Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
The S-812C series is a family of high-voltage positive regulators developed using CMOS technology. The maximum operating voltage of 16V makes the S-812C series best in high-voltage applications. Not only current consumption is small but also power-off function is included, the regulator is also suitable in constructing lowpower portable devices. Combination of power-off function and short-current protection can be selected.
Features
• Low current consumption • Power source for battery-powered devices Operating current: Typ. 1.0 µA, Max. 1.8 µA (3.0 V) • Power source for personal communication • Output voltage: 2.0 to 6.0 V (0.1 V step) devices • Output voltage accuracy: ±2.0% • Power source for home electric/electronic • Output current: appliances Note1 50mA capable (3.0 V output product, VIN=5 V) Note1 75mA capable (5.0 V output product, VIN=7 V) • Dropout voltage Typ. 120 mV (VOUT = 5.0 V, IOUT = 10 mA) • Power-off function: Polarity for power-off switch or removal of the power-off function can be selected. • Short-circuit protection: Product with/without short-circuit protection is available. Short-circuited current : 40 mA typ. for products with protection • Packages: SOT-23-5 (Package drawing code : MP005-A) SOT-89-5 (Package drawing code : UP003-A) SOT-89-3 (Package drawing code : UP005-A) TO-92 (Package drawing code : YF003-A)
Note1 Power dissipation of the package should be taken into account when the output current is large.
Applications
Block Diagram
(1) Product without power-off function
VIN (1) VOUT
(2) Product with power-off function
VIN
(1)
VOUT
(2) Short-circuit protection
(2) Short-circuit protection
ON/OFF
Reference voltage
Reference voltage
VSS
(1) : Parasitic diode (2) : In case of a product with short-circuit protection
VSS
(1) : Parasitic diode (2) : In case of a product with short-circuit protection
Figure 1 Block Diagram
Seiko Instruments Inc.
1
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Absolute Maximum Ratings
Table 1 Item Input voltage Output voltage Power dissipation Operating temperature range Storage temperature range Symbol VIN VON/OFF VOUT PD Topr Tstg (Ta=25°C unless otherwise specified) Absolute Maximum Rating 18 VSS-0.3 to 18 VSS-0.3 to VIN+0.3 250(SOT-23-5),500 (SOT-89-5) 500(SOT-89-3),400(TO-92) -40 to +85 -40 to +125 Units V V V mW °C °C
Rev.1.0
Note: Although the IC contains protection circuit against static electricity, excessive static electricity or voltage which exceeds the limit of the protection circuit should not be applied to.
Selection Guide
Product Name S-812C xx Axx - xxx - T2
IC orientation for taping specifications Product code Package code
MC: SOT-23-5 UA: SOT-89-3 Y : TO-92 UC: SOT-89-5 WI: WAFER
Function A: No short-circuit protection and no power-off function B: Short-circuit protection and power-off function ON/OFF pin; Positive logic Output voltage x 10
Table 2.1 Selection Guide S-812CxxB series (Short-circuit protection and power-off fuction) Output Voltage SOT-23-5 SOT-89-5 − − 2.0 V ± 2.0% − 3.0 V ± 2.0% S-812C30BMC-C4K-T2 − − 3.3 V ± 2.0% − − 3.5 V ± 2.0% − − 3.8 V ± 2.0% − − 4.0 V ± 2.0% − 5.0 V ± 2.0% S-812C50BMC-C5E-T2 Please contact our sales office for products with an output voltage not listed above.
2
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
Table 2.2 S-812CxxA series (No short-circuit protection and no power-off function)
