RECORDS OF REVISION
Type No:LQ0DZC2291
SPEC No.
Date
NO.
LCY-09033A 2009. 06.05
LCY09033B
2009.12.8
PAGE
SUMMARY
NOTE
-
-
1st Issue
22
Connection of terminal STHR/STHL and
2nd Issue
LCD.
Note: In this ASIC Specification, binary notation, decimal notation and hexadecimal notation are described
according to the rules below.
Binary notation: Double quotation marks are used, e.g., “111000” or “1001”. Otherwise, ‘b’ is appended,
e.g., 111000b.
Hexadecimal notation: ‘0x’ is used, e.g., 0x3F or 0x2D. Otherwise, ‘H’ is appended, e.g., 20H or 1000H.
Decimal notation: Unless binary notation and hexadecimal notation are used, decimal notation is used.
LCY-09033B-1
− CONTENTS −
Overview and Features of Product ...................................................................................................................................... 3
1.
1.1.
Product Overview.................................................................................................................................................... 3
1.2.
Main Features ......................................................................................................................................................... 3
1.3.
Block diagram ......................................................................................................................................................... 3
2.
Pin Description .................................................................................................................................................................... 5
2.1.
Pin Layout............................................................................................................................................................... 5
2.2.
Pin Settings............................................................................................................................................................. 7
3. Absolute Maximum Ratings ..................................................................................................................................................... 8
4. Electrical Specification ............................................................................................................................................................. 8
4.1. Recommended Operating Range...................................................................................................................................... 8
4.2. DC Electrical Specification ................................................................................................................................................ 9
4.3. AC Electrical Specification................................................................................................................................................. 9
5. Register Map ......................................................................................................................................................................... 10
6.
Conditions for Input Signal ................................................................................................................................................ 11
6.1.
Conditions for Image Signal Input ......................................................................................................................... 11
6.2.
Horizontal timing 1 HENAB = Active input............................................................................................................. 13
6.3.
Horizontal timing 2 HENAB = Fixed to Lo ............................................................................................................. 13
6.4.
Vertical timing 1 HENAB = Active input................................................................................................................. 14
6.5.
Vertical timing 2 HENAB = Fixed to Lo.................................................................................................................. 14
6.6.
Horizontal/Vertical Data Capture Position ............................................................................................................. 14
7.
Serial Input Conditions (I2C) ............................................................................................................................................. 15
7.1.
Protocol................................................................................................................................................................. 15
7.2.
Serial Interface AC Characteristics ....................................................................................................................... 16
7.3.
Instruction to Write/Read to/from ASIC ................................................................................................................. 17
8.
Description of Function and Supported Register ............................................................................................................... 18
8.1.
Outline of Loading................................................................................................................................................. 18
8.2.
Description of Register Regarding Loading .......................................................................................................... 18
9.
Power ON Sequence......................................................................................................................................................... 19
10. I/O Format ......................................................................................................................................................................... 20
11.
FreeRun Display................................................................................................................................................................ 21
11.1.
Overview of FreeRun Display ............................................................................................................................... 21
11.2.
Conditions for Transition to FreeRun .................................................................................................................... 21
11.3.
Conditions for Recovery from FreeRun................................................................................................................. 21
12. Horizontal/Vertical Reverse Display................................................................................................................................... 22
13. RGB Independent Gamma Correction............................................................................................................................... 23
13.1.
Overview of RGB Independent Gamma Correction .............................................................................................. 23
13.2.
Description of Register Regarding RGB Independent Gamma Correction ........................................................... 23
13.3.
Flow of Use of Independent Gamma Function...................................................................................................... 23
14. EEPROM........................................................................................................................................................................... 24
14.1.
EEPROM .............................................................................................................................................................. 24
14.2.
Recommended EEPROM ..................................................................................................................................... 24
14.3.
Description of Register Regarding EEPROM........................................................................................................ 24
14.4.
How to Write/Read to/from EEPROM ................................................................................................................... 24
14.5.
ROM_Map of EEPROM ........................................................................................................................................ 25
15. Control of D/A Converter (hereinafter referred to as “DAC”).............................................................................................. 26
15.1.
Overview of DAC Control...................................................................................................................................... 26
Page 1
LCY-09033B-2
15.2.
Recommended Component for DAC .................................................................................................................... 26
15.3.
Description of Register Regarding DAC Control ................................................................................................... 26
15.4.
Actual Usage......................................................................................................................................................... 27
16. Control of A/D Converter (hereinafter referred to as “ADC”).............................................................................................. 28
16.1.
Overview of ADC Control ...................................................................................................................................... 28
16.2.
Recommended Component for ADC..................................................................................................................... 28
17. Output I/F to LCD .............................................................................................................................................................. 29
17.1.
Example of Horizontal Timing ............................................................................................................................... 29
17.1.1.
Horizontal Timing for Horizontal Resolution 800 Dots (WVGA) ........................................................................29
17.1.2.
Horizontal Timing for Horizontal Resolution 480 Dots (WEGA1/WEGA2).........................................................30
17.1.3.
Horizontal Timing for Horizontal Resolution 400 Dots (WQVGA)......................................................................31
17.2.
Example of Vertical Timing.................................................................................................................................... 32
17.2.1.
Vertical Timing for Vertical Resolution 480 Lines (WVGA)................................................................................32
17.2.2.
Vertical Timing for Vertical Resolution 240 Lines (WQVGA/WEGA2) ...............................................................34
17.2.3.
Vertical Timing for Vertical Resolution 272 Lines (WEGA1)..............................................................................36
18. Cautions on storage............................................................................................................................................................. 37
18.1. Storage environment ..................................................................................................................................................... 37
18.2. Storage methods ........................................................................................................................................................... 37
18.3. Long-term storage ......................................................................................................................................................... 37
19. Recommended soldering condition of infrared reflow .......................................................................................................... 39
20. Outline drawings .................................................................................................................................................................. 40
21. Marking ................................................................................................................................................................................ 41
22. Tray container ...................................................................................................................................................................... 42
23.Packing outline drawing ........................................................................................................................................................ 43
24. Carton .................................................................................................................................................................................. 44
Page 2
LCY-09033B-3
1.
Overview and Features of Product
1.1.
Product Overview
This product is a timing controller for liquid crystal module to display four kinds of resolutions, i.e., WVGA (800RGB[H] ×
480[V], WQVGA (400RGB[H] × 240[V]), WEGA1 (480RGB[H] × 272[V]) and WEGA2 (480RGB[H] × 240[V]). Moreover, RGB
independent gamma can be controlled by adding external EEPROM. This controller has an auto-loading function. After
resetting, the controller reads the register set values/independent gamma parameters from the external EEPROM and works
according to the set values.
1.2.
Main Features
a)
Timing controller (for WVGA, WQVGA, WEGA1 and WEGA2) contained
b)
ROMOFF setting (It can be specified whether external EEPROM should be disabled or enabled.)
c)
HSY/VSY input monitoring function. (“Free Run” is shown when HSY/VSY has not yet been input and when an error
has been occurred in input.)
d)
Free Run Display (Blue background screen 1H = 1200 clk or more/1V = 700 Lines or more)
e)
Horizontal/vertical reverse display available.
f)
Independent gamma setting (supported only for ROMOFF = 0)
g)
External D/A Converter 8ch control output supported (only for ROMOFF = 0)
h)
External A/D Converter 2ch control output supported (only for ROMOFF = 0)
i)
Internal register control with I2C (only for ROMOFF = 0)
1.3.
Block diagram
Figure 1-1 shows a simplified block diagram of LQ0DZC2291.
DCLK
RGB
control signal
Input I/F
Gamma
correction
Waveform
shaping/judgment
LUT
Blue
background
display
Video signal
Synchronization
signal
CMOS I/F
CMOS LCD
LCD control signal
T-CON
Internal control
uCom
Register
I2C
LUT/Reg
Loader
Slave
DAC
Ctrl
ADC
Ctrl
DAC
ADC
I2C
Master
EEPROM
Figure 1-1: Simplified Block Diagram of LQ0DZC2291
Page 3
LCY-09033B-4
Overview of block diagram is described below.
(1)
Input I/F
Receives 18-bit parallel data input externally and passes it to the image processing block stated below. Waveform
shaping (Hsy/Vsy phase difference absorption), pulse noise elimination (pulse of 2 clk or less) from control signal and
synchronization signal input judgment are performed here.
(2)
Blue background display
A block to generate the blue background display when Input I/F of (1) has judged that there is no synchronization signal
input.
