Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series
The S-817 Series is a 3-terminal positive voltage regulator, developed using CMOS technology. Small ceramic capacitors can be used as the output capacitor, and the S-817 series provides stable operation with low loads down to 1 µA. Compared with the conventional voltage regulator, it is of low current consumption, and with a lineup of the super small package (SNT-4A:1.2 x 1.6mm). It is optimal as a power supply of small portable device.
Features
Operating current: Typ. 1.2 µA, Max. 2.5 µA 1.1 to 6.0 V, selectable in 0.1 V steps. ±2.0% 50 mA capable (3.0 V output product, VIN=5 V) *1 75 mA capable (5.0 V output product, VIN=7 V) *1 • Dropout voltage: Typ. 160 mV (VOUT = 5.0 V, IOUT = 10 mA) • Low ESR capacitor Ceramic capacitor of 0.1 µF or more can be used as an output capacitor. • Short circuit protection for: Series A • Excellent Line Regulation: Stable operation at light load of 1 µA • Lead-free product *1. Attention should be paid to the power dissipation of the package when the load is large. • Ultra-low current consumption: • Output voltage: • Output voltage accuracy: • Output current:
Applications
• Power source for battery-powered devices • Power source for personal communication devices • Power source for home electric/electronic appliances
Packages
Package name SNT-4A SC-82AB SOT-23-5 SOT-89-3 TO-92 (Bulk) TO-92 (Tape and reel) TO-92 (Tape and ammo) Package PF004-A NP004-A MP005-A UP003-A YS003-B YF003-A YF003-A Tape PF004-A NP004-A MP005-A UP003-A YF003-A YZ003-C Drawing code Reel PF004-A NP004-A MP005-A UP003-A YF003-A Zigzag YZ003-C Land PF004-A
Seiko Instruments Inc.
1
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Block Diagrams
1. S-817A Series
VIN
*1
Rev.4.2_00
VOUT
+ − Reference voltage circuit VSS Short circuit protection
*1. Parasitic diode Figure 1 2. S-817B Series
VIN
*1
VOUT
+ − Reference voltage circuit VSS
*1. Parasitic diode Figure 2
2
Seiko Instruments Inc.
Rev.4.2_00 Product Name Structure
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
• The product types and output voltage for the S-817 Series can be selected at the user’s request. Refer to the “Product name” for the meanings of the characters in the product name and “Product name list” for the full product names. 1. Product name 1. 1 S-817A series
S-817
A
xx
A
xx
-
xxx
xx
G IC direction in tape specifications*1 TF : SNT-4A T2 : SC-82AB, SOT-23-5 Product name (abbreviation) Package name (abbreviation) PF : SNT-4A NB : SC-82AB MC : SOT-23-5
*2
Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed 15) Short circuit protection A: Yes *1. Refer to the specifications at the end of this book. *2. Refer to the “2. Product name list”.
Seiko Instruments Inc.
3
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Rev.4.2_00
1. 2 S-817B series 1. 2. 1 SOT-23-5 and SOT-89-3 package
S-817
B
xx
A
xx
-
xxx
T2
G IC direction in tape specifications Product name (abbreviation) Package name (abbreviation)*2 MC : SOT-23-5 UA : SOT-89-3 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed 15) Short circuit protection B: No
*1
*1. Refer to the specifications at the end of this book. *2. Refer to the “2. Product name list”. 1. 2. 2 TO-92 package
S-817 B xx A Y x G Packing form B: Bulk T: Tape and reel Z: Tape and ammo Package name (abbreviation)*1 Y: TO-92 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed 15) Short circuit protection B: No *1. Refer to the “2. Product name list”.
4
Seiko Instruments Inc.
Rev.4.2_00
2. Product name list 2. 1 S-817A series
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Table 1
Output voltage 1.1 V ± 2.0 % 1.2 V ± 2.0 % 1.3 V ± 2.0 % 1.4 V ± 2.0 % 1.5 V ± 2.0 % 1.6 V ± 2.0 % 1.7 V ± 2.0 % 1.8 V ± 2.0 % 1.9 V ± 2.0 % 2.0 V ± 2.0 % 2.1 V ± 2.0 % 2.2 V ± 2.0 % 2.3 V ± 2.0 % 2.4 V ± 2.0 % 2.5 V ± 2.0 % 2.6 V ± 2.0 % 2.7 V ± 2.0 % 2.8 V ± 2.0 % 2.9 V ± 2.0 % 3.0 V ± 2.0 % 3.1 V ± 2.0 % 3.2 V ± 2.0 % 3.3 V ± 2.0 % 3.4 V ± 2.0 % 3.5 V ± 2.0 % 3.6 V ± 2.0 % 3.7 V ± 2.0 % 3.8 V ± 2.0 % 3.9 V ± 2.0 % 4.0 V ± 2.0 % 4.1 V ± 2.0 % 4.2 V ± 2.0 % 4.3 V ± 2.0 % 4.4 V ± 2.0 % 4.5 V ± 2.0 % 4.6 V ± 2.0 % 4.7 V ± 2.0 % 4.8 V ± 2.0 % 4.9 V ± 2.0 % 5.0 V ± 2.0 % 5.1 V ± 2.0 % 5.2 V ± 2.0 % 5.3 V ± 2.0 % 5.4 V ± 2.0 % 5.5 V ± 2.0 % 5.6 V ± 2.0 % 5.7 V ± 2.0 % 5.8 V ± 2.0 % 5.9 V ± 2.0 % 6.0 V ± 2.0 % SNT-4A S-817A11APF-CUATFG S-817A12APF-CUBTFG S-817A13APF-CUCTFG S-817A14APF-CUDTFG S-817A15APF-CUETFG S-817A16APF-CUFTFG S-817A17APF-CUGTFG S-817A18APF-CUHTFG S-817A19APF-CUITFG S-817A20APF-CUJTFG S-817A21APF-CUKTFG S-817A22APF-CULTFG S-817A23APF-CUMTFG S-817A24APF-CUNTFG S-817A25APF-CUOTFG S-817A26APF-CUPTFG S-817A27APF-CUQTFG S-817A28APF-CURTFG S-817A29APF-CUSTFG S-817A30APF-CUTTFG S-817A31APF-CUUTFG S-817A32APF-CUVTFG S-817A33APF-CUWTFG S-817A34APF-CUXTFG S-817A35APF-CUYTFG S-817A36APF-CUZTFG S-817A37APF-CVATFG S-817A38APF-CVBTFG S-817A39APF-CVCTFG S-817A40APF-CVDTFG S-817A41APF-CVETFG S-817A42APF-CVFTFG S-817A43APF-CVGTFG S-817A44APF-CVHTFG S-817A45APF-CVITFG S-817A46APF-CVJTFG