0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PC904

PC904

  • 厂商:

    SHARP(夏普)

  • 封装:

  • 描述:

    PC904 - Built-in Voltage Detection Circuit Type Photocoupler - Sharp Electrionic Components

  • 数据手册
  • 价格&库存
PC904 数据手册
PC904 PC904 s Features 1. Built-in voltage detection circuit 2. High isolation voltage between input and output ( Viso : 5 000V rms ) 3. Standard 8-pin dual-in-line package 4. Recognizerd by UL, file No. E64380 Built-in Voltage Detection Circuit Type Photocoupler s Outline Dimensions 0.85 ± 0.3 8 7 6 PC904 1.2 ± 0.3 5 g Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC904I/PC904P ) ( Unit : mm ) Internal connection diagram 8 7 6 5 s Applications 1. Switching power supplies 1 2 3 4 0.8 ± 0.2 Primary side mark 6.5 ± 0.5 1 2 3 4 7.62 ± 0.3 0.5TYP. 3.5 ± 0.5 3.0 ± 0.5 θ = 0 ˚ to 13 ˚ 0.5 ± 0.1 2.54 ± 0.25 θ 0.26 ± 0.1 θ 1 2 3 4 Anode Cathode GND Reference 5 6 7 8 NC Emitter Collector NC s Absolute Maximum Ratings Parameter Anode current Anode voltage Reference input current Power dissipation Collector-emitter voltage Emitter-collector voltage Collector current Collector power dissipation Total power dissipation *1 Isolation voltage Operating temperature Storage temperature *2 Soldering temperature Symbol IA VA I REF P V CEO V ECO IC PC P tot V iso T opr T stg T sol ( Ta = 25˚C ) Rating 50 30 10 250 35 6 50 150 350 5 000 - 25 to + 85 - 40 to + 125 260 Unit mA V mA mW V V mA mW mW V rms ˚C ˚C ˚C Input Output *1 40 to 60%RH AC for 1 minute *2 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” PC904 s Electro-optical Characteristics Parameter Reference voltage *3Temperature ( Ta = 25˚C ) Conditions V K = V REF , I A = 10mA MIN. 2.40 50 TYP. 2.495 8 - 1.4 2 0.4 MAX. 2.60 40 -5 10 3 Unit V mV mV/V µA µA mA µA V A % V Ω pF Fig. 1 1 2 3 3 1 4 1 5 6 6 - Symbol V REF change in reference voltage V REF ( dev ) V K = V REF , I A = 10mA, Ta = - 25 to + 85˚C ∆V REF / ∆V A I REF I REF ( dev ) I MIN I OFF VF I CEO CTR V CE(sat) R ISO Cf I A = 10mA, ∆ V A = 30V - V REF I A = 10mA, R 3 = 10k Ω IA = 10mA, R 3 = 10k Ω, Ta = - 25 to + 85˚C V K = V REF V A = 30V, V REF = GND V K = V REF , I A = 10mA V CE = 35V V K = V REF , I A = 5mA, V CE = 5V V K = V REF , I A = 10mA, I C = 1mA 40 to 60% RH, DC500V V = 0, f = 1kHz Voltage variation ratio in reference voltage Input Reference input current *4Temperature change in reference input current Output Transfer characteristics Minimum drive current OFF-state anode current Anode-cathode forward voltage Collector dark current *5 Current transfer ratio Collector-emitter saturation voltage 1 2 0.1 2 1.2 1.4 1 x 10 - 9 1 x 10 - 7 600 0.1 0.2 1.0 Isolation resistance Floating capacitance 5 x 1010 1 x 1011 0.6 - *3 V REF (dev ) = V REF ( MAX. ) - V REF (MIN. ) *4 I REF (dev ) = I REF ( MAX. ) - I REF (MIN. ) *5 CTR = I C / I A x 100 ( % ) Classification table of current transfer ratio is shown below.( 4 models ) Model No. PC904A PC904B PC904C PC904 Rank mark A B C A, B or C CTR ( % ) 50 to 150 100 to 300 250 to 600 50 to 600 s Test Circuit Fig. 1 Ia A VF V 2 6 VK VCC V VREF 3 4 R2 VCC VA 4 VREF 3 R1 2 6 1 7 Fig. 2 IA 1 7 PC904 Fig. 3 Fig. 4 IA 1 IREF A VCC 4 R3 2 6 VCC VA 7 A IOFF 1 7 2 6 4 3 3 Fig. 5 ICEO 1 7 VCE 2 6 4 VCC A Fig. 6 IA 1 7 IC A V 2 6 VCE VK 4 VREF 3 3 Fig. 7 Anode Current vs. Ambient Temperature 60 Fig. 8 Input Power Dissipation vs. Ambient Temperature 300 40 Input power dissipation P ( mW ) 50 Anode current I A ( mA ) 250 200 30 150 20 100 10 0 - 25 50 0 - 25 0 25 50 75 85 100 0 