(3)
Gamma correction
The gamma correction function allows to process input video data per RGB data and adjust the gamma curve per R, G
and B. (This is available only for ROMOFF = ‘0’.)
(4)
T-CON
A block of timing controller to drive a panel of four kinds of resolutions, i.e., WVGA, WQVGA, WEGA1 and /WEGA2.
(5)
LUT/Reg_Loader
A block to read a data from the external EEPROM, which is connected to have an initial value of an ASIC’s internal
register and internal LUT, and to update the data for the register and LUT.
(6)
DAC Ctrl
External D/C converter can be connected and controlled to set up the liquid crystal display gradation and specify the
COM signal. In this block, a control signal to DAC is generated to control DAC.
(7)
ADC Ctrl
External A/D converter can be connected and controlled. This block receives a signal from ADC and stores a data in
the internal register of ASIC. Thermistor and photo sensor can be connected and monitored, by way of example.
Page 4
LCY-09033B-5
2.
Pin Description
2.1.
Pin Layout
Table 2-1 describes all the pins.
Table 2-1: Pin Description
I/O
Attribute
Pin Name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
−
I
I
I
I
I
I
I
I
I
I
I
I
Id
VDD
IG0
IG1
IG2
IG3
IG4
IG5
IB0
IB1
IB2
IB3
IB4
IB5
ROMOFF
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Iu
Iu
Id
Id
O
I
Id
Iu
Id
Iu
−
−
I
−
Isu
−
Id
Id
Id
Id
Id
−
Iou
Iu
O
O
O
−
O
O
IOu
−
O
O
IOu
−
VRVC
HRVC
SMC
GMDSEL
SOUT
TMC
AMC
VSY
HENAB
HSY
VDD
GND
DCLK
GND
FRESET
VDD
S_SEL
G_SEL
DSEL1
DSEL2
TEST1
GND
SERDIO
SERCK
ADCCK
ADCCS
ADCDI
ADCDO
DACDI
DACLD
DACCK
GND
ROMCK
ROMWC
ROMDIO
GND
PIN No.
Drive
Power
Description of Function
Green data input pin (LSB)
Green data input pin
Green data input pin
Green data input pin
Green data input pin
Green data input pin (MSB)
Blue data input pin (LSB)
Blue data input pin
Blue data input pin
Blue data input pin
Blue data input pin
Blue data input pin (MSB)
Setting whether external EEPROM should be disabled
or enabled
Vertical scan reversal
Horizontal scan reversal
ASIC test pin
Gate start pulse output setting
ASIC test pin
ASIC test pin
ASIC test pin
Vertical synchronization signal input pin
Horizontal data enable input pin
Horizontal synchronization signal input pin
Operation
when it is not
be used
OPEN/GND
OPEN
OPEN/GND
OPEN/GND
Clock input pin
ASIC reset pin
Source driver setting pin
Gate driver setting pin
Resolution setting pin 1
Resolution setting pin 2
ASIC test pin
GND
3mA
3mA
3mA
Serial data I/O pin
Serial clock input pin
ADC clock output pin
ADC chip select output pin
ADC control data output pin
ADC data input pin
DAC data output pin
DAC load output pin
DAC clock output pin
OPEN
OPEN/VDD
OPEN
OPEN
OPEN
OPEN/VDD
OPEN
OPEN
OPEN
3mA
3mA
3mA
EEPROM clock output pin
EEPROM write protect output pin
EEPROM data I/O pin
OPEN
OPEN
OPEN
3mA
3mA
3mA
3mA
Page 5
LCY-09033B-6
PIN No.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
I: Input pin
I/O
Attribute
Pin Name
−
O
O
O
O
O
O
−
O
O
O
O
O
O
−
O
O
O
O
O
O
−
IO
IO
−
−
O
−
O
O
O
O
IO
O
IO
O
O
I
Id
O
O
O
−
I
I
I
I
I
I
−
VDD
OR0
OR1
OR2
OR3
OR4
OR5
GND
OG0
OG1
OG2
OG3
OG4
OG5
VDD
OB0
OB1
OB2
OB3
OB4
OB5
GND
STHR
STHL
VDD
GND
CLK
GND
STB
REV
FS
REVC
LBR
GSPOI MODE2
R/L
GSPIO SPS
GOE MODE1
GCK
CLS
TEB
TEST2
ALLON
DCON
G_SLP
VDD
IR0
IR1
IR2
IR3
IR4
IR5
GND
O: Output pin
IO: I/O pin
Drive
Power
Operation
when it is not
be used
Description of Function
6mA
6mA
6mA
6mA
6mA
6mA
Red data output pin (LSB)
Red data output pin
Red data output pin
Red data output pin
Red data output pin
Red data output pin (MSB)
6mA
6mA
6mA
6mA
6mA
6mA
Green data output pin (LSB)
Green data output pin
Green data output pin
Green data output pin
Green data output pin
Green data output pin (MSB)
6mA
6mA
6mA
6mA
6mA
6mA
Blue data output pin (LSB)
Blue data output pin
Blue data output pin
Blue data output pin
Blue data output pin
Blue data output pin (MSB)
6mA
6mA
* Start pulse I/O signal
1
* Start pulse I/O signal
12mA
Source driver sampling clock
6mA
6mA
6mA
3mA
3mA
3mA
3mA
3mA
3mA
Source driver latch pulse output
Source driver polarity reversal control output
* Offset cancel / COM polarity reversal signal output
Source driver horizontal reversal control output
* Gate start pulse / Gate mode setting pin
Gate driver vertical reversal control output
* Gate start pulse
* Gate driver control output
* Gate driver shift clock
ASIC test pin
ASIC test pin
Full gate output ON setting output
Power supply circuit control output
Gate slope control pin
3mA
3mA
3mA
1
VDD
GND
OPEN
OPEN
Red data input pin (LSB)
Red data input pin
Red data input pin
Red data input pin
Red data input pin
Red data input pin (MSB)
d: Pull-down for input pin
1
* Table 12-3 on page 22.
2
* Refer to Table 2-2 on page 10.
Page 6
u: Pull-up for input pin
su: Schmitt input pin
LCY-09033B-7
2.2.
Pin Settings
Table 2-2 describes the pin settings.
Table 2-2: Pin Settings
Pin name
S_SEL (*)
G_SEL (*)
VRVC
HRVC
Function
Source setting pin
For how to set this pin, ask the person in charge of Sharp Corporation.
Gate setting pin
For how to set this pin, ask the person in charge of Sharp Corporation.
Gate driver scan direction setting
Refer to Chapter 11 “Horizontal/Vertical Reverse Display”.
Source driver scan direction setting
Refer to Chapter 11 “Horizontal/Vertical Reverse Display”.
Gate start pulse output setting
GMDSEL
Lo: Normal mode
Hi: Interlacing two-pulse mode
D_SEL1 (*)
Input resolution switch setting pin
Resolution
D_SEL2 (*)
D_SEL1
D_SEL2
WVGA
0
0
WQVGA
1
0
WEGA1
0
1
WEGA2
1
1
EEPROM setting pin
Lo: EEPEOM is enabled.
ROMOFF (*)
Hi: EEPEOM is disabled.
If ROMOFF is set to ‘1’, this ASIC is used as a timing controller. Therefore, register control, DAC control,
etc. cannot be performed.
FRESET
Reset pin (Lo-Active)
* Time constant shall be 10 ms or less. Refer Figure 2-1.
Do not change any setting of pins marked with *, after the ASIC power supply turns ON.
3.3 V
90%
FRESET
0V
10%
T ≤ 10 ms
Figure 2-1 FREST Time Constant
Page 7
LCY-09033B-8
3. Absolute Maximum Ratings
Table 3-1: Absolute Maximum Ratings
Parameter
Symbol
Supply voltage
Rating
Unit
VDD
-0.5
to
+4.6
V
Input voltage
VI
-0.5
to
+4.6
V
Output voltage
VO
-0.5
to
+4.6
V
Operating temperature
TA
-40
to
+85
℃
Storage temperature
Tstg
-65
to
+150
℃
4. Electrical Specification
4.1. Recommended Operating Range
Table 4-1: Recommended Operating Range
Parameter
Symbol
1
Supply voltage*
Min.
Typ.
Max.
Unit
VDD
2.7
3.15
3.6
V
TA
-40
85
℃
1
VIH
2.00
VDD
V
1
Input voltage, low*
VIL
0
0.8
V
Positive trigger voltage
VP
1.4
2.4
V
Negative trigger voltage
VN
0.8
1.6
V
Hysteresis voltage
VH
0.3
1.5
V
Input rise time
tri
0
200
ns
Input fall time
tfi
0
200
ns
Input rise time
tri
0
10
ms
Input fall time
tfi
0
10
ms
Ambient temperature
Input voltage, high*
*
Condition
Schmitt Buffer
Schmitt Buffer
The following Supply voltage conditions operate.
