0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
S-817B52AUA-CXPT2U

S-817B52AUA-CXPT2U

  • 厂商:

    SII(精工半导体)

  • 封装:

    TO243AA

  • 描述:

    ICREGLINEAR5.2V75MASOT89-3

  • 详情介绍
  • 数据手册
  • 价格&库存
S-817B52AUA-CXPT2U 数据手册
S-817 Series www.ablic.com www.ablicinc.com SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR © ABLIC Inc., 1999-2015 Rev.6.2_02 The S-817 Series is a 3-terminal positive voltage regulator, developed using CMOS technology. Small ceramic capacitors can be used as the output capacitor, and the S-817 Series provides stable operation with low loads down to 1 A. Compared with the conventional voltage regulator, it is low current consumption, and with a lineup of the super small package (SNT-4A:1.2 mm  1.6 mm). It is optimal as a power supply of small portable device.  Features  Output voltage:  Output voltage accuracy:  Dropout voltage:  Current consumption:  Output current: 1.1 V to 6.0 V, selectable in 0.1 V step 2.0% 160 mV typ. (5.0 V output product, IOUT  10 mA) During operation: 1.2 A typ., 2.5 A max. Possible to output 50 mA (3.0 V output product, VIN5 V)*1 Possible to output 75 mA (5.0 V output product, VIN7 V)*1  Output capacitor A ceramic capacitor of 0.1 F or more can be used.  Built-in short circuit protection: Only S-817A Series  Line regulation: Stable operation at low load of 1 A  Operation temperature range: Ta  40C to 85C  Lead-free, Sn 100%, halogen-free*2 *1. Attention should be paid to the power dissipation of the package when the load is large. *2. Refer to “ Product Name Structure” for details.  Applications  Constant-voltage power supply for battery-powered device  Constant-voltage power supply for personal communication device  Constant-voltage power supply for home electric appliance  Packages  SNT-4A  SC-82AB  SOT-23-5  SOT-89-3  TO-92 1 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Block Diagrams 1. S-817A Series *1 VIN VOUT   Reference voltage circuit Short circuit protection VSS *1. Parasitic diode Figure 1 2. S-817B Series *1 VIN VOUT   Reference voltage circuit VSS *1. Parasitic diode Figure 2 2 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Product Name Structure Users can select the product type, output voltage, and package type for the S-817 Series. Refer to the “1. Product name” regarding the contents of the product name, “2. Packages” regarding the package drawings, “3. Product name list” regarding details of the product name. 1. Product name 1. 1 S-817A Series 1. 1. 1 SNT-4A package S-817 A xx A PF - xxx TF U Environmental code U: Lead-free (Sn 100%), halogen-free IC direction in tape specifications*1 TF : SNT-4A Product name abbreviation*2 Package abbreviation PF : SNT-4A Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed as 15) Short circuit protection A: Yes *1. Refer to the tape drawing. *2. Refer to “3. Product name list”. 1. 1. 2 SC-82AB and SOT-23-5 packages S-817 A xx A xx - xxx T2 x Environmental code U: Lead-free (Sn 100%), halogen-free G: Lead-free (for details, please contact our sales office) IC direction in tape specifications*1 T2 : SC-82AB, SOT-23-5 Product name abbreviation*2 Package abbreviation NB : SC-82AB MC : SOT-23-5 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed as 15) Short circuit protection A: Yes *1. Refer to the tape drawing. *2. Refer to “3. Product name list”. 3 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 1. 2 S-817B Series 1. 2. 1 SOT-23-5 and SOT-89-3 packages S-817 B xx A xx - xxx T2 x Environmental code U: Lead-free (Sn 100%), halogen-free G: Lead-free (for details, please contact our sales office) IC direction in tape specifications*1 T2 : SOT-23-5, SOT-89-3 Product name abbreviation*2 Package abbreviation MC : SOT-23-5 UA : SOT-89-3 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed as 15) Short circuit protection B: No *1. Refer to the tape drawing. *2. Refer to “3. Product name list”. 1. 2. 2 TO-92 package S-817 B xx A Y - x 2 - U Environmental code U: Lead-free (Sn 100%), halogen-free Packing form B: Bulk Z: Tape and ammo Package abbreviation Y: TO-92 Output voltage 11 to 60 (e.g. When the output voltage is 1.5 V, it is expressed as 15) Short circuit protection B: No 4 Rev.6.2_02 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series 2. Packages Package name SNT-4A Package PF004-A-P-SD SC-82AB NP004-A-P-SD SOT-23-5 SOT-89-3 TO-92 (Bulk) TO-92 (Tape and ammo) MP005-A-P-SD UP003-A-P-SD YS003-D-P-SD YZ003-E-P-SD Drawing code Tape Reel Zigzag Land PF004-A-C-SD PF004-A-R-SD PF004-A-L-SD  NP004-A-C-SD NP004-A-R-SD   NP004-A-C-S1 MP005-A-C-SD MP005-A-R-SD   UP003-A-C-SD UP003-A-R-SD       YZ003-E-C-SD YZ003-E-Z-SD   5 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 3. Product name list 3. 1 S-817A Series Table 1 Output voltage 1.1 V  2.0% 1.2 V  2.0% 1.3 V  2.0% 1.4 V  2.0% 1.5 V  2.0% 1.6 V  2.0% 1.7 V  2.0% 1.8 V  2.0% 1.9 V  2.0% 2.0 V  2.0% 2.1 V  2.0% 2.2 V  2.0% 2.3 V  2.0% 2.4 V  2.0% 2.5 V  2.0% 2.6 V  2.0% 2.7 V  2.0% 2.8 V  2.0% 2.9 V  2.0% 3.0 V  2.0% 3.1 V  2.0% 3.2 V  2.0% 3.3 V  2.0% 3.4 V  2.0% 3.5 V  2.0% 3.6 V  2.0% 3.7 V  2.0% 3.8 V  2.0% 3.9 V  2.0% 4.0 V  2.0% 4.1 V  2.0% 4.2 V  2.0% 4.3 V  2.0% 4.4 V  2.0% 4.5 V  2.0% 4.6 V  2.0% 4.7 V  2.0% 4.8 V  2.0% 4.9 V  2.0% 5.0 V  2.0% 5.1 V  2.0% 5.2 V  2.0% 5.3 V  2.0% 5.4 V  2.0% 5.5 V  2.0% 5.6 V  2.0% 5.7 V  2.0% 5.8 V  2.0% 5.9 V  2.0% 6.0 V  2.0% SNT-4A S-817A11APF-CUATFU S-817A12APF-CUBTFU S-817A13APF-CUCTFU S-817A14APF-CUDTFU S-817A15APF-CUETFU S-817A16APF-CUFTFU S-817A17APF-CUGTFU S-817A18APF-CUHTFU S-817A19APF-CUITFU S-817A20APF-CUJTFU S-817A21APF-CUKTFU S-817A22APF-CULTFU S-817A23APF-CUMTFU S-817A24APF-CUNTFU S-817A25APF-CUOTFU S-817A26APF-CUPTFU S-817A27APF-CUQTFU S-817A28APF-CURTFU S-817A29APF-CUSTFU S-817A30APF-CUTTFU S-817A31APF-CUUTFU S-817A32APF-CUVTFU S-817A33APF-CUWTFU S-817A34APF-CUXTFU S-817A35APF-CUYTFU S-817A36APF-CUZTFU S-817A37APF-CVATFU S-817A38APF-CVBTFU S-817A39APF-CVCTFU S-817A40APF-CVDTFU S-817A41APF-CVETFU S-817A42APF-CVFTFU S-817A43APF-CVGTFU S-817A44APF-CVHTFU S-817A45APF-CVITFU S-817A46APF-CVJTFU S-817A47APF-CVKTFU S-817A48APF-CVLTFU S-817A49APF-CVMTFU S-817A50APF-CVNTFU S-817A51APF-CVOTFU S-817A52APF-CVPTFU S-817A53APF-CVQTFU S-817A54APF-CVRTFU S-817A55APF-CVSTFU S-817A56APF-CVTTFU