SGM8621 SGM8622 SGM8623 SGM8624
PRODUCT DESCRIPTION
The SGM8621(single), SGM8622 (dual), SGM8623 (single with shutdown) and SGM8624 (quad) are low noise, low voltage, and low power operational amplifiers, that can be designed into a wide range of applications. The SGM8621/2/3/4 have a high gain-bandwidth product of 3MHz, a slew rate of 1.7V/µs, and a quiescent current of 250µA/amplifier at 5V. The SGM8623 has a power-down disable feature that reduces the supply current to 150nA. The SGM8621/2/3/4 are designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common-mode voltage range includes ground, and the maximum input offset voltage is 3mV for SGM8621/2/3/4. They are specified over the extended industrial temperature range (−40°C to +125°C). The operating range is from 2.5V to 5.5V. The single version, SGM8621/8623, is available in SC70-5, SO-8 and SOT23-5(6) packages. The dual version SGM8622 is available in SO-8 and MSOP-8 packages. The quad version SGM8624 is available in SO-16 and TSSOP-16 packages.
250µA, 3MHz, Rail-to-Rail I/O CMOS Operational Amplifier
FEATURES
• Low Cost • Rail-to-Rail Input and Output 0.7mV Typical VOS • High Gain-Bandwidth Product: 3MHz • High Slew Rate: 1.7V/µs • Settling Time to 0.1% with 2V Step: 2.1 µs • Overload Recovery Time: 1µs • Low Noise : 12 nV/ Hz • Operates on 2.5 V to 5.5V Supplies • Input Voltage Range = - 0.1 V to +5.6 V with VS = 5.5 V • Low Power 250µA/Amplifier Typical Supply Current SGM8623 150nA when Disabled • Small Packaging SGM8621 Available in SC70-5, SOT23-5 and SO-8 SGM8622 Available in MSOP-8 and SO-8 SGM8623 Available in SOT23-6and SO-8 SGM8624 Available in TSSOP-16 and SO-16
PIN CONFIGURATIONS (Top View)
SGM8621
OUT -VS 1 2 4 SOT23-5 /SC70-5 -IN +IN 3 4 6 5
NC = NO CONNECT
5
+VS NC -IN 1 2
SGM8621/8623
8 7 DISABLE (SGM8623 ONLY) +VS OUT NC
+IN 3
APPLICATIONS
Sensors Audio Active Filters A/D Converters Communications Test Equipment Cellular and Cordless Phones Laptops and PDAs Photodiode Amplification Battery-Powered Instrumentation
OUT -VS +IN 1 2 3
SGM8623
8623
SOT23-6 6 5 4 +VS DISABLE -IN
-VS
SO-8
SGM8624
OUT A -IN A 1 2 3 4 5 6 7 8
NC = NO CONNECT
16 OUT D 15 -IND
SGM8622
OUT A -IN A +IN A 1 2 3 8 7 6 5 SO-8 / MSOP-8 +VS OUT B -IN B +IN B
+IN A +VS +INB -INB OUT B NC
14 +IND 13 -VS 12 +INC 11 10 9 -INC OUT C NC
-VS 4
TSSOP-16 / SO-16
Shengbang Microelectronics Co, Ltd Tel: 86/451/84348461 www.sg-micro.com
REV. B
ELECTRICAL CHARACTERISTICS :VS = +5V
(At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted)
SGM8621/2/3/4 PARAMETER CONDITION TYP +25℃ INPUT CHARACTERISTICS Input Offset Voltage (VOS) Input Bias Current (IB) Input Offset Current (IOS) Common-Mode Voltage Range (VCM) Common-Mode Rejection Ratio(CMRR) Open-Loop Voltage Gain( AOL) Input Offset Voltage Drift (∆VOS/∆T) OUTPUT CHARACTERISTICS Output Voltage Swing from Rail Output Current (IOUT) Closed-Loop Output Impedance POWER-DOWN Turn-On Time Turn-Off Time
DISABLE
DISABLE
MIN/MAX OVER TEMPERATURE +25℃ 3 0℃ to 70℃ 3.1 -40℃ to 85℃ 3.3 -40℃ to 125℃ 3.5 UNITS mV pA pA V 75 66 92 100 74 65 90 99 73 65 89 98 73 64 78 82 dB dB dB dB µV/℃ V V 45 42 40 30 mA Ω ns ns 0.8 2 2.5 5.5 2.5 5.5 78 345 2.5 5.5 77 350 2.5 5.5 76 380 V V V V dB µA nA MHz KHz V/µs µs µs nV/ fA/ MIN/ MAX MAX TYP TYP TYP MIN MIN MIN MIN TYP TYP TYP MIN TYP TYP TYP MAX MIN MIN MAX MIN MAX MAX TYP TYP TYP TYP TYP TYP TYP