Condition1
Parameter
Symbol
Min.
Supply voltage
VDD
Input voltage, high
Input voltage, low
Typ.
Max.
Unit
3.0
3.6
V
VIH
0.7VDD
VDD
V
VIL
0
0.3VDD
V
Symbol
Min.
Max.
Unit
Supply voltage
VDD
2.7
3.0
V
Input voltage, high
VIH
0.75VDD
VDD
V
Input voltage, low
VIL
0
0.25VDD
V
Condition2
Parameter
Page 8
Typ.
LCY-09033B-9
4.2. DC Electrical Specification
Table 4-2: DC Electrical Specification
Parameter
Symbol
Condition
Static current consumption
IDDS
VI=VDD or GND
300
μA
Off-state output current
IOZ
V0=VDD or GND
±10
μA
Output short-circuit current
IOS
V0=GND
-250
mA
II
VI=VDD or GND
±1.0
μA
II
VI=GND (pull-up 50kΩ)
-28
-83
-190
μA
II
VI=VDD (pull-down 50kΩ)
28
83
190
μA
Pull-up resistor (50kΩ)
RPU
VI=GND
18.9
39.8
107.1
kΩ
Pull-down resistor (50kΩ)
RPD
VI=VDD
18.9
39.8
107.1
kΩ
Output current,low
IOL
VOL=0.4V (IOL=3mA type)
3.0
mA
VOL=0.4V (IOL=6mA type)
6.0
mA
VOL=0.4V (IOL=12mA type)
12.0
mA
VOH=2.4V (IOL=3mA type)
-3.0
mA
VOH=2.4V (IOL=6mA type)
-6.0
mA
VOH=2.4V (IOL=12mA type)
-12.0
mA
Input leakage current
Output current,high
IOH
Min.
Typ.
Max.
Unit
4.3. AC Electrical Specification
Table 4-3: AC Electrical Specification
Parameter
Symbol
Condition
Output rise time
tr
Output buffer CL=15pF
2
10
ps
Output fall time
tr
Output buffer CL=15pF
2
10
ps
Page 9
Min.
Typ.
Max.
Unit
LCY-09033B-10
5. Register Map
Table 5-1 shows the register map list of LQ0DZC2291.
Table 5-1: Register Map List
address
bit7
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
0Eh gamma_enb
0Fh
10h
bit6
20h
21h
22h
23h
24h
25h
30h
31h
32h
33h
34h
35h
bit5
bit4
bit3
bit2
da_0ch[7:0]
da_1ch[7:0]
da_2ch[7:0]
da_3ch[7:0]
da_4ch[7:0]
da_5ch[7:0]
da_6ch[7:0]
da_7ch[7:0]
henab[7:0]
venab[7:0]
rsel
stb_hl[6:0]
gck_hl[7:0]
slp_ctrl[6:0]
test
test
-
bit1
bit0
vrvc
hrvc
r_read
r_write
jinput
allon
als
jenable
rom_adrs[7:0]
rom_data[7:0]
test
test
test
ready
test
adc_data1
adc_data2
: Register for auto-loading
als register value 0: Inaccessible.
als register value 1: Write/Read can be done from a host.
: Register not for auto-loading
als register value 0: Inaccessible
als register value 1: Write/Read can be done from a host.
: Register not for auto-loading
Regardless of the als register value, Write/Read can be done.
: Read-Only register
Regardless of the als register value, Read only can be done.
Page 10
Initial value
0000_0000b
0000_0000b
0000_0000b
0000_0000b
0000_0000b
1111_1111b
0111_1000b
0000_0000b
1100_0010b
0010_0011b
0000_0000b
0100_0101b
1010_1010b
0100_0011b
0000_0000b
0000_0000b
0000_0000b
LCY-09033B-11
6.
Conditions for Input Signal
6.1.
Conditions for Image Signal Input
Table 6-1 to Table 6-4 and Figure 6-1 to Figure 6-4 show the input range specifications for the WVGA, WQVGA, WEGA1
and WEGA2 modes. Also, Table 6-5 shows the horizontal/vertical display data capture position list in the WVGA, WQVGA,
WEGA1 and WEGA2 display modes.
Table 6-1: WVGA Input Timing Specifications
WVGA [D_SEL1=0, D_SEL2=0]
ITEM
Frequency
DCLK
Hi_Time
Low Width
Setup time
Data[I* 0-5]
Hold time
Symbol
tCLK
tWCH
tWCL
tDS
tDH
tH(t)
tH(clk)
tHPW
tV
tVPW
fV
tHA
tHC
tVH
tVFP
Min.
Typ.
26.62
33.26
5
5
5
5
31.45
31.75
Cycle
1024
1056
Hsy
5
Pulse Width
520
525
Cycle
Vsy
2
Pulse Width
50
60
frame rate
800
Horizontal display period
A-8
A
Hsy_DCLK phase defference
-10
0
Hsy_Vsy phase defference
5
Vertical fromt porch
35
Vertical back porch
tVBP
10
28
480
Vertical display porch
tVA
5
Setup time
tES
5
Enable signal[HENAB] Hold time
tEH
Pulse Width
800
tEP
‐
Horizontal front porch
2
tHFP
194
tHBP
Horizontal display starting position
tHBP
20
*1: This spec is appied for HENAB Lo mode and W/O EEPROM mode
*2: This spec is applied for HENAB active mode or W/EEPROM mode
Max.
34.60
38.46
1088
tH-5
635
TV-2
60
A+8
10
35
222
UNIT
MHz
ns
ns
ns
ns
µs
ck
ck
line
line
Hz
ck
ns
ck
line
line
line
line
ns
ns
ck
ck
Remark
Frequency:1/(tV/tH(clk))
A=tWCH(1/2(DCLK))
In case ROMOFF='1'
In case ROMOFF='0'
*1
*2
Table 6-2: WQVGA Input Timing Specifications
WQVGA [D_SEL1=1, D_SEL2=0]
ITEM
Frequency
DCLK
Hi_Time
Low Width
Setup time
Data[I* 0-5]
Hold time
Symbol
tCLK
tWCH
tWCL
tDS
tDH
tH(t)
tH(clk)
tHPW
tV
tVPW
fV
tHA
tHC
tVH
tVFP
Min.
Typ.
6.96
7.99
5
5
5
5
61.3
63.6
Cycle
491
508
Hsy
5
Pulse Width
258
262
Cycle
Vsy
2
Pulse Width
50
60
frame rate
400
Horizontal display period
A-8
A
Hsy_DCLK phase defference
-10
0
Hsy_Vsy phase defference
5
Vertical fromt porch
20
Vertical back porch
tVBP
9
240
Vertical display porch
tVA
5
Setup time
tES
5
Enable signal[HENAB] Hold time
tEH
‐
Pulse Width
400
tEP
‐
Horizontal front porch
2
tHFP
‐
87
tHBP
Horizontal display starting position
‐
tHBP
20
*1: This spec is appied for HENAB Lo mode and W/O EEPROM mode
*2: This spec is applied for HENAB active mode or W/EEPROM mode
Page 11
Max.
9.19
70.5
563
TH-5
284
TV-2
60
A+8
10
20
126
UNIT
MHz
ns
ns
ns
ns
µs
ck
ck
line
line
Hz
ck
ns
ck
line
line
line
line
ns
ns
ck
ck
Remark
Frequency:1/(tV/tH(clk))
A=tWCH(1/2(DCLK))
In case ROMOFF='1'
In case ROMOFF='0'
*1
*2
LCY-09033B-12
Table 6-3: WEGA1 Input Timing Specifications
WEGA1 [D_SEL1=0, D_SEL2=1]
ITEM
Frequency
DCLK
Hi_Time
Low Width
Setup time
Data[I* 0-5]
Hold time
frame rate
Horizontal display period
Hsy_DCLK phase defference
Hsy_Vsy phase defference
Vertical fromt porch
Symbol
tCLK
tWCH
tWCL
tDS
tDH
tH(t)
tH(clk)
tHPW
tV
tVPW
fV
tHA
tHC
tVH
tVFP
Vertical back porch
tVBP
Hsy
Vsy
Cycle
Pulse Width
Cycle
Pulse Width
Min.
8.58
5
5
5
5
58.8
571
5
283
2
50
A-8
-10
2
9
Typ.
9.70
Max.
