S-8424A Series
www.ablic.com
© ABLIC Inc., 2001-2019
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
The S-8424A Series is a CMOS IC designed for use in the switching circuits of primary and backup power supplies on
a single chip. It consists of two voltage regulators, three voltage detectors, a power supply switch and its controller, as
well as other functions.
In addition to the switching function between the primary and backup power supply, the S-8424A Series can provide
the micro controllers with three types of voltage detection output signals corresponding to the power supply voltage.
Moreover adopting a special sequence for switch control enables the effective use of the backup power supply,
making this IC ideal for configuring a backup system.
Features
• Low power consumption
Normal operation: 15 μA Max. (VIN = 6 V)
Backup:
2.1 μA Max.
• Voltage regulator
Output voltage tolerance : ±2 %
Output voltage:
Independently selectable in 0.1 V steps in the range of 2.3 V to 5.4 V
• Three built-in voltage detectors (CS, PREEND , RESET )
Detection voltage precision: ±2 %
Detection voltage:
Selectable in 0.1 V steps in the range of 2.4 V to 5.3 V (CS voltage detector)
Selectable in 0.1 V steps in the range of 1.7 V to 3.4 V ( PREEND , RESET
voltage detector)
• Switching circuit for primary power supply and backup power supply configurable on one chip
• Efficient use of backup power supply possible
• Special sequence
Backup voltage is not output when the primary power supply voltage does not reach the initial voltage at which
the switch unit operates.
• Lead-free, Sn 100%, halogen-free*1
*1. Refer to “ Product Name Structure” for details.
Package
• 8-Pin TSSOP
Applications
• Video camera recorders
• Still video cameras
• Memory cards
• SRAM backup equipment
1
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
Product Name Structure
1. Product name
S-8424A xx
FT - TB - x
Environmental code
U: Lead-free (Sn 100%), halogen-free
G: Lead-free (for details, please contact our sales representatives.)
IC direction in tape specification
Package code
FT: 8-Pin TSSOP
Serial code
2. Package
Package Name
8-Pin TSSOP
2
Environmental code = G
Environmental code = U
Package
FT008-A-P-SD
FT008-A-P-SD
Drawing Code
Tape
FT008-E-C-SD
FT008-E-C-SD
Reel
FT008-E-R-SD
FT008-E-R-S1
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
3. Product name list
Part No.
Package
Output
CS Voltage
RESET
PREEND
Voltage
(V)
Voltage
Voltage
(V)
Type
(V)
VRO
(V)
VOUT
−VDET1
+VDET1
−VDET2
+VDET2
−VDET3
Switch Voltage
(V)
+VDET3
VSW1
S-8424AAAFT-TB-x
8-Pin TSSOP
3.000
3.000
3.300
3.401
2.200
2.312
2.600
2.748
+VDET1 × 0.85
S-8424AABFT-TB-x
8-Pin TSSOP
3.300
3.300
4.000
4.129
2.300
2.420
2.500
2.640
+VDET1 × 0.77
S-8424AACFT-TB-x
8-Pin TSSOP
3.200
3.200
3.300
3.401
2.400
2.528
2.600
2.748
+VDET1 × 0.85
S-8424AADFT-TB-x
8-Pin TSSOP
5.000
5.000
4.600
4.753
2.300
2.420
2.500
2.640
+VDET1 × 0.77
S-8424AAEFT-TB-x
8-Pin TSSOP
3.150
3.150
4.200
4.337
2.300
2.420
2.500
2.640
+VDET1 × 0.77
S-8424AAFFT-TB-x
8-Pin TSSOP
3.200
3.200
4.400
4.545
2.400
2.528
2.600
2.748
+VDET1 × 0.77
S-8424AAGFT-TB-x
8-Pin TSSOP
2.800
2.800
4.400
4.545
2.400
2.528
2.600
2.748
+VDET1 × 0.77
S-8424AAHFT-TB-x
8-Pin TSSOP
5.000
5.000
4.600
4.753
2.550
2.690
2.700
2.856
+VDET1 × 0.77
S-8424AAJFT-TB-x
8-Pin TSSOP
3.100
3.100
4.400
4.545
2.200
2.312
2.600
2.748
+VDET1 × 0.77
S-8424AAKFT-TB-x
8-Pin TSSOP
3.200
3.200
4.600
4.753
2.400
2.528
2.600
2.748
+VDET1 × 0.77
Caution
Set the CS voltage so that the switch voltage (VSW1) is equal to or greater than the
RESET detection voltage (−VDET2).