S-817A57APF-CVUTFU S-817A58APF-CVVTFU S-817A59APF-CVWTFU S-817A60APF-CVXTFU SC-82AB S-817A11ANB-CUAT2x S-817A12ANB-CUBT2x S-817A13ANB-CUCT2x S-817A14ANB-CUDT2x S-817A15ANB-CUET2x S-817A16ANB-CUFT2x S-817A17ANB-CUGT2x S-817A18ANB-CUHT2x S-817A19ANB-CUIT2x S-817A20ANB-CUJT2x S-817A21ANB-CUKT2x S-817A22ANB-CULT2x S-817A23ANB-CUMT2x S-817A24ANB-CUNT2x S-817A25ANB-CUOT2x S-817A26ANB-CUPT2x S-817A27ANB-CUQT2x S-817A28ANB-CURT2x S-817A29ANB-CUST2x S-817A30ANB-CUTT2x S-817A31ANB-CUUT2x S-817A32ANB-CUVT2x S-817A33ANB-CUWT2x S-817A34ANB-CUXT2x S-817A35ANB-CUYT2x S-817A36ANB-CUZT2x S-817A37ANB-CVAT2x S-817A38ANB-CVBT2x S-817A39ANB-CVCT2x S-817A40ANB-CVDT2x S-817A41ANB-CVET2x S-817A42ANB-CVFT2x S-817A43ANB-CVGT2x S-817A44ANB-CVHT2x S-817A45ANB-CVIT2x S-817A46ANB-CVJT2x S-817A47ANB-CVKT2x S-817A48ANB-CVLT2x S-817A49ANB-CVMT2x S-817A50ANB-CVNT2x S-817A51ANB-CVOT2x S-817A52ANB-CVPT2x S-817A53ANB-CVQT2x S-817A54ANB-CVRT2x S-817A55ANB-CVST2x S-817A56ANB-CVTT2x S-817A57ANB-CVUT2x S-817A58ANB-CVVT2x S-817A59ANB-CVWT2x S-817A60ANB-CVXT2x SOT-23-5    S-817A14AMC-CUDT2x  S-817A16AMC-CUFT2x                                             Remark 1. Please contact our sales office for products other than the above. 2. x: G or U 3. Please select products of environmental code = U for Sn 100%, halogen-free products. 6 Rev.6.2_02 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series 3. 2 S-817B Series Table 2 Output voltage 1.1 V  2.0% 1.2 V  2.0% 1.3 V  2.0% 1.4 V  2.0% 1.5 V  2.0% 1.6 V  2.0% 1.7 V  2.0% 1.8 V  2.0% 1.9 V  2.0% 2.0 V  2.0% 2.1 V  2.0% 2.2 V  2.0% 2.3 V  2.0% 2.4 V  2.0% 2.5 V  2.0% 2.6 V  2.0% 2.7 V  2.0% 2.8 V  2.0% 2.9 V  2.0% 3.0 V  2.0% 3.1 V  2.0% 3.2 V  2.0% 3.3 V  2.0% 3.4 V  2.0% 3.5 V  2.0% 3.6 V  2.0% 3.7 V  2.0% 3.8 V  2.0% 3.9 V  2.0% 4.0 V  2.0% 4.1 V  2.0% 4.2 V  2.0% 4.3 V  2.0% 4.4 V  2.0% 4.5 V  2.0% 4.6 V  2.0% 4.7 V  2.0% 4.8 V  2.0% 4.9 V  2.0% 5.0 V  2.0% 5.1 V  2.0% 5.2 V  2.0% 5.3 V  2.0% 5.4 V  2.0% 5.5 V  2.0% 5.6 V  2.0% 5.7 V  2.0% 5.8 V  2.0% 5.9 V  2.0% 6.0 V  2.0% SOT-23-5 S-817B11AMC-CWAT2x S-817B12AMC-CWBT2x S-817B13AMC-CWCT2x S-817B14AMC-CWDT2x S-817B15AMC-CWET2x S-817B16AMC-CWFT2x S-817B17AMC-CWGT2x S-817B18AMC-CWHT2x S-817B19AMC-CWIT2x S-817B20AMC-CWJT2x S-817B21AMC-CWKT2x S-817B22AMC-CWLT2x S-817B23AMC-CWMT2x S-817B24AMC-CWNT2x S-817B25AMC-CWOT2x S-817B26AMC-CWPT2x S-817B27AMC-CWQT2x S-817B28AMC-CWRT2x S-817B29AMC-CWST2x S-817B30AMC-CWTT2x S-817B31AMC-CWUT2x S-817B32AMC-CWVT2x S-817B33AMC-CWWT2x S-817B34AMC-CWXT2x S-817B35AMC-CWYT2x S-817B36AMC-CWZT2x S-817B37AMC-CXAT2x S-817B38AMC-CXBT2x S-817B39AMC-CXCT2x S-817B40AMC-CXDT2x S-817B41AMC-CXET2x S-817B42AMC-CXFT2x S-817B43AMC-CXGT2x S-817B44AMC-CXHT2x S-817B45AMC-CXIT2x S-817B46AMC-CXJT2x S-817B47AMC-CXKT2x S-817B48AMC-CXLT2x S-817B49AMC-CXMT2x S-817B50AMC-CXNT2x S-817B51AMC-CXOT2x S-817B52AMC-CXPT2x S-817B53AMC-CXQT2x S-817B54AMC-CXRT2x S-817B55AMC-CXST2x S-817B56AMC-CXTT2x S-817B57AMC-CXUT2x S-817B58AMC-CXVT2x S-817B59AMC-CXWT2x S-817B60AMC-CXXT2x SOT-89-3 S-817B11AUA-CWAT2x S-817B12AUA-CWBT2x S-817B13AUA-CWCT2x S-817B14AUA-CWDT2x S-817B15AUA-CWET2x S-817B16AUA-CWFT2x S-817B17AUA-CWGT2x S-817B18AUA-CWHT2x S-817B19AUA-CWIT2x S-817B20AUA-CWJT2x S-817B21AUA-CWKT2x S-817B22AUA-CWLT2x S-817B23AUA-CWMT2x S-817B24AUA-CWNT2x S-817B25AUA-CWOT2x S-817B26AUA-CWPT2x S-817B27AUA-CWQT2x S-817B28AUA-CWRT2x S-817B29AUA-CWST2x S-817B30AUA-CWTT2x S-817B31AUA-CWUT2x S-817B32AUA-CWVT2x S-817B33AUA-CWWT2x S-817B34AUA-CWXT2x S-817B35AUA-CWYT2x S-817B36AUA-CWZT2x S-817B37AUA-CXAT2x S-817B38AUA-CXBT2x S-817B39AUA-CXCT2x S-817B40AUA-CXDT2x S-817B41AUA-CXET2x S-817B42AUA-CXFT2x S-817B43AUA-CXGT2x S-817B44AUA-CXHT2x S-817B45AUA-CXIT2x S-817B46AUA-CXJT2x S-817B47AUA-CXKT2x S-817B48AUA-CXLT2x S-817B49AUA-CXMT2x S-817B50AUA-CXNT2x S-817B51AUA-CXOT2x S-817B52AUA-CXPT2x S-817B53AUA-CXQT2x S-817B54AUA-CXRT2x S-817B55AUA-CXST2x S-817B56AUA-CXTT2x S-817B57AUA-CXUT2x S-817B58AUA-CXVT2x S-817B59AUA-CXWT2x S-817B60AUA-CXXT2x *1 TO-92 S-817B11AY-n2-U S-817B12AY-n2-U S-817B13AY-n2-U S-817B14AY-n2-U S-817B15AY-n2-U S-817B16AY-n2-U S-817B17AY-n2-U S-817B18AY-n2-U S-817B19AY-n2-U S-817B20AY-n2-U S-817B21AY-n2-U S-817B22AY-n2-U S-817B23AY-n2-U S-817B24AY-n2-U S-817B25AY-n2-U S-817B26AY-n2-U S-817B27AY-n2-U S-817B28AY-n2-U S-817B29AY-n2-U S-817B30AY-n2-U S-817B31AY-n2-U S-817B32AY-n2-U S-817B33AY-n2-U S-817B34AY-n2-U S-817B35AY-n2-U S-817B36AY-n2-U S-817B37AY-n2-U S-817B38AY-n2-U S-817B39AY-n2-U S-817B40AY-n2-U S-817B41AY-n2-U S-817B42AY-n2-U S-817B43AY-n2-U S-817B44AY-n2-U S-817B45AY-n2-U S-817B46AY-n2-U S-817B47AY-n2-U S-817B48AY-n2-U S-817B49AY-n2-U S-817B50AY-n2-U S-817B51AY-n2-U S-817B52AY-n2-U S-817B53AY-n2-U S-817B54AY-n2-U S-817B55AY-n2-U S-817B56AY-n2-U S-817B57AY-n2-U S-817B58AY-n2-U S-817B59AY-n2-U S-817B60AY-n2-U *1. “n” changes according to the packing form in TO-92. B: Bulk, Z: Tape and ammo. Remark 1. x: G or U 2. Please select products of environmental code = U for Sn 100%, halogen-free products. 7 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Pin Configurations Table 3 SNT-4A Top view 1 4 2 3 Pin No. Symbol Description 1 VOUT Output voltage pin 2 VIN Input voltage pin 3 VSS GND pin NC*1 No connection 4 *1. The NC pin is electrically open. The NC pin can be connected to the VIN pin or the VSS pin. Figure 3 Table 4 SC-82AB Top view 4 3 1 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin NC*1 No connection 4 *1. The NC pin is electrically open. The NC pin can be connected to the VIN pin or the VSS pin. 2 Figure 4 Table 5 SOT-23-5 Top view 5 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin 4 NC*1 No connection *1 5 NC No connection *1. The NC pin is electrically open. The NC pin can be connected to the VIN pin or the VSS pin. 4 1 2 3 Figure 5 SOT-89-3 Top view 1 2 3 Figure 6 8 Table 6 Pin No. 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 Table 7 TO-92 Bottom view Pin No. 1 2 3 1 2 3 Symbol VSS VIN VOUT Description GND pin Input voltage pin Output voltage pin Figure 7  Absolute Maximum Ratings Table 8 (Ta25C unless otherwise specified) Item Symbol Absolute Maximum Rating VIN VOUT VSS0.3 to VSS12 VSS0.3 to VIN0.3 300*1 150 (When not mounted on board) 400*1 250 (When not mounted on board) 600*1 500 (When not mounted on board) 1000*1 400 (When not mounted on board) 800*1 40 to 85 40 to 125 Input voltage Output voltage SNT-4A SC-82AB Power dissipation SOT-23-5 PD SOT-89-3 TO-92 Operation temperature range Storage temperature Topr Tstg Unit V V mW mW mW mW mW mW mW mW mW C C *1. When mounted on board [Mounted board] (1) Board size : 114.3 mm  76.2 mm  t1.6 mm (2) Board name : JEDEC STANDARD51-7 Power dissipation (PD) [mW] Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. 