10.99
-
-
64.1
622
66.5
646
tH-5
344
TV-2
60
312
50
480
A
0
31
‐
272
tVA
5
tES
5
tEH
480
tEP
‐
2
tHFP
116
tHBP
Horizontal display starting position
tHBP
20
*1: This spec is appied for HENAB Lo mode and W/O EEPROM mode
*2: This spec is applied for HENAB active mode or W/EEPROM mode
Vertical display porch
Setup time
Enable signal[HENAB] Hold time
Pulse Width
Horizontal front porch
A+8
10
41
164
UNIT
MHz
ns
ns
ns
ns
µs
ck
ck
line
line
Hz
ck
ns
ck
line
line
line
line
ns
ns
ck
ck
Remark
Frequency:1/(tV/tH(clk))
A=tWCH(1/2(DCLK))
In case ROMOFF='1'
In case ROMOFF='0'
*1
*2
Table 6-4: WEGA2 Input Timing Specifications
WEGA2 [D_SEL1=1, D_SEL2=1]
ITEM
Frequency
DCLK
Hi_Time
Low Width
Setup time
Data[I* 0-5]
Hold time
Symbol
tCLK
tWCH
tWCL
tDS
tDH
tH(t)
tH(clk)
tHPW
tV
tVPW
fV
tHA
tHC
tVH
tVFP
Min.
Typ.
8.35
9.59
5
5
5
5
61.3
63.6
Cycle
589
610
Hsy
5
Pulse Width
258
262
Cycle
Vsy
2
Pulse Width
50
60
frame rate
480
Horizontal display period
A-8
A
Hsy_DCLK phase defference
-10
0
Hsy_Vsy phase defference
2
Vertical fromt porch
20
Vertical back porch
tVBP
‐
9
240
Vertical display porch
tVA
5
Setup time
tES
5
Enable signal[HENAB] Hold time
tEH
Pulse Width
480
tEP
‐
Horizontal front porch
2
tHFP
104
tHBP
Horizontal display starting position
tHBP
20
*1: This spec is appied for HENAB Lo mode and W/O EEPROM mode
*2: This spec is applied for HENAB active mode or W/EEPROM mode
Page 12
Max.
11.17
70.5
685
TH-5
284
TV-2
60
A+8
10
20
152
UNIT
MHz
ns
ns
ns
ns
µs
ck
ck
line
line
Hz
ck
ns
ck
line
line
line
line
ns
ns
ck
ck
Remark
Frequency:1/(tV/tH(clk))
A=tWCH(1/2(DCLK))
In case ROMOFF='1'
In case ROMOFF='0'
*1
*2
LCY-09033B-13
6.2.
Horizontal timing 1 HENAB = Active input
tH
HSY
0.7HVDD
tWHL
0.3HVDD
tCLK
tWCH
tHC
tHC
DCLK
tES
tHBP
tWCH
tHFP
tEH
HENAB
tDH
tHA
tDS
InData
Figure 6-1: WVGA/WQVGA/WEGA1/WEGA2 Input Data Format (HENAB active/horizontal timing)
“InData” above shows the image signal bus of IR0-5, IG0-5 and IB0-5 collectively. This applies to any “InData” after this.
6.3.
Horizontal timing 2 HENAB = Fixed to Lo
tH
HSY
0.7HVDD
tWHL
0.3HVDD
tCLK
tWCH
tHC
tHC
DCLK
tWCH
tHBP
tHFP
HENAB
tDH
tHA
tDS
InData
Figure 6-2: WVGA/WQVGA/WEGA1/WEGA2 Input Data Format (HENAB_Lo fixed/horizontal timing)
Page 13
LCY-09033B-14
6.4.
Vertical timing 1 HENAB = Active input
tV
tWVL
0.7HVDD
VSY
0.3HVDD
tVH
tVH
HSY
0.7HVDD
tVFP
tVBP
HENAB
tVA
InData
Figure 6-3: WVGA/WQVGA/WEGA1/WEGA2 Input Data Format (HENAB active/vertical timing)
6.5.
Vertical timing 2 HENAB = Fixed to Lo
tWVL
0.7HVDD
VSY
0.3HVDD
tVH
tVH
HSY
tVBP
tVFP
HENAB
tVA
InData
Figure 6-4: WVGA/WQVGA/WEGA1/WEGA2 Input Data Format (HENAB_Lo fixed/vertical timing)
6.6.
Horizontal/Vertical Data Capture Position
Table 6-5: Horizontal/Vertical Data Capture Position in WVGA/WQVGA/WEGA1/WEGA2 Display Mode
HENAB input type
Fixed to Lo
Active input
ROMOFF setting
tHBP
tVBP
0
A
B
1
Each condition for input signal
0
DENAB ↑
1
DENAB ↑
A: Decided according to a henab register set value.
B: Decided according to a venab register set value.
Page 14
tHBP
Each condition for input signal
tVBP
B
Each condition for input signal
tVBP
LCY-09033B-15
7.
Serial Input Conditions (I2C)
7.1.
Protocol
Figure 7-1 shows the protocol for I2C used for LQ0DZC2291.
SERCK
SERDIO
START
Condition
SDA
Input
SERCK
1
SERDIO
MSB
SDA
Change
2
STOP
Condition
3
7
9
8
ACK
START
Condition
SERCK
SERDIO
1
2
3
7
8
9
ACK
MSB
STOP
Condition
Figure 7-1: I2C Protocol
Page 15
LCY-09033B-16
7.2.
Serial Interface AC Characteristics
Figure 7-2 and Table 5-1 show the specifications for AC characteristics of I2C serial I/F.
tLOW
tHIGH
SERCK
tTAhd
SERDIO_in
tTAsu
tDIhd
START
Condition
SDA
Input
tDIsu
tTOsu
SDA
Change
tBUF
START
STOP
Condition Condition
SERCK
SERDIO_in
tW
Write Cycle
tTOsu
tTAsu
STOP
Condition
START
Condition
SERCK
tpd
tDOhd
Data Valid
SERDIO_out
0.8Vcc
SERCK
0.2Vcc
tF1
tR1
0.8Vcc
SERDIO
tR2
0.2Vcc
TF2
Figure 7-2: AC Specifications for Serial I/F
Table 7-1: AC Specifications for Serial I/F
Item
Clock frequency
Data clock “Hi” time
Data clock “Lo” time
Clock rise time
Clock fall time
Data rise time
Data fall time
Input data setup time
Input data hold time
Output data hold time
Output data delay time
Start condition setup time
Start condition hold time
Stop condition setup time
Bus release time before transfer start
Writing time
Symbol
fSCK
tHIGH
tLOW
tR1
tF1
tR2
tF2
tDIsu
tDIhd
tDOhd
tpd
tTAsu
tTAhd
tTOsu
tBUF
tW
Page 16
Min.
Max.
400
600
1200
40
40
40
40
100
0
200
200
600
600
600
1300
900
10
Unit
kHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ms
LCY-09033B-17
7.3.
Instruction to Write/Read to/from ASIC
Figure 7-3 shows how to Write/Read to/from ASIC with I2C of LQ0DZC2291.
(When writing)
ACK
ACK
START
BYTE ADDR
R/W
ACK
ACK
DEV SEL
BYTE ADDR
ACK
ACK
DATA IN1
DA
ACK
DATA IN3
ACK
DATA IN N
STOP
TA IN2
START
・PAGEWRITE
DATA IN
STOP
DEV SEL
BYTEWRITE
ACK
R/W
(When reading)
R/W
START
RANDOM READ
BYTE ADDR
R/W
ACK
DEV SEL
START
DEV SEL
DATA OUT
R/W
ACK
ACK
SEQUENTIAL
DEV SEL
NO ACK
STOP
START
ADDRESS READ
BYTE ADDR
START
DEV SEL
RANDOM
ACK
ACK
DATA OUT1
R/W
* DEV_SEL of this ASIC is “1000111”.
Figure 7-3: How to Write/Read with I2C
Page 17
ACK
DATA OUT
NO ACK
DATA OUT N
STOP
ACK
ACK
LCY-09033B-18
8.
Description of Function and Supported Register
8.1.
Outline of Loading
This ASIC can transfer the initial values of ASIC’s internal register and the parameters for gamma correction, which are
stored in EEPROM, to ASIC, when external EEPROM is connected and the ROMOFF pin is set to “0”. Transfer EEPROM
data from EEPROM into ASIC’s internal register and LUT is referred to as “loading” in this document. There are two types of
loading in this ASIC, as described below.
