0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PQ30RV21

PQ30RV21

  • 厂商:

    SHARP(夏普)

  • 封装:

  • 描述:

    PQ30RV21 - Variable Output Low Power-Loss Voltage Regulators - Sharp Electrionic Components

  • 数据手册
  • 价格&库存
PQ30RV21 数据手册
Low Power-Loss Voltage Regulators PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21 PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21 Variable Output Low Power-Loss Voltage Regulators s Features ¡Compact resin full-mold package ¡Low power-loss (Dropout voltage : MAX.0.5V) ¡Variable output voltage (setting range : 1.5 to 30V) ¡Built-in output ON/OFF control function 29.1MAX s Outline Dimensions 10.2MAX 3.6±0.2 4.5±0.2 (Unit : mm) 2.8±0.2 7.4±0.2 PQ30RV31 s Applications ¡ Power supply for print concentration control of electronic typewriters with display ¡Series power supply for motor drives ¡Series power supply for VCRs and TVs 4-1.4 13.5MIN 4-0.6 +0.3 -0 +0.2 -0.1 3-(2.54) (0.5) s Model Line-ups Output voltage Reference voltage precision : ±4% Reference voltage precision : ±2% 1A output PQ30RV1 2A output PQ30RV2 1234 qqqq Internal connection diagram 1 Specific IC 4 3 2 1 DC input (VIN) 2 DC output (VO) 3 GND 4 Output voltage minute adjustment terminal (VADJ) PQ30RV11 PQ30RV21 s Equivalent Circuit Diagram 1 2 + Reference voltage generation circuit *ASO protection circuit 4 Overheat protection circuit *ASO:Area of Safety Operation 3 · Please refer to the chapter“ Handling Precautions ”. “ In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” 4.8MAX 15.6±0.5 (1.5) φ3.2±0.1 Low Power-Loss Voltage Regulators s Absolute Maximum Ratings Parameter *1 *1 PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21 (Ta=25˚C) Symbol VIN VADJ IO PD1 PD2 Tj Topr Tstg Tsol Rating 35 7 1 2 1.5 15 18 150 -20to+80 -40to+150 260 (For 10s) Unit V V A W W ˚C ˚C ˚C ˚C *2 Input voltage Output voltage adjustment voltage PQ30RV1/PQ30RV11 Output current PQ30RV2/PQ30RV21 Power dissipation (No heat sink) PQ30RV1/PQ30RV11 Power dissipation PQ30RV2/PQ30RV21 (With infinite heat sink) Junction temperature Operating temperature Storage temperature Soldering temperature *1 *2 All are open except GND and applicable terminals. Overheat protection may operate at Tj>=125˚C. s Electrical Characteristics Unless otherwise specified, condition shall be VIN=15V, VO=10V, IO=0.5A, R1=390Ω (PQ30RV1/PQ30RV11) VIN=15V, VO=10V, IO=1.0A, R1=390Ω (PQ30RV2/PQ30RV21) Parameter Symbol Conditions Input voltage VIN R2=94Ω to 8.5kΩ PQ30RV1/PQ30RV2 Output voltage VO R2=84Ω to 8.7kΩ PQ30RV11/PQ30RV21 IO=5mA to 1A PQ30RV1/PQ30RV11 Load regulation RegL IO=5mA to 2A PQ30RV2/PQ30RV21 Line regulation VIN=11 to 28V RegI Cref=0 Ripple rejection Fefer to Fig. 2 RR Cref=3.3µF PQ30RV1/PQ30RV2 Reference voltage Vref PQ30RV11/PQ30RV21 Temperature coefficient of reference voltage Tj=0 to 125˚C TcVref *3, IO=0.5A PQ30RV1/PQ30RV11 Dropout voltage Vi-O *3, IO=2A PQ30RV2/PQ30RV21 Quiescent current IO=0 Iq *3 (Ta=25˚C) MIN. 4.5 1.5 45 55 1.20 1.225 TYP. 0.3 0.5 0.5 55 65 1.25 1.25 ±1.0 MAX. 35 30 1.0 1.0 2.5 1.30 1.275 0.5 7 Unit V V % % dB V % V mA Input voltage shall be the value when output voltage is 95% in comparison with the initial value. Fig.1 Test Circuit VIN 1 q 2 q R2 3 q 0.33µF 4 q Vref R1 Iq 390Ω + 47µF VO A V IO R2 VO=Vref X 1+ --------R1 [R1=390Ω,Vref =1.25V] =1.25X R2 1+ --------R1 V RL A Fig.2 Test Circuit of Ripple Rejection 1 q ei VIN 2 q R2 3 q 0.33µF 4 q R1 390Ω + + 47µF IO + ~ Cref 3.3µF V eo ~ RL IO=0.5A f=120Hz (sine wave) ei=0.5Vrms RR=20 log (ei/eo) Low Power-Loss Voltage Regulators Fig.3 Power Dissipation vs. Ambient Temperature (PQ30RV1/PQ30RV11) 20 PD1 :No heat sink PD2 :With infinite heat sink PD2 10 PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21 Fig.4 Power Dissipation vs. Ambient Temperature (PQ30RV2/PQ30RV21) 20 Power dissipation PD (W) PD1 :No heat sink PD2 :With infinite heat sink PD2 Power dissipation PD (W) 15 15 10 5 PD1 5 PD1 50 100 150 Ambient temperature Ta (˚C) Note) Oblique line portion:Overheat protection may operate in this area. 0 -20 0 50 100 150 Ambient temperature Ta (˚C) Note) Oblique line portion:Overheat protection may operate in this area. 0 -20 0 Fig.5 Overcurrent Protection Characteristics (PQ30RV1/PQ30RV11) 100 Relative output voltage (%) Fig.6 Overcurrent Protection Characteristics (PQ30RV2/PQ30RV21) 100 80 60 40 20 0 0 0.5 1.0 1.5 Output current IO (A) 2.0 Relative output voltage (%) 80 60 40 20 0 0 1.0 2.0 3.0 Output current IO (A) 4.0 Fig.7 Output Voltage Adjustment Characteristics 30 R1 390Ω Output voltage VO (V) 25 20 15 10 5 0 101 Fig.8 Reference Voltage Deviation vs. Junction Temperature Reference voltage deviation ∆Vref (mV) 10 0 10 2 10 R2 (Ω) 3 10 4 10 5 -10 -25 R1=390Ω,R2=2.7kΩ,VIN=15V IO=0.5A(PQ30RV1/PQ30RV11) IO= 1A(PQ30RV2/PQ30RV21) 0 25 50 75 100 125 Junction temperature Tj (˚C) Low Power-Loss Voltage Regulators Fig.9 Output Voltage vs. Input Voltage (PQ30RV1/PQ30RV11) 15 R1=390Ω,R2=2.7kΩ,Tj=25˚C Output voltage VO (V) PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21 Fig.10 Output Voltage vs. Input Voltage (PQ30RV2/PQ30RV21) 15 R1=390Ω,R2=2.7kΩ,Tj=25˚C Output voltage VO (V) 10 RL=∞ 5 10 RL=∞ 5 RL=10Ω RL=5Ω 0 0 5 10 15 Input voltage VIN (V) 20 0 0 5 10 15 Input voltage VIN (V) 20 Fig.11 Dropout Voltage vs. Junction Temperature (PQ30RV1/PQ30RV11) 0.5 R1=390Ω,R2=2.7kΩ VIN:input voltage shall be the 0.4 value when output voltage is 95% in comparison with the initial value 0.3 0.2 0.1 0 -20 Io=1A Fig.12 Dropout Voltage vs. Junction Temperature (PQ30RV2/PQ30RV21) 0.5 R1=390Ω,R2=2.7kΩ VIN:input voltage shall be the 0.4 value when output voltage is 95% in comparison with the initial value 0.3 0.2 1A 0.1 0 -20 0.5A IO=2A 1.5A Dropout voltage Vi-O (V) 0.75A 0.5A 0.25A 25 50 75 100 0 Junction temperature Tj (˚C) 125 Dropout voltage Vi-O (V) 0 25 50 75 100 Junction temperature Tj (˚C) 125 Fig.13 Quiescent Current vs. Junction Temperature 5 4 3 2 1 0 -20 VIN=35V IO=0 Fig.14 Ripple Rejection vs. Input Ripple Frequency (PQ30RV1/PQ30RV11) 80 70 Ripple rejection RR (dB) Cref=3.3µF Quiescent current Iq (mA) 60 50 40 30 20 Tj=25˚C R1=390Ω,R2=2.7kΩ 10 IO=0.5A,ei=0.5Vrms, 0 VIN=15V 0.1 1 10 100 Input ripple frequency f (kHz) No Cref 0 25 50 75 100 Junction temperature Tj (˚C) 125 Low Power-Loss Voltage Regulators Fig.15 Ripple Rejection vs. Input Ripple Frequency (PQ30RV2/PQ30RV21) 80 70 Ripple rejection RR (dB) 60 50 40 30 20 Tj=25˚C R1=390Ω,R2=2.7kΩ 10 IO=0.5A,ei=0.5Vrms, 0 VIN=15V 0.1 1 10 100 Input ripple frequency f (kHz) No Cref Cref=3.3µF PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21 Fig.16 Ripple Rejection vs. Output Current (PQ30RV1/PQ30RV11) 80 70 Cref=3.3µF Ripple