1200 SOT-89-3 1000 TO-92 800 SOT-23-5 600 SC-82AB 400 200 0 SNT-4A 0 150 100 50 Ambient temperature (Ta) [C] Figure 8 Power dissipation of the package (When mounted on board) 9 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Electrical Characteristics 1. S-817A Series Table 9 Item Symbol Output voltage*1 VOUT(E) Output current*2 IOUT Dropout voltage*3 Vdrop Line regulation 1 VOUT1 Line regulation 2 VOUT2 VOUT3 Load regulation Condition VINVOUT(S)2 V, IOUT10 mA 1.1 V  VOUT(S)  1.9 V 2.0 V  VOUT(S)  2.9 V VOUT(S)2 V 3.0 V  VOUT(S)  3.9 V  VIN10 V 4.0 V  VOUT(S)  4.9 V 5.0 V  VOUT(S)  6.0 V 1.1 V  VOUT(S)  1.4 V 1.5 V  VOUT(S)  1.9 V 2.0 V  VOUT(S)  2.4 V 2.5 V  VOUT(S)  2.9 V 3.0 V  VOUT(S)  3.4 V IOUT  10 mA 3.5 V  VOUT(S)  3.9 V 4.0 V  VOUT(S)  4.4 V 4.5 V  VOUT(S)  4.9 V 5.0 V  VOUT(S)  5.4 V 5.5 V  VOUT(S)  6.0 V VOUT(S)  1 V  VIN  10 V, IOUT  1 mA VOUT(S)  1 V  VIN  10 V, IOUT  1 A 1.1 V  VOUT(S)  1.9 V, 1 A  IOUT  10 mA 2.0 V  VOUT(S)  2.9 V, 1 A  IOUT  20 mA VINVOUT(S) 3.0 V  VOUT(S)  3.9 V, 2V 1 A  IOUT  30 mA 4.0 V  VOUT(S)  4.9 V, 1 A  IOUT  40 mA 5.0 V  VOUT(S)  6.0 V, 1 A  IOUT  50 mA VIN  VOUT(S)  1 V, IOUT  10 mA, 40C  Ta  85C VIN  VOUT(S)  2 V, no load  VIN  VOUT(S)  2 V, VOUT pin  0 V (Ta25C unless otherwise specified) Measurement Min. Typ. Max. Unit circuit VOUT(S) VOUT(S) V V 1  0.98 OUT(S)  1.02 20   mA 3 35   50   65   75   0.92 1.58 V 1  0.58 0.99  0.40 0.67  0.31 0.51  0.25 0.41  0.22 0.35  0.19 0.30  0.18 0.27  0.16 0.25  0.15 0.23   5 20  5 20  5 20  10 30  20 45  25 65  35 80 mV VOUT Output voltage ppm  100  /C temperature coefficient*4 Ta  VOUT Current consumption ISS  1.2 2.5 A 2 Input voltage VIN   10 V 1 Short current limit IOS  40  mA 3 *1. VOUT(S)Set output voltage VOUT(E)Actual output voltage Output voltage when fixing IOUT(10 mA) and inputting VOUT(S)2.0 V. *2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current. *3. Vdrop  VIN1(VOUT(E)  0.98) VIN1 is the input voltage at which the output voltage becomes 98% of VOUT(E) after gradually decreasing the input voltage. *4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation. VOUT VOUT *1 *2 *3 ppm/ C  1000 mV/ C  VOUT(S) V  Ta  VOUT Ta *1. Change in temperature of output voltage *2. Set output voltage *3. Output voltage temperature coefficient 10       SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 2. S-817B Series Table 10 Item Symbol Output voltage*1 Condition VINVOUT(S)2 V, IOUT10 mA VOUT(E) Output current*2 IOUT Dropout voltage*3 Vdrop Line regulation 1 VOUT1 Line regulation 2 VOUT2 VOUT3 Load regulation VOUT(S)2 V 1.1 V  VOUT(S)  1.9 V  VIN10 V 2.0 V  VOUT(S)  2.9 V 3.0 V  VOUT(S)  3.9 V 4.0 V  VOUT(S)  4.9 V 5.0 V  VOUT(S)  6.0 V IOUT  10 1.1 V  VOUT(S)  1.4 V mA 1.5 V  VOUT(S)  1.9 V 2.0 V  VOUT(S)  2.4 V 2.5 V  VOUT(S)  2.9 V 3.0 V  VOUT(S)  3.4 V 3.5 V  VOUT(S)  3.9 V 4.0 V  VOUT(S)  4.4 V 4.5 V  VOUT(S)  4.9 V 5.0 V  VOUT(S)  5.4 V 5.5 V  VOUT(S)  6.0 V VOUT(S)  1 V  VIN  10 V, IOUT  1 mA VOUT(S)  1 V  VIN  10 V, IOUT  1 A VINVOUT(S) 1.1 V  VOUT(S)  1.9 V, 1 A  IOUT  10 mA 2V 2.0 V  VOUT(S)  2.9 V, 1 A  IOUT  20 mA 3.0 V  VOUT(S)  3.9 V, 1 A  IOUT  30 mA 4.0 V  VOUT(S)  4.9 V, 1 A  IOUT  40 mA 5.0 V  VOUT(S)  6.0 V, 1 A  IOUT  50 mA VIN  VOUT(S)  1 V, IOUT  10 mA, 40C  Ta  85C VIN  VOUT(S)  2 V, no load  (Ta25C unless otherwise specified) Measurement Min. Typ. Max. Unit circuit VOUT(S) VOUT(S) V V 1  0.98 OUT(S)  1.02 20   mA 3 35   50   65   75    0.92 1.58          0.58 0.40 0.31 0.25 0.22 0.19 0.18 0.16 0.15 0.99 0.67 0.51 0.41 0.35 0.30 0.27 0.25 0.23  5 20  5 20  5 20  10 30  20 45  25 65  35 80 V 1 mV VOUT ppm Output voltage  100  /C temperature coefficient*4 Ta  VOUT Current consumption ISS  1.2 2.5 A 2 Input voltage VIN   10 V 1 *1. VOUT(S)Set output voltage VOUT(E)Actual output voltage Output voltage when fixing IOUT(10 mA) and inputting VOUT(S)2.0 V. *2. The output current at which the output voltage becomes 95% of VOUT(E) after gradually increasing the output current. *3. Vdrop  VIN1(VOUT(E)  0.98) VIN1 is the input voltage at which the output voltage becomes 98% of VOUT(E) after gradually decreasing the input voltage. *4. A change in the temperature of the output voltage [mV/°C] is calculated using the following equation. VOUT VOUT *1 *2 *3 mV/ C  VOUT(S) V  ppm/ C  1000 Ta Ta  VOUT *1. Change in temperature of output voltage *2. Set output voltage *3. Output voltage temperature coefficient       11 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Measurement Circuits 1. VIN  VOUT A  V VSS Figure 9 2. + A VIN VOUT VSS Figure 10 3.  VOUT VIN A  V VSS Figure 11  Standard Circuit Input Output VIN CIN*1 VOUT VSS Single GND CL*2 GND *1. CIN is a capacitor for stabilizing the input. *2. In addition to tantalum capacitor, a ceramic capacitor of 0.1 F or more can be used as CL. Figure 12 Caution The above connection diagram and constant will not guarantee successful operation. Perform through evaluation using the actual application to set the constant. 12 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Explanation of Terms 1. Low ESR ESR is the abbreviation for Equivalent Series Resistance. Low ESR can be used as the output capacitor (CL) in the S-817 Series. 2. Output voltage (VOUT) The accuracy of the output voltage is 2.0% guaranteed under the specified conditions for input voltage, which differs depending upon the product items, output current, and temperature. Caution If the above conditions change, the output voltage value may vary and exceed the accuracy range of the output voltage. Refer to “ Electrical Characteristics” and “ Characteristics (Typical Data)” for details. 3. Line regulations 1 and 2 (VOUT1, VOUT2) Indicate the input voltage dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the input voltage with the output current remained unchanged. 