Output voltage 2.0 V± 2.0% 2.1 V± 2.0% 2.2 V± 2.0% 2.3 V± 2.0% 2.4 V± 2.0% 2.5 V± 2.0% 2.6 V± 2.0% 2.7 V± 2.0% 2.8 V± 2.0% 2.9 V± 2.0% 3.0 V± 2.0% 3.1 V± 2.0% 3.2 V± 2.0% 3.3 V± 2.0% 3.4 V± 2.0% 3.5 V± 2.0% 3.6 V± 2.0% 3.7 V± 2.0% 3.8 V± 2.0% 3.9 V± 2.0% 4.0 V± 2.0% 4.1 V± 2.0% 4.2 V± 2.0% 4.3 V± 2.0% 4.4 V± 2.0% 4.5 V± 2.0% 4.6 V± 2.0% 4.7 V± 2.0% 4.8 V± 2.0% 4.9 V± 2.0% 5.0 V± 2.0% 5.1 V± 2.0% 5.2 V± 2.0% 5.3 V± 2.0% 5.4 V± 2.0% 5.5 V± 2.0% 5.6 V± 2.0% 5.7 V± 2.0% 5.8 V± 2.0% 5.9 V± 2.0% SOT-23-5 S-812C20AMC-C2A-T2 S-812C21AMC-C2B-T2 S-812C22AMC-C2C-T2 S-812C23AMC-C2D-T2 S-812C24AMC-C2E-T2 S-812C25AMC-C2F-T2 S-812C26AMC-C2G-T2 S-812C27AMC-C2H-T2 S-812C28AMC-C2I-T2 S-812C29AMC-C2J-T2 S-812C30AMC-C2K-T2 S-812C31AMC-C2L-T2 S-812C32AMC-C2M-T2 S-812C33AMC-C2N-T2 S-812C34AMC-C2O-T2 S-812C35AMC-C2P-T2 S-812C36AMC-C2Q-T2 S-812C37AMC-C2R-T2 S-812C38AMC-C2S-T2 S-812C39AMC-C2T-T2 S-812C40AMC-C2U-T2 S-812C41AMC-C2V-T2 S-812C42AMC-C2W-T2 S-812C43AMC-C2X-T2 S-812C44AMC-C2Y-T2 S-812C45AMC-C2Z-T2 S-812C46AMC-C3A-T2 S-812C47AMC-C3B-T2 S-812C48AMC-C3C-T2 S-812C49AMC-C3D-T2 S-812C50AMC-C3E-T2 S-812C51AMC-C3F-T2 S-812C52AMC-C3G-T2 S-812C53AMC-C3H-T2 S-812C54AMC-C3I-T2 S-812C55AMC-C3J-T2 S-812C56AMC-C3K-T2 SOT-89-3 S-812C20AUA-C2A-T2 S-812C21AUA-C2B-T2 S-812C22AUA-C2C-T2 S-812C23AUA-C2D-T2 S-812C24AUA-C2E-T2 S-812C25AUA-C2F-T2 S-812C26AUA-C2G-T2 S-812C27AUA-C2H-T2 S-812C28AUA-C2I-T2 S-812C29AUA-C2J-T2 S-812C30UA-C2K-T2 S-812C31AUA-C2L-T2 S-812C32AUA-C2M-T2 S-812C33AUA-C2N-T2 S-812C34AUA-C2O-T2 S-812C35AUA-C2P-T2 S-812C36AUA-C2Q-T2 S-812C37AUA-C2R-T2 S-812C38AUA-C2S-T2 S-812C39AUA-C2T-T2 S-812C40AUA-C2U-T2 S-812C41AUA-C2V-T2 S-812C42AUA-C2W-T2 S-812C43AUA-C2X-T2 S-812C44AUA-C2Y-T2 S-812C45AUA-C2Z-T2 S-812C46AUA-C3A-T2 S-812C47AUA-C3B-T2 S-812C48AUA-C3C-T2 S-812C49AUA-C3D-T2 S-812C50AUA-C3E-T2 S-812C51AUA-C3F-T2 S-812C52AUA-C3G-T2 S-812C53AUA-C3H-T2 S-812C54AUA-C3I-T2 S-812C55AUA-C3J-T2 S-812C56AUA-C3K-T2 S-812C57AUA-C3L-T2 S-812C58AUA-C3M-T2 S-812C59AUA-C3N-T2 TO-92* S-812C20AY-X S-812C21AY-X S-812C22AY-X S-812C23AY-X S-812C24AY-X S-812C25AY-X S-812C26AY-X S-812C27AY-X S-812C28AY-X S-812C29AY-X S-812C30AY-X S-812C31AY-X S-812C32AY-X S-812C33AY-X S-812C34AY-X S-812C35AY-X S-812C36AY-X S-812C37AY-X S-812C38AY-X S-812C39AY-X S-812C40AY-X S-812C41AY-X S-812C42AY-X S-812C43AY-X S-812C44AY-X S-812C45AY-X S-812C46AY-X S-812C47AY-X S-812C48AY-X S-812C49AY-X S-812C50AY-X S-812C51AY-X S-812C52AY-X S-812C53AY-X S-812C54AY-X S-812C55AY-X S-812C56AY-X S-812C57AY-X S-812C58AY-X S-812C59AY-X SOT-89-5
6.0 V± 2.0% S-812C60AUA-C3O-T2 S-812C60AY-X *: X changes according to the packing form in TO-92. Standard forms are B; Bulk and Z; Zigzag (tape and ammo). If tape and reel (T) is needed, please contact SII sales office.
Seiko Instruments Inc.
3
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Pin Configuration
For details of package, refer to the attached drawing.
Rev.1.0
Table 3 Pin Assignment
SOT-23-5 Top view
5 4
Pin No. 1 2 3 4 5
Symbol VSS VIN VOUT N.C. N.C.
(1)
Description
GND pin Input voltage pin Output voltage pin
ON/OFF ON/OFF pin
(1)
1
2
3
(1)
Figure 2
N.C. pin is electrically open. N.C. pin can be connected to VIN or VSS. The ON/OFF pin becomes N.C. pin, when the power-off function is removed.
Table 4 Pin Assignment
SOT-89-5 Top view
5 4
Pin No. 1 2 3 4 5
Symbol VOUT VIN VSS N.C. N.C.
(1) (1)
Description Output voltage pin Input voltage pin GND pin
ON/OFF. ON/OFF pin
1
2
3
(1)
Figure 3
N.C. pin is electrically open. N.C. pin can be connected to VIN or VSS. The ON/OFF pin becomes N.C. pin, when the power-off function is removed.
Table 5 Pin Assignment
SOT-89-3 Top view
Pin No. 1 2 3
Symbol VSS VIN VOUT
Description
GND pin Input voltage pin Output voltage pin
1
2
3
Figure 4
Table 6 Pin Assignment Pin No. 1 Symbol VSS VIN VOUT Description
GND pin Input voltage pin Output voltage pin
TO-92 Bottom view
2 3
1
2
3
Figure 5
4
Seiko Instruments Inc.