0.7 1 1 VS = 5.5V VS = 5.5V, VCM = - 0.1V to 4 V VS = 5.5V, VCM = - 0.1V to 5.6 V RL = 600Ω ,Vo = 0.15V to 4.85V RL =10KΩ ,Vo = 0.05V to 4.95V -0.1 to +5.6 90 92 100 110 2.7 RL = 600Ω RL = 10KΩ F = 100KHz, G = +1 0.1 0.015 48 2.6 6.2 1.4
DISABLE
Voltage-Off Voltage-On
POWER SUPPLY Operating Voltage Range Power Supply Rejection Ratio (PSRR) Quiescent Current/ Amplifier (IQ) Supply Current when Disabled (SGM8623 only) DYNAMIC PERFORMANCE Gain-Bandwidth Product (GBP) Phase Margin(φO) Full Power Bandwidth(BWP) Slew Rate (SR) Settling Time to 0.1%( tS) Overload Recovery Time NOISE PERFORMANCE Voltage Noise Density (en) Current Noise Density( in) f = 1kHz f = 1kHz 12 3
Hz Hz
Vs = +2.5 V to + 5.5 V VCM = (-VS) + 0.5V IOUT = 0 94 250 150 RL = 10KΩ <1% distortion, RL = 600Ω G = +1 , 2V Step, RL = 10KΩ G = +1, 2 V Step, RL = 600Ω VIN ·Gain = Vs, RL = 600Ω 3 67 50 1.7 2.1 1 79 300
degrees TYP
Specifications subject to change without notice.
2
SGM8621/2/3 /4
PACKAGE/ORDERING INFORMATION
MODEL ORDER NUMBER SGM8621XC5/TR SGM8621 SGM8621XN5/TR SGM8621XS/TR SGM8622 SGM8623 SGM8624 SGM8622XMS/TR SGM8622XS/TR SGM8623XN6/TR SGM8623XS/TR SGM8624XS/TR SGM8624XTS PACKAGE DESCRIPTION SC70-5 SOT23-5 SO-8 MSOP-8 SO-8 SOT23-6 SO-8 SO-16 TSSOP-16 PACKAGE OPTION Tape and Reel, 3000 Tape and Reel, 3000 Tape and Reel, 2500 Tape and Reel, 3000 Tape and Reel, 2500 Tape and Reel, 3000 Tape and Reel, 2500 Tape and Reel, 2500 Tape and Reel, 3000 MARKING INFORMATION 8621 8621 SGM8621XS SGM8622XMS SGM8622XS 8623 SGM8623XS SGM8624XS SGM8624XTS
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, V+ to V- ............................................ 7.5 V Common-Mode Input Voltage .................................... (–VS) – 0.5 V to (+VS) +0.5V Storage Temperature Range..................... –65℃ to +150℃ Junction Temperature.................................................160℃ Operating Temperature Range.................–55℃ to +150℃ Package Thermal Resistance @ TA = 25℃ SC70-5, θJA................................................................ 333℃/W SOT23-5, θJA.............................................................. 190℃/W SOT23-6, θJA.............................................................. 190℃/W SO-8, θJA......................................................................125℃/W MSOP-8, θJA.............................................................. 216℃/W SO-16, θJA..................................................................... 82℃/W TSSOP-16, θJA............................................................ 105℃/W Lead Temperature Range (Soldering 10 sec) .....................................................260℃ ESD Susceptibility HBM................................................................................1500V MM....................................................................................400V
NOTES 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
CAUTION
This integrated circuit can be damaged by ESD. Shengbang Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
3
SGM8621/2/3 /4
TYPICAL PERFORMANCE CHARACTERISTICS
(At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted)
Closed-Loop Output Voltage Swing 6 5 Output Voltage(Vp-p) 4 3 2 1 0 10 100 1000 Frequency(kHz) 10000 Vs = 5V VIN = 4.9VP-P TA = 25℃ RL = 10KΩ G=1
140 120 Output Impedance(Ω) 100 80 60 40 20 0 0.1 1 10 100 Frequency(kHz) 1000 10000 G = 100 G = 10 G =1 Vs = 5V Output Impedance vs.Frequency
Positive Overload Recovery Vs = ±2.5V VIN = 50mV RL = 620Ω G = 100 2.5V 0V 0V -50mV 0V 0V -50mV 2.5V
