0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BTS728L2

BTS728L2

  • 厂商:

    SIEMENS

  • 封装:

  • 描述:

    BTS728L2 - Smart High-Side Power Switch Two Channels: 2 x 60mW Status Feedback - Siemens Semiconduct...

  • 数据手册
  • 价格&库存
BTS728L2 数据手册
PROFET® BTS 728 L2 Smart High-Side Power Switch Two Channels: 2 x 60mΩ Status Feedback Product Summary Operating Voltage Vbb(on) Active channels On-state Resistance RON Nominal load current IL(NOM) Current limitation IL(SCr) 4.75...41V one two parallel 60mΩ 30mΩ 4.0A 6.0A 17A 17A Package P-DSO-20-9 General Description • • N channel vertical power MOSFET with charge pump, ground referenced CMOS compatible input and ® diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Fully protected by embedded protection functions Applications • • • • µC compatible high-side power switch with diagnostic feedback for 5V, 12V and 24V grounded loads All types of resistive, inductive and capacitve loads Most suitable for loads with high inrush currents, so as lamps Replaces electromechanical relays, fuses and discrete circuits Basic Functions • • • • • • • Very low standby current CMOS compatible input Improved electromagnetic compatibility (EMC) Fast demagnetization of inductive loads Stable behaviour at undervoltage W ide operating voltage range Logic ground independent from load ground Protection Functions • • • • • • • • Short circuit protection Overload protection Current limitation Thermal shutdown Overvoltage protection (including load dump) with external resistor Reverse battery protection with external resistor Loss of ground and loss of Vbb protection Electrostatic discharge protection (ESD) Block Diagram Vbb IN1 ST1 Logic Channel 1 Logic Channel 2 PROFET GND OUT 1 Load 1 OUT 2 Load 2 IN2 ST2 Diagnostic Function • • • Diagnostic feedback with open drain output Open load detection in ON-state Feedback of thermal shutdown in ON-state Semiconductor Group Page 1 of 14 1999-Mar-23 BTS 728 L2 Functional diagram overvoltage protection internal voltage supply logic gate control + charge pump current limit VBB clamp for inductive load OUT1 IN1 ESD ST1 GND1 temperature sensor LOAD Open load detection Channel 1 IN2 ST2 GND2 Control and protection circuit of channel 2 OUT2 PROFET Pin Definitions and Functions Pin 1,10, 11,12, 15,16, 19,20 3 7 17,18 13,14 4 8 2 6 5,9 Symbol Function Vbb Positive power supply voltage. Design the wiring for the simultaneous max. short circuit currents from channel 1 to 2 and also for low thermal resistance IN1 Input 1,2, activates channel 1,2 in case of IN2 logic high signal OUT1 Output 1,2, protected high-side power output OUT2 of channel 1,2. Design the wiring for the max. short circuit current ST1 Diagnostic feedback 1,2 of channel 1,2, ST2 open drain, low on failure GND1 Ground 1 of chip 1 (channel 1) GND2 Ground 2 of chip 2 (channel 2) N.C. Not Connected Pin configuration (top view) Vbb GND1 IN1 ST1 N.C. GND2 IN2 ST2 N.C. Vbb 1 2 3 4 5 6 7 8 9 10 • 20 19 18 17 16 15 14 13 12 11 Vbb Vbb OUT1 OUT1 Vbb Vbb OUT2 OUT2 Vbb Vbb Semiconductor Group Page 2 1999-Mar-23 BTS 728 L2 Maximum Ratings at Tj = 25°C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 4) Supply voltage for full short circuit protection Tj,start = -40 ...