Rev.1.0 Electrical Characteristics
1. S-812C Series
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
Table 7 Electrical Characteristics
Parameter Symbol
1) 2)
(Ta=25°C unless otherwise specified)
Min. Typ. Max. VOUT(S)× VOUT(S) VOUT(S) × 1.02 0.98 − − 30 − − 50 − − 65 − − 75 0.46 0.95 − 0.32 0.68 − 0.23 0.41 − 0.19 0.35 − 0.16 0.30 − 0.14 0.27 − 0.12 0.25 − 0.11 0.23 − − 5 20 − − − − − 5 6 10 13 17 ±100 − 0.9 1.0 1.2 1.5 − 0.1 − − − − 20 30 45 65 80 − 1.6 1.8 2.1 2.5 16 0.5 − 0.4 0.1 -0.1 Test Units circuits V 1 mA mA mA mA V V V V V V V V mV mV mV mV mV mV ppm /°C µA µA µA µA V µA V V µA µA 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 4 4 4 4
Conditions VIN=VOUT(S)+2V, IOUT=10mA
Output voltage Output current
VOUT(E) IOUT
VOUT(S)+2V2.0V ≤ VOUT(S) ≤ 2.9V ≤ VIN≤16V 3.0V ≤ VOUT(S) ≤ 3.9V 4.0V ≤ VOUT(S) ≤ 4.9V 5.0V ≤ VOUT(S) ≤ 5.9V 3) Dropout voltage Vdrop IOUT = 2.0V ≤ VOUT(S) ≤ 2.4V 10mA 2.5V ≤ VOUT(S) ≤ 2.9V 3.0V ≤ VOUT(S) ≤ 3.4V 3.5V ≤ VOUT(S) ≤ 3.9V 4.0V ≤ VOUT(S) ≤ 4.4V 4.5V ≤ VOUT(S) ≤ 4.9V 5.0V ≤ VOUT(S) ≤ 5.4V 5.5V ≤ VOUT(S) ≤ 6.0V ∆ VOUT11 VOUT(S) + 1 V ≤ VIN ≤ 16 V, Line regulation 1 IOUT = 1mA ∆ VOUT21 VOUT(S) + 1 V ≤ VIN ≤ 16 V, Line regulation 2 IOUT = 1µA ∆ VOUT31 VIN= 2.0V ≤ VOUT(S) ≤ 2.9V, Load regulation VOUT(S)+ 2 V 1µA ≤ IOUT ≤ 20mA 3.0V ≤ VOUT(S) ≤ 3.9V, 1µA ≤ IOUT ≤ 30mA 4.0V ≤ VOUT(S) ≤ 4.9V, 1µA ≤ IOUT ≤ 40mA 5.0V ≤ VOUT(S) ≤ 5.9V, 1µA ≤ IOUT ≤ 50mA ∆VOUT 1 VIN = VOUT(S) + 1 V, IOUT = 10mA Output voltage temperature ∆Ta • VOUT -40°C ≤ Ta ≤ 85°C 4) coefficient Current consumption ISS VIN = 2.0V ≤ VOUT(S) ≤ 2.7V VOUT(S)+2V, 2.8V ≤ VOUT(S) ≤ 3.7V no load 3.8V ≤ VOUT(S) ≤ 5.1V 5.2V ≤ VOUT(S) ≤ 6.0V Input voltage VIN Applied to products with Power-off Function Current consumption at powerISS2 VIN = VOUT(S) + 2V, off VON/OFF = 0V, no load ON/OFF pin VSH VIN = VOUT(S) + 2V, RL = 1kχ, Input voltage for high level judged by VOUT output level ON/OFF pin VSL VIN = VOUT(S) + 2V, RL = 1kΩ, Input voltage for low level judged by VOUT output level ON/OFF pin ISH VIN=VOUT(S) + 2V, Input current at high level VON/OFF = 7V ON/OFF pin ISL VIN=VOUT(S) + 2V, Input current at low level VON/OFF = 0V Applied to products with Short-circuit Protection Short-circuit current IOS VIN = VOUT(S) + 2 V, VOUT pin = 0 V 1) 2) 3) 4)
− − 2.0 − − −
−
40
−
mA
3
VOUT(S)=Specified output voltage VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current. Vdrop = VIN1-(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
∆VOUT ∆VOUT [mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000 ∆Ta
Temperature change ratio for output voltage Specified output voltage Output voltage temperature coefficient
Seiko Instruments Inc.
5
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series Test Circuits
3. 2.
Rev.1.0
VIN
VOUT V
A
A
VIN
VOUT
(ON/OFF)* VSS Set power ON
(ON/OFF)* VSS
VIN or GND
3.
4.
VIN
VOUT
A V A
VIN
VOUT V RL
(ON/OFF)* VSS Set power ON
(ON/OFF)* VSS
Figure 6 Test Circuits
Standard Circuit
INPUT VIN → (ON/OFF) CIN VSS CL VOUT OUTPUT
In addition to a tantalum capacitor, a ceramic capacitor can be used for CL. See terms below. CIN is a capacitor used to stabilize input.
One point GND
GND
Figure 7 Standard Circuit
Terms
1. Output capacitors (CL) Output capacitors are generally used to stabilize regulation operation and to improve transient response characteristics. But the S-812C series can provide stable operation without output capacitors. Capacitors are used only to improve transient response characteristics. Output capacitors can hence be removed in applications in which transient response can be negligible. When an output capacitor is used, a low ESR (Equivalent Series Resistance) capacitor like ceramic capacitor can also be used. 2. Output voltage (VOUT) The accuracy of the output voltage is ± 2.0% guaranteed under the specified conditions for input voltage, which differs depending upon the product items, output current, and temperature. Note: If the above conditions change, the output voltage value may vary and go out of the accuracy range of the output voltage. See the electrical characteristics and characteristics data for details. 3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2) These parameters indicate the input voltage dependence on the output voltage. That is, the values show how much the output voltage changes due to a change in the input voltage with the output current remained unchanged. 4. Load regulation (∆VOUT3) This parameter indicates the output current dependence on the output voltage. That is, the value shows how much the output voltage changes due to a change in the output current with the input voltage remained unchanged.
6
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
5. Dropout voltage (Vdrop) This parameter indicates the difference between the input voltage (VIN1) and the output voltage when output voltage falls to 98 % of VOUT (E) by gradually decreasing the input voltage (VIN). Vdrop = VIN1-[VOUT(E) × 0.98] 6. Temperature coefficient of output voltage [∆VOUT/(∆Ta • VOUT)] The output voltage lies in the shaded area in the whole operating temperature shown in figure 8 when the temperature coefficient of the output voltage is ±100 ppm/°C.