Remark 1. The selection range is as follows.
VRO, VOUT: 2.3 to 5.4 V (0.1 V steps)
2.4 to 5.3 V (0.1 V steps)
−VDET1:
1.7 to 3.4 V (0.1 V steps )
−VDET2:
1.7 to 3.4 V (0.1 V steps)
−VDET3:
+VDET1 × 0.85 or +VDET1 × 0.77
VSW1:
2. Please contact our sales representatives for products other than the above.
3. x: G or U
4. Please select products of environmental code = U for Sn 100%, halogen-free products.
3
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
Block Diagram
VOUT
M1
VIN
VBAT
REG2
PREEND
PREEND
Voltage
detector
VSW1
Detector
CS
RESET
CS
Voltage
detector
VSW2
Detector
RESET
Voltage
detector
Switch
controller
REG1
VSS
Figure 1
4
Block Diagram
VRO
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
Pin Configuration
1.
8-Pin TSSOP
Table 1
Top view
1
2
3
4
8
7
6
5
Figure 2
Pin No.
1
2
3
4
5
6
7
8
Symbol
VSS
PREEND
VBAT*1
CS
RESET
VOUT*2
VIN*3
VRO*4
Description
Ground
Output pin of PREEND voltage detector
Backup power supply input pin
Output pin of CS voltage detector
Output pin of RESET voltage detector
Output pin of voltage regulator 2
Primary power supply input pin
Output pin of voltage regulator 1
*1 to *4. Mount capacitors between VSS (GND pin) and the VIN, VBAT,
VOUT, and VRO pins. (Refer to the “Standard Circuit”)
5
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
Absolute Maximum Ratings
Table 2
(Unless otherwise specified: Ta = 25°C)
Ratings
Unit
V
VSS−0.3 to VSS+18
Parameter
Primary power supply input voltage
Symbol
VIN
Backup power supply input voltage
Output voltage of voltage regulator
VBAT
VRO, VOUT
VSS−0.3 to VIN+0.3
VCS
VSS−0.3 to VSS+18
CS output voltage
RESET output voltage
V RESET
PREEND output voltage
Power dissipation
V PREEND
PD
300 (When not mounted on board)
700*1
mW
°C
Operating ambient temperature
Topr
−40 to +85
Storage temperature
Tstg
−40 to +125
*1. When mounted on board
[Mounted board]
(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm
(2) Board name: JEDEC STANDARD51-7
Caution
When mounted on board
800
(2)
Power Dissipation PD (mW)
Power Dissipation PD (mW)
(1)
The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
700
600
500
400
300
200
100
0
0
50
100
150
Ambient Temperature Ta (°C)
Figure 3
6
When not mounted on board
400
300
200
100
0
0
50
100
150
Ambient Temperature Ta (°C)
Power Dissipation of Package
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
Electrical Characteristics
1. S-8424AAAxx
Table 3
Parameter
Voltage regulator
Conditions
Min.
Typ.
Max.