S-817A47APF-CVKTFG S-817A48APF-CVLTFG S-817A49APF-CVMTFG S-817A50APF-CVNTFG S-817A51APF-CVOTFG S-817A52APF-CVPTFG S-817A53APF-CVQTFG S-817A54APF-CVRTFG S-817A55APF-CVSTFG S-817A56APF-CVTTFG S-817A57APF-CVUTFG S-817A58APF-CVVTFG S-817A59APF-CVWTFG S-817A60APF-CVXTFG SC-82AB S-817A11ANB-CUAT2G S-817A12ANB-CUBT2G S-817A13ANB-CUCT2G S-817A14ANB-CUDT2G S-817A15ANB-CUET2G S-817A16ANB-CUFT2G S-817A17ANB-CUGT2G S-817A18ANB-CUHT2G S-817A19ANB-CUIT2G S-817A20ANB-CUJT2G S-817A21ANB-CUKT2G S-817A22ANB-CULT2G S-817A23ANB-CUMT2G S-817A24ANB-CUNT2G S-817A25ANB-CUOT2G S-817A26ANB-CUPT2G S-817A27ANB-CUQT2G S-817A28ANB-CURT2G S-817A29ANB-CUST2G S-817A30ANB-CUTT2G S-817A31ANB-CUUT2G S-817A32ANB-CUVT2G S-817A33ANB-CUWT2G S-817A34ANB-CUXT2G S-817A35ANB-CUYT2G S-817A36ANB-CUZT2G S-817A37ANB-CVAT2G S-817A38ANB-CVBT2G S-817A39ANB-CVCT2G S-817A40ANB-CVDT2G S-817A41ANB-CVET2G S-817A42ANB-CVFT2G S-817A43ANB-CVGT2G S-817A44ANB-CVHT2G S-817A45ANB-CVIT2G S-817A46ANB-CVJT2G S-817A47ANB-CVKT2G S-817A48ANB-CVLT2G S-817A49ANB-CVMT2G S-817A50ANB-CVNT2G S-817A51ANB-CVOT2G S-817A52ANB-CVPT2G S-817A53ANB-CVQT2G S-817A54ANB-CVRT2G S-817A55ANB-CVST2G S-817A56ANB-CVTT2G S-817A57ANB-CVUT2G S-817A58ANB-CVVT2G S-817A59ANB-CVWT2G S-817A60ANB-CVXT2G SOT-23-5 S-817A14AMC-CUDT2G S-817A16AMC-CUFT2G
Remark Please contact the SII marketing department for products with an output voltage over than those specified above. Seiko Instruments Inc. 5
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Rev.4.2_00
2. 2 S-817B series Table 2
Output voltage 1.1 V ± 2.0 % 1.2 V ± 2.0 % 1.3 V ± 2.0 % 1.4 V ± 2.0 % 1.5 V ± 2.0 % 1.6 V ± 2.0 % 1.7 V ± 2.0 % 1.8 V ± 2.0 % 1.9 V ± 2.0 % 2.0 V ± 2.0 % 2.1 V ± 2.0 % 2.2 V ± 2.0 % 2.3 V ± 2.0 % 2.4 V ± 2.0 % 2.5 V ± 2.0 % 2.6 V ± 2.0 % 2.7 V ± 2.0 % 2.8 V ± 2.0 % 2.9 V ± 2.0 % 3.0 V ± 2.0 % 3.1 V ± 2.0 % 3.2 V ± 2.0 % 3.3 V ± 2.0 % 3.4 V ± 2.0 % 3.5 V ± 2.0 % 3.6 V ± 2.0 % 3.7 V ± 2.0 % 3.8 V ± 2.0 % 3.9 V ± 2.0 % 4.0 V ± 2.0 % 4.1 V ± 2.0 % 4.2 V ± 2.0 % 4.3 V ± 2.0 % 4.4 V ± 2.0 % 4.5 V ± 2.0 % 4.6 V ± 2.0 % 4.7 V ± 2.0 % 4.8 V ± 2.0 % 4.9 V ± 2.0 % 5.0 V ± 2.0 % 5.1 V ± 2.0 % 5.2 V ± 2.0 % 5.3 V ± 2.0 % 5.4 V ± 2.0 % 5.5 V ± 2.0 % 5.6 V ± 2.0 % 5.7 V ± 2.0 % 5.8 V ± 2.0 % 5.9 V ± 2.0 % 6.0 V ± 2.0 % SOT-23-5 S-817B11AMC-CWAT2G S-817B12AMC-CWBT2G S-817B13AMC-CWCT2G S-817B14AMC-CWDT2G S-817B15AMC-CWET2G S-817B16AMC-CWFT2G S-817B17AMC-CWGT2G S-817B18AMC-CWHT2G S-817B19AMC-CWIT2G S-817B20AMC-CWJT2G S-817B21AMC-CWKT2G S-817B22AMC-CWLT2G S-817B23AMC-CWMT2G S-817B24AMC-CWNT2G S-817B25AMC-CWOT2G S-817B26AMC-CWPT2G S-817B27AMC-CWQT2G S-817B28AMC-CWRT2G S-817B29AMC-CWST2G S-817B30AMC-CWTT2G S-817B31AMC-CWUT2G S-817B32AMC-CWVT2G S-817B33AMC-CWWT2G S-817B34AMC-CWXT2G S-817B35AMC-CWYT2G S-817B36AMC-CWZT2G S-817B37AMC-CXAT2G S-817B38AMC-CXBT2G S-817B39AMC-CXCT2G S-817B40AMC-CXDT2G S-817B41AMC-CXET2G S-817B42AMC-CXFT2G S-817B43AMC-CXGT2G S-817B44AMC-CXHT2G S-817B45AMC-CXIT2G S-817B46AMC-CXJT2G S-817B47AMC-CXKT2G S-817B48AMC-CXLT2G S-817B49AMC-CXMT2G S-817B50AMC-CXNT2G S-817B51AMC-CXOT2G S-817B52AMC-CXPT2G S-817B53AMC-CXQT2G S-817B54AMC-CXRT2G S-817B55AMC-CXST2G S-817B56AMC-CXTT2G S-817B57AMC-CXUT2G S-817B58AMC-CXVT2G S-817B59AMC-CXWT2G S-817B60AMC-CXXT2G SOT-89-3 S-817B11AUA-CWAT2G S-817B12AUA-CWBT2G S-817B13AUA-CWCT2G S-817B14AUA-CWDT2G S-817B15AUA-CWET2G S-817B16AUA-CWFT2G S-817B17AUA-CWGT2G S-817B18AUA-CWHT2G S-817B19AUA-CWIT2G S-817B20AUA-CWJT2G S-817B21AUA-CWKT2G S-817B22AUA-CWLT2G S-817B23AUA-CWMT2G S-817B24AUA-CWNT2G S-817B25AUA-CWOT2G S-817B26AUA-CWPT2G S-817B27AUA-CWQT2G S-817B28AUA-CWRT2G S-817B29AUA-CWST2G S-817B30AUA-CWTT2G S-817B31AUA-CWUT2G S-817B32AUA-CWVT2G S-817B33AUA-CWWT2G S-817B34AUA-CWXT2G S-817B35AUA-CWYT2G S-817B36AUA-CWZT2G S-817B37AUA-CXAT2G S-817B38AUA-CXBT2G S-817B39AUA-CXCT2G S-817B40AUA-CXDT2G S-817B41AUA-CXET2G S-817B42AUA-CXFT2G S-817B43AUA-CXGT2G S-817B44AUA-CXHT2G S-817B45AUA-CXIT2G S-817B46AUA-CXJT2G S-817B47AUA-CXKT2G S-817B48AUA-CXLT2G S-817B49AUA-CXMT2G S-817B50AUA-CXNT2G S-817B51AUA-CXOT2G S-817B52AUA-CXPT2G S-817B53AUA-CXQT2G S-817B54AUA-CXRT2G S-817B55AUA-CXST2G S-817B56AUA-CXTT2G S-817B57AUA-CXUT2G S-817B58AUA-CXVT2G S-817B59AUA-CXWT2G S-817B60AUA-CXXT2G TO-92*1 S-817B11AY-X-G S-817B12AY-X-G S-817B13AY-X-G S-817B14AY-X-G S-817B15AY-X-G S-817B16AY-X-G S-817B17AY-X-G S-817B18AY-X-G S-817B19AY-X-G S-817B20AY-X-G S-817B21AY-X-G S-817B22AY-X-G S-817B23AY-X-G S-817B24AY-X-G S-817B25AY-X-G S-817B26AY-X-G S-817B27AY-X-G S-817B28AY-X-G S-817B29AY-X-G S-817B30AY-X-G S-817B31AY-X-G S-817B32AY-X-G S-817B33AY-X-G S-817B34AY-X-G S-817B35AY-X-G S-817B36AY-X-G S-817B37AY-X-G S-817B38AY-X-G S-817B39AY-X-G S-817B40AY-X-G S-817B41AY-X-G S-817B42AY-X-G S-817B43AY-X-G S-817B44AY-X-G S-817B45AY-X-G S-817B46AY-X-G S-817B47AY-X-G S-817B48AY-X-G S-817B49AY-X-G S-817B50AY-X-G S-817B51AY-X-G S-817B52AY-X-G S-817B53AY-X-G S-817B54AY-X-G S-817B55AY-X-G S-817B56AY-X-G S-817B57AY-X-G S-817B58AY-X-G S-817B59AY-X-G S-817B60AY-X-G
*1. X changes according to the packing form in TO-92. B: Bulk, T: Tape and Reel, Z: Tape and ammo. 6 Seiko Instruments Inc.