VOUT
[V]
+0.30mV/°C
VOUT(E)
VOUT (E) is a measured value of output voltage at 25°C.
-0.30mV/°C
-40
25
85
Ta [°C]
Figure 8 Example for the S-812C30A Temperature change ratio for output voltage [mV/°C] is calculated by using the following equation. ∆VOUT ∆VOUT [mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000 ∆Ta
Specified output voltage Temperatures change ratio for output voltage Output voltage temperature coefficient
Description of Operation
1. Basic operation Figure 9 shows the block diagram of the S-812C series. The error amplifier compares a reference voltage Vref with a part of the output voltage divided by the feedback resistors Rs and Rf, and supplies the gate voltage to the output transistor, necessary to ensure certain output voltage independent from change of input voltage and temperature.
VIN *
Current source Error amplifier Vref Rf
VOUT
Reference voltage VSS
Rs
* : Parasitic diode
Figure 9 Block Diagram
2. Output transistor The S-812C Series uses a Pch MOS transistor as the output transistor. The voltage at VOUT must not exceed VIN+0.3V. When the VOUT voltage becomes higher than that of VIN, reverse current flows and may break the regulator since a parasitic diode between VOUT and VIN exists inevitably.
Seiko Instruments Inc.
7
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
Rev.1.0
3. Power-off function (ON/OFF pin) The ON/OFF pin controls the start and stop of the regulation operation. When the ON/OFF pin is set to power-off level, halting whole internal circuit and turning off the Pch MOSFET between VIN and VOUT, current consumption is drastically reduced. The voltage of the VOUT pin becomes VSS level due to the internal resistance divider of several MΩ between VOUT and VSS. The ON/OFF pin should not be left afloat since no pull-up nor pull-down is made internally as shown in figure 10. Note that the current consumption increases if a voltage between 0.3V and VIN-0.3V is applied to the ON/OFF pin. When the power-off function is not used, connect the pin to the VIN pin in case of positive logic and to the VSS pin in case of negative logic. VIN Table 8 Power-off function Product type B B ON/OFF pin “H” : Power on “L” : Power off Internal circuit Operate Halt VOUT pin voltage Set value VSS level Current consumption Iss Iss2
ON/OFF
VSS
Figure 10 When a regulation operation at light load less than 100uA is halted, output voltage may increase. If the increase of the output voltage should be avoided, pull down the VOUT pin to the VSS level as soon as ON/OFF pin goes to the power-down level.
4. Short-circuit protection Installation of the short-circuit protection which protects the output transistor against short-circuit between VOUT and VSS can be selected in the S-812C series. The short-circuit protection controls output current as shown in the typical characteristics, (1) OUTPUT VOLTAGE versus OUTPUT CURRENT, and suppresses output current at about 40 mA even if VOUT and VSS pins are short-circuited. The short-circuit protection can not at the same time be a thermal protection. Attention should be paid to the Input voltage and the load current under the actual condition so as not to exceed the power dissipation of the package including the case for short-circuit. When the output current is large and the difference between input and output voltage is large even if not shorted, the short-circuit protection may work and the output current is suppressed to the specified value. Products without short-circuit protection can provide comparatively large current by removing a short-circuit protection.
Selection of External Components Output Capacitor (CL)
The S-812C series can provide stable operation without output capacitor (CL) since the regulator has an internal phase compensation circuit to stabilize operation when the load changes. The transient response of the regulator, however, changes with the output capacitor and the magnitude of overshoot and undershoot on output voltage accordingly changes. Please refer to CL dependence data in “Transient Response Characteristics” to select suitable value for the capacitor. . When a tantalum or an aluminum electrolytic capacitor is used, the ESR of the capacitor shall be 10Ω or less. When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large. Sufficient evaluation including temperature characteristics is indispensable.
8
Seiko Instruments Inc.
Rev.1.0 Application Circuits
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
1. Output Current Boost Circuit As shown in Figure 11, the output current can be boosted by externally attaching a PNP transistor. The S-812C controls the base current of the PNP transistor so that the output voltage VOUT becomes the voltage specified in the S-812C if the sufficient baseemitter voltage VBE to turn on the PNP transistor is obtained between input voltage VIN and S-812C power source pin VIN.
Tr1 VOUT VOUT
VIN
CIN GND
S-812C Series R1 ON/OFF VSS VIN
CL
Figure 11 Output Current Boost Circuit • As the transient response characteristics of the circuit shown in figure 11 is not enough in some applications, evaluation for output variation due to power-on, power line variation and load variation in actual condition is needed before massproduction. • Note that the short-circuit protection incorporated in the S-812C series does not work as a short-circuit protection for the boost circuit.
2. Constant Current Circuit The S-812C series can be served in a constant current circuit as shown in the figure 12. Constant current IO is calculated from the following equation: IO = (VOUT(E) ÷ RL) +ISS, where VOUT(E) is the effective output voltage. Please note that in case of the circuit shown in the figure 12 (1) the magnitude of the constant current IO is limited by the driving ability of the S-812C. The circuit shown in the figure 12 (2) can, however, provide the current beyond the driving ability of the S-812C by combining a constant current circuit with a current boost circuit. The maximum input voltage for the constant current circuit is the sum of the voltage VO of the device and 16 V. It is not recommended to attach a capacitor between the S-812C power source VIN and VSS pins or between output VOUT and VSS pins because rush current flows at power-on.