Unit
2.940
3.000
3.060
V
VIN = 7.2 V, IRO = 3 mA
Dropout voltage 1
Vdrop1
VIN = 7.2 V, IRO = 3 mA
⎯
41
59
mV
Load stability 1
ΔVRO1
VIN = 7.2 V, IRO = 0.1 to 10 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 4 to 16 V, IRO = 3 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Output voltage temperature coefficient 1
Output voltage 2
VOUT
VIN = 7.2 V, IOUT = 23 mA
2.940
3.000
3.060
V
Vdrop2
VIN = 7.2 V, IOUT = 23 mA
⎯
187
252
mV
Load stability 2
ΔVOUT1
VIN = 7.2 V, IOUT = 0.1 to 60 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 4 to 16 V, IOUT = 23 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Dropout voltage 2
Output voltage temperature coefficient 2
Primary power input voltage
Voltage detector
Symbol
VRO
Output voltage 1
ΔVOUT
ΔTa • VOUT
−VDET1
CS release voltage
+VDET1
RESET detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
⎯
VIN
CS detection voltage
Sink current
Switch unit
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
VIN voltage detection
⎯
VOUT voltage detection
⎯
VBAT voltage detection
⎯
2.156
2.200
2.244
V
2.256
2.312
2.367
V
2.548
2.600
2.652
V
V
V
Δ − VDET1
ΔTa • − VDET1
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
μA
ISINK
ILEAK
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
ILEAK
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
IBAT2
VBAT
⎯
⎯
0.1
+VDET1
+VDET1
+VDET1
× 0.83
× 0.85
× 0.87
1
2
3
V
4
V
5
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
VIN = 3.6 V, VBAT = 0 V
⎯
⎯
0.1
μA
6
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
8
VIN = 3.6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
⎯
0.26
0.50
μA
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
IBAT1
Total
V
16
VBAT switch leakage current
Remark
3.482
2.814
VBAT = 3.0 V, VOUT voltage detection
Backup power supply input voltage
3.401
−
VSW2
Current consumption
3.319
2.748
CS output inhibit voltage
CS output inhibit voltage temperature
V
V
1.7
VBAT = 2.8 V, VIN voltage detection
coefficient
16
3.366
2.682
VSW1
Switch voltage temperature coefficient
⎯
3.300
VIN or VBAT
Vopr
Switch voltage
VBAT switch resistance
⎯
3.234
Test
Circuit
VIN = Open, VBAT = 3.0 V, Unload
⎯
7
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit”section.
7
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
2. S-8424AABxx
Table 4
Voltage regulator
Parameter
Voltage detector
Conditions
Min.
Typ.
Max.
Unit
VRO
VIN = 6 V, IRO = 30 mA
3.234
3.300
3.366
V
Dropout voltage 1
Vdrop1
VIN = 6 V, IRO = 30 mA
⎯
356
474
mV
Load stability 1
ΔVRO1
VIN = 6 V, IRO = 0.1 to 40 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 6 to 16 V, IRO = 30 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Output voltage temperature coefficient 1
Output voltage 2
VOUT
VIN = 6 V, IOUT = 50 mA
3.234
3.300
3.366
V
Dropout voltage 2
Vdrop2
VIN = 6 V, IOUT = 50 mA
⎯
401
540
mV
Load stability 2
ΔVOUT1
VIN = 6 V, IOUT = 0.1 to 60 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 6 to 16 V, IOUT = 50 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Primary power input voltage
ΔVOUT
ΔTa • VOUT
−VDET1
CS release voltage
+VDET1
RESET detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
VBAT voltage detection
⎯
4.228
V
2.254
2.300
2.346
V
2.362
2.420
2.478
V
2.450
2.500
2.550
V
2.576
2.640
2.703
V
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
⎯
⎯
0.1
μA
+VDET1
+VDET1
+VDET1
× 0.75
× 0.77
× 0.79
ISINK
ILEAK
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
VBAT = 2.8 V, VIN voltage detection
VBAT = 3.0 V
VOUT voltage detection
VBAT
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
Test
Circuit
1
2
ppm/°C
3
V
4
V
5
VIN = 6V, VBAT = 0 V
⎯
⎯
0.1
μA
6
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
VIN = 6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
8
μA
⎯
0.26
0.50
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
IBAT1
Total
4.129
Ta = −40°C to +85°C
IBAT2
Remark
4.030
V
ILEAK
Backup power supply input voltage
V
V
16
VBAT switch leakage current
Current consumption
⎯
16
4.080
⎯
VSW2
CS output inhibit voltage temperature
VOUT voltage detection
⎯
4.000
1.7
CS output inhibit voltage
coefficient
⎯
⎯
3.920
VIN or VBAT
Vopr
VSW1
Switch voltage temperature coefficient
VIN voltage detection
Δ − VDET1
ΔTa • − VDET1
Switch voltage
VBAT switch resistance
⎯
VIN
CS detection voltage
Sink current
Switch unit
Symbol
Output voltage 1
Output voltage temperature coefficient 2
8
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
VIN = Open, VBAT = 3.0 V, Unload
⎯
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
7
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
3. S-8424AACxx
Table 5
Parameter
Voltage regulator
Output voltage 1
Conditions
VRO
VIN = 3.6 V, IRO = 15 mA
Min.