Negative Overload Recovery Vs = ±2.5V VIN = 50mV RL = 620Ω G = 100
Time(5µs/div)
Time(1µs/div)
Large-Signal Step Response Vs = 5V G = +1 CL = 100pF RL = 620Ω Voltage(50mV/div) Voltage(1V/div)
Small-Signal Step Response Vs = 5 V G = +1 CL = 100pF RL = 620Ω
Time(100µs/div)
Time(100µs/div)
4
SGM8621/2/3 /4
TYPICAL PERFORMANCE CHARACTERISTICS
(At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted)
PSRR vs.Frequency 120 Vs = 5V 100 80 60 40 20 1 10 100 Frequency(kHz) 1000
CMRR vs.Frequency 110 100 90 80 CMRR(dB) Vs = 5V
PSRR(dB)
70 60 50 40 30 20 0.01 0.1 1 10 Frequency(kHz) 100 1000
Small-Signal Overshoot vs.Load Capacitance 70 Small-Signal Overshoot(%) 60 50 40 30 20 10 0 1 10 100 1000 Load Capacitance(pF) 10000 Vs = 5V RL = 10kΩ TA = 25℃ G=1 +OS -OS
Channel Separation vs.Frequency 140 130 Channel Separation(dB) 120 110 100 90 80 0.1 1 10 Frequency(kHz) 100 1000 Vs = 5V RL = 620Ω TA = 25℃ G=1
CMRR vs.Temperature 120 110 100 CMRR(dB) 90 80 70 60 -50 -30 -10 10 30 50 70 Temperature(℃) 90 110 130 VCM = - 0.1V to 5.6V
PSRR(dB) 120
PSRR vs.Temperature
VS = 5.5V VCM = - 0.1V to 4 V
110 100 90 80 70 60 -50 -30 -10
VS = 2.5V to 5.5V
10 30 50 70 Temperature(℃)
90
110 130
5
SGM8621/2/3 /4
TYPICAL PERFORMANCE CHARACTERISTICS
(At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted)
Open-Loop Gain vs.Temperature 120 RL = 10KΩ Open–Loop Gain(dB) 110
Supply Current(μA) 300 275 250 225 200 175 350 325
Supply Current vs.Temperature
100 90 80 70 -50 -30 -10 10 30 50 70 90 110 130 Temperature(℃) RL = 600Ω
VS = 2.5V VS = 3V VS = 5V
150 -50 -30 -10 10 30 50 70 Temperature(℃) 90 110 130
Shutdown Current vs.Temperature 210 180 Shutdown Current(nA) 150 120 VS = 3V 90 60 VS = 2.5V 30 0 -50 -30 -10 10 30 50 70 Temperature(℃) 90 110 130 VS = 5V
Output Voltage(V) 5 4 3
Output Voltage Swing vs.Output Current Sourcing Current
135℃ VS = 5V
25℃
-50℃
2 135℃ 1
25℃
-50℃
Sinking Current 0 0 10 20 30 40 50 Output Current(mA) 60 70
Output Voltage Swing vs.Output Current 3 Sourcing Current
Output Voltage(Vp-p) 2.5 2 1.5 1 0.5 0 3
Closed-Loop Output Voltage Swing
Output Voltage(V)
2
VS = 3V 135℃ 25℃ -50℃
1
Sinking Current 0 0 10 20 30 40 50 Output Current(mA)
Vs = 2.7V VIN = 2.6VP-P TA = 25℃ RL = 10KΩ G=1 10 100 1000 Frequency(kHz) 10000
6
SGM8621/2/3 /4
TYPICAL PERFORMANCE CHARACTERISTICS
(At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted)
Output Impedance vs.Frequency 140
Small-Signal Overshoot vs.Load Capacitance 70 Small-Signal Overshoot(%) Vs = 2.7V RL = 10kΩ TA = 25℃ G=1 +OS -OS 30 20 10 0
120 Output Impedance(Ω) 100 80 60 40 20 0 0.1
Vs = 2.7V
60 50 40
G = 100 G = 10 G =1
1
10 100 Frequency(kHz)
1000
10000
1
10 100 1000 Load Capacitance(pF)
10000
Channel Separation vs.Frequency 140 Channel Separation(dB) 130 120 110 100 90 80 0.1 1 10 Frequency(kHz) 100 1000 Vs = 2.7V RL = 620Ω TA = 25℃ G=1
1000
Voltage Noise(nV/√Hz)
Input Voltage Noise Spectral Density vs.Frequency
Vs = 5V
100
10 1 10 100 Frequency(Hz) 1000 10000
Large-Signal Step Response Vs = 2.7V G = +1 CL = 100pF RL = 620Ω Voltage(500mV/div) Voltage(50mV/div)
Small-Signal Step Response Vs = 2.7V G = +1 CL = 100pF RL = 620Ω
Time(100µs/div)
Time(100µs/div)
7
SGM8621/2/3 /4
TYPICAL PERFORMANCE CHARACTERISTICS
(At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted)
Offset Voltage Production Distribution 35 Percent of Amplifiers(%) 30 25 20 15 10 5 0
0 1 2 0.5 1.5 -2.5 -1.5 -0.5 2.5 -3 -2 -1 3
Typical production distribution of packaged units.