(1)
Initial loading
This refers to transferring a data in EEPROM as ASIC’s initial value into the internal register and LUT after canceling
ASIC reset (FREST). This allows to fix an initial operation of ASIC.
(2)
Auto-loading
For address 0x31[0]:als = ‘0’, this ASIC transfers a data in EEPROM into ASIC’s internal register and LUT once a 64V
period.
For the ASIC’s internal register, all the registers are not always loaded from EEPROM. Refer to the register map of Table 5-1
and Table 8-1 below and check whether the register should be loaded or not.
Table 8-1: Enabling/Disabling Loading and Access from Host
Register to be loaded
ALS=“0”
ALS=“1”
Access prohibited
Write/Read can be done
Access prohibited
Write/Read can be done
Write/Read can be done
Write/Read can be done
Read can be done
Read can be done
(Marked with in the register map)
Register not to be loaded
(Marked with in the register map)
Register not to be loaded
(Marked with
in the register map)
Read-Only register
(Marked with
8.2.
in the register map)
Description of Register Regarding Loading
Table 8-2 shows the registers regarding loading.
Table 8-2: Registers Regarding Loading
address
bit7
bit5
bit4
bit3
bit2
bit1
-
31h
als=0
als=1
32h
bit6
bit0
Initial value
als
xxxx_xxx0b
Auto-loading enabled: Any access from I2C to a register area to be loaded is prohibited.
Auto-loading disabled: Register access functions completely.
ready
jinput
ready
Hi: Initial EEPROM loading completed.
Lo: Initial EEPROM loading in process.
jinput
Hi: When HSY/VSY has not yet been input
Lo: At a normal input operation
jenable
Hi: When Henable has been input
Lo: when Henable has not yet been input
Page 18
jenable
LCY-09033B-19
9.
Power ON Sequence
Figure 9-1 below shows the power ON sequence.
LSI power supply
(3.3 V)
Less than 10ms
DCLK
Data in
FRESET
1650ck
DCON (internal counter
reset cancel timing)
11
2
3
4
5
6
7
8
9
10
Internal VSY
Initial EEPROM
loading period
Ready
REV
REVC
GOE
MODEx
RGB Out
Other LCD signal
output
Figure 9-1: Power ON Sequence
Procedure:
(1)
(2)
When ASIC has turned on, change the reset pin (FRESET) of this ASIC from “Lo” to “Hi” and cancel the reset.
When the reset has been cancelled, ASIC loads the initial values of internal register and LUT from EEPROM (for a
maximum period of approximately 2 V).
* In this period, access with I2C from an external CPU to a register to be loaded is prohibited. When making access,
check that the ready register is “1” (i.e., initial loading has been completed).
(3)
Power ON sequence starts with VsyActive immediately after DCON has become “Hi”.
(4)
REV reversal starts according to the Vsy(6) timing. (Polarity reversal starts.)
(5)
Data output starts according to the Vsy(7) timing.
(6)
The liquid crystal display enters a normal operation state at Vsy(8).
Page 19
LCY-09033B-20
10. I/O Format
Table 10-1 below describes the registers regarding I/O of timing controller (T-CON).
Table 10-1: Registers for I/O format
address
★
★
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
henab[7:0]
08h
09h
-
Initial value
0010_0011b
0010_0011b
venab[5:0]
henab
venab
Horizontal display start position specified when the HENABLE signal is fixed to Lo.
Vertical display start position specified.
* Available only when ROMOFF = ‘0’ is set.
★
-
0Ah
rsel
hrvc
vrvc
0000_0000b
Scan direction change setting
rsel, vrvc ,hrvc
* Refer to “Chapter 12: Horizontal/Vertical Reverse Display”.
★
0Bh
-
stb_hl[6:0]
0100_0101b
stb_l
Adjustment of STB in Hi period. Pulse width of STB is adjusted and charge share time is adjusted.
* Refer to the set values listed in Table 10-2.
★
gck_hl[7:0]
0Ch
1010_1010b
Adjustment of CLS in Hi period.
gck_hl
* Refer to the set values listed in Table 10-2.
★
0Dh
-
slp_ctrl
slp_ctrl[6:0]
0100_0011b
Adjustment of G_SLP in Lo period.
* Refer to the set values listed in Table 10-2.
: Auto-loading register
For the initial setting of stb_hl / gck_hl / slp_ctrl when ROMOFF = ‘0’ has been specified, refer to Table 10-2.
Table 10-2: Setting for stb_hl / gckhl / slp_ctrl
stb_hl
gck_hl
WVGA
69
70
WQVGA
16
40
WEGA1
20
49
WEGA2
20
49
slp_ctrl
67
16
19
19
Perform the gate driver pulse output setting through the GMDSEL pin. Refer to Table 10-3.
Table 10-3: Gate Start Pulse Output Setting
GMDSEL Pin
Gate start pulse output setting
0
Normal mode
1
Interlacing two-pulse mode
Page 20
LCY-09033B-21
11.
11.1.
FreeRun Display
Overview of FreeRun Display
This ASIC shows the blue background stored internally when a synchronization signal (Hsy/Vsy) input externally has been
disappeared.
11.2.
Conditions for Transition to FreeRun
This ASIC counts Hsy/Vsy input externally. If the conditions below are met, this ASIC shows the blue background judging
that there is no external input or an input error has occurred.
A value of clk of 1H ≥ 1200 clk
A value of clk of 1H ≤ tHA
The number of lines of 1V ≥ 700 lines
The number of lines of 1V ≤ tVA
11.3.
Conditions for Recovery from FreeRun
The ASIC counts Hsy/Vsy input externally in the FreeRun state. When the conditions below have been met and the same
count value is obtained twice continuously, the ASIC shows the external input signal display judging that there is an external
input.
(tHA < a value of clk of 1H < 1200 clk) & the same count value obtained twice continuously
(tVA < the number of lines of 1V < 700 line) & the same count value obtained twice continuously
Page 21
LCY-09033B-22
12. Horizontal/Vertical Reverse Display
This ASIC can reverse the display horizontally/vertically. The source/gate driver scan direction is set through an input pin, i.e.,
the HRCV pin/VRVC pin, or a register. The settings are described below.
Table 12-1: Horizontal/Vertical Reverse Display Settings
With or without ROM
ROMOFF=‘0’
EEPROM setting
ROMOFF=‘1’
rsel=‘0’
rsel=‘1’
Gate/source scan
15 pin VRVC/
0x0a
15pin VRVC/
direction setting
16 pin HRVC
vrvc/hrvc register value
16pin HRVC
0x0a rsel value
Table 10-2: Register Regarding Horizontal/Vertical Reverse Display
address
★
bit7
bit6
bit5
0Ah
bit4
bit3
-
bit2
bit1
bit0
Initial value
rsel
vrvc
hrvc
0000_0000b
rsel
For 0’ setting, the vertical/horizontal reverse display is set by the input pins VRVC and HRVC.
For 1’ setting, the vertical/horizontal reverse display is set by the register values vrvc and hrvc.
vrvc
If the rsel register value is ‘1’, the vertical reverse display is set.
hrvc
If the rsel register value is ‘1’, the horizontal reverse display is set.
The HRVC pin/hrvc register setting and the I/O of LBR/STHR/STHL are shown below.
Table 12-3: I/O Related to Horizontal Reverse Display
HRVC pin/
hrvc register
LBR
STHR
STHL
0
0
Input
Output
1
1
Output
Input
※Please confirm the I/O relation described in specifications of LCD, and connect it with LQ0DZC2291.
The VRVC pin/vrvc register setting and the I/O of RL/GSPOI_MODE2/GSPIO_SPS are shown below.
Table 12-4: I/O Related to Vertical Reverse Display
G_SEL=‘0’
VRVC/
vrvc register
R/L
0
0
1
1
G_SEL=‘1’
GSPOI_
GSPIO_
MODE2
SPS
Output
Input
(GSPOI)
(GSPIO)
Input
Output
(GSPOI)
(GSPIO)
Page 22
R/L
1
0
GSPOI_
GSPIO_
MODE2
SPS
Output
Output
(MODE2)
(SPS)
Output
Output
(MODE2)
(SPS)
LCY-09033B-23
RGB Independent Gamma Correction
13.
13.1.
Overview of RGB Independent Gamma Correction
By mapping an input 6-bit data to a 8-bit signal based on the parameter stored in EEPROM, the 6-bit data is converted into
8-bit data in ASIC. This allows to control the gamma characteristics of input data per R, G and B independently. This ASIC is
for 6-bit liquid crystal panel. So, the data is converted into 8-bit data in a pseudo way by the FRC technology and is
displayed on the 6-bit panel. For turning ON/OFF the independent gamma conversion, refer to the register Map. (This is
available only for ROMOFF = ‘0’.)