Typ.
Max.
Unit
3.136
3.200
3.264
V
Dropout voltage 1
Vdrop1
VIN = 3.6 V, IRO = 15 mA
⎯
181
243
mV
ΔVRO1
VIN = 3.6 V, IRO = 0.1 to 20 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 3.6 to 16 V, IRO = 15 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Output voltage temperature coefficient 1
Output voltage 2
VOUT
VIN = 3.6 V, IOUT = 15mA
3.136
3.200
3.264
V
Vdrop2
VIN = 3.6 V, IOUT = 15 mA
⎯
123
167
mV
Load stability 2
ΔVOUT1
VIN = 3.6 V, IOUT = 0.1 to 20 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 3.6 to 16 V, IOUT = 15 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Dropout voltage 2
Primary power input voltage
Voltage detector
Symbol
Load stability 1
Output voltage temperature coefficient 2
ΔVOUT
ΔTa • VOUT
−VDET1
CS release voltage
+VDET1
RESET detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
⎯
VIN
CS detection voltage
Sink current
Switch unit
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
VIN voltage detection
⎯
VOUT voltage detection
⎯
VBAT voltage detection
⎯
2.352
2.400
2.448
V
V
2.467
2.528
2.589
2.548
2.600
2.652
V
2.682
2.748
2.814
V
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
ISINK
ILEAK
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
ILEAK
VIN = 3.6 V, VBAT = 0 V
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
Ta = −40°C to +85°C
Ta = −40°C to +85°C
VIN = 3.6 V, VBAT = 3.0 V, Unload
IBAT2
VBAT
VIN = Open, VBAT = 3.0 V, Unload
2
3
⎯
⎯
0.1
μA
+VDET1
+VDET1
V
4
× 0.83
× 0.85
× 0.87
V
5
μA
6
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
⎯
⎯
0.1
⎯
30
60
Ω
7
⎯
±100
⎯
ppm/°C
4
⎯
±100
⎯
ppm/°C
5
8
⎯
7
15
μA
0.26
0.50
μA
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
⎯
1
+VDET1
⎯
IBAT1
Total
V
Ta = −40°C to +85°C
VBAT switch leakage current
Remark
3.482
V
VBAT = 3.0 V, VOUT voltage detection
Backup power supply input voltage
3.401
16
VSW2
Current consumption
3.319
⎯
CS output inhibit voltage
CS output inhibit voltage temperature
V
V
1.7
VBAT = 2.8 V, VIN voltage detection
coefficient
16
3.366
VIN or VBAT
Vopr
VSW1
Switch voltage temperature coefficient
⎯
3.300
Δ − VDET1
ΔTa • − VDET1
Switch voltage
VBAT switch resistance
⎯
3.234
Test
Circuit
7
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
9
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
4. S-8424AADxx
Table 6
Voltage regulator
Parameter
Voltage detector
Conditions
Min.
Typ.
Max.
Unit
VRO
VIN = 6 V, IRO = 30 mA
4.900
5.000
5.100
V
Dropout voltage 1
Vdrop1
VIN = 6 V, IRO = 30 mA
⎯
356
474
mV
Load stability 1
ΔVRO1
VIN = 6 V, IRO = 0.1 to 40 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 6 to 16 V, IRO = 30 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Output voltage temperature coefficient 1
Output voltage 2
VOUT
VIN = 6 V, IOUT = 50 mA
4.900
5.000
5.100
V
Dropout voltage 2
Vdrop2
VIN = 6 V, IOUT = 50 mA
⎯
401
540
mV
Load stability 2
ΔVOUT1
VIN = 6 V, IOUT = 0.1 to 60 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 6 to 16 V, IOUT = 50 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Primary power input voltage
ΔVOUT
ΔTa • VOUT
−VDET1
CS release voltage
+VDET1
RESET detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
⎯
VIN
CS detection voltage
Sink current
Switch unit
Symbol
Output voltage 1
Output voltage temperature coefficient 2
VIN voltage detection
⎯
VOUT voltage detection
⎯
VBAT voltage detection
⎯
V
2.254
2.300
2.346
V
2.362
2.420
2.478
V
2.450
2.500
2.550
V
2.576
2.640
2.703
V
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
⎯
⎯
0.1
μA
+VDET1
+VDET1
+VDET1
× 0.75
× 0.77
× 0.79
ISINK
ILEAK