4. Load regulation (VOUT3) Indicates the output current dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the output current with the input voltage remained unchanged. 5. Dropout voltage (Vdrop) Indicates the difference between input voltage (VIN1) and the output voltage when; decreasing input voltage (VIN) gradually until the output voltage has dropped out to the value of 98% of the actual output voltage (VOUT(E)). Vdrop  VIN1(VOUT(E)  0.98) 13 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 VOUT  6. Output voltage temperature coefficient  Ta  VOUT  The shaded area in Figure 13 is the range where VOUT varies in the operation temperature range when the output voltage temperature coefficient is 100 ppm/C. Example of S-817A15 typ. product VOUT [V] 0.15 mV/C VOUT(E)*1 0.15 mV/C 40 25 85 Ta [C] *1. VOUT(E) is the value of the output voltage measured at Ta = 25C. Figure 13 A change in the temperature of the output voltage [mV/°C] is calculated using the following equation. V VOUT [mV/°C]*1 = VOUT(S) [V]*2  Ta OUT [ppm/°C]*3  1000 Ta VOUT *1. Change in temperature of output voltage *2. Set output voltage *3. Output voltage temperature coefficient 14 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Operation 1. Basic Operation Figure 14 shows the block diagram of the S-817 Series. The error amplifier compares the reference voltage (Vref) with feedback voltage (Vfb), which is the output voltage resistance-divided by feedback resistors (Rs and Rf). It supplies the gate voltage necessary to maintain the constant output voltage which is not influenced by the input voltage and temperature change, to the output transistor. VIN *1 Current supply Error amplifier Vref VOUT  Rf  Vfb Reference voltage circuit Rs VSS *1. Parasitic diode Figure 14 2. Output Transistor In the S-817 Series, a low on-resistance P-channel MOS FET is used as the output transistor. Be sure that VOUT does not exceed VIN0.3 V to prevent the voltage regulator from being damaged due to reverse current flowing from VOUT pin through a parasitic diode to VIN pin, when the potential of VOUT became higher than VIN. 3. Short Circuit Protection The S-817A Series incorporates a short circuit protection to protect the output transistor against short circuit between VOUT pin and VSS pin. The short-circuit protection controls output current against VOUT voltage as shown in “1. Output Voltage vs. Output Current (When load current increases)” in “ Characteristics (Typical Data)”, and suppresses output current at about 40 mA even if VOUT and VSS pins are short-circuited. The short-circuit protection can not be a thermal protection at the same time. Attention should be paid to the input voltage and the load current under the actual condition so as not to exceed the power dissipation of the package including the case for short-circuit. When the output current is large and the difference between input and output voltage is large even if not shorted, the short-circuit protection works and the output current is suppressed to the specified value. For details, refer to “3. Maximum Output Current vs. Input Voltage” in “ Characteristics (Typical Data)”. In addition, the S-817B Series is removing a short-circuit protection, and is the product which enabled it to pass large current. 15 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Selection of Output Capacitor (CL) To stabilize operation against variation in output load, an output capacitor (CL) must be mounted between VOUT and VSS in the S-817 Series because the phase is compensated with the help of the internal phase compensation circuit and the ESR of the output capacitor. When selecting a ceramic or an OS capacitor, the capacitance should be 0.1 F or more, and when selecting a tantalum or an aluminum electrolytic capacitor, the capacitance should be 0.1 F or more and ESR of 30  or less is required. Attention should be especially paid when an aluminum electrolytic capacitor is used since the ESR may increase at low temperature and has a possibility that oscillation may become large. Sufficient evaluation including temperature characteristics is indispensable. Overshoot and undershoot characteristics differ depending upon the type of the output capacitor. Refer to CL dependencies of “1. Transient Response Characteristics (Typical data, Ta25C)” in “ Reference Data”.  Application Circuits 1. Output Current Boosting Circuit Tr1 VIN R1 CIN VIN S-817 Series VSS VOUT VOUT R2 CL GND Figure 15 As shown in Figure 15, the output current can be boosted by externally attaching a PNP transistor. The base current of the PNP transistor is controlled so that output voltage (VOUT) goes the voltage specified in the S-817 Series when base-emitter voltage (VBE) necessary to turn on the PNP transistor is obtained between input voltage (VIN) and the S-817 Series power source pin (VIN). The following are tips and hints for selecting and ensuring optimum use of external parts  PNP transistor (Tr1): 1. Set hFE to approx. 100 to 400. 2. Confirm that no problem occurs due to power dissipation under normal operation conditions.  Resistor (R1): Generally set R1 to 1 k  VOUT(S) (the voltage set in the S-817 Series) or more.  Output capacitor (CL): Output capacitor (CL) is effective in minimizing output fluctuation at power-on or due to power or load fluctuation, but oscillation might occur. Always connect resistor R2 in series to output capacitor (CL).  Resistor (R2): Set R2 to 2   VOUT(S) or more.  DO NOT attach a capacitor between the S-817 Series power source (VIN) and GND pins or between base-emitter of the PNP transistor to avoid oscillation.  To improve transient response characteristics of the output current boosting circuit shown in Figure 15, check that no problem occurs due to output fluctuation at power-on or due to power or load fluctuation under normal operating conditions.  Pay attention to the short current limit circuit incorporated into the S-817 Series because it does not function as a shortcircuiting protection circuit for this boosting circuit. 16 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 The following graphs show the examples of input-output voltage characteristics (Ta25C, typ.) in the output current boosting circuit as seen in Figure 15: 1. 