+150°C Load current (Short-circuit current, see page 5) Load dump protection1) VLoadDump = VA + Vs, VA = 13.5 V RI2) = 2 Ω, td = 200 ms; IN = low or high, each channel loaded with RL = 8.0 Ω, Operating temperature range Storage temperature range Power dissipation (DC)4) Ta = 25°C: (all channels active) Ta = 85°C: Maximal switchable inductance, single pulse Vbb = 12V, Tj,start = 150°C4), IL = 4.0 A, EAS = 220 mJ, 0 Ω one channel: IL = 6.0 A, EAS = 540 mJ, 0 Ω two parallel channels: see diagrams on page 9 Symbol Values 43 24 self-limited 60 -40 ...+150 -55 ...+150 3.7 1.9 Unit V V A V °C W Vbb Vbb IL VLoad dump3) Tj Tstg Ptot ZL 19.9 22.3 1.0 4.0 8.0 -10 ... +16 ±2.0 ±5.0 mH Electrostatic discharge capability (ESD) IN: (Human Body Model) ST: out to all other pins shorted: acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 R=1.5kΩ; C=100pF VESD kV Input voltage (DC) Current through input pin (DC) Current through status pin (DC) see internal circuit diagram page 8 VIN IIN IST V mA Thermal Characteristics Parameter and Conditions Symbol min Thermal resistance junction - soldering point4),5) each channel: Rthjs junction - ambient4) one channel active: Rthja all channels active: ---Values typ Max -41 34 13.5 --Unit K/W 1) 2) 3) 4) 5) Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins (a 150Ω resistor for the GND connection is recommended. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air. See page 14 Soldering point: upper side of solder edge of device pin 15. See page 14 Semiconductor Group Page 3 1999-Mar-23 BTS 728 L2 Electrical Characteristics Parameter and Conditions, each of the two channels at Tj = -40...+150°C, Vbb = 12 V unless otherwise specified Symbol Values min typ Max Unit Load Switching Capabilities and Characteristics On-state resistance (Vbb to OUT); IL = 2 A, Vbb ≥ 7V each channel, Tj = 25°C: RON Tj = 150°C: two parallel channels, Tj = 25°C: see diagram, page 10 -- 50 100 25 60 120 30 -- mΩ Nominal load current one channel active: IL(NOM) two parallel channels active: 3.6 5.5 -- 4.0 6.0 -- A Device on PCB6), Ta = 85°C, Tj ≤ 150°C Output current while GND disconnected or pulled up; Vbb = 30 V, VIN = 0, see diagram page 8; (not tested specified by design) Turn-on time7) IN to 90% IL(GNDhigh) 2 mA µs Turn-off time IN RL = 12 Ω Slew rate on 7) 10 to 30% VOUT, RL = 12 Ω: Slew rate off 7) 70 to 40% VOUT, RL = 12 Ω: Operating Parameters Operating voltage VOUT: ton to 10% VOUT: toff dV/dton -dV/dtoff 30 30 0.1 0.1 100 100 --- 200 200 1 1 V/µs V/µs Tj=-40 Tj=25...150°C: Overvoltage protection8) Tj =-40°C: I bb = 40 mA Tj =25...150°C: 9) Standby current Tj =-40°C...25°C: VIN = 0; see diagram page 10 Tj =150°C: Leakage output current (included in Ibb(off)) VIN = 0 Operating current 10), VIN = 5V, IGND = IGND1 + IGND2, one channel on: two channels on: Vbb(on) Vbb(AZ) Ibb(off) IL(off) 4.75 41 43 ---- ---47 10 -1 41 43 -52 18 50 10 V V µA µA IGND --- 0.8 1.6 1.5 3.0 mA 6) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air. See page 14 7) See timing diagram on page 11. 8) Supply voltages higher than V bb(AZ) require an external current limit for the GND and status pins (a 150Ω resistor for the GND connection is recommended). See also VON(CL) in table of protection functions and circuit diagram on page 8. 