rejection RR (dB) 60 50 No Cref 40 30 0 Tj=25˚C R1=390Ω,R2=2.7kΩ VIN=15V,ei=0.5Vrms,f=120Hz 0.2 0.4 0.6 0.8 Output current IO (A) 1.0 Fig.17 Ripple Rejection vs. Output Current (PQ30RV2/PQ30RV21) 80 70 No Cref 60 50 Cref=3.3µF Ripple rejection RR (dB) Fig.18 Output Peak Current vs. Dropout Voltage (PQ30RV1/PQ30RV11) 2.0 Output peak current IOP (A) 1.5 40 30 0 Tj=25˚C R1=390Ω,R2=2.7kΩ VIN=15V,ei=0.5Vrms,f=120Hz 0.2 0.4 0.6 0.8 Output current IO (A) 1.0 Tj=25˚C 1.0 R1=390Ω,R2=2.7kΩ 0 5 10 Dropout voltage Vi-O (V) 15 Fig.19 Output Peak Current vs. Dropout Voltage (PQ30RV2/PQ30RV21) Output peak current IOP (A) Fig.20 Output Peak Current vs. Junction Temperature (PQ30RV1/PQ30RV11) 2.0 4 Output peak current IOP (A) VIN-VO=5V 1.5 2V 0.5V 1.0 IOP:Output current when output voltage is 95% in comparison with the initial value R1=390Ω,R2=2.7kΩ 0 25 50 75 100 Junction temperature Tj (˚C) 125 3 Tj=25˚C R1=390Ω,R2=2.7kΩ 0 5 10 Dropout voltage Vi-O (V) 15 0.5 -20 Low Power-Loss Voltage Regulators Fig.21 Output Peak Current vs. Junction Temperature (PQ30RV2/PQ30RV21) 5 PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21 Output peak current IOP (A) 4 VIN-VO=5V 2V 3 0.5V IOP:Output current when output voltage is 95% in comparison with the initial value R1=390Ω,R2=2.7kΩ 0 25 50 75 100 Junction temperature Tj (˚C) 125 2 -20 s Standard Connection D1 VIN 1 q 2 q R2 4 q 3 q VO + Cref 390Ω to10kΩ CIN R1 CO D1 : This device is necessary to protect the element from damage when reverse voltage may be applied to the regulator in case of input short-circuiting. Cref : This device is necessary when it is required to enhance the ripple rejection or to delay the output start-up time(*1). (*1)Otherwise, it is not necessary. (Care must be taken since Cref may raise the gain, facilitating oscillation.) (*1)The output start-up time is proportional to Cre fX R2. CIN, CO : Be sure to mount the devices CIN and CO as close to the device terminal as possible so as to prevent oscillation. The standard specification of CIN and CO is 0.33µF and 47µF, respectively. However, ajust them as necessary after checking. R1, R2 : These devices are necessary to set the output voltage. The output voltage VO is given by the following formula: VO=Vref X (1+R2/R1) (Vref is 1.25V TYP) The standard value of R1 is 390Ω.But value up 10kΩdoes not cause any trouble. Load + Low Power-Loss Voltage Regulators s ON/OFF Operation D1 PQ30RV1/PQ30RV11/PQ30RV2/PQ30RV21 VADJ D2 VIN 1 q 2 q R2 4 q 3 q D2 + VO R1 RL R2 CIN VADJ R1 R3 CO RL VO’ RD VC High : Output OFF Low : Output ON Equivalent Circuit in OFF-state ¡ON/OFF operation is available by mounting externally D2 and R3. ¡When VADJ is forcibly raised above Vref (1.25V TYP) by applying the external signal, the output is turned off (pass transistor of regulator is turned off). When the output is OFF, VADJ must be higher then Vref MAX., and at the same time must be lower than maximum rating 7V. In OFF-state, the load current flows to RL from VADJ through R2. Therefore the value of R2 must be as high as possible. ¡VO'=VADJ X RL/(RL+R2) occurs at the load. OFF-state equivalent circuit R1 up to 10Ω is allowed. Select as high value of RL and R2 as possible in this range. In some case, as output voltage is getting lower (VO
PQ30RV21 价格&库存

很抱歉,暂时无法提供与“PQ30RV21”相匹配的价格&库存,您可以联系我们找货

免费人工找货