1 S-817A11ANB/S-817B11AMC 1. 2 S-817A50ANB/S-817B50AMC Tr1 : 2SA1213Y, R1 : 1 k, CL : 10 F, R2 : 2  Tr1 : 2SA1213Y, R1 : 200 , CL : 10 F, R2 : 10  1.20 5.20 100 mA 1.10 5.10 50 mA 0.90 5.00 10 mA 1 mA VOUT (V) VOUT (V) 1.00 800 mA 600 mA 0.80 4.90 10 mA 4.80 800 mA 5 mA 600 mA 400 mA 0.70 1.5 1.6 1.7 1.8 1.9 2 2.1 400 mA 4.70 200 mA 0.60 1.4 100 mA 50 mA 200 mA 2.2 2.3 4.60 2.4 5.2 5.3 5.4 VIN (V) 5.5 5.6 5.7 5.8 5.9 VIN (V) 2. Constant Current Circuits 2. 1 Constant Current Circuit VIN VIN VOUT S-817 Series RL VSS VO IO CIN Device VO GND Figure 16 2. 2 Constant Current Boosting Circuit Tr1 VIN S-817 R1 VOUT Series VSS RL VO IO CIN VO GND Device Figure 17 17 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 The S-817 Series can be configured as a constant current circuit. Refer to Figure 16 and Figure 17. Constant amperage (IO) is calculated using the following equation (VOUT(E): Actual output voltage): IO  (VOUT(E)  RL) ISS. Note that by using a circuit in Figure 16, it is impossible to set the better driving ability to the constant amperage (IO) than the S-817 Series basically has. To gain the driving ability which exceeds the S-817 Series, there’s a way to combine a constant current circuit and a current boosting circuit, as seen in Figure 17. The maximum input voltage for a constant current circuit is 10 V + the voltage for device (VO). It is not recommended to add a capacitor between the VIN (power supply) and VSS pin or the VOUT (output) and VSS pin because the rush current flows at power-on. The following is a characteristics example of input voltage between VIN and VO vs. IO current (Typ. Ta = 25C) in constant current boosting circuit in Figure 17. Input voltage - IO current between VIN and VO S-817A11ANB, S-817B11AMC, Tr : 2SK1213Y, R1 : 1 k, VO2 V 0.60 RL1.83  0.50 2.2  IO(A) 0.40 2.75  3.67  0.30 0.20 5.5  11  0.10 0.00 1.4 1.6 1.8 2 VINVO(V) 18 2.2 2.4 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 3. Output Voltage Adjustment Circuit (Only for S-817B Series (Product without short circuit protection)) V IN VIN S-817 VO VOUT Series VSS R1 C1 R2 CL C IN GND Figure 18 The output voltage can be boosted by using the configuration shown in Figure 18. The output voltage (VO) can be calculated using the following equation (VOUT(E):Actual output voltage): VO  VOUT(E)  (R1  R2)  R1  R2  ISS Set the values of resistors R1 and R2 so that the S-817 Series is not affected by current consumption (ISS). Capacitor C1 is effective in minimizing output fluctuation at power-on or due to power or load fluctuation. Determine the optimum value on your actual device. As shown in Figure 18, a capacitor must be mounted between VIN and GND, and between VOUT and GND. But it is not also recommended to attach a capacitor between the S-817 Series power source VIN and VSS pin or between output VOUT and VSS pin because output fluctuation or oscillation at power-on might occur.  Precautions  Wiring patterns for the VIN pin, the VOUT pin and GND should be designed so that the impedance is low. When mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing the input between the VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as short as possible.  Note that generally the output voltage may increase when a series regulator is used at low load current (1.0 A or less).  Generally a series regulator may cause oscillation, depending on the selection of external parts. The following conditions are recommended for the S-817 Series. However, be sure to perform sufficient evaluation under the actual usage conditions for selection, including evaluation of temperature characteristics. Output capacitor (CL) : Equivalent Series Resistance (ESR) : Input series resistance (RIN) : 0.1 F or more 30  or less 10  or less  The voltage regulator may oscillate when the impedance of the power supply is high and the input capacitance is small or an input capacitor is not connected.  Overshoot may occur in the output voltage momentarily if the voltage is rapidly raised at power-on or when the power supply fluctuates. Sufficiently evaluate the output voltage at power-on with the actual device.  The application conditions for the input voltage, the output voltage, and the load current should not exceed the package power dissipation.  Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.  ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party. 19 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Characteristics (Typical Data) 1. Output Voltage vs. Output Current (When load current increases) (a) S-817A Series S-817A11A (Ta=25°C) S-817A20A (Ta=25°C) 1.2 2.5 8V 0.9 VIN= 1.5V 0.6 V OUT (V) 0.3 10V 2.0 3.1V 3V 1.5 4.1V 2.1V V OUT (V) 1.0 4V 0.5 VIN= 2.4V 0.0 0.0 0 20 40 60 IOUT (mA) 0 80 S-817A30A (Ta=25 °C) 2.5 4V 1.0 0.0 0 90 120 10V 4.0 6V 6V 8V V OUT 3.0 (V) 2.0 10V VIN= 3.4V 0.5 60 IOUT (mA) 5.0 5V 2.0 30 S-817A50A (Ta=25 °C) 3.0 V OUT 1.5 (V) 5V VIN=5.4V 7V 1.0 30 60 90 IOUT (mA) 120 0.0 150 0 40 80 120 IOUT (mA) 160 200 (b) S-817B Series S-817B11A (Ta=25°C) S-817B20A (Ta=25°C) 2.5 1.2 8V 0.9 4.1V VOUT (V) 0.6 1.5 3.1V VOUT (V) 2.1V 0.3 VIN= 1.5V 0.0 3V 4V 0.5 50 100 150 IOUT (mA) 200 250 S-817B30A (Ta=25°C) 0 50 100 150 200 250 IOUT (mA) 5.0 3.0 10V 2.0 1.5 5V 1.0 VIN= 3.4V 0.5 10V 4.0 4V 2.5 300 S-817B50A (Ta=25°C) 3.5 7V 3.0 VOUT (V) 2.0 6V 8V 6V VIN=5.4V 1.0 0.0 0.0 0 20 5V 1.0 0.0 0 VOUT (V) 10V VIN=2.4V 2.0 50 100 150 200 IOUT (mA) 250 300 0 50 100 150 200 IOUT (mA) 250 300 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 2. Output Voltage vs. Input Voltage S-817A11A/S-817B11A (Ta=25°C) 1.5 S-817A20A/S-817B20A (Ta=25°C) 2.5 IOUT =1A IOUT =1A 2.0 1.0 50mA 1.5 V OUT (V) 0.5 V OUT (V) 1.0 1mA 10mA 20mA 10mA 0.5 20mA 1mA 0.0 0.0 0 2 4 6 VIN (V) 8 3.5 4.0 50mA 10mA 2.0 V OUT (V) 1.5 0 2 8 10 4 8 10 20mA 1mA 1.0 IOUT =1A 0.0 6 VIN (V) IOUT =1A 0.0 6 VIN (V) 8 10 50mA 10mA V OUT 3.0 (V) 2.0 1mA 1.0 0.5 4 5.0 20mA 2.5 2 S-817A50A/S-817B50A (Ta=25°C) S-817A30A/S-817B30A (Ta=25°C) 3.0 0 10 0 2 4 6 VIN (V) 21 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 3. Maximum Output Current vs. Input Voltage (a) S-817A Series S-817A11A S-817A20A 100 120 25°C Ta=-40°C 80 Ta=-40°C 100 80 60 I OUT max.(mA) 40 I OUT max.