Rev.4.2_00 Pin Configurations
S NT-4A Top view 1 2 4 3
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Table 3 Pin No. Symbol Description 1 VOUT Output voltage pin 2 VIN Input voltage pin 3 VSS GND pin NC*1 No connection 4 *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS.
Figure 3
SC-82AB Top view 4 3
Table 4 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin NC*1 No connection 4 *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS.
1
2
Figure 4
SOT-23-5 Top view 5 4
Table 5 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin 4 NC*1 No connection *1 5 NC No connection *1. The NC pin is electrically open. The NC pin can be connected to VIN or VSS.
1
2
3
Figure 5
SOT-89-3 Top view
Table 6 Pin No. 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin
1
2
3
Figure 6
Seiko Instruments Inc.
7
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Rev.4.2_00
TO-92 Bottom view 123
Table 7 Pin No. 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin
Figure 7
Absolute Maximum Ratings
Table 8 (Ta=25°C unless otherwise specified) Item Input voltage Output voltage SNT-4A SC-82AB Power dissipation SOT-23-5 SOT-89-3 TO-92 Operating temperature range Storage temperature Topr Tstg Symbol VIN VOUT Absolute Maximum Rating VSS−0.3 to VSS+12 VSS−0.3 to VIN+0.3 300*1 150 (When not mounted on board) 400*1 250 (When not mounted on board) 600*1 500 (When not mounted on board) 1000*1 400 (When not mounted on board) 800*1 −40 to +85 −40 to +125 Units V V mW mW mW mW mW mW mW mW mW °C °C
PD
*1. When mounted on board [Mounted board] (1) Board size : 114.3 mm × 76.2 mm × t1.6 mm (2) Board name : JEDEC STANDARD51-7 Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.
Power dissipation (PD) [mW]
1200 1000 800 600 400 200 0 0 SNT-4A
SOT-89-3 TO-92 SOT-23-5 SC-82AB
150 100 50 Ambient temperature (Ta) [°C]
Figure 8 Power dissipation of The package (When mounted on board) 8 Seiko Instruments Inc.
Rev.4.2_00 Electrical Characteristics
1. S-817A series
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Table 9
Item Output voltage *1 Output current
*2
Symbol VOUT(E) IOUT
Conditions VIN=VOUT(S)+2 V, IOUT=10 mA VOUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V ≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V 3.0 V ≤ VOUT(S) ≤ 3.9 V 4.0 V ≤ VOUT(S) ≤ 4.9 V 5.0 V ≤ VOUT(S) ≤ 6.0 V IOUT = 10 mA 1.1 V ≤ VOUT(S) ≤ 1.4 V 1.5 V ≤ VOUT(S) ≤ 1.9 V 2.0 V ≤ VOUT(S) ≤ 2.4 V 2.5 V ≤ VOUT(S) ≤ 2.9 V 3.0 V ≤ VOUT(S) ≤ 3.4 V 3.5 V ≤ VOUT(S) ≤ 3.9 V 4.0 V ≤ VOUT(S) ≤ 4.4 V 4.5 V ≤ VOUT(S) ≤ 4.9 V 5.0 V ≤ VOUT(S) ≤ 5.4 V 5.5 V ≤ VOUT(S) ≤ 6.0 V VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 mA VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 µA VIN=VOUT(S)+ 1.1 V ≤ VOUT(S) ≤ 1.9 V, 2V 1 µA ≤ IOUT ≤ 10 mA 2.0 V ≤ VOUT(S) ≤ 2.9 V, 1 µA ≤ IOUT ≤ 20 mA 3.0 V ≤ VOUT(S) ≤ 3.9 V, 1 µA ≤ IOUT ≤ 30 mA 4.0 V ≤ VOUT(S) ≤ 4.9 V, 1 µA ≤ IOUT ≤ 40 mA 5.0 V ≤ VOUT(S) ≤ 6.0 V, 1 µA ≤ IOUT ≤ 50 mA VIN = VOUT(S) + 1 V, IOUT = 10 mA, −40°C ≤ Ta ≤ 85°C VIN = VOUT(S) + 2 V, no load − VIN = VOUT(S) + 2 V, VOUT pin = 0 V
Dropout voltage *3
Vdrop
(Ta=25°C unless otherwise specified) MeasurMin. Typ. Max. Units ement circuits VOUT(S) VOUT(S) V V 1 × 0.98 OUT(S) × 1.02 20 − − mA 3 35 − − 50 − − 65 − − 75 − − 0.92 1.58 V 1 − 0.58 0.99 − 0.40 0.67 − 0.31 0.51 − 0.25 0.41 − 0.22 0.35 − 0.19 0.30 − 0.18 0.27 − 0.16 0.25 − 0.15 0.23 −
− − − − − − − 5 5 5 10 20 25 35 20 20 20 30 45 65 80 mV
Line regulation 1 Line regulation 2 Load regulation
∆ VOUT1 ∆ VOUT2 ∆ VOUT3
∆VOUT ppm Output voltage − ±100 − /°C temperature coefficient *4 ∆Ta • VOUT Current consumption ISS − 1.2 2.5 µA 2 Input voltage VIN − − 10 V 1 Short current limit IOS − 40 − mA 3 *1. VOUT(S): Specified output voltage VOUT(E): Effective output voltage i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. *2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current. *3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. *4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT *1. Temperature change ratio of the output voltage *2. Specified output voltage *3. Output voltage temperature coefficient
Seiko Instruments Inc.