Offset Voltage(mV)
8
SGM8621/2/3 /4
APPLICATION NOTES
Driving Capacitive Loads
The SGM862x can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor RISO and the load capacitor CL form a zero to increase stability. The bigger the RISO resistor value, the more stable VOUT will be. Note that this method results in a loss of gain accuracy because RISO forms a voltage divider with the RLOAD.
Power-Supply Bypassing and Layout
The SGM862x family operates from either a single +2.5V to +5.5V supply or dual ±1.25V to ±2.75V supplies. For single-supply operation, bypass the power supply VDD with a 0.1µF ceramic capacitor which should be placed close to the VDD pin. For dual-supply operation, both the VDD and the VSS supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance. Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp’s inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible. For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency big current loop area small to minimize the EMI (electromagnetic interfacing).
RISO
SGM8621
VOUT CL
VIN
VDD
Figure 1. Indirectly Driving Heavy Capacitive Load An improvement circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. RF provides the DC accuracy by connecting the inverting signal with the output. CF and RIso serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier’s inverting input, thereby preserving phase margin in the overall feedback loop.
10µF 0.1µF
VDD
10µF 0.1µF Vn VOUT 10µF
Vn
SGM8621
VOUT
SGM8621
Vp
Vp
CF RF RISO
SGM8621
VSS(GND)
VOUT
0.1µF
VIN
VSS
Figure 3. Amplifier with Bypass Capacitors
CL
RL
Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier’s gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.
Grounding
A ground plane layer is important for SGM862x circuit design. The length of the current path speed currents in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.
Input-to-Output Coupling
To minimize capacitive coupling, the input and output signal traces should not be parallel. This helps reduce unwanted positive feedback.
9
SGM8621/2/3 /4
Typical Application Circuits
Differential Amplifier
The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then VOUT = ( Vp – Vn ) × R2 / R1 + Vref.
C R2 R1 VIN
SGM8621
R2 Vn Vp R3 R4 Vref
Figure 4. Differential Amplifier
VOUT
R1
SGM8621
VOUT
R3=R1//R2
Figure 6. Low Pass Active Filter
Instrumentation Amplifier
The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance.
R2 R1
SGM8621
Vn
SGM8621
VOUT
Vp
SGM8621
R3
R4
Vref
Figure 5. Instrumentation Amplifier
Low Pass Active Filter
The low pass filter shown in Figure 6 has a DC gain of (-R2/R1) and the –3dB corner frequency is 1/2πR2C. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.
10
SGM8621/2/3 /4
PACKAGE OUTLINE DIMENSIONS
SC70-5
D e1 e L
θ
Symbol
A A1 A2
Dimensions In Millimeters Min
0.900 0.000 0.900 0.150 0.080 2.000 1.150 2.150 1.200 0.260 0°
Dimensions In Inches Min
0.035 0.000 0.035 0.006 0.003 0.079 0.045 0.085 0.047 0.010 0°
Max
1.100 0.100 1.000 0.350 0.150 2.200 1.350 2.450 1.400 0.460 8°
Max
0.043 0.004 0.039 0.014 0.006 0.087 0.053 0.096 0.055 0.018 8°
E1
E
b c D
L1
b A1 C
0.20
E E1 e e1
0.650TYP 0.525REF
0.026TYP 0.021REF
A2
A
L L1 θ
11
SGM8621/2/3 /4
PACKAGE OUTLINE DIMENSIONS
SOT23-5
D b L
0
θ 0.20
Symbol
A A1
