKAGE OUTLINE DIMENSIONS
SO-14
D
R1 θ1
L2
R
L
L1
INDEX Φ0.8±0.1 DEP0.2±0.1
Symbol
A A1 A2 A3 b b1 c c1 D E E1 e L L1 L2 R R1 h θ θ1 θ2 θ3 θ4
Dimensions In Millimeters MIN NOM MAX
1.35 0.10 1.25 0.55 0.36 0.35 0.16 0.15 8.53 5.80 3.80 0.45 1.60 0.15 1.45 0.65 0.40 1.75 0.25 1.65 0.75 0.49 0.45 0.25 0.25 8.73 6.20 4.00
θ2
E1
E
Φ2.0±0.1 BTM E-MARK DEP0.1±0.05
h
h e b
0.25
θ
BB
M
θ3 A2 A A3
A1
θ4 b
0.10
0.20 8.63 6.00 3.90 1.27 BSC 0.60 0.80 1.04 REF 0.25 BSC
BASE METAL
b1
WITH PLATING
0.07 0.07 0.30 0° 6° 6° 5° 5°
0.40 8° 8° 7° 7°
0.50 8° 10° 10° 9° 9°
c1
c
SECTION B-B
11
SGM2324
PACKAGE OUTLINE DIMENSIONS
TSSOP-14
D
Symbol
A
θ2 S
Dimensions In Millimeters MIN
— 0.05 0.90 0.34 0.20 0.20 0.10 0.10 4.86 6.20 4.30 0.45
NOM
— — 1.00 0.44 — 0.22 — 0.13 4.96 6.40 4.40 0.65 BSC 0.60 1.00 REF 0.25 BSC
MAX
1.20 0.15 1.05 0.54 0.28 0.24 0.19 0.15 5.06 6.60 4.50 0.75
A1 A2 A3 b b1 c
θ3
R1 R B
E1
E
B
L2
INDEX Φ1.0±0.05 0.1-0.1 DEP
+0
L L1
θ1
c1 D E E1
#1 PIN
e
BASE METAL
b b1 A3
e L L1 L2 R R1 0.09 0.09 0.20 0° 10° 10°
A2
A
A1
c1
c
— — — — 12° 12°
— — — 8° 14° 14°
0.10
SECTION B-B
S θ1 θ2 θ3
12
SGM2324
REVISION HISTORY
Location 10/2007— Data Sheet REV.A
02/2008— Data Sheet changed from REV. A to REV. B Added SO-14 and TSSOP-14 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 3, 11, 12
Page
SG Micro Ltd.
A2608, NO.72 North Road Xisanhuan, Haidian District, Beijing, China 100037 Tel: 86-10-51798160/80 Fax: 86-10-51798180-803 www.sg-micro.com
13
SGM2324