9
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
2. S-817B series Table 10
Rev.4.2_00
Item Output voltage *1 Output current
*2
Symbol VOUT(E) IOUT
Conditions VIN=VOUT(S)+2 V, IOUT=10 mA VOUT(S)+2 V 1.1 V ≤ VOUT(S) ≤ 1.9 V ≤ VIN≤10 V 2.0 V ≤ VOUT(S) ≤ 2.9 V 3.0 V ≤ VOUT(S) ≤ 3.9 V 4.0 V ≤ VOUT(S) ≤ 4.9 V 5.0 V ≤ VOUT(S) ≤ 6.0 V IOUT = 10 1.1 V ≤ VOUT(S) ≤ 1.4 V mA 1.5 V ≤ VOUT(S) ≤ 1.9 V 2.0 V ≤ VOUT(S) ≤ 2.4 V 2.5 V ≤ VOUT(S) ≤ 2.9 V 3.0 V ≤ VOUT(S) ≤ 3.4 V 3.5 V ≤ VOUT(S) ≤ 3.9 V 4.0 V ≤ VOUT(S) ≤ 4.4 V 4.5 V ≤ VOUT(S) ≤ 4.9 V 5.0 V ≤ VOUT(S) ≤ 5.4 V 5.5 V ≤ VOUT(S) ≤ 6.0 V VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 mA VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1 µA VIN=VOUT(S)+ 1.1 V ≤ VOUT(S) ≤ 1.9 V, 1 µA ≤ IOUT ≤ 10 mA 2V 2.0 V ≤ VOUT(S) ≤ 2.9 V, 1 µA ≤ IOUT ≤ 20 mA 3.0 V ≤ VOUT(S) ≤ 3.9 V, 1 µA ≤ IOUT ≤ 30 mA 4.0 V ≤ VOUT(S) ≤ 4.9 V, 1 µA ≤ IOUT ≤ 40 mA 5.0 V ≤ VOUT(S) ≤ 6.0 V, 1 µA ≤ IOUT ≤ 50 mA VIN = VOUT(S) + 1 V, IOUT = 10 mA, −40°C ≤ Ta ≤ 85°C VIN = VOUT(S) + 2 V, no load −
(Ta=25°C unless otherwise specified) MeasurMin. Typ. Max. Units ement circuits VOUT(S) VOUT(S) V V 1 × 0.98 OUT(S) × 1.02 20 − − mA 3 35 − − 50 − − 65 − − 75 − −
− − − − − − − − − − − − − − − − − 0.92 0.58 0.40 0.31 0.25 0.22 0.19 0.18 0.16 0.15 5 5 5 10 20 25 35 1.58 0.99 0.67 0.51 0.41 0.35 0.30 0.27 0.25 0.23 20 20 20 30 45 65 80 mV V 1
Dropout voltage *3
Vdrop
Line regulation 1 Line regulation 2 Load regulation
∆ VOUT1 ∆ VOUT2 ∆ VOUT3
∆VOUT Output voltage ppm − ±100 − /°C temperature coefficient *4 ∆Ta • VOUT Current consumption ISS − 1.2 2.5 µA 2 Input voltage VIN − − 10 V 1 *1. VOUT(S): Specified output voltage VOUT(E): Effective output voltage i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. *2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current. *3. Vdrop = VIN1−(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. *4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation. ∆VOUT [mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT *1. Temperature change ratio of the output voltage *2. Specified output voltage *3. Output voltage temperature coefficient
10
Seiko Instruments Inc.
Rev.4.2_00 Measurement Circuits
1.
VIN
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
VOUT V +
+
A
VSS
Figure 9
2.
+
A
VIN
VOUT
VSS
Figure 10
3.
VIN
VOUT VSS
+
A V +
Figure 11
Standard Circuit
INPUT VIN CIN
*1
OUTPUT VOUT CL
*2
VSS
Single GND
GND
*1. CIN is a capacitor used to stabilize input. *2. In addition to tantalum capacitor, ceramic capacitor of 0.1 µF or more can be used for CL. Figure 12 Caution The above connection diagram and constant will not guarantee successful operation. Perform through evaluation using the actual application to set the constant.
Seiko Instruments Inc.
11
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Explanation of Terms
1. Low ESR
Rev.4.2_00
ESR is the abbreviation for Equivalent Series Resistance. Low ESR output capacitors (CL) can be used in the S-817 Series.
2. Output voltage (VOUT)
The accuracy of the output voltage is ±2.0% guaranteed under the specified conditions for input voltage, which differs depending upon the product items, output current, and temperature.
Caution If the above conditions change, the output voltage value may vary and go out of the accuracy range of the output voltage. See the electrical characteristics and characteristics data for details. 3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2)
Indicate the input voltage dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the input voltage with the output current remained unchanged.
4. Load regulation (∆VOUT3)
Indicates the output current dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the output current with the input voltage remained unchanged.
5. Dropout voltage (Vdrop)
Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98% of VOUT(E) by gradually decreasing the input voltage (VIN). Vdrop = VIN1−[VOUT(E) × 0.98]
12
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
∆VOUT 6. Temperature coefficient of output voltage ∆Ta • VOUT The shadowed area in Figure 13 is the range where VOUT varies in the operating temperature range when the temperature coefficient of the output voltage is ±100 ppm/°C.
Ex. S-817A15 Typ. VOUT [V]
+0.15 mV / °C
VOUT(E)
*1
−0.15 mV / °C
−40 *1.
25
85
Ta [°C]
VOUT(E) is the value of the output voltage measured at 25°C.
Figure 13
A change in the temperature of the output voltage [mV/°C] is calculated using the following equation. *1. Change in temperature of output voltage *2. Specified output voltage *3. Output voltage temperature coefficient
∆VOUT [mV/ °C]*1 = VOUT(S)[V ]*2 × ∆VOUT [ppm/ °C]*3 ÷ 1000 ∆Ta ∆Ta • VOUT
Seiko Instruments Inc.
13
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Operation
1. Basic Operation Figure 14 shows the block diagram of the S-817 Series.
Rev.4.2_00
The error amplifier compares the reference voltage (Vref) with Vfb, which is the output voltage resistancedivided by feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage necessary to ensure a certain output voltage free of any fluctuations of input voltage and temperature.
VIN
*1
Current supply
Error amplifier
VOUT Vref − + Rf Vfb
Reference voltage circuit
Rs
VSS *1. Parasitic diode Figure 14 2. Output Transistor The S-817 series uses a P-channel MOS FET as the output transistor. Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being damaged due to inverse current flowing from VOUT pin through a parastic diode to VIN pin. 3. Short Circuit Protection The S-817A series incorporates a short circuit protection to protect the output transistor against short circuit between VOUT pin and VSS pin. Installation of the short-circuit protection which protects the output transistor against short-circuit between VOUT and VSS can be selected in the S-817A series. The short-circuit protection controls output current as shown in the “Typical Characteristics 1.”. Output Voltage versus Output Current, and suppresses output current at about 40 mA even if VOUT and VSS pins are short-circuited. The short-circuit protection can not be a thermal protection at the same time. Attention should be paid to the Input voltage and the load current under the actual condition so as not to exceed the power dissipation of the package including the case for short-circuit. When the output current is large and the difference between input and output voltage is large even if not shorted, the short-circuit protection may work and the output current is suppressed to the specified value. For details, refer to “ Characteristics (Typical Data) 3. Maximum Output Current vs. Input Voltage”. In addition, S-817B series is removing a short-circuit protection, and is the product which enabled it to pass large current.
14
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Selection of Output Capacitor (CL)
To stabilize operation against variation in output load, a capacitor (CL) must be mounted between VOUT and VSS in the S-817 series because the phase is compensated with the help of the internal phase compensation circuit and the ESR of the output capacitor. When selecting a ceramic or an OS capacitor, capacitance should be 0.1 µF or more, and when selecting a tantalum or an aluminum electrolytic capacitor, capacitance should be 0.1 µF or more and ESR 30 Ω or less. When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large. Sufficient evaluation including temperature characteristics is indispensable. Overshoot and undershoot characteristics differ depending upon the type of the output capacitor. Refer to CL dependencies in “ Reference Data 1. Transient Response Characteristics”.