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
ILEAK
VIN = 6 V, VBAT = 0 V
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
IBAT2
VBAT
Test
Circuit
1
2
3
V
4
V
5
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
⎯
⎯
0.1
μA
6
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
VIN = 6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
8
⎯
0.26
0.50
μA
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
IBAT1
Total
4.867
Ta = −40°C to +85°C
VBAT switch leakage current
Remark
4.753
V
VBAT = 3.0 V, VOUT voltage detection
Backup power supply input voltage
4.639
16
VSW2
Current consumption
V
V
⎯
CS output inhibit voltage
CS output inhibit voltage temperature
16
4.692
1.7
VBAT = 2.8 V, VIN voltage detection
Switch voltage temperature coefficient
⎯
4.600
VIN or VBAT
Vopr
VSW1
VBAT switch resistance
⎯
4.508
Δ − VDET1
ΔTa • − VDET1
Switch voltage
coefficient
10
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
VIN = Open, VBAT = 3.0 V, Unload
⎯
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
7
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
5. S-8424AAExx
Table 7
Parameter
Voltage regulator
Conditions
Min.
Typ.
Max.
Unit
3.087
3.150
3.213
V
VIN = 6 V, IRO = 30 mA
Dropout voltage 1
Vdrop1
VIN = 6 V, IRO = 30 mA
⎯
356
474
mV
Load stability 1
ΔVRO1
VIN = 6 V, IRO = 0.1 to 30 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 6 to 16 V, IRO = 30 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
VOUT
VIN = 6 V, IOUT = 50 mA
3.087
3.150
3.213
V
Vdrop2
Output voltage temperature coefficient 1
Output voltage 2
VIN = 6 V, IOUT = 50 mA
⎯
401
540
mV
Load stability 2
ΔVOUT1
VIN = 6 V, IOUT = 0.1 to 60 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 6 to 16 V, IOUT = 50 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Dropout voltage 2
Output voltage temperature coefficient 2
Primary power input voltage
Voltage detector
Symbol
VRO
Output voltage 1
ΔVOUT
ΔTa • VOUT
−VDET1
CS release voltage
+VDET1
RESET detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
⎯
VIN
CS detection voltage
Sink current
Switch unit
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
VIN voltage detection
⎯
VOUT voltage detection
⎯
VBAT voltage detection
⎯
2.254
2.300
2.346
V
V
2.362
2.420
2.478
2.450
2.500
2.550
V
2.576
2.640
2.703
V
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
μA
ISINK
ILEAK
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
ILEAK
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
IBAT2
VBAT
⎯
⎯
0.1
+VDET1
+VDET1
+VDET1
× 0.75
× 0.77
× 0.79
1
2
3
V
4
V
5
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
VIN = 6 V, VBAT = 0 V
⎯
⎯
0.1
μA
6
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
8
VIN = 6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
⎯
0.26
0.50
μA
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
IBAT1
Total
V
Ta = −40°C to +85°C
VBAT switch leakage current
Remark
4.441
V
VBAT = 3.0 V, VOUT voltage detection
Backup power supply input voltage
4.337
16
VSW2
Current consumption
4.233
⎯
CS output inhibit voltage
CS output inhibit voltage temperature
V
V
1.7
VBAT = 2.8 V, VIN voltage detection
coefficient
16
4.284
VIN or VBAT
Vopr
VSW1
Switch voltage temperature coefficient
⎯
4.200
Δ − VDET1
ΔTa • − VDET1
Switch voltage
VBAT switch resistance
⎯
4.116
Test
Circuit
VIN = Open, VBAT = 3.0 V, Unload
⎯
7
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
11
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
6. S-8424AAFxx
Table 8
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Voltage regulator
Parameter
Typ.
Max.