9) Measured with load; for the whole device; all channels off 10) Add I , if I ST ST > 0 Semiconductor Group Page 4 1999-Mar-23 BTS 728 L2 Parameter and Conditions, each of the two channels at Tj = -40...+150°C, Vbb = 12 V unless otherwise specified Symbol Values min typ Max Unit Protection Functions Current limit, (see timing diagrams, page 12) Tj =-40°C: IL(lim) Tj =25°C: Tj =+150°C: Repetitive short circuit current limit, Tj = Tjt each channel IL(SCr) two parallel channels (see timing diagrams, page 12) 21 17 12 ---- 28 22 16 17 17 2.4 36 31 24 ---- A A Initial short circuit shutdown time Tj,start =25°C: toff(SC) ms V (see timing diagrams on page 12) Output clamp (inductive load switch off)11) at VON(CL) = Vbb - VOUT, IL= 40 mA Tj =-40°C: VON(CL) Tj =25°C...150°C: Thermal overload trip temperature Tjt Thermal hysteresis ∆Tjt Reverse Battery Reverse battery voltage 12) Drain-source diode voltage (Vout > Vbb) IL = - 4.0 A, Tj = +150°C 41 43 150 -- -47 -10 -52 --- °C K -Vbb -VON --- -600 32 -- V mV 11) If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest VON(CL) 12) Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8). Semiconductor Group Page 5 1999-Mar-23 BTS 728 L2 Parameter and Conditions, each of the two channels at Tj = -40...+150°C, Vbb = 12 V unless otherwise specified Symbol Values min typ Max Unit Diagnostic Characteristics Open load detection current, (on-condition) each channel I L (OL) Input and Status Feedback13) Input resistance (see circuit page 8) 1 10 -- 500 mA RI VIN(T+) VIN(T-) ∆ VIN(T) IIN(off) IIN(on) td(ST OL4) 2.5 1.7 1.5 -1 20 100 3.5 --0.5 -50 520 6 3.2 --50 90 900 kΩ V V V µA µA µs Input turn-on threshold voltage Input turn-off threshold voltage Input threshold hysteresis Off state input current VIN = 0.4 V: On state input current VIN = 5 V: Delay time for status with open load after switch off; (see diagram on page 13) Status output (open drain) Zener limit voltage IST = +1.6 mA: ST low voltage IST = +1.6 mA: VST(high) VST(low) 5.4 -- 6.1 -- -0.4 V 13) If ground resistors RGND are used, add the voltage drop across these resistors. Semiconductor Group Page 6 1999-Mar-23 BTS 728 L2 Truth Table Channel 1 Channel 2 Input 1 Input 2 level Normal operation Open load Overtemperature L = "Low" Level H = "High" Level L H L H L H Output 1 Output 2 level L H Z H L L Status 1 Status 2 BTS 728L2 H H H L H L X = don’t care Z = high impedance, potential depends on external circuit Status signal valid after the time delay shown in the timing diagrams Parallel switching of channel 1 and 2 is easily possible by connecting the inputs and outputs in parallel. The status outputs ST1 and ST2 have to be configured as a ’Wired OR’ function with a single pull-up resistor. Terms Ibb V bb Leadframe I IN1 3 I ST1 V IN1 V ST1 4 ST1 IN1 Vbb I L1 PROFET Chip 1 GND1 2 R GND1 IGND1 V OUT1 OUT1 17,18 V VON1 I ST2 V ST2 8 ST2 I IN2 7 IN2 Leadframe Vbb I L2 PROFET Chip 2 GND2 6 R GND2 IGND2 V OUT2 OUT2 13,14 VON2 IN2 Leadframe (Vbb) is connected to pin 1,10,11,12,15,16,19,20 External RGND optional; two resistors RGND1, RGND2 = 150 Ω or a single resistor RGND = 75 Ω for reverse battery protection up to the max. operating voltage. Semiconductor Group Page 7 1999-Mar-23 BTS 728 L2 Input circuit (ESD protection), IN1 or IN2 R IN I Overvolt. and reverse batt. protection + 5V + Vbb R ST IN V RI Logic Z2 ESD-ZD I GND I I R ST ST V