Application Circuits
1. Output Current Boosting Circuit
Tr1 VOUT R2 CL VOUT
VIN
R1 CIN
VIN
S-817 series VSS
GND
Figure 15 As shown in Figure 15, the output current can be boosted by externally attaching a PNP transistor. The base current of the PNP transistor is controlled so that output voltage (VOUT) goes the voltage specified in the S-817 Series when base-emitter voltage (VBE) necessary to turn on the PNP transistor is obtained between input voltage (VIN) and S-817 Series power source pin (VIN). The following are tips and hints for selecting and ensuring optimum use of external parts • PNP transistor (Tr1): 1. Set hFE to approx. 100 to 400. 2. Confirm that no problem occurs due to power dissipation under normal operation conditions. • Resistor (R1): Generally set R1 to 1 kΩ ÷ VOUT (S) (the voltage specified in the S-817 Series) or more. • Output capacitor (CL): Output capacitor (CL) is effective in minimizing output fluctuation at powering on or due to power or load fluctuation, but oscillation might occur. Always connect resistor R2 in series to output capacitor CL. • Resistor (R2): Set R2 to 2 Ω × VOUT(S) or more. • DO NOT attach a capacitor between the S-817 Series power source (VIN) and GND pins or between base and emitter of the PNP transistor to avoid oscillation. • To improve transient response characteristics of the output current boosting circuit shown in Figure 15, check that no problem occurs due to output fluctuation at powering on or due to power or load fluctuation under normal operating conditions. • Pay attention to the short current limit circuit incorporated into the S-817 Series because it does not function as a shortcircuiting protection circuit for this boosting circuit.
Seiko Instruments Inc.
15
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Rev.4.2_00
The following graphs show the examples of input-output voltage characteristics (Ta=25°C, typ.) in the output current boosting circuit as seen in Figure 15: 1. 1 S-817A11ANB/S-817B11AMC Tr1 : 2SA1213Y, R1 : 1 kΩ, CL : 10 µF, R2 : 2 Ω
1.20 1.10 1.00
1. 2 S-817A50ANB/S-817B50AMC Tr1 : 2SA1213Y, R1 : 200 Ω, CL : 10 µF, R 2 : 10 Ω
5.20
100 mA 50 mA
5.10 5.00
VOUT (V)
VOUT (V)
10 mA 1 mA 800 mA 600 mA 400 mA 200 mA
100 mA 50 mA 10 mA 5 mA 800 mA 600 mA 400 mA 200 mA
0.90 0.80 0.70 0.60 1.4
4.90 4.80 4.70 4.60 5.2
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
5.3
5.4
5.5
5.6
5.7
5.8
5.9
VIN (V)
VIN (V)
2. Constant Current Circuit 2. 1 Constant Current Circuit
VIN VIN S-817 Series VSS CIN GND RL VO V0 IO Device VOUT
Figure 16 2. 2 Constant Current Boosting Circuit
Tr1 VIN R1 S-817 Series VSS CIN GND RL VO V0 IO Device VOUT
Figure 17
16
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
The S-817 Series can be configured as a constant current circuit. Refer to Figure 16 and 17. Constant amperage (IO) is calculated using the following equation (VOUT(E): Effective output voltage): IO = (VOUT(E) ÷ RL) +ISS. Note that by using a circuit in Figure16, it is impossible to set the better driving ability to the constant amperage (IO) than the S-817 Series basically has. To gain the driving ability which exceeds the S-817 Series, there’s a way to combine a constant current circuit and a current boosting circuit, as seen in Figure 17. The maximum input voltage for a constant current circuit is 10 V + the voltage for device (VO). It is not recommended to add a capacitor between the VIN (power supply) and VSS pin or the VOUT (output) and VSS pin because the rush current flows at power-on. The following is a characteristics example of input voltage between VIN and VO vs. IO current (Typ. Ta = 25°C) in constant current boosting circuit in Figure 17. VIN, VO pins, Input voltage - IO current S-817A11ANB, S-817B11AMC, Tr : 2SK1213Y, R1 : 1 kΩ, VO=2 V
0.60 0.50 0.40
RL=1.83 Ω 2.2 Ω 2.75 Ω 3.67 Ω 5.5 Ω 11 Ω
IO(A)
0.30 0.20 0.10 0.00 1.4
1.6
1.8
2
2.2
2.4
VIN−VO(V)
Seiko Instruments Inc.
17
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Rev.4.2_00
3. Output Voltage Adjustment Circuit (Only for S817B Series (Product without short circuit protection))
V IN V IN
S -817 Series
V SS
V OUT R1 R2
V0
CL
C IN C1 G ND
Figure 18 The output voltage can be boosted by using the configuration shown in Figure 18. The output Voltage (VO) can be calculated using the following equation (VOUT(E):Effective output voltage): VO = VOUT(E) × (R1 + R2) ÷ R1 + R2 × ISS Set the values of resistors R1 and R2 so that the S-817 Series is not affected by current consumption (ISS). Capacitor C1 is effective in minimizing output fluctuation at powering on or due to power or load fluctuation. Determine the optimum value on your actual device. But it is not also recommended to attach a capacitor between the S-817 Series power source VIN and VSS pin or between output VOUT and VSS pin because output fluctuation or oscillation at powering on might occur. As shown in Figure 18, a capacitor must be mounted between VIN and GND, and between VOUT and GND.
Precautions
• Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low. When mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing the input between VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as short as possible. • Note that the output voltage may increase when a series regulator is used at low load current (1.0 µA or less). • Generally a series regulator may cause oscillation, depending on the selection of external parts. The following conditions are recommended for this IC. However, be sure to perform sufficient evaluation under the actual usage conditions for selection, including evaluation of temperature characteristics. Output capacitor (CL) : Equivalent Series Resistance (ESR) : Input series resistance (RIN) : 0.1 µF or more 30 Ω or less 10 Ω or less
• The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is small or an input capacitor is not connected. • The application conditions for the input voltage, output voltage, and load current should not exceed the package power dissipation. • Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. • SII claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.
18
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Characteristics (Typical Data)
1. Output Voltage vs. Output Current (when load current increases) (a) S-817A Series
S-817A11A (Ta=25°C)
1.2 0.9 0.6 8V VIN= 1.5V 2.1V 3.1V 4.1V
S-817A20A (Ta=25°C)
2.5 2.0 3V 4V VIN= 2.4V 0 30 5V 10V
V OUT (V) 0.3
0.0 0 20
V OUT (V) 1.0
0.5 0.0
1.5
IOUT (mA)
40
60
80
IOUT (mA)
60
90
120
S-817A30A (Ta=25 °C)
3.0 2.5 5V 4V 10V 6V 2.0 1.0 0.5 0.0 0
S-817A50A (Ta=25 °C)
5.0 4.0 10V 6V 8V VIN=5.4V 7V
V OUT 1.5 (V)
VIN= 3.4V 30 60
V OUT 3.0 (V) 2.0
1.0
IOUT (mA)
90
120
150
0.0 0 40 80
IOUT (mA)
120
160
200
(b) S-817B series
S-817B11A (Ta=25°C)
1.2 8V 0.9 4.1V 3.1V 2.1V VIN= 1.5V 0 50 100
S-817B20A (Ta=25°C)
2.5 2.0 1.5 VIN=2.4V 10V
VOUT (V) 0.6
0.3 0.0
VOUT (V)
1.0 0.5 0.0
5V 3V 4V
IOUT (mA)
150
200
250
0
50
100
IOUT (mA)
150
200
250
300
S-817B30A (Ta=25°C)
3.5 3.0 2.5 4V 2.0 1.5 1.0 0.5 0.0 0 50 100 VIN= 3.4V 5V 6V 10V
S-817B50A (Ta=25°C)
5.0 4.0 7V 6V VIN=5.4V 8V 10V
VOUT (V)
VOUT (V) 2.0
1.0 0.0
3.0
IOUT (mA)
150
200
250
300
0
50
100
IOUT (mA)
150
200
250
300
Seiko Instruments Inc.