(mA) 60 85°C 25°C 40 20 85°C 20 0 0 0 2 4 6 8 VIN (V) 1 10 3 5 7 VIN (V) 9 S-817A50A S-817A30A 250 180 25°C 150 120 25°C 200 Ta=-40°C I OUT 90 max.(mA) 85°C 60 Ta=-40°C I OUT 150 max.(mA)100 85°C 50 30 0 0 2 4 6 8 VIN (V) 4 10 6 8 VIN (V) 10 (b) S-817B Series S-817B20A S-817B11A 300 300 250 IOUT 250 Ta=-40°C 200 200 25°C 150 25°C IOUT 150 max.(mA) max.(mA) 100 100 85°C 50 85°C 50 0 0 0 2 4 6 8 VIN (V) 0 10 S-817B30A 2 4 6 8 VIN (V) 10 S-817B50A 300 300 250 250 Ta=-40°C 200 IOUT 25°C IOUT 150 max.(mA) Ta=-40°C 25°C 200 150 max.(mA) 100 85°C 100 85°C 50 50 0 0 2 22 Ta=-40°C 4 6 VIN (V) 8 10 4 6 VIN (V) 8 10 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 4. Dropout Voltage vs. Output Current S-817A11A/S-817B11A S-817A20A/S-817B20A 2000 25°C 1500 85°C Vdrop (mV) Vdrop (mV) 2000 1000 500 Ta=-40°C 5 10 IOUT (mA) 15 85°C 1000 500 Ta=-40°C 0 0 25°C 1500 0 20 S-817A30A/S-817B30A 0 10 20 IOUT (mA) 30 40 S-817A50A/S-817B50A 1000 85°C 1200 85°C 800 25°C Vdrop (mV) Vdrop (mV) 1600 800 400 Ta=-40°C 0 25°C 600 400 200 Ta=-40°C 0 0 10 20 30 IOUT (mA) 40 50 0 10 20 30 IOUT (mA) 40 50 5. Output Voltage vs. Ambient Temperature S-817A11A/S-817B11A VIN=3.1V, IOUT=10mA 1.12 S-817A20A/S-817B20A 2.02 VOUT (V) VOUT (V) 1.11 1.10 2.00 1.09 1.98 1.08 1.96 -50 0 S-817A30A/S-817B30A Ta (°C) 50 -50 100 VIN=5V, IOUT=10mA 3.06 0 S-817A50A/S-817B50A Ta (°C) 50 100 VIN=7V, IOUT=10mA 5.10 5.05 VOUT (V) 3.03 VOUT (V) VIN=4V, IOUT=10mA 2.04 3.00 5.00 4.95 2.97 4.90 2.94 -50 0 Ta (°C) 50 100 -50 0 Ta (°C) 50 100 23 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series 6. Line Regulation 1 vs. Ambient Temperature S-817A11/20/30/50A S-817B11/20/30/50A 30 7. Line Regulation 2 vs. Ambient Temperature VIN=VOUT(S)1V10V, IOUT=1mA 20 10 VOUT(S)=1.1V 2V 3V 5V 5 VIN=VOUT(S)1V10V, IOUT=1A 25 20 15 10 VOUT(S)=1.1V 2V 3V 5V 5 0 0 -50 -25 0 25 50 75 100 Ta (°C) 8. Load Regulation vs. Ambient Temperature VOUT3 (mV) S-817A11/20/30/50A VIN=VOUT(S)2V, IOUT=1AIOUT S-817B11/20/30/50A 80 VOUT(S)=1.1V (IOUT=10mA) 70 2V (IOUT=20mA) 60 3V (IOUT=30mA) 50 5V (IOUT=50mA) 40 30 20 10 0 -50 -25 0 25 50 75 100 Ta (°C) 24 S-817A11/20/30/50A S-817B11/20/30/50A 30 VOUT2 (mV) VOUT1 (mV) 25 15 Rev.6.2_02 -50 -25 0 25 Ta (°C) 50 75 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 9. Current Consumption vs. Input Voltage S-817A11A/S-817B11A S-817A20A/S-817B20A 1.6 1.6 85°C ISS1 (A) ISS1 (A) 1.2 25°C 0.8 Ta=-40°C 25°C 0.8 Ta=-40°C 0.4 0.4 0 0 0 2 4 6 VIN (V) 8 0 10 2 4 6 8 10 VIN (V) S-817A30A/S-817B30A S-817A50A/S-817B50A 1.6 1.6 85°C ISS1 (A) 85°C 1.2 ISS1 (A) 85°C 1.2 25°C 0.8 Ta=-40°C 0.4 1.2 25°C 0.8 Ta=-40°C 0.4 0 0 0 2 4 6 VIN (V) 8 10 0 2 4 6 8 10 VIN (V) 25 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02  Reference Data 1. Transient Response Characteristics (Typical data, Ta25C) In p u t v o lta g e or L o a d c u rre n t O v e rs h o o t O u tp u t v o lta g e U n d e rs h o o t 1. 1 At power-on S-817A30A (When using a ceramic capacitor, CL1 F) VIN0 V10 V, IOUT10 mA, CL1 F 10 V 0V 3V VOUT (0.5 V/div) TIME(100s/div) Load dependencies of overshoot at power-on VVOUT IN =0 VVOUT(S)+2 V, CL=1 F 0.05 VIN0 VVOUT(S)+2 V, IOUT10 mA 0.05 0.04 0.04 5V 0.03 Over Shoot(V) Over Shoot(V) CL dependencies of overshoot at power-on 3V 2V 0.02 0.01 2V 0.03 3V 0.02 5V 0.01 0 0 0.01 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.1 VDD dependencies of overshoot at power-on “Ta” dependencies of overshoot at power-on VIN0 VVOUT(S)+2 V, IOUT10 mA, CL1 F 0.05 0.04 5V 0.03 Over Shoot(V) Over Shoot(V) 10 VIN0 VVDD, IOUT10 mA, CL1 F 0.05 3V 0.02 2V 0.01 0.04 0.03 5V 3V 0.02 2V 0.01 0 0 0 2 4 VDD(V) 26 1 CL(F) IOUT(A) 6 8 10 -50 0 50 Ta(°C) 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 1. 2 At power-on S-817B30A (When using a ceramic capacitor, CL1 F) VIN0 V10 V, IOUT10 mA, CL1 F 10 V 0V 3V VOUT (0.5 V/div) TIME(100 s/div) Load dependencies of overshoot at power-on VIN0 VVOUT(S)+2 V, CL1 F 0.05 VIN0 VVOUT(S)+2 V, IOUT10 mA 0.05 0.04 0.04 5V Over Shoot(V) Over Shoot(V) CL dependencies of overshoot at power-on 0.03 0.02 2V 3V 0.01 0.03 3V 0.02 5V 0.01 0 0 0.01 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.1 VDD dependencies of overshoot at power-on “Ta” dependencies of overshoot at power-on VIN0 VVDD, IOUT10 mA, CL1 F 0.05 VIN0 VVOUT(S)+2 V, IOUT10 mA, CL1 F 0.05 Over Shoot(V) 0.04 0.03 5V 0.02 3V 2V 0.01 10 1 CL(F) IOUT(A) Over Shoot(V) 2V 0.04 0.03 2V 0.02 3V 5V 0.01 0 0 0 2 4 VDD(V) 6 8 10 -50 0 50 100 Ta(°C) 27 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 1. 3 At power fluctuation S-817A30A / S-817B30A (When using a ceramic capacitor, CL1 F) VIN4 V10 V,IOUT1 mA, CL1 F 10 V 4V V OUT (0.2 V/div) 3V TIME(200 s/div) Load dependencies of overshoot at power fluctuation VINVOUT(S)1 V VOUT(S)2 V, CL1 F 0.4 2V 0.3 5V 3V 0.2 VINVOUT(S)1 VVOUT(S)2 V, IOUT1 mA 1 Over Shoot(V) 0.5 Over Shoot(V) CL dependencies of overshoot at power fluctuation 0.1 2V 0.8 3V 5V 0.6 0.4 0.2 0 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.01 0.1 IOUT(A) VDD dependencies of overshoot at power fluctuation 1 5V 0.6 Over Shoot(V) Over Shoot(V) 0.8 3V 0.4 2V 0.2 VINVOUT(S)1 VVOUT(S)2 V, IOUT1 mA, CL1 F 0.8 0.6 5V 3V 0.4 2V 0.2 0 0 0 2 4 VDD(V) 28 10 “Ta” dependencies of overshoot at power fluctuation VINVOUT(S)1 VVDD, IOUT1 mA, CL1 F 1 1 CL(F) 6 8 10 -50 0 50 Ta(°C) 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 VIN10 V4 V,IOUT1 mA, CL1 F 10 V 4V VOUT 3 V (0.02 V/div) TIME(50s/div) Load dependencies of undershoot at power fluctuation CL dependencies of undershoot at power fluctuation VINVOUT(S)2 VV FF VOUT(S) 1V,V,CLC1 OUT(S)1 L1 0.5 5V 0.3 Under Shoot(V) Under Shoot(V) 0.4 3V 2V 0.2 0.1 VINVOUT(S)2 VVOUT(S)1 V, IOUT1 mA 1 2V 0.8 3V 5V 0.6 0.4 0.2 0 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0.01 0.1 IOUT(A) VDD dependencies of undershoot at power fluctuation “Ta” dependencies of undershoot at power fluctuation VINVDDVOUT(S)+1 V, IOUT1 mA, CL1 F 0.1 0.08 5V 0.06 Under Shoot(V) Under Shoot(V) 10 1 CL(F) 3V 0.04 2V 0.02 VINVOUT(S)2 VVOUT(S)1 V, IOUT1 mA, CL1 F 0.1 2V 0.08 3V 0.06 0.04 5V 0.02 0 0 0 2 4 VDD(V) 6 8 10 -50 0 50 100 Ta(°C) 29 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 1. 