(1) Constant Current Circuit VIN VIN S-812C Series VSS CIN GND
ON/OFF
VOUT RL V0 IO VO
Device
(2) Constant Current Boost Circuit Tr1 VIN R1 VIN S-812C Series VSS CIN GND
ON/OFF
VOUT RL Io V0
Device
VO
Figure 12 Constant Current Circuits
3. Output Voltage Adjustment Circuit The output voltage can be increased using the configuration shown in the figure 13. The output Voltage VOUT1 can be calculated using the following equation; VOUT1 = VOUT(E) x (R1 + R2) ÷ R1 + R2 x ISS, where VOUT(E) is the effective output voltage. Value of R1 and R2 should be determined so as not to be affected by the current consumption ISS.
Seiko Instruments Inc.
9
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
Capacitor C1 has an effect in minimizing output V fluctuation due to power-on, power line IN variation and load variation. Determine the optimum value in the actual device.
Rev.1.0
VOUT R1 VOUT1
VIN
S-812C Series VSS
ON/OFF
CL
CIN C1 GND
It is not also recommended to attach a capacitor between the S-812 power source VIN and VSS pins or between output VOUT and VSS pins because output fluctuation or oscillation at powering on might occur.
R2
Figure 13 Voltage Adjustment Circuit
Notice
• Wiring patterns for VIN, VOUT and GND pins should be designed to hold low impedance. When mounting an output capacitor, the distance from the capacitor to the VOUT pin and to the VSS pin should be as short as possible. • Note that output voltage may increase when a voltage regulator is used at low load current (less than 1 µA). • At low load current less than 100µA output voltage may increase when the regulating operation is halted by the ON/OFF pin. • To prevent oscillation, it is recommended to use the external components under the following conditions: Equivalent Series Resistance (ESR): 10 Ω or less when an output capacitor is used. Input series resistance (RIN): 10 Ω or less • A voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is small or not connected. • The application condition for input voltage and load current should not exceed the package power dissipation. • SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of the products including this IC upon patents owned by a third party.
10
Seiko Instruments Inc.
Rev.1.0 Typical Characteristics
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
(1) Output Voltage vs Output Current (When load current increases)
S-812C20B (Ta=25°C) Short- circuit protection 2.5 VIN=2.5V 2.0 5V 7V 1.5 S-812C30B (Ta=25°C) Short-circuit protection 3.5 3.0 2.5 8V 6V VIN=3.5V 4V 5V
VOUT (V)
VOUT (V)
2.0 1.5 1.0 0.5
1.0 0.5 0.0 0 50 100 150 3V 4V
0.0
IOUT (mA)
0
50
IOUT (mA)
100
150
200
S-812C50B (Ta=25°C) Short-circuit protection 6.0 10V 5.0
VOUT (V)
4.0 3.0 2.0 1.0 0.0 0 100 VIN=5.5V 7V 6V 8V
Notice The condition for input voltage and load current should not exceed the package power dissipation.
IOUT (mA)
200
300
S-812C20A (Ta=25 ºC) 2.5 VIN =2.3V 2.0
VOUT (V)
No short-circuit protection
S-812C30A (Ta=25ºC)
3.5 3.0
VOUT (V)
No short-circuit protection
VIN=3.3V
2.5 2.0 1.5 1.0 0.5 0.0 3.5V 4V 5V 6V 8V
1.5 1.0 0.5 0.0 0 100 IOUT (mA) 200 2.5V 3V 4V 5V
7V
300
0
100
200 IOUT (mA)
300
400
S-812C50A (Ta=25ºC)
No short-circuit protection Notice The condition for input voltage and load current should not exceed the package power dissipation.
6.0 5.0
VOUT (V)
4.0 3.0 2.0 1.0 0.0 0 100 200 IOUT (mA) 300 400 VIN=5.3V 5.5V 6V 7V 10V 8V
Seiko Instruments Inc.
11
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
(2) Maximum Output Current vs Input Voltage
Rev.1.0
S-812C20B
140 120
Short-circuit protection
S-812C30B
200 150 100 50 0 Ta=-40°C
Short-circuit protection
IOUTMAX (mA)
80 60 40 20 0 0 4 8 12 16 25°C Ta=-40°C 85°C
IOUTMAX (mA)
100
25°C 85°C
0
4
8
12
16
VIN (V) S-812C50B
300 250 Ta=-40°C
VIN (V)
Short-circuit protection
Notice The condition for input voltage and load current should not exceed the package power dissipation.
IOUTMAX (mA)
200 150 100 50 0 0 4 8 12 16 25°C 85°C
VIN (V)
S-812C20A
140 120 Ta=-40ºC No short-circuit protection
S-812C30A 200 150
IOUTMAX (mA)
No short-circuit protection
− Ta= 40ºC
IOUTMAX (mA)
100 80 60 40 20 0 0 4 25ºC 85ºC
100 50 0
25ºC 85ºC 0 4 8 VIN (V) 12 16
VIN (V)
8
12
16
S-812C50A
300 250 Ta=-40ºC
No short-circuit protection
Notice The condition for input voltage and load current should not exceed the package power dissipation.
IOUTMAX (mA)
200 150 100 85ºC 50 0 0 4 8 12 16 25ºC
VIN(V)
12
Seiko Instruments Inc.