13.2.
Description of Register Regarding RGB Independent Gamma Correction
Table 13-1 shows the register regarding RGB independent gamma correction.
Table 13-1: Register Regarding RGB Independent Gamma Correction
★
address
bit7
0Eh
gamma_en
gamma_en
13.3.
bit6
bit5
bit4
bit3
bit2
bit1
bit0
-
Initial value
0***_****b
Setting to turn ON/OFF RGB independent gamma
gamma_en=‘0’: Independent gamma correction is disabled. (The gamma correction is omitted.)
gamma_en=‘1’: Independent gamma correction is enabled.
Flow of Use of Independent Gamma Function
As described above, the independent gamma parameters are loaded from EEPROM. Those independent gamma
parameters are stored in the 192 addresses from 0x40 to 0xFF in EEPROM. Therefore, to use the independent gamma
function, (1) write the set values corresponding to input gradations in advance and (2) store the data of 0x80 in the address
0x0E (gamma_enb) where is an auto-loading area in EEPROM.
Page 23
LCY-09033B-24
14. EEPROM
14.1.
EEPROM
When using this ASIC, “256word×8bitEEPROM” can be connected externally. Connect it to Pin (47: ROMCK, 48: ROMWC,
49: ROMDIO) of ASIC. This allows to load the ASIC register set values and independent gamma parameters from EEPROM.
EEPROM is controlled by ASIC. So, any access from an external CPU to EEPROM must be performed through ASIC’s
internal register.
14.2.
Recommended EEPROM
Rohm “BR24L02-W” can be recommended as EEPROM that connection verification was executed.
* Slave address “1010_000”
14.3.
Description of Register Regarding EEPROM
Table 14-1 shows the register regarding EEPROM.
Table 14-1: Description of Register Regarding EEPROM
address
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
rom_adrs[7:0]
20h
rom_adrs
Initial value
0000_0000b
An address to access EEPROM is specified.
rom_data[7:0]
21h
rom_data
0000_0000b
To write a data into EEPROM, specify an target address (in which the data is written) in the rom_adrs register and the target data (to be
written) in this register and write the data into EEPROM through the rom_write register.
To read a data from EEPROM, specify an target address (which stores the data to be read) in the rom_adrs and read the data from
EEPROM through rom_read register. Then, the data stored in the specified address is stored in this register.
When reading this register, confirm rom_head = 0 in advance.
-
22h
rom_read
rom_write
xxxx_xx00b
rom_read ='0'
rom_read ='1'
The contents of EEPROM address specified in the rom_adrs register are read and then stored in the rom_data register.
During reading from EEPROM, this register remains “1”. When reading has been completed and the values have been stored in the
rom_data register, this register becomes “0”.
rom_write ='0'
rom_write ='1'
A value of the rom_data register is written into an address in EEPROM, which is specified in the rom_adrs register.
During writing into EEPROM, this register remains “1”. When writing has been completed, this register becomes “0”.
You can not set both of rom_read = ‘1’ and rom_write = ‘1’ simultaneously. Your operation is ignored.
14.4.
How to Write/Read to/from EEPROM
(How to write)
(1) Read the address 0x22 to check that it is 0x00. (If the Read data in this address is 0x01or0x02, any instruction from an
external CPU is ignored because access to EEPROM is in process.)
(2) Specify an EEPROM address to be written into the 0x20 address.
(3) Write a data to be written into the address specified in step (2) in the address 0x21.
(4) When 0x01 has been written into the address 0x22, the data specified in the step (3) is written into the EEPROM
address specified in the step (2). (When the operation has been completed, ASIC changes the address 0x22 to 0x00
automatically.)
(5) Unless the address 0x22 changes to 0x00 as stated in the step (1), any more writing/reading to/from EEPROM cannot
be executed.
(How to read)
(1) Read the address 0x22 to check that it is 0x00. (If the Read data in this address is 0x01or0x02, any instruction from an
external CPU is ignored because access to EEPROM is in process.)
(2) Specify an EEPROM address to be read out to the 0x20 address.
(3) When 0x02 has been written into the address 0x22, reading out from EEPROM to the address specified in the step (2)
starts and the read data is written into the address 0x21. (When the operation has been completed, ASIC changes the
address 0x22 to 0x00 automatically.)
(4) Check that a data in the address 0x22 is 0x00 and then read out the data written into the address 0x21.
Page 24
LCY-09033B-25
14.5.
ROM_Map of EEPROM
Table 14-2 shows mapping in EEPROM of this ASIC. Technique to storage in EEPROM is described below individually in
detail.
Table 14-2: ROM_Map of EEPROM
ADRS
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
0x1A
0x1B
0x1C
0x1D
0x1E
0x1F
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F
(1)
(2)
Content
dac_0ch
dac_1ch
dac_2ch
dac_3ch
dac_4ch
dac_5ch
dac_6ch
dac_7ch
Horizontal display start
position adjustment
Vertical display start
position adjustment
Scan direction change
setting
Charge share adjustment
CLS_Hi period adjustment
Gate slope adjustment
Gamma control
Test register
Test register
Gate output mode setting
ADRS
0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
Content
Independent gamma (R)_00
Independent gamma (R)_01
Independent gamma (R)_02
Independent gamma (R)_03
Independent gamma (R)_04
Independent gamma (R)_05
Independent gamma (R)_06
Independent gamma (R)_07
ADRS
0x80
0x81
0x82
0x83
0x84
0x85
0x86
0x87
Content
Independent gamma (G)_00
Independent gamma (G)_01
Independent gamma (G)_02
Independent gamma (G)_03
Independent gamma (G)_04
Independent gamma (G)_05
Independent gamma (G)_06
Independent gamma (G)_07
ADRS
0xC0
0xC1
0xC2
0xC3
0xC4
0xC5
0xC6
0xC7
Content
Independent gamma (B)_00
Independent gamma (B)_01
Independent gamma (B)_02
Independent gamma (B)_03
Independent gamma (B)_04
Independent gamma (B)_05
Independent gamma (B)_06
Independent gamma (B)_07
0x48
Independent gamma (R)_08 0x88
Independent gamma (G)_08 0xC8
Independent gamma (B)_08
0x49
Independent gamma (R)_09 0x89
Independent gamma (G)_09 0xC9
Independent gamma (B)_09
0x4A
Independent gamma (R)_10 0x8A
Independent gamma (G)_10 0xCA
Independent gamma (B)_10
0x4B
0x4C
0x4D
0x4E
0x4F
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
0x5A
0x5B
0x5C
0x5D
0x5E
0x5F
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0x6A
0x6B
0x6C
0x6D
0x6E
0x6F
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
0x7A
0x7B
0x7C
0x7D
0x7E
0x7F
Independent gamma (R)_11
Independent gamma (R)_12
Independent gamma (R)_13
Independent gamma (R)_14
Independent gamma (R)_15
Independent gamma (R)_16
Independent gamma (R)_17
Independent gamma (R)_18
Independent gamma (R)_19
Independent gamma (R)_20
Independent gamma (R)_21
Independent gamma (R)_22
Independent gamma (R)_23
Independent gamma (R)_24
Independent gamma (R)_25
Independent gamma (R)_26
Independent gamma (R)_27
Independent gamma (R)_28
Independent gamma (R)_29
Independent gamma (R)_30
Independent gamma (R)_31
Independent gamma (R)_32
Independent gamma (R)_33
Independent gamma (R)_34
Independent gamma (R)_35
Independent gamma (R)_36
Independent gamma (R)_37
Independent gamma (R)_38
Independent gamma (R)_39
Independent gamma (R)_40
Independent gamma (R)_41
Independent gamma (R)_42
Independent gamma (R)_43
Independent gamma (R)_44
Independent gamma (R)_45
Independent gamma (R)_46
Independent gamma (R)_47
Independent gamma (R)_48
Independent gamma (R)_49
Independent gamma (R)_50
Independent gamma (R)_51