4 At load fluctuation S-817A30A/S-817B30A (When using a ceramic capacitor, CL1 F) IOUT30 mA10 A,V IN5 V, CL1 F 30 mA 10A V OUT (0.2 V/div) 3V TIME(20 ms/div) Load current dependencies of overshoot at load fluctuation CL dependencies of overshoot at load fluctuation 1010A, VINVOUT(S)+2 V, IOUTIIOUT FF A,CC L L1 L=1 2 2V 3V 0.5 0 1.E-05 2V 0.8 Over Shoot(V) Over Shoot(V) 5V 1.5 1 VINVOUT(S)+2 V, IOUT10 mA10 A 1 3V 0.6 5V 0.4 0.2 0 1.E-04 1.E-03 1.E-02 1.E-01 0.01 1.E+00 0.1 IOUT(A) VDD dependencies of overshoot at load fluctuation 0.2 0.15 Over Shoot(V) Over Shoot(V) 5V 0.1 3V 2V 0.05 VINVOUT(S)+2 V, IOUT10 mA10 A, CL1 F 2V 5V 0.15 0.1 3V 0.05 0 0 0 2 4 VDD(V) 30 10 “Ta” dependencies of overshoot at load fluctuation VINVDD, IOUT10 mA mA,10 A, CL1 F 0.2 1 CL(F) 6 8 10 -50 0 50 Ta(°C) 100 SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series Rev.6.2_02 IOUT=10A30mA, VIN=5V, CL=1 F 30mA 10A 3V VOUT (0.2V/div) TIME(50 ms/div) Load current dependencies of undershoot at load fluctuation VINVOUT(S)+2 V, IOUT10 C,L1 AI AF 10 AIL,OUT CL=1 2 1 3V 0.5 2V 0 1.E-05 3V 1.2 5V 1.5 VINVOUT(S)+2 V, IOUT10 A10 mA 1.4 Under Shoot(V) Under Shoot(V) CL dependencies of undershoot at load fluctuation 5V 1 0.8 0.6 2V 0.4 0.2 0 1.E-04 1.E-03 1.E-02 1.E-01 0.01 1.E+00 0.1 IOUT(A) CL(F) VDD dependencies of undershoot at load fluctuation “Ta” dependencies of undershoot at load fluctuation VINVDD, IOUT10 A10 mA, CL1 F 0.5 0.5 0.4 5V 3V 0.3 Under Shoot(V) Under Shoot(V) 10 1 0.2 2V 0.1 VINVOUT(S)+2 V, IOUT10 A 10 mA, CL1 F 0.4 3V 5V 0.3 0.2 2V 0.1 0 0 0 2 4 VDD(V) 6 8 10 -50 0 50 100 Ta(°C) 31 1.2±0.04 3 4 +0.05 0.08 -0.02 2 1 0.65 0.48±0.02 0.2±0.05 No. PF004-A-P-SD-6.0 TITLE SNT-4A-A-PKG Dimensions No. PF004-A-P-SD-6.0 ANGLE UNIT mm ABLIC Inc. +0.1 ø1.5 -0 4.0±0.1 2.0±0.05 0.25±0.05 +0.1 1.45±0.1 2 1 3 4 ø0.5 -0 4.0±0.1 0.65±0.05 Feed direction No. PF004-A-C-SD-2.0 TITLE SNT-4A-A-Carrier Tape No. PF004-A-C-SD-2.0 ANGLE UNIT mm ABLIC Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. PF004-A-R-SD-1.0 TITLE SNT-4A-A-Reel No. PF004-A-R-SD-1.0 QTY. ANGLE UNIT mm ABLIC Inc. 5,000 0.52 1.16 2 0.52 0.35 1. 2. 0.3 1 (0.25 mm min. / 0.30 mm typ.) (1.10 mm ~ 1.20 mm) 0.03 mm 1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.). 2. Do not widen the land pattern to the center of the package (1.10 mm to 1.20 mm). Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package. 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface. 3. Match the mask aperture size and aperture position with the land pattern. 4. Refer to "SNT Package User's Guide" for details. 1. 2. (0.25 mm min. / 0.30 mm typ.) (1.10 mm ~ 1.20 mm) TITLE SNT-4A-A -Land Recommendation PF004-A-L-SD-4.1 No. No. PF004-A-L-SD-4.1 ANGLE UNIT mm ABLIC Inc. 2.0±0.2 1.3±0.2 4 3 0.05 0.3 +0.1 -0.05 +0.1 0.16 -0.06 2 1 +0.1 0.4 -0.05 No. NP004-A-P-SD-2.0 TITLE SC82AB-A-PKG Dimensions NP004-A-P-SD-2.0 No. ANGLE UNIT mm ABLIC Inc. +0.1 ø1.5 -0 4.0±0.1 2.0±0.05 1.1±0.1 4.0±0.1 0.2±0.05 ø1.05±0.1 (0.7) 2.2±0.2 2 1 3 4 Feed direction No. NP004-A-C-SD-3.0 TITLE SC82AB-A-Carrier Tape No. NP004-A-C-SD-3.0 ANGLE UNIT mm ABLIC Inc. 4.0±0.1 2.0±0.1 ø1.5 1.1±0.1 +0.1 -0 4.0±0.1 0.2±0.05 ø1.05±0.1 2.3±0.15 2 1 3 4 Feed direction No. NP004-A-C-S1-2.0 TITLE SC82AB-A-Carrier Tape No. NP004-A-C-S1-2.0 ANGLE UNIT mm ABLIC Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. NP004-A-R-SD-1.1 TITLE SC82AB-A-Reel No. NP004-A-R-SD-1.1 QTY. ANGLE UNIT mm ABLIC Inc. 3,000 2.9±0.2 1.9±0.2 4 5 1 2 +0.1 0.16 -0.06 3 0.95±0.1 0.4±0.1 No. MP005-A-P-SD-1.3 TITLE SOT235-A-PKG Dimensions No. MP005-A-P-SD-1.3 ANGLE UNIT mm ABLIC Inc. 4.0±0.1(10 pitches:40.0±0.2) +0.1 ø1.5 -0 +0.2 ø1.0 -0 2.0±0.05 0.25±0.1 4.0±0.1 1.4±0.2 3.2±0.2 3 2 1 4 5 Feed direction No. MP005-A-C-SD-2.1 TITLE SOT235-A-Carrier Tape No. MP005-A-C-SD-2.1 ANGLE UNIT mm ABLIC Inc. 12.5max. 9.0±0.3 Enlarged drawing in the central part ø13±0.2 (60°) (60°) No. MP005-A-R-SD-1.1 SOT235-A-Reel TITLE No. MP005-A-R-SD-1.1 ANGLE QTY. UNIT mm ABLIC Inc. 3,000 4.5±0.1 1.5±0.1 1.6±0.2 45° 1 2 3 1.5±0.1 1.5±0.1 0.4±0.05 0.4±0.1 0.4±0.1 0.45±0.1 No. UP003-A-P-SD-2.0 TITLE SOT893-A-PKG Dimensions No. UP003-A-P-SD-2.0 ANGLE UNIT mm ABLIC Inc. 4.0±0.1(10 pitches : 40.0±0.2) +0.1 ø1.5 -0 2.0±0.05 ø1.5 +0.1 -0 0.3±0.05 8.0±0.1 2.0±0.1 4.75±0.1 Feed direction No. UP003-A-C-SD-2.0 TITLE SOT893-A-Carrier Tape No. UP003-A-C-SD-2.0 ANGLE UNIT mm ABLIC Inc. 16.5max. 13.0±0.3 Enlarged drawing in the central part (60°) (60°) No. UP003-A-R-SD-1.1 TITLE SOT893-A-Reel No. UP003-A-R-SD-1.1 ANGLE UNIT QTY. mm ABLIC Inc. 1,000 4.2max. 5.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 1.27 No. YS003-D-P-SD-2.1 TITLE TO92-D-PKG Dimensions No. YS003-D-P-SD-2.1 ANGLE UNIT mm 5.2max. 4.2max. Marked side 0.6max. 0.45±0.1 0.45±0.1 +0.4 2.5 -0.1 1.27 No. YZ003-E-P-SD-2.1 TITLE TO92-E-PKG Dimensions No. YZ003-E-P-SD-2.1 ANGLE UNIT mm ABLIC Inc. 12.7±1.0 1.0max. 1.0max. 1.0max. Marked side 1#pin 3#pin 1.45max. 0.7±0.2 ø4.0±0.2 6.35±0.4 12.7±0.3(20 pitches : 254.0±1.0) Z type Feed direction No. YZ003-E-C-SD-1.1 TITLE TO92-E-Radial Tape No. YZ003-E-C-SD-1.1 ANGLE UNIT mm ABLIC Inc. Spacer(Sponge) 312 18 35 Side spacer placed in front side 154 314 Space more than 4 strokes 162 333 43 No. YZ003-E-Z-SD-2.0 TITLE TO92-E-Ammo Packing No. YZ003-E-Z-SD-2.0 ANGLE UNIT QTY. mm ABLIC Inc. 2,000 Disclaimers (Handling Precautions) 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice. 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein. 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein. 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges. 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use. 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures. 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes. 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products. 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction. The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility. 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use. 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc. 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used. 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc. 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative. 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling. 2.4-2019.07 www.ablic.com
S-817B52AUA-CXPT2U
物料型号:S-817 Series,由ABLIC公司生产的超小型封装CMOS电压调节器。