19
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Rev.4.2_00
2. Output Voltage vs. Input Voltage
S-817A11A/S-817B11A (Ta=25°C)
1.5 IOUT =1µA 1.0
S-817A20A/S-817B20A (Ta=25°C)
2.5 2.0 IOUT =1µA 50mA 20mA 10mA 1mA 0 2 4
V OUT (V) 0.5
0.0 0 2
1mA 10mA 20mA 4 6 8 10
V OUT (V) 1.0
0.5 0.0
1.5
VIN (V)
VIN (V)
6
8
10
S-817A30A/S-817B30A (Ta=25°C)
3.5 3.0 2.5 2.0 1.0 0.5 0.0 0 2 20mA 10mA 50mA
S-817A50A/S-817B50A (Ta=25°C)
5.0 4.0 10mA 50mA 20mA 1mA IOUT =1µA 0 2 4
V OUT (V) 1.5
1mA IOUT =1µA 4
V OUT 3.0 (V) 2.0
1.0 0.0
VIN (V)
6
8
10
VIN (V)
6
8
10
20
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
3. Maximum Output Current vs. Input Voltage (a) S-817A Series
S-817A11A
100 80 60 I OUT max.(mA) 40 20 0 0 2 4 Ta=-40°C 25°C
S-817A20A
120 100 Ta=-40°C 80 40 20 0 25°C 85°C
8 5 °C
I OUT max.(mA) 60
VIN (V)
6
8
10
1
3
VIN (V)
5
7
9
S-817A30A
180 150 120 25°C Ta=-40°C
S-817A50A
250 200 25°C Ta=-40°C 8 5 °C
I OUT 90 max.(mA)
60 30 0 2 4 6
85°C
I OUT 150 max.(mA)100
50 0
VIN (V)
8
10
4
6
VIN (V)
8
10
(b) S-817B Series
S-817B11A
300 250 Ta=-40°C 25°C
S-817B20A
300 250 200 Ta=-40°C 25°C
IOUT
200 150 100 50 0 0 2
max.(mA)
IOUT 150 max.(mA)
100 50 0
85°C
85°C
4
VIN (V)
6
8
10
0
2
4
VIN (V)
6
8
10
S-817B30A
300 250 200 Ta=-40°C 25°C
S-817B50A
300 250 Ta=-40°C 25°C
IOUT 150 max.(mA)
100 50 0 2 4
IOUT
85°C
200 150 100 50 0
max.(mA)
85°C
VIN (V)
6
8
10
4
6
VIN (V)
8
10
Seiko Instruments Inc.
21
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
4. Dropout Voltage vs. Output Current
S-817A11A/S-817B11A
2000 1500 1000 500 Ta=-40°C 0 0 5 10 15 20 25°C
Rev.4.2_00
S-817A20A/S-817B20A
2000 25°C 85°C 1000 500 Ta=-40°C 0 0 10 20 30 40
Vdrop (mV)
IOUT (mA)
Vdrop (mV)
85°C
1500
IOUT (mA)
S-817A30A/S-817B30A
1600 1200 25°C 800 400 Ta=-40°C 0 0 10 20 30 40 50 85°C
S-817A50A/S-817B50A
1000 800 85°C 25°C
Vdrop (mV)
Vdrop (mV)
600 400 200 0 0 10
Ta=-40°C 20 30 40 50
IOUT (mA)
IOUT (mA)
5. Output Voltage vs. Ambient Temperature
S-817A11A/S-817B11A
1.12 1.11
VIN=3.1V, IOUT=10mA
S-817A20A/S-817B20A
2.04 2.02
VIN=4V, IOUT=10mA
VOUT (V)
VOUT (V)
1.10 1.09 1.08 -50 0
2.00 1.98 1.96
Ta (°C)
50
100
-50
0
Ta (°C)
50
100
S-817A30A/S-817B30A
3.06 3.03
VIN=5V, IOUT=10mA
S-817A50A/S-817B50A
5.10 5.05
VIN=7V, IOUT=10mA
VOUT (V)
VOUT (V)
3.00 2.97 2.94 -50 0
5.00 4.95 4.90
Ta (°C)
50
100
-50
0
Ta (°C)
50
100
22
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
7. Line Regulation 2 vs. Ambient Temperature
S-817A11/20/30/50A S-817B11/20/30/50A 30 VIN=VOUT(S)+1V↔10V, IOUT=1µA
6. Line Regulation 1 vs. Ambient Temperature
S-817A11/20/30/50A S-817B11/20/30/50A 30 25 VIN=VOUT(S)+1V↔10V, IOUT=1mA
∆VOUT1 (mV)
20 15 10 5 0 -50 -25 0 25 50 75 100 VOUT=1.1V 2V 3V 5V
∆VOUT2 (mV)
25 20 15 10 5 0 -50 -25 0 25 50 75 100 VOUT=1.1V 2V 3V 5V
Ta (°C)
Ta (°C)
8. Load Regulation vs. Ambient Temperature
S-817A11/20/30/50A VIN=VOUT(S)+2V, IOUT=1µA↔IOUT S-817B11/20/30/50A 80 VOUT=1.1V(IOUT=10mA) 70 2V(IOUT=20mA) 60 3V(IOUT=30mA) 50 5V(IOUT=50mA) 40 30 20 10 0 -50 -25 0 25 50 75 100
∆VOUT3 (mV)
Ta (°C)
Seiko Instruments Inc.
23
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
9. Current Consumption vs. Input Voltage
S-817A11A/S-817B11A
1.6 1.2 85°C
Rev.4.2_00
S-817A20A/S-817B20A
1.6 1.2 0.8 0.4 0 Ta=-40°C 85°C 25°C
ISS1 (µA)
25°C 0.8 Ta=-40°C 0.4 0 0 2 4
ISS1 (µA)
VIN (V)
6
8
10
0
2
4
6
8
10
VIN (V) S-817A50A/S-817B50A
1.6
S-817A30A/S-817B30A
1.6 1.2 85°C 25°C 0.8 0.4 0 0 2 4 6 8 10 Ta=-40°C
85°C
ISS1 (µA)
ISS1 (µA)
1.2 0.8 0.4 0 0 2 4 6 8 10 25°C Ta=-40°C
VIN (V)
VIN (V)
24
Seiko Instruments Inc.
Rev.4.2_00 Reference Data
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
1. Transient Response Characteristics (Typical data: Ta=25 °C)
I n p u t v o lta g e or L o a d c u rre n t O v e rs h o o t O u tp u t v o lta g e
U n d e rs h o o t
1. 1 At powering on S-817A30A (when using a ceramic capacitor, CL=1 µF)
VIN=0 V→10 V, IOUT=10 mA, CL=1 µF 10 V 0V 3V VOUT (0.5 V/div)
Load dependencies of overshoot at powering on
0.05 0.04 VOUT=0 V→VOUT(S)+2 V, CL=1 µF
TIME(100 µs/div)
CL dependencies of overshoot at powering on
0.05 VIN=0 V→VOUT(S)+2 V, IOUT=10 m A 2V 3V 0.02 0.01 0 0.01 0.1 1 10 5V
Over Shoot(V)
0.03 0.02 0.01 2V
Over Shoot(V)
5V 3V
0.04 0.03
0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
IOUT(A)
CL(µF)
VDD dependencies of overshoot at powering on
0.05 0.04 VIN=0 V→VDD, IOUT=10 mA, CL=1 µF
“Ta” dependencies of overshoot at powering on
VIN=0 V→VOUT(S)+2 V, IOUT=10 mA, CL=1 µF
0.05
Over Shoot(V)
0.03 3V 0.02 0.01 0 0 2 4 6 8 2V
Over Shoot(V)
5V
0.04 0.03 0.02 0.01 0 2V 3V 5V
10
-50
0
50
100
VDD(V)
Ta(°C)
Seiko Instruments Inc.