Dimensions In Millimeters Min
1.050 0.000 1.050 0.300 0.100 2.820 1.500 2.650 1.800 0.300 0°
Dimensions In Inches Min
0.041 0.000 0.041 0.012 0.004 0.111 0.059 0.104 0.071 0.012 0°
Max
1.250 0.100 1.150 0.400 0.200 3.020 1.700 2.950 2.000 0.600 8°
Max
0.049 0.004 0.045 0.016 0.008 0.119 0.067 0.116 0.079 0.024 8°
E1
A2 b c
E
L
e e1 A1
D
C
E E1 e e1
0.950TYP 0.700REF
0.037TYP 0.028REF
A2
L L1 θ
A
12
SGM8621/2/3 /4
PACKAGE OUTLINE DIMENSIONS
SOT23-6
D e1 e L
0
θ 0.20
Symbol
A A1 A2 b c D E E1
Dimensions In Millimeters Min
1.050 0.000 1.050 0.300 0.100 2.820 1.500 2.650 1.800 0.300 0°
Dimensions In Inches Min
0.041 0.000 0.041 0.012 0.004 0.111 0.059 0.104 0.071 0.012 0°
Max
1.250 0.100 1.150 0.400 0.200 3.020 1.700 2.950 2.000 0.600 8°
Max
0.049 0.004 0.045 0.016 0.008 0.119 0.067 0.116 0.079 0.024 8°
E1
E
b A1
L C
e e1 L
0.950TYP 0.700REF
0.037TYP 0.028REF
A2
A
L1 θ
13
SGM8621/2/3 /4
PACKAGE OUTLINE DIMENSIONS
SO-8
D C
Symbol
L
Dimensions In Millimeters Min Max
1.750 0.250 1.550 0.510 0.250 5.000 4.000 6.300 1.270 8° 1.350 0.100 1.350 0.330 0.190 4.780 3.800 5.800 0.400 0°
Dimensions In Inches Min
0.053 0.004 0.053 0.013 0.007 0.188 0.150 0.228 0.016 0°
Max
0.069 0.010 0.061 0.020 0.010 0.197 0.157 0.248 0.050 8°
A A1
E1 E
A2 B C D
e
θ
E E1 e
A1
1.270TYP
0.050TYP
B A2
L θ
A
14
SGM8621/2/3 /4
PACKAGE OUTLINE DIMENSIONS
MSOP-8
b
C
Symbol
A A1 A2 b c D e E E1 L θ
Dimensions In Millimeters Min Max
0.800 1.200 0.000 0.200 0.760 0.970 0.30 TYP 0.15 TYP 2.900 3.100 0.65 TYP 2.900 3.100 4.700 5.100 0.410 0.650 0° 6°
Dimensions In Inches Min Max
0.031 0.047 0.000 0.008 0.030 0.038 0.012 TYP 0.006 TYP 0.114 0.122 0.026 TYP 0.114 0.122 0.185 0.201 0.016 0.026 0° 6°
E1
E
e
D
A1
θ
L
A2 A
15
SGM8621/2/3 /4
PACKAGE OUTLINE DIMENSIONS
SO-16
D C
Symbol
A A1 A2 b c D E E1 e L θ
E1 E
Dimensions In Millimeters Min Max
1.350 1.750 0.100 0.250 1.350 1.550 0.330 0.510 0.170 0.250 9.800 10.20 3.800 4.000 5.800 6.200 1.270 (BSC) 0.400 1.270 0° 8°
Dimensions In Inches Min Max
0.053 0.069 0.004 0.010 0.053 0.061 0.013 0.020 0.007 0.010 0.386 0.402 0.150 0.157 0.228 0.244 0.050 (BSC) 0.016 0.050 0° 8°
L θ e A2 A1 b A
16
SGM8621/2/3 /4
PACKAGE OUTLINE DIMENSIONS
TSSOP-16
A b
Symbol
E1 E
Dimensions In Millimeters Min Max
5.100 4.500 0.300 0.200 6.550 1.100 0.800 1.000 0.020 0.150 0.65 (BSC) 0.500 0.700 0.25(TYP) 1° 7° 4.900 4.300 0.190 0.090 6.250
Dimensions In Inches Min Max
0.193 0.169 0.007 0.004 0.246 0.201 0.177 0.012 0.008 0.258 0.043 0.031 0.039 0.001 0.006 0.026 (BSC) 0.020 0.028 0.01(TYP) 1° 7°
PIN #1 IDENT. e A2 A
C θ D L H A1
A
D E b c E1 A A2 A1 e L H θ
17
SGM8621/2/3 /4
REVISION HISTORY
Location Page
11/06— Data Sheet changed from REV.A to REV.B Added SC70-5 PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Changes to PRODUCT DESCRIPTION, FEATURES, and PIN CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Updated PACKAGE/ORDERING INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Changes to ABSOLUTE MAXIMUM ATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Shengbang Microelectronics Co, Ltd
Unit 3, ChuangYe Plaza No.5, TaiHu Northern Street, YingBin Road Centralized Industrial Park Harbin Development Zone Harbin, HeiLongJiang 150078 P.R. China Tel.: 86-451-84348461 Fax: 86-451-84308461 www.sg-micro.com
18
SGM8621/2/3 /4