器件简介:S-817系列是一款采用CMOS技术开发的3端子正电压调节器。它可以使用小尺寸陶瓷电容作为输出电容,并且在低至1μA的负载下提供稳定运行。与传统的电压调节器相比,它具有更低的电流消耗,并且有超小型封装(SNT-4A: 1.2 mm × 1.6 mm),非常适合作为小型便携设备的电源。

引脚分配: - SNT-4A封装:1号引脚为输出电压引脚(VOUT),2号为输入电压引脚(VIN),3号为地引脚(VSS),4号为无连接引脚(NC)。 - SC-82AB封装:1号引脚为地(VSS),2号为输入电压(VIN),3号为输出电压(VOUT),4号为无连接(NC)。 - SOT-23-5封装:1号引脚为地(VSS),2号为输入电压(VIN),3号为输出电压(VOUT),4号和5号为无连接(NC)。 - SOT-89-3封装:1号引脚为地(VSS),2号为输入电压(VIN),3号为输出电压(VOUT)。 - TO-92封装:1号引脚为地(VSS),2号为输入电压(VIN),3号为输出电压(VOUT)。

参数特性: - 输出电压:1.1V至6.0V,以0.1V步进选择,准确度±2.0%。 - 典型降额电压:160mV(5.0V输出产品,IOUT = 10mA)。 - 工作电流:典型值1.2μA,最大值2.5μA。 - 输出电流:可以输出高达50mA(3.0V输出产品,VIN=5V)或75mA(5.0V输出产品,VIN=7V)。 - 工作温度范围:-40°C至+85°C。 - 环保特性:无铅,Sn 100%,无卤素。

功能详解:S-817系列具有内置的短路保护功能,并且能够在低负载下稳定运行。它还具有低dropout电压和低工作电流的特点。

应用信息:适用于电池供电设备的恒压电源、个人通信设备的恒压电源和家用电器的恒压电源。

封装信息:S-817系列提供多种封装类型,包括SNT-4A、SC-82AB、SOT-23-5、SOT-89-3和TO-92。
S-817B52AUA-CXPT2U 价格&库存

很抱歉,暂时无法提供与“S-817B52AUA-CXPT2U”相匹配的价格&库存,您可以联系我们找货

免费人工找货