Rev.1.0
(3) Output Voltage vs Input Voltage S-812C20B
2.10 2.05 IO UT =-1 µ A - 20m A
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
S-812C30B
3.15 3.10 IO UT = -1 µ A -10m A - 20m A -50m A
VOUT (V)
VOUT (V)
-10m A 2.00 -1 m A 1.95
-50m A
3.05 3.00 2.95 2.90 -1 m A
1.90 1.5 2 2.5 3 3.5 4
2.85 2.5 3 3.5 4 4.5 5
V IN ( V) S-812C50B
5.25 5.15 -10m A IO UT = -1 µ A - 20m A
V IN ( V)
VOUT (V)
5.05 -1m A 4.95 -50m A 4.85 4.75 4.5 5 5.5
V IN ( V)
6
6.5
7
(4) Dropout Voltage vs Output Current S-812C20B
2000 1500 1000 500 0 0 10 20 30 40 50 Ta= -40°C 85°C 25°C
S-812C30B
1600 1400 85°C 25°C
Vdrop (mV)
Vdrop (mV)
1200 1000 800 600 400 200 0 0 10
Ta= -40°C 20 30 40 50
I OUT ( mA) S-812C50B
1000 900 800 700 600 500 400 300 200 100 0 0 10 85°C 25°C
I OUT ( mA)
Vdrop (mV)
Ta= -40°C
20
30
40
50
I OUT ( mA)
Seiko Instruments Inc.
13
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
(5) Output Voltage vs Ambient Temperature S-812C20B
2.04 2.02
Rev.1.0
S-812C30B
3.06 3.03
VOUT (V)
VOUT (V)
2.00 1.98 1.96 -50 0
3.00 2.97 2 .94
Ta (°C )
50
100
-50
0
Ta (°C)
50
100
S-812C50B
5.10 5.05
VOUT (V)
5.00 4.95 4 .90 -50 0
Ta (°C) 50
100
(6) Line Regulation 1 vs Ambient Temperature
20 15 10 5 0 -50 0
(7) Line Regulation 2 vs Ambient Temperature
20 15 10 5 0 S-812C 50B
∆VOUT1 (mV)
∆VOUT2(mV)
S -812C 20B S -812C 50B S -812C 30B
S-812C 20B S-812C 30B
Ta (°C)
50
100
-50
0
Ta (°C)
50
100
(8) Load Regulation vs Ambient Temperature
80 60 S-812C 20B 40 S-812C 50B 20 0 -50 0 S-812C 30B
∆VOUT3 (mV)
Ta (°C)
50
100
14
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
S-812C30B
2.5 2.0 2 5°C 85°C
(9) Current Consumption vs Input Voltage S-812C20B
2.5 2.0
ISS (µA)
1.5 1.0 0.5 0.0 0 4
ISS (µA)
2 5°C
85°C
1.5 1.0 0.5 0 .0
Ta=-40°C 8 12 16
Ta= -40°C 0 4 8 12 16
V IN ( V) S-812C50B
2.5 2.0 2 5°C 85°C
V IN ( V)
ISS (µA)
1.5 1.0 0.5 0.0 0 4 8 12 16 Ta= -40°C
V IN ( V)
(10)Power-off Pin Input Threshold vs Input Voltage
S-812C20B
2.5 2.0 1.5 1.0 0.5 85°C 0.0 0 4 8 12 16 Ta=-40°C 8 5°C 25°C Ta=-40°C
VSH / VSL (V)
25°C
V IN ( V)
Seiko Instruments Inc.
15
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series REFERENCE DATA Transient Response Characteristics (Typical data: Ta=25°C)
INPUT VOLTAGE or LOAD CURRENT
Rev.1.0
Overshoot
OUTPUT VOLTAGE
Undershoot
(1) Power-on : S-812C30B (CL=10µF; ceramic capacitor)
6IN ON/OFF=0→5V, IOUT =10mA, CL=10µF
5V 0V 3V
VOUT (0.5V/div)
0V TIME (100 µs/div) Load dependence of overshoot at power-on
V IN , ON/OFF= 0 → V OU T(S )+ 2V , C L = 10 µF
CL dependence of overshoot at power-on
V I N ,ON/OFF=0 → V OU T(S )+2V , IOU T=10m A
0.030
0.8
S-812C 30B
Over Shoot(V)
Over Shoot(V)
0.025 0.020 0.015 0.010 0.005 0.000 0
S-812C50B 0.6 0.4 0.2 0.0 S-812C30B
S-812C 50B
0.02
0.04
0.06
0.08
0.1
0
10
20
30
40
50
I OUT ( A)
VDD dependence of overshoot at power-on
V IN , ON/OFF=0 → V D D , IOU T= 10m A , C L = 10 µF
C L ( µF)
Temperature dependence of overshoot at power-on
V I N , ON/OFF=0 → V OU T(S )+2V , IOU T= 10m A , C L = 10 µF
0.035 0.030 S-812C 30B S-812C 50B
0.06
Over Shoot(V)
0.025 0.020 0.015 0.010 0.005 0.000 0 5
Over Shoot(V)
0.05 0.04 0.03 0.02 0.01 0.00
S-812C 50B S-812C 30B
V DD ( V)
10
15
20
-50
0
Ta (°C)
50
100
16
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
VIN=5V, ON/OFF=0 → 5V, IOUT=10mA, CL=10µF
(2) Power-on by ON/OFF pin : S-812C30A (CL=10µF; ceramic capacitor)
5V 0V VOUT (0.5V/div) 3V
0V TIME (200 µs/div)
Load dependence of overshoot at power-on
V I N = V OU T(S )+2V , ON/OFF= 0 → V OU T(S )+2V , C L = 10 µF
CL dependence of overshoot at power-on
V I N = V OU T(S )+2V ,ON/OFF= 0 → V OU T(S )+2V , IOU T= 10m A
0.8
0.8
Over Shoot(V)
Over Shoot(V)
0.6 0.4 0.2 S-812C 30B 0 .0 0.001 S-812C 50B
0.6 S-812C 50B 0.4 0.2 0.0 S -812C 30B
0.01
0.1
1
10
100
0
10
20
30
40
50
I OUT ( A)
VDD dependence of overshoot at power-on
V I N = V D D , ON/OFF=0 → V D D , IOU T= 10m A ,C L = 10µF
C L ( µF)
Temperature dependence of overshoot at power-on
V I N = V OU T(S )+2V ,ON/OFF= 0 → V OU T(S )+2V ,IOU T= 10m A ,
0.7 0.6 S-812C 50B
0.4 0.3 0.2 0.1 0 .0 0 5 10 15 20 S-812C 30B
Over Shoot(V)
0.5
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 .0 -50
C L = 10 µF
Over Shoot(V)
S-812C 50B S-812C 30B
V DD ( V)
0
Ta (°C)
50
100
Seiko Instruments Inc.