Z1 OUT PROFET GND The use of ESD zener diodes as voltage clamp at DC conditions is not recommended. R Load R GND Signal GND Load GND Status output, ST1 or ST2 +5V R ST(ON) VZ1 = 6.1 V typ., VZ2 = 47 V typ., RGND = 150 Ω, RST= 15 kΩ, RI= 3.5 kΩ typ. In case of reverse battery the load current has to be limited by the load. Temperature protection is not active ST GND ESDZD Open-load detection OUT1 or OUT2 ON-state diagnostic Open load, if VON < RON·IL(OL); IN high + V bb ESD-Zener diode: 6.1 V typ., max 5.0 mA; RST(ON) < 375 Ω at 1.6 mA. The use of ESD zener diodes as voltage clamp at DC conditions is not recommended. ON VON Inductive and overvoltage output clamp, OUT1 or OUT2 +Vbb VZ V Logic unit Open load detection OUT ON OUT GND disconnect Power GND IN Vbb PROFET OUT VON clamped to VON(CL) = 47 V typ. ST GND V bb V IN V ST V GND Any kind of load. In case of IN = high is VOUT ≈ VIN - VIN(T+). Due to VGND > 0, no VST = low signal available. Semiconductor Group Page 8 1999-Mar-23 BTS 728 L2 GND disconnect with GND pull up Inductive load switch-off energy dissipation E bb IN Vbb PROFET ST GND OUT E AS Vbb PROFET OUT L GND ZL ELoad IN = V V bb IN ST V V GND ST { R L EL ER Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND > 0, no VST = low signal available. Energy stored in load inductance: Vbb disconnect with energized inductive load EL = 1/2·L·I L While demagnetizing load inductance, the energy dissipated in PROFET is 2 high IN Vbb PROFET OUT EAS= Ebb + EL - ER= ∫ VON(CL)·iL(t) dt, with an approximate solution for RL > 0 Ω: IL· L (V + |VOUT(CL)|) 2·RL bb IL·RL ST GND EAS= ln (1+ |V OUT(CL)| ) V bb Maximum allowable load inductance for a single switch off (one channel)4) L = f (IL ); Tj,start = 150°C, Vbb = 12 V, RL = 0 Ω ZL [mH] 1000 For inductive load currents up to the limits defined by ZL (max. ratings and diagram on page 9) each switch is protected against loss of Vbb. Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load all the load current flows through the GND connection. 100 10 1 2 3 4 5 6 7 8 9 10 11 12 IL [A] Semiconductor Group Page 9 1999-Mar-23 BTS 728 L2 Typ. on-state resistance RON = f (Vbb,Tj ); IL = 2 A, IN = high RON [mOhm] 125 100 Tj = 150°C 75 50 25°C -40°C 25 0 3 5 7 9 30 40 Vbb [V] Typ. standby current Ibb(off) = f (Tj ); Vbb = 9...34 V, IN1,2 = low Ibb(off) [µA] 45 40 35 30 25 20 15 10 5 0 -50 0 50 100 150 200 Tj [°C] Semiconductor Group Page 10 1999-Mar-23 BTS 728 L2 Timing diagrams Both channels are symmetric and consequently the diagrams are valid for channel 1 and channel 2 Figure 1a: Vbb turn on: IN1 Figure 2b: Switching a lamp: IN IN2 V bb ST V OUT1 V OUT2 V OUT ST1 open drain I L ST2 open drain t t The initial peak current should be limited by the lamp and not by the current limit of the device. Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition: Figure 2c: Switching an inductive load IN IN VOUT ST 90% t on dV/dton 10% t dV/dtoff V off OUT IL I L I L(OL) t *) if the time constant of load is too large, open-load-status may occur t Semiconductor Group Page 11 1999-Mar-23 BTS 728 L2 Figure 3a: Turn on into short circuit: shut down by overtemperature, restart by cooling IN1 other channel: normal operation Figure 4a: Overtemperature: Reset if Tj
BTS728L2 价格&库存

很抱歉,暂时无法提供与“BTS728L2”相匹配的价格&库存,您可以联系我们找货

免费人工找货