25
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
1. 2 At powering on S-817B30A (when using a ceramic capacitor, CL=1 µF)
VIN=0 V→10 V, IOUT=10 mA, CL=1 µF 10 V 0V 3V VOUT (0.5 V/div)
Rev.4.2_00
TIME(100 µs/div)
Load dependencies of overshoot at powering on
0.05 0.04 VIN=0 V→VOUT(S)+2 V, CL=1 µF
CL dependencies of overshoot at powering on
0.05 0.04 VIN=0 V→VOUT(S)+2 V, IOUT=10 m A
Over Shoot(V)
0.03 0.02 0.01 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 2V 3V
Over Shoot(V)
5V
0.03 0.02 0.01 0 0.01 0.1
3V 5V
2V
1
10
IOUT(A)
CL(µF)
VDD dependencies of overshoot at powering on
0.05 0.04 VIN=0 V→VDD, IOUT=10 mA, CL=1 µF
“Ta” dependencies of overshoot at powering on
VIN=0 V→VOUT(S)+2 V, IOUT=10 mA, CL=1 µF
0.05
Over Shoot(V)
0.03 0.02 0.01 0 0 2 4 6 8 10 2V 5V 3V
Over Shoot(V)
0.04 0.03 0.02 0.01 0 -50 0 50 100 2V 3V 5V
VDD(V)
Ta(°C)
26
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
1. 3 Power fluctuation S-817A30A / S-817B30A (when using a ceramic capacitor, CL=1 µF)
VIN=4 V→10 V,IOUT=1 mA, CL=1 µF 10 V 4V V OUT (0.2 V/div) 3V TIME(200 µs/div)
Load dependencies of overshoot at power fluctuation
0.5 0.4 VIN=VOUT(S)+1 V→ VOUT(S)+2 V, CL=1 µF
CL dependencies of overshoot at power fluctuation
1 VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=1 mA 2V 3V 5V
Over Shoot(V)
0.3 0.2 0.1 3V
2V
Over Shoot(V)
5V
0.8 0.6 0.4 0.2 0 0.01
0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0.1
1
10
IOUT(A)
CL(µF)
VDD dependencies of overshoot at power fluctuation
1 0.8 VIN=VOUT(S)+1 V→VDD, IOUT=1 mA, CL=1 µF
“Ta” dependencies of overshoot at power fluctuation
VIN=VOUT(S)+1 V→VOUT(S)+2 V, IOUT=1 mA, CL=1 µF
1
Over Shoot(V)
0.6 0.4 2V 0.2 0 0 2 4 6
Over Shoot(V)
5V 3V
0.8 0.6 0.4 0.2 0 2V 3V 5V
8
10
-50
0
50
100
VDD(V)
Ta(°C)
Seiko Instruments Inc.
27
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Rev.4.2_00
VIN=10 V→4 V,IOUT=1 mA, CL=1 µF 10 V 4V VOUT 3 V (0.02 V/div)
TIME(50 µs/div)
Load dependencies of undershoot at power fluctuation CL dependencies of undershoot at power fluctuation
0.5 0.4 VIN=VOUT(S)+2 V→VOUT(S)1 V, CL=1 µF
1 VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=1 mA 2V 3V 5V
Under Shoot(V)
0.3 0.2 0.1 2V
Under Shoot(V)
5V 3V
0.8 0.6 0.4 0.2 0 0.01
0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0.1
1
10
IOUT(A)
CL(µF)
VDD dependencies of undershoot at power fluctuation
0.1 0.08 VIN=VDD→VOUT(S)+1 V, IOUT=1 mA, CL=1 µF
“Ta” dependencies of undershoot at power fluctuation
VIN=VOUT(S)+2 V→VOUT(S)+1 V, IOUT=1 mA, CL=1 µF 0.1 2V 0.08 3V 0.06 0.04 0.02 0 5V
Under Shoot(V)
0.06 0.04 2V 0.02 0 0 2 4 6
3V
Under Shoot(V)
5V
8
10
-50
0
50
100
VDD(V)
Ta(°C)
28
Seiko Instruments Inc.
Rev.4.2_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
1. 4 Load fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1 µF)
IOUT=30 mA→10 µA,V IN=5 V, CL=1 µF 30 mA 10 µA V OUT (0.2 V/div) 3V TIME(20 ms/div)
Load current dependencies of overshoot at load fluctuation
2 1.5 1 0.5 0 1.E-05 2V 3V VIN=VOUT(S)+2 V, IOUT=IL→ 10 µA, CL=1 µF 5V
CL dependencies of overshoot at load fluctuation
VIN=VOUT(S)+2 V, IOUT=10 mA→10 µA 2V 3V 5V
1 0.8
Over Shoot(V)
Over Shoot(V)
0.6 0.4 0.2 0
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
0.01
0.1
1
10
IOUT(A)
CL(µF)
VDD dependencies of overshoot at load fluctuation
0.2 0.15 0.1 2V 0.05 0 0 2 4 6 8 10 3V VIN=VDD, IOUT=10 mA,→10 µA, CL=1 µF 5V
“Ta” dependencies of overshoot at load fluctuation
VIN=VOUT(S)+2 V, IOUT=10 mA→10 µA, CL=1 µF 2V 5V
0.2
Over Shoot(V)
Over Shoot(V)
0.15 0.1 0.05 0 -50 0 50 100 3V
VDD(V)
Ta(°C)
Seiko Instruments Inc.
29
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Rev.4.2_00
IOUT=10 µA→30mA, VIN=5V, CL=1 µF 30mA 10µA 3V VOUT (0.2V/div)
TIME(50 ms/div)
Load current dependencies of undershoot at load fluctuation
2 1.5 1 0.5 0 1.E-05 2V VIN=VOUT(S)+2 V, IOUT=10 µA→IL, CL=1 µA
CL dependencies of undershoot at load fluctuation
VIN=VOUT(S)+2 V, IOUT=10 µA→10 mA 3V 5V
1.4 1.2
Under Shoot(V)
Under Shoot(V)
5V
1 0.8 0.6 0.4 0.2 0 0.01 2V
3V
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
0.1
1
10
IOUT(A)
CL(µF)
VDD dependencies of undershoot at load fluctuation
0.5 0.4 VIN=VDD, IOUT=10 µA→10 mA, CL=1 µF
“Ta” dependencies of undershoot at load fluctuation
VIN=VOUT(S)+2 V, IOUT=10 µA →10 mA, CL=1 µF 3V 5V 2V
0.5
Under Shoot(V)
0.3 0.2 0.1 0 0 2 4 6 2V
Under Shoot(V)
3V
5V
0.4 0.3 0.2 0.1 0
8
10
-50
0
50
100
VDD(V)
Ta(°C)
30
Seiko Instruments Inc.