25 50 a 75 85 ( ˚C ) 100 Ambient temperature T a ( ˚C ) Ambient temperature T PC904 Fig. 9 Collector Power Dissipation vs. Ambient Temperature 200 Collector power dissipation P C ( mW ) Fig.10 Power Dissipation vs. Ambient Temperature 600 500 Power dissipation P tot ( mW ) 150 400 350 300 100 200 50 100 0 - 25 0 - 25 0 25 50 75 85 100 a 125 0 25 50 a 75 ( ˚C ) 85 100 Ambient temperature T ( ˚C ) Ambient temperature T Fig.11 Relative Current Transfer Ratio vs. Ambient Temperature 150 V K = V REF I A = 5mA V CE = 5V Fig.12 Collector Dark Current vs. Ambient Temperature 10 10 ( A) CEO -5 5 V CE = 35V -6 Relative current transfer ratio ( % ) 5 100 10 -7 Collector dark current I 0 25 50 a 5 10 -8 5 50 10 -9 5 10 10 - 10 5 0 - 25 - 11 75 ( ˚C ) 100 - 30 Ambient temperature T 20 0 40 60 Ambient temperature T a ( ˚C) 80 100 Fig.13-a Anode Current vs. Reference Voltage V K = V REF T a = 25˚C 50 Fig.13-b Anode Current vs. Reference Voltage 1 200 V K = V REF T a = 25˚C 1 000 Anode current I A ( µ A ) 3 (V) Anode current I A ( mA ) 40 800 30 600 20 400 10 0 0 200 0 0 1 Reference voltage V 2 REF 1 2 Reference voltage V REF ( V ) 3 PC904 Fig.14 OFF-state Anode Current vs. Ambient Temperature OFF-state anode current I OFF ( µ A ) V A = 30V V REF = GND Reference voltage V REF ( V ) 10 Fig.15 Reference Voltage vs. Ambient Temperature 2.60 V K = V REF I A = 10mA V REF = 2.60V 2.50 2.495V 5 2.40 2.40V 0 - 30 0 20 40 60 a 80 ( ˚C ) 100 - 30 Ambient temperature T 0 20 40 60 80 Ambient temperature T a ( ˚C ) 100 Fig.16 Reference Input Current vs. Ambient Temperature 3 IA = 10mA Reference input current I REF ( µ A ) Fig.17 Reference Voltage Change vs. Anode Voltage 0 Reference voltage change ∆ V REF ( mV ) I A = 10mA T a = 25˚C 2 - 10 1 - 20 0 - 25 0 25 50 75 100 - 30 0 5 10 15 20 25 30 35 Ambient temperature T a ( ˚C ) Anode voltage V A ( V ) Fig.18-a Voltage Gain ( 1 ) vs. Frequency 100 I F = 2mA T a = 25˚C 80 Voltage gain ( 1 ) A V1 ( dB ) Test Circuit for Voltage Gain ( 1 ) vs. Frequency 620 Ω 10k Ω 10 µ F Vin Vo 60 40 20 f 0 - 20 0.1 AV1 = 20 log 1 10 Frequency f ( kHz) 100 1 000 Vo Vin 10k Ω PC904 Fig.18-b Voltage Gain ( 2 ) vs. Frequency 10 I A = 2mA I C = 1.7mA T a = 25˚C 0 Voltage gain ( 2 ) A V2 ( dB ) Test Circuit for Voltage Gain ( 2 ) vs. Frequency 620 Ω IA RL Vo - 10 R L = 10k Ω - 20 1k Ω 100 Ω - 30 f 10k Ω 10 µ F Vin 10 kΩ - 40 - 50 0.1 1 10 100 Frequency f ( kHz) 1 000 Fig.19 Anode Current vs. Load Capacitance 50 A••• VK = V REF B••• VA = 5V ( at I A = 10mA ) 40 C••• VA = 10V ( at I A = 10mA ) D••• VA = 15V ( at I A = 10mA ) A 30 Stable area 20 C Oscilating area T a = 25˚C Test Circuit for Anode Current vs. Load Capacitance 150 Ω Anode current I A ( mA ) B B A Stable area CL Test circuit (A) 150 Ω 10 CL D 0 10 - 10k Ω 3 10 - 2 10 - 1 1 10 Test circuit ( B, C, D ) Load capacitance C L ( µ F ) Fig.20 Collector-emitter Saturation Voltage vs. Ambient Temperature 0.16 V K = V REF 0.14 Collector-emitter saturation voltage V CE(sat ) ( V) 0.12 0.10 0.08 0.06 0.04 0.02 0 - 25 0 25 50 75 100 I C = 1mA Fig.21 Current Transfer Ratio vs. Anode Current 300 V K = V REF V CE = 5V T a = 25˚C 250 Current transfer ratio CTR (%) I A = 10mA 200 150 100 50 0 1 2 5 10 20 50 Ambient temperature T a ( ˚C ) Anode Current IA ( mA ) s Precautions for Use Handle this product the same as with other integrated circuits against static electricity. q As for other general cautions, refer to the chapter “ Precautions for Use ”
PC904 价格&库存

很抱歉,暂时无法提供与“PC904”相匹配的价格&库存,您可以联系我们找货

免费人工找货