17
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
(3) Line Transient Response : S-812C30B (CL=10µF; ceramic capacitor)
VIN,ON/OFF=4→8V, I UT =10mA O
Rev.1.0
10V 5V 0V
VOUT (0.05V/div)
3V 2.9V TIME (100 µs/div)
Load dependence of overshoot at line transient
V IN , ON/OFF=V OU T(S )+1V → V OU T(S )+5V ,
CL dependence of overshoot at line transient
V I N , ON/OFF=V OU T(S )+1V → V OU T(S )+5V ,IOU T= 10m A
0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0
C L = 10µF
0.25
Over Shoot(V)
S-812C 50B
Over Shoot(V)
0.20 0.15
S-812C 30B
S-812C 50B 0.10 0.05 0 .00
S-812C 30B 10 20 30 40 50
0
10
20
I OUT ( A)
VDD dependence of overshoot at line transient
V I N , ON/OFF= V OU T(S )+ 1V → V D D IOU T= 10m A C L = 10 µF
C L ( µF)
30
40
50
Temperature dependence of overshoot at line transient
V I N , ON/OFF=V OU T(S )+1V → V OU T(S )+5V , IOU T=10m A C L =10 µF
0.16 0.14
Over Shoot(V)
S-812C 50B
0.08 0.06 0.04 0.02 0.00 0 5 S-812C 30B 10 15 20
Over Shoot(V)
0.12 0.10
0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 -50
S-812C50B
S-812C30B 0 50 100
V DD ( V)
Ta (°C)
18
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
VIN,ON/OFF=8→4 V, IOUT =10mA
VOUT (0.05V/div)
10V 5V 0V
3V 2.9V 2.8V TIME (500 µs/div)
Load dependence of undershoot at line transient
V I N , ON/OFF= V OU T(S )+ 5V → V OU T(S )+ 1V , C L = 10 µF
CL dependence of undershoot at line transient
V I N , ON/OFF=V OU T(S )+5V → V OU T(S )+1V ,IOU T= 10m A
0.8
0.35
Under Shoot(V)
0.6 0.4 0.2 0.0 0
Under Shoot(V)
0.30 0.25 0.20 0.15 0.10 0.05 0.00
S-812C 50B
S-812C 50B
S-812C 30B
S-812C 30B 0 10 20 30 40 50
10
20
I OUT ( A)
30
40
50
C L ( µF)
VDD dependence of undershoot at line transient
V I N , ON/OFF= V D D → V OU T(S )+ 1V IOU T= 10m A C L = 10 µF
Temperature dependence of undershoot at line transient
V I N ,ON/OFF=V OU T(S )+ 5V → V OU T(S )+ 1V ,
0.25
0.30
IOU T= 10m A C L = 10 µF
Under Shoot(V)
Under Shoot(V)
0.20 0.15 0.10 S-812C 50B 0.05 0.00 0 5 10 15 20 S-812C 30B
0.25 0.20 0.15 0.10 0.05 0.00 -50
S-812C 50B
S-812C 30B
V DD ( V)
0
50
100
Ta (°C)
Seiko Instruments Inc.
19
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
(4) Load Transient Response : S-812C30B (CL=10µF; ceramic capacitor)
VIN=5V, IOUT =10mA→1µA,CL=10µF
Rev.1.0
VOUT (0.05V/div)
10mA 0mA 3.1V 3V 2.9V TIME (200µs/div) CL dependence of overshoot at load transient
0.16 0.14
V I N , ON/OFF=V OU T(S )+2V ,IOU T= 10m A → 1 µA
Load dependence of overshoot at load transient
V I N , ON/OFF= V OU T(S )+ 2V , IOU T= IOU T→ 1 µA ,C L = 10 µF
1.2
Over Shoot(V)
Over Shoot(V)
1.0 0.8 0.6 0.4 0.2 0.0 0 20 40
S-812C 50B
0.12 0.10 0.08 0.06 0.04 0.02 0 .00
S-812C 50B
S-812C 30B
S-812C 30B
I OUT ( A)
60
80
100
0
10
20
C L ( µF)
30
40
50
VDD dependence of overshoot at load transient
0.16 0.14
IOU T= 10m A → 1 µA , C L = 10µF
Temperature dependence of overshoot at load transient
V I N , ON/OFF=V OU T(S )+2V , IOU T= 10m A → 1 µA , C L = 10 µF
0.16 S-812C 50B 0.14
Over Shoot(V)
Over Shoot(V)
0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 5
0.12 0.10 0.08 0.06 0.04 0.02 0 .00
S-812C 50B
S-812C 30B
S-812C 30B
V DD ( V)
10
15
20
-50
0
Ta (°C)
50
100
20
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR S-812C Series
VIN=5V, IOUT =1µA→ 10mA, CL=10µF
10mA VOUT (0.05V/div) 0mA
3V 2.9V
TIME (500 µs/div) Load dependence of undershoot at load transient
V I N , ON/OFF=V OU T(S )+2V , IOU T= 1µA → IOU T,C L = 10µ F
CL dependence of undershoot at load transient
VIN , O N/O FF=VO UT (S)+2V,IO UT =1 µA→ 10m A 0.25
1.2
Under Shoot(V)
Under Shoot(V)
1.0 0.8 0.6 0.4 0.2 0.0 0 20 40
S-812C 50B
0.20 0.15 0.10 0.05
S-812C 50B
S-812C 30B 60 80 100
S-812C 30B 0 .00 0 10
I OUT ( A)
VDD dependence of undershoot at load transient
0.20
IOU T= 1 µA → 10m A , C L = 10 µF
C L ( µF)
20
30
40
50
Temperature dependence of undershoot at load transient
V I N , ON/OFF=V OU T(S )+2V ,IOU T= 1 µA → 10m A , C L = 10 µF
0.25 S-812C 50B
Under Shoot(V)
Over Shoot(V)
0.15 0.10 0.05 0.00 0 5
0.20 0.15 0.10 0.05 0 .00 -50
S-812C 50B
S-812C 30B
S-812C 30B
10
15
20
V DD ( V)
0
Ta (°C)
50
100
Seiko Instruments Inc.