1.2±0.04
4 3
1
2
+0.05 0.08 -0.02
0.65 0.48±0.02
0.2±0.05
No. PF004-A-P-SD-4.0
TITLE No. SCALE UNIT
SNT-4A-A-PKG Dimensions PF004-A-P-SD-4.0
mm
Seiko Instruments Inc.
ø1.5 -0
+0.1
2.0±0.05
4.0±0.1
0.25±0.05
5°
1.45±0.1
ø0.5 -0
+0.1
4.0±0.1
0.65±0.05
2
1
3
4
Feed direction
No. PF004-A-C-SD-1.0
TITLE No. SCALE UNIT
SNT-4A-A-Carrier Tape PF004-A-C-SD-1.0
mm
Seiko Instruments Inc.
12.5max.
Enlarged drawing in the central part ø13±0.2
9.0±0.3
(60°)
(60°)
No. PF004-A-R-SD-1.0
TITLE No. SCALE UNIT mm
SNT-4A-A-Reel PF004-A-R-SD-1.0
QTY. 5,000
Seiko Instruments Inc.
0.52
1.16
0.52
0.3
0.35
0.3
Caution Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff.
No. PF004-A-L-SD-3.0
TITLE No. SCALE UNIT
SNT-4A-A-Land Recommendation
PF004-A-L-SD-3.0
mm
Seiko Instruments Inc.
2.0±0.2
4
1.3±0.2
3
0.05
1 2
0.16 -0.06
+0.1
0.3 -0.05
+0.1
0.4 -0.05
+0.1
No. NP004-A-P-SD-1.1
TITLE No. SCALE UNIT
SC82AB-A-PKG Dimensions NP004-A-P-SD-1.1
mm
Seiko Instruments Inc.
ø1.5 -0
+0.1
4.0±0.1
2.0±0.05
4.0±0.1
1.1±0.1 0.2±0.05
ø1.05±0.1 (0.7)
2.2±0.2
2
1
3
4
Feed direction
No. NP004-A-C-SD-3.0
TITLE No. SCALE UNIT
SC82AB-A-Carrier Tape NP004-A-C-SD-3.0
mm
Seiko Instruments Inc.
4.0±0.1
2.0±0.1
ø1.5
+0.1 -0
1.1±0.1 0.2±0.05
4.0±0.1
ø1.05±0.1
2.3±0.15
2
1
3
4
Feed direction
No. NP004-A-C-S1-2.0
TITLE No. SCALE UNIT
SC82AB-A-Carrier Tape NP004-A-C-S1-2.0
mm
Seiko Instruments Inc.
12.5max.
Enlarged drawing in the central part ø13±0.2
9.0±0.3
(60°)
(60°)
No. NP004-A-R-SD-1.1
TITLE No. SCALE UNIT mm
SC82AB-A-Reel NP004-A-R-SD-1.1
QTY. 3,000
Seiko Instruments Inc.
2.9±0.2 1.9±0.2
5 4
1
2
3
0.16 -0.06
+0.1
0.95±0.1 0.4±0.1
No. MP005-A-P-SD-1.2
TITLE No. SCALE UNIT
SOT235-A-PKG Dimensions MP005-A-P-SD-1.2
mm
Seiko Instruments Inc.
4.0±0.1(10 pitches:40.0±0.2)
+0.1
ø1.5 -0
2.0±0.05
0.25±0.1
ø1.0 -0
+0.2
4.0±0.1 1.4±0.2
3.2±0.2
321
4
5
Feed direction
No. MP005-A-C-SD-2.1
TITLE No. SCALE UNIT
SOT235-A-Carrier Tape MP005-A-C-SD-2.1
mm
Seiko Instruments Inc.
12.5max.
Enlarged drawing in the central part ø13±0.2
9.0±0.3
(60°)
(60°)
No. MP005-A-R-SD-1.1
TITLE No. SCALE UNIT mm
SOT235-A-Reel MP005-A-R-SD-1.1
QTY. 3,000
Seiko Instruments Inc.
4.5±0.1 1.6±0.2
1.5±0.1
1
2
3
1.5±0.1 1.5±0.1
0.4±0.05
45°
0.4±0.1 0.45±0.1
0.4±0.1
No. UP003-A-P-SD-1.1
TITLE No. SCALE UNIT
SOT893-A-PKG Dimensions UP003-A-P-SD-1.1
mm
Seiko Instruments Inc.
ø1.5 -0
+0.1
4.0±0.1(10 pitches : 40.0±0.2)
2.0±0.05
ø1.5 +0.1 -0 5° max. 8.0±0.1 0.3±0.05 2.0±0.1
4.75±0.1
Feed direction
No. UP003-A-C-SD-1.1
TITLE No. SCALE UNIT
SOT893-A-Carrier Tape UP003-A-C-SD-1.1
mm
Seiko Instruments Inc.
16.5max.
Enlarged drawing in the central part
13.0±0.3
(60°)
(60°)
No. UP003-A-R-SD-1.1
TITLE No. SCALE UNIT mm
SOT893-A-Reel UP003-A-R-SD-1.1
QTY. 1,000
Seiko Instruments Inc.
5.2max.
4.2max.
Marked side
0.6max.
0.45±0.1
0.45±0.1
1.27
No. YS003-B-P-SD-1.1
TITLE No. SCALE UNIT
TO92-B-PKG Dimensions YS003-B-P-SD-1.1
mm
Seiko Instruments Inc.
5.2max.
4.2max.
Marked side
0.6max.
0.45±0.1 0.45±0.1
+0.4
2.5 -0.1
1.27
No. YF003-A-P-SD-1.1
TITLE No. SCALE UNIT
TO92-A-PKG Dimensions YF003-A-P-SD-1.1
mm
Seiko Instruments Inc.
1.0max.
12.7±1.0 Marked side
1.0max.
0.5max.
1#pin
3#pin 1.45max. 0.7±0.2
6.35±0.4
ø4.0±0.2
12.7±0.3(20 pitches : 254.0±1.0)
Feed direction
Marked side
Feed direction
No. YF003-A-C-SD-4.1
TITLE No. SCALE UNIT
TO92-A-Radial Tape YF003-A-C-SD-4.1
mm
Seiko Instruments Inc.
2±0.5
5±0.5 ø358±2 43±0.5 53±0.5
No. YF003-A-R-SD-2.1
TITLE No. SCALE UNIT mm
TO92-A-Reel YF003-A-R-SD-2.1
QTY. 2,000
Seiko Instruments Inc.
5.2max.
4.2max.
Marked side
0.6max.
0.45±0.1 0.45±0.1
+0.4
2.5 -0.1
1.27
No. YF003-A-P-SD-1.1
TITLE No. SCALE UNIT
TO92-C-PKG Dimensions YF003-A-P-SD-1.1
mm
Seiko Instruments Inc.
1.0max.
12.7±1.0 Marked side
1.0max.
0.5max.
1#pin
3#pin 1.45max. 0.7±0.2
6.35±0.4
ø4.0±0.2
12.7±0.3(20 pitches : 254.0±1.0)
Z type
Feed direction
No. YZ003-C-C-SD-3.1
TITLE No. SCALE UNIT
TO92-C-Radial Tape YZ003-C-C-SD-3.1
mm
Seiko Instruments Inc.
Spacer 60 320 40
Side spacer placed in front side
165
320
Space more than 4 strokes
262
330
47
No. YZ003-C-Z-SD-2.1
TITLE No. SCALE UNIT
TO92-C-Ammo Packing YZ003-C-Z-SD-2.1
QTY. 2,500
mm
Seiko Instruments Inc.
• • • • • •
The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.