Independent gamma (R)_52
Independent gamma (R)_53
Independent gamma (R)_54
Independent gamma (R)_55
Independent gamma (R)_56
Independent gamma (R)_57
Independent gamma (R)_58
Independent gamma (R)_59
Independent gamma (R)_60
Independent gamma (R)_61
Independent gamma (R)_62
Independent gamma (R)_63
Independent gamma (G)_11
Independent gamma (G)_12
Independent gamma (G)_13
Independent gamma (G)_14
Independent gamma (G)_15
Independent gamma (G)_16
Independent gamma (G)_17
Independent gamma (G)_18
Independent gamma (G)_19
Independent gamma (G)_20
Independent gamma (G)_21
Independent gamma (G)_22
Independent gamma (G)_23
Independent gamma (G)_24
Independent gamma (G)_25
Independent gamma (G)_26
Independent gamma (G)_27
Independent gamma (G)_28
Independent gamma (G)_29
Independent gamma (G)_30
Independent gamma (G)_31
Independent gamma (G)_32
Independent gamma (G)_33
Independent gamma (G)_34
Independent gamma (G)_35
Independent gamma (G)_36
Independent gamma (G)_37
Independent gamma (G)_38
Independent gamma (G)_39
Independent gamma (G)_40
Independent gamma (G)_41
Independent gamma (G)_42
Independent gamma (G)_43
Independent gamma (G)_44
Independent gamma (G)_45
Independent gamma (G)_46
Independent gamma (G)_47
Independent gamma (G)_48
Independent gamma (G)_49
Independent gamma (G)_50
Independent gamma (G)_51
Independent gamma (G)_52
Independent gamma (G)_53
Independent gamma (G)_54
Independent gamma (G)_55
Independent gamma (G)_56
Independent gamma (G)_57
Independent gamma (G)_58
Independent gamma (G)_59
Independent gamma (G)_60
Independent gamma (G)_61
Independent gamma (G)_62
Independent gamma (G)_63
Independent gamma (B)_11
Independent gamma (B)_12
Independent gamma (B)_13
Independent gamma (B)_14
Independent gamma (B)_15
Independent gamma (B)_16
Independent gamma (B)_17
Independent gamma (B)_18
Independent gamma (B)_19
Independent gamma (B)_20
Independent gamma (B)_21
Independent gamma (B)_22
Independent gamma (B)_23
Independent gamma (B)_24
Independent gamma (B)_25
Independent gamma (B)_26
Independent gamma (B)_27
Independent gamma (B)_28
Independent gamma (B)_29
Independent gamma (B)_30
Independent gamma (B)_31
Independent gamma (B)_32
Independent gamma (B)_33
Independent gamma (B)_34
Independent gamma (B)_35
Independent gamma (B)_36
Independent gamma (B)_37
Independent gamma (B)_38
Independent gamma (B)_39
Independent gamma (B)_40
Independent gamma (B)_41
Independent gamma (B)_42
Independent gamma (B)_43
Independent gamma (B)_44
Independent gamma (B)_45
Independent gamma (B)_46
Independent gamma (B)_47
Independent gamma (B)_48
Independent gamma (B)_49
Independent gamma (B)_50
Independent gamma (B)_51
Independent gamma (B)_52
Independent gamma (B)_53
Independent gamma (B)_54
Independent gamma (B)_55
Independent gamma (B)_56
Independent gamma (B)_57
Independent gamma (B)_58
Independent gamma (B)_59
Independent gamma (B)_60
Independent gamma (B)_61
Independent gamma (B)_62
Independent gamma (B)_63
0x8B
0x8C
0x8D
0x8E
0x8F
0x90
0x91
0x92
0x93
0x94
0x95
0x96
0x97
0x98
0x99
0x9A
0x9B
0x9C
0x9D
0x9E
0x9F
0xA0
0xA1
0xA2
0xA3
0xA4
0xA5
0xA6
0xA7
0xA8
0xA9
0xAA
0xAB
0xAC
0xAD
0xAE
0xAF
0xB0
0xB1
0xB2
0xB3
0xB4
0xB5
0xB6
0xB7
0xB8
0xB9
0xBA
0xBB
0xBC
0xBD
0xBE
0xBF
0xCB
0xCC
0xCD
0xCE
0xCF
0xD0
0xD1
0xD2
0xD3
0xD4
0xD5
0xD6
0xD7
0xD8
0xD9
0xDA
0xDB
0xDC
0xDD
0xDE
0xDF
0xE0
0xE1
0xE2
0xE3
0xE4
0xE5
0xE6
0xE7
0xE8
0xE9
0xEA
0xEB
0xEC
0xED
0xEE
0xEF
0xF0
0xF1
0xF2
0xF3
0xF4
0xF5
0xF6
0xF7
0xF8
0xF9
0xFA
0xFB
0xFC
0xFD
0xFE
0xFF
00h to 3Fh (Basic register setting part)
For the register (marked with ) for auto-loading in the register Map, be sure to store an initial setting data in this area.
For an area not for auto-loading, even if any data is stored in EEPROM, it is not stored in the internal register.
40h to FFh (Area to store independent gamma parameter)
Independent gamma LUT in ASIC is available for 129 addresses (64 x RGB) x 8 bits. To use the independent gamma
function, store the values in 0x40 to 0xFF.
Page 25
LCY-09033B-26
15. Control of D/A Converter (hereinafter referred to as “DAC”)
15.1.
Overview of DAC Control
When the external DAC is connected to this ASIC, the ASIC can decide (1) the amplitude value and center voltage value of
signal for the opposite electrode (COM electrode) of liquid display and (2) the gradation setting voltage values etc. of the
source driver according to the ASIC’s internal register settings. It is assumed that the DAC control is used for the two ways
below.
(1) Use in a fixed set value for mass production
(2) Adjustment of opposite electrode center value in a process/source driver gradation setting voltage value
15.2.
Recommended Component for DAC
Fujitsu 8chDAC “MB88347” can be recommended as DAC that connection verification was executed.
15.3.
Description of Register Regarding DAC Control
Table 15-1 describes the register regarding DAC control
Table 15-1: Description of Register Regarding DAC Control
DAC control
address
★
★
★
★
★
initial value
dac_0ch[7:0]
0000_0000b
dac_1ch[7:0]
0000_0000b
dac_2ch[7:0]
0000_0000b
dac_3ch[7:0]
0000_0000b
dac_4ch[7:0]
0000_0000b
dac_5ch[7:0]
1111_1111b
dac_6ch[7:0]
0111_1000b
dac_7ch
0000_0000b
DAC 5ch setting register
DAC 6ch setting register
07h
dac_7ch
bit0
DAC 4ch setting register
06h
dac_6ch
bit1
DAC 3ch setting register
05h
dac_5ch
bit2
DAC 2ch setting register
04h
dac_4ch
bit3
DAC 1ch setting register
03h
dac_3ch
bit4
DAC 0ch setting register
02h
dac_2ch
★
bit5
01h
dac_1ch
★
bit6
00h
dac_0ch
★
bit7
DAC 7ch setting register
Page 26
LCY-09033B-27
15.4.
(1)
Actual Usage
Use in a fixed set value for mass production
For the use in mass production (normal), store a voltage value to be set in EEPROM in advance. Then, ASIC stores a
setting data in the ASIC’s register at the initial loading after FRESET and, based on that, a control instruction to DAC is
transferred.
(2)
Adjustment of opposite electrode center value in a process/source driver gradation setting voltage value
This register is for auto-loading. To adjust in a process, follow the flow below. (How to adjust the amplitude of opposite
electrode signal of address is described below. This applies also to any other set values.)
1. Set the ASIC register address 0x31[0]: als = ‘1’ and stop loading from EEPROM.
2. Change the ASIC register address DAC set value to find the most suitable value. (If the amplitude of opposite
electrode signal is adjusting, a point that a flicker of liquid crystal minimizes is the most suitable value.)
*) As described above, when als = ‘1’, transfer to DAC is performed at every 1V. Even if a register is rewritten at a
frequency of 1V or less, nothing is reflected in the display. Pay great attention to a change speed of register
value.
3. Write the most suitable value confirmed in the step 2 into EEPROM. For how to write it, refer to “14.4. How to
Write/Read to/from EEPROM”.
4. Here, an initial value has been stored in EEPROM. From now on, ASIC recognizes this initial value whenever the
power supply turns on.
Page 27
LCY-09033B-28
16. Control of A/D Converter (hereinafter referred to as “ADC”)
16.1.
Overview of ADC Control
When the external ADC is connected to this ASIC, the ASIC can read a value from a photo sensor or thermistor connected
to the liquid crystal module and can store it in the ASIC’s internal register. The ASIC can read a data from ADC by reading an
applicable register.
16.2.
Recommended Component for ADC
National Semiconductor 2chADC “ADCVO8832” can be recommended ADC that connection verification was executed.