21
n SOT-23-5
l Dimensions
2.9±0.2 1.9±0.2
MP005-A
010801
Unit : mm
0.45
5 4
1.6
2.8
+0.2 -0.3
1
2
3
0.16
+0.1 -0.06
1.1±0.1
1.3max.
0.95±0.1 0.4±0.1
0~0.15
No. MP005-A-P-SD-1.1
l Tape Specifications
4.0±0.1(10-pitch total: 40.0±0.2)
+0.1 -0
l Reel Specifications
3000 pcs./reel
0.27±0.05
ø1.5
2.0±0.05
12.5max.
ø1.0 3°max.
+0.1 -0
4.0±0.1 1.4±0.2
ø60
3.25±0.15
+0 ø180 -3 +1 -0
T1
5 4
ø13±0.2 9.0±0.3
123
Feed direction
Winding core
(60°) (60°)
2±0.2
No. MP005-A-R-SD-1 0
n SOT-89-5
lDimensions
4.5±0.1 1.6±0.2
5 4
UP005-A 000601
Unit:mm
0.65min.
1.5±0.1
2.5±0.1
4.5
+0.2 -0.3
1
2
3
1.5±0.1 1.5±0.1
0.65min.
0.4±0.05
0.1 3.1
0.35
0.3 0.2
0.4±0.1 0.45±0.1
0.4±0.1
45°
No. UP005-A-P-SD-1.1
lTaping Specifications
ø1.5 -0
+0.1
lReel Specifications
1.5±0.1
4.0±0.1(10 pitches:40±0.2)
2.0±0.05
1 reel holds 1000 ICs.
16.5max.
5.65±0.05 12.0±0.2 3°max. 4.35±0.1
5°max.
ø1.5 +0.1 -0
8.0±0.1
0.3±0.05 2.0±0.1
ø60 -0 ø180 -3
+0
+1
4.75±0.1
T2 Winding core
ø21±0.5 ø13±0.2 13.0±0.3
2±0.2
Feed direction
(60°) (60°)
No. UP005-A-C-SD-1.0
No. UP005-A-R-SD-1.0
n SOT-89-3
lDimensions
4.5±0.1 1.6±0.2 1.5±0.1
UP003-A 010515
Unit:mm
2.5±0.1
4.0
+0.25 -0.35
1
2
3
0.8min.
1.5±0.1 1.5±0.1
0.4±0.05
0.4
2.5
45°
0.4±0.1 0.45±0.1
0.4±0.1
0.4
No. UP003-A-P-SD-1.0
lTaping Specifications
ø1.5+0.1 -0 2.0±0.05 4.0±0.1(10 pitches:40.0±0.2) 1.5±0.1
lReel Specifications
1 reel holds 1000 ICs.
16.5max. 5.65±0.05 4.35±0.1
12.0±0.2 ø1.5 -0 5° max.
+0.1
8.0±0.1
0.3±0.05 2.0±0.1 ø60 -0
+1
ø180 -3
+0
4.75±0.1
T2
13.0±0.3
Winding core
Feed direction
(60°)
(60°)
No. UP003-A-C-SD-1.0
No. UP003-A-R-SD-1.0
n TO-92
YF003-A 010515
lDimensions (1) Bulk
5.2max. 4.2max.
Unit:mm (2) Leadforming for tape (reel/zigzag)
5.2max. 4.2max.
Marked side
5.0±0.2
Marked side
5.0±0.2
0.6max.
0.8max. 2.3max.
0.6max.
0.8max. 2.3max.
12.7min. 0.45±0.1 0.45±0.1 0.45±0.1
+0.4 2.5 -0.1
10.0min.
0.45±0.1
1.27
No. YS003-A-P-SD-1.0
1.27
No. YF003-A-P-SD-1.0
lTape
1.0max.
12.7±1.0 Marked side
1.0max.
lZigzag
[Type Z]
Side spacer
24.7max. 2.5min. 6.0±0.5
0.5max.
# 1 pin
16.0±0.5 19.0±0.5 9.0±0.5 ø4.0±0.2 18.0 -0.5
+1.0
165 1.45max. 0.7±0.2 Spacer 60 320
6.35±0.4
12.7±0.3 (20-pitch total:254.0±1.0)
320
40
Feed direction
[Type F]
[Type T]
Marked side
Feed direction
Feed direction
lReel
No. YF003-A-C-SD-1.0
Side Spacer placed in front side Space more than 4 strokes
1 reel holds 2000 ICs.
262 45±0.5
ø30±0.5 2±0.5
ø79±1
330
47
1 box holds 2500 ICs.
5±0.5 43±0.5 ø358±2 53±0.5 Feed direction
No. YF003-A-R-SD-1.0
No. YF003-A-Z-SD-1.0
• • • • • •
The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.