Table 16-1: Description of Register Regarding ADC Control
ADC control
address
◇
◇
bit7
bit6
bit4
bit3
adc_data1
adc_data2
34h
35h
adc_data1
adc_data2
bit5
ADC 1ch Register
ADC 2ch Register
Page 28
bit2
bit1
bit0
initial value
0000_0000b
0000_0000b
LCY-09033B-29
17. Output I/F to LCD
Output timing in WVGA,WQVGA,WEGA1 and WEGA2 is shown below.
17.1.
Example of Horizontal Timing
17.1.1.
Horizontal Timing for Horizontal Resolution 800 Dots (WVGA)
CLK
1
800
OutData
STHR
(STHL)
stb_hl[69]
(803)
* For S_SEL = 1,
fixed to 5.
STB
gck_hl[70]
(702)
GCK
(CLS polarity is reversed)
(792)
REVV
slp_ctrl[67]
G_SLP
(759)
REVC
(Available for S_SEL = ‘1’)
* Only once after VSY fall
|FS
(Available for S_SEL = ‘0’)
Figure in [ ] is a value for ROMOFF = ‘1’.
Figure in ( ) is a standard value.
Figure 17-1: Horizontal Timing Chart for Horizontal Resolution 800 Dots (WVGA)
Page 29
LCY-09033B-30
17.1.2.
Horizontal Timing for Horizontal Resolution 480 Dots (WEGA1/WEGA2)
CLK
480
1
OutData
STHR
(STHL)
(483)
stb_hl[20]
* For S_SEL = 1,
fixed to 5.
STB
gck_hl[49]
(436)
GCK
(CLS polarity is reversed)
(472)
REVV
slp_ctrl[19]
G_SLP
(465)
REVC
(Available for S_SEL = ‘1’)
|FS
* Only once after VSY fall
(Available for S_SEL = ‘0’)
Figure in [ ] is a value for ROMOFF = ‘1’. [V = for 240 lines: V = for 272 lines]
Figure in ( ) is a standard value.
Figure 17-2: Horizontal Timing Chart for Horizontal Resolution 480 Dots (WEGA1/WEGA2)
Page 30
LCY-09033B-31
17.1.3.
Horizontal Timing for Horizontal Resolution 400 Dots (WQVGA)
CLK
400
1
OutData
STHR
(STHL)
(403)
stb_hl[16]
* For S_SEL = 1,
fixed to 5.
STB
gck_hl[40]
(363)
GCK
(CLS polarity is reversed)
(393)
REVV
slp_ctrl[16]
G_SLP
(387)
REVC
(Available for S_SEL = ‘1’)
|FS
* Only once after VSY fall
(Available for S_SEL = ‘0’)
Figure in [ ] is a value for ROMOFF = ‘1’.
Figure in ( ) is a standard value.
Figure 17-3: Horizontal Timing Chart for Horizontal Resolution 400 Dots (WQVGA)
Page 31
LCY-09033B-32
17.2.
17.2.1.
Example of Vertical Timing
Vertical Timing for Vertical Resolution 480 Lines (WVGA)
For G_SEL = 0
DataIn
H1
H2
H3
H1
Vsy
Hsy
REV
G_SLP
V_CNT
|GSPOI
GCK
OG1
(dummy Line)
OG2
(The 1st line on a display)
[2]
[1]
Page 32
H2
H3
LCY-09033B-33
For G_SEL=1
DataIn
H1
H2
H3
H1
H2
H3
Vsy
Hsy
REV
G_SLP
V_CNT
SPS
CLS
OG1
(dummy Line)
OG4
(Line No. 0)
OG5
Hi
(The 1st line on a display)
Hi
MODE1
MODE2
Hi
Lo
[1]
[2]
* In the chart above, [1] and [2] refer to the interlacing two-pulse mode and normal mode, respectively.
Figure 15-4: Vertical Timing Chart for Vertical Resolution 480 Lines (WVGA)
Page 33
LCY-09033B-34
17.2.2.
Vertical Timing for Vertical Resolution 240 Lines (WQVGA/WEGA2)
For G_SEL = 0
H1
DataIn
H2
H3
H1
Vsy
Hsy
REV
G_SLP
V_CNT
|GSPOI
GCK
OG1
(dummy Line)
OG2
(The 1st line on a display)
[1]
[2]
Page 34
H2
H3
LCY-09033B-35
For G_SEL=1
DataIn
H1
H2
H3
H1
H2
H3
Vsy
Hsy
REV
G_SLP
V_CNT
SPS
CLS
OG1
(dummy Line)
OG2
(dummy Line)
OG3
(The 1st line on a display)
MODE1
Hi
Hi
Hi
MODE2
Lo
[1]
[2]
* In the chart above, [1] and [2] refer to the interlacing two-pulse mode and normal mode, respectively.
Figure 17-5: Vertical Timing Chart for Vertical Resolution 240 Lines (WQVGA/WEGA2)
Page 35
LCY-09033B-36
17.2.3.
Vertical Timing for Vertical Resolution 272 Lines (WEGA1)
For G_SEL = 0
H1
DataIn
H2
H1
Vsy
Hsy
REV
G_SLP
V_CNT
|GSPOI
GCK
OG1
GCK idle feeding 11 ck (2H period)
[1]
[2]
OG13
OG14
(dummy1)
OG15
(dummy2)
OG16
(The 1st line on a display)
* In the chart above, [1] and [2] refer to the interlacing two-pulse mode and normal mode, respectively.
Figure 17-6: Vertical Timing Chart for Vertical Resolution 272 Lines (WEGA1)
Page 36
H2
LCY-09033B-37
18. Cautions on storage
18.1. Storage environment
To maintain the quality of semiconductor devices in storage, the storage environment must be controlled in terms of
temperature and humidity and the presence of hazards such as corrosive gas,radioactive rays,and static electricity.
Maintasin the storage site’s temperature (Ta) within 5 to 30℃ and the humidity (RH) within 20 to 70%.
Also note the following points.
Use a humidifier in dry regions. In this case, use demineralized water of distilled water for humidifyin.
Avoid storing semiconductor devices in an overheated area, such as an area exposed to direct sunlight or near a
heater, since overheated conditions may result in warping of product containers (magazines, etc).
Store semiconductor devices in areas where temperatures do not fluctuate widely (such as in direct sunlight areas
or dark areas), since rapid changes in temperature can cause moisture condensation on the devices.
Store semiconductor devices in an area where the air is clean and free of excess salt, dust, or corrosive gases (such
as exhaust gas, smoke, nitrous oxides, sulfur oxides, etc.).
Store semiconductor devices in an area that where they will not undergo mechanical stresses such as vibration or
shock.
Store semiconductor devices in an area that where they will not be exposed to radioactive rays, static electricity, or
strong magnetic fields.
Points to check after opening a complete dry pack.
A humidity indicator card is included in dry pack packages. When moisture has been absorbed, the color of the card
changes from blue to pink. If the card has changed to pink, the product may have absorbed moisture.So bake them
before mounting.
18.2. Storage methods
Note the following cautions on semiconductor device storage methods in order to maintain the quality of semiconductor
devices.
Avoid stacking heavy items on top semiconductor device boxes since the devices may become damaged (cracks,
bent leads, etc.). Since stacking boxes adds an undetermined amount of weight, avoid stacking heavy boxes on top of
lighter boxes.
Do not allow any vibration or shock that is strong enough to dent the exterior boxes.
Leave lead ends on external pins of semiconductor devices unprocessed to avoid defects that can occur during solder
mounting due to rust, etc.
18.3. Long-term storage
When storing semiconductor devices for a long period (two years or longer), the following cautions should be noted in
addition to the caution points mentioned for “18.1. Storage environment” and”18.2. Storage methods” above.
If long-term storage is expected from the start, use either dry pack or a sealed container that also contains silica gel
desiccant. After opening a dry pack package, put the contents back into a dry pack to ensure a long shelf life.
Page 37
LCY-09033B-38
If a long period (two years or longer) has elapsed for semiconductor devices that have been stored under in a normal
storage environment and using normal storage methods, we recommend checking for solderability and rust on pins
before using the semiconductor devices.
Page 38
LCY-09033B-39
19. Recommended soldering condition of infrared reflow
Page 39
LCY-09033B-40
20. Outline drawings
Page 40
LCY-09033B-41
21. Marking
This marking drawing shows the marking items and layout of the contents, and does not specify the typeface size of precise
position.
Assembly lot number*
No.1 pin index mark
Lead-free mark
* Construction of lot number
□□ □□
In-house code
Week assembled (2 digits)
Year assembled (Last 2 digits)
Page 41
LCY-09033B-42
22. Tray container
Page 42
LCY-09033B-43
23.Packing outline drawing
Page 43
LCY-09033B-44
24. Carton
Page 44