Unit
VRO
VIN = 6 V, IRO = 30 mA
3.136
3.200
3.264
V
Vdrop1
VIN = 6 V, IRO = 30 mA
⎯
356
474
mV
Load stability 1
ΔVRO1
VIN = 6 V, IRO = 0.1 to 30 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 6 to 16 V, IRO = 30 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Output voltage temperature coefficient 1
Output voltage 2
VOUT
VIN = 6 V, IOUT = 50 mA
3.136
3.200
3.264
V
Dropout voltage 2
Vdrop2
VIN = 6 V, IOUT = 50 mA
⎯
401
540
mV
Load stability 2
ΔVOUT1
VIN = 6 V, IOUT = 0.1 to 50 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 6 to 16 V, IOUT = 50 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
ΔVOUT
ΔTa • VOUT
−VDET1
CS release voltage
+VDET1
RESET detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
⎯
VIN
CS detection voltage
Sink current
VIN voltage detection
⎯
VOUT voltage detection
⎯
VBAT voltage detection
⎯
V
2.352
2.400
2.448
V
2.467
2.528
2.589
V
2.548
2.600
2.652
V
2.682
2.748
2.814
V
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
⎯
⎯
0.1
μA
+VDET1
+VDET1
+VDET1
× 0.75
× 0.77
× 0.79
ISINK
ILEAK
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
ILEAK
VIN = 6 V, VBAT = 0 V
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
IBAT2
VBAT
Test
Circuit
1
2
3
V
4
V
5
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
⎯
⎯
0.1
μA
6
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
VIN = 6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
8
⎯
0.26
0.50
μA
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
IBAT1
Total
4.654
Ta = −40°C to +85°C
VBAT switch leakage current
Remark
4.545
V
VBAT = 3.0 V, VOUT voltage detection
Backup power supply input voltage
4.436
16
VSW2
Current consumption
V
V
⎯
CS output inhibit voltage
CS output inhibit voltage temperature
16
4.488
1.7
VBAT = 2.8 V, VIN voltage detection
Switch voltage temperature coefficient
⎯
4.400
VIN or VBAT
Vopr
VSW1
VBAT switch resistance
⎯
4.312
Δ − VDET1
ΔTa • − VDET1
Switch voltage
coefficient
12
Min.
Dropout voltage 1
Primary power input voltage
Voltage detector
Conditions
Output voltage 1
Output voltage temperature coefficient 2
Switch unit
Symbol
VIN = Open, VBAT = 3.0 V, Unload
⎯
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
7
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
7. S-8424AAGxx
Table 9
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter
Voltage regulator
Output voltage 1
VRO
VIN = 6 V, IRO = 30 mA
Min.
Typ.
Max.
Unit
2.744
2.800
2.856
V
Dropout voltage 1
Vdrop1
VIN = 6 V, IRO = 30 mA
⎯
356
474
mV
ΔVRO1
VIN = 6 V, IRO = 0.1 to 30 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 6 to 16 V, IRO = 30 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
VOUT
VIN = 6 V, IOUT = 50 mA
2.744
2.800
2.856
V
Vdrop2
Output voltage temperature coefficient 1
Output voltage 2
VIN = 6 V, IOUT = 50 mA
⎯
401
540
mV
Load stability 2
ΔVOUT1
VIN = 6 V, IOUT = 0.1 to 50 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 6 to 16 V, IOUT = 50 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Dropout voltage 2
Primary power input voltage
Voltage detector
Conditions
Load stability 1
Output voltage temperature coefficient 2
ΔVOUT
ΔTa • VOUT
⎯
⎯
16
V
4.312
4.400
4.488
V
4.436
4.545
4.654
V
VOUT voltage detection
2.352
2.400
2.448
V
2.467
2.528
2.589
V
VBAT voltage detection
2.548
2.600
2.652
V
2.682
2.748
2.814
V
VIN or VBAT
1.7
⎯
16
V
Δ − VDET1
ΔTa • − VDET1
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
⎯
⎯
0.1
μA
+VDET1
+VDET1
+VDET1
× 0.75
× 0.77
× 0.79
−VDET1
CS release voltage
+VDET1
detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
⎯
VIN
CS detection voltage
Sink current
Switch unit
Symbol
Vopr
ISINK
VIN voltage detection
VDS = 0.5 V, VIN = VBAT = 2.0 V
Leakage current
ILEAK
VDS = 16 V, VIN = 16 V
Switch voltage
VSW1
VBAT = 2.8 V, VIN voltage detection
CS output inhibit voltage
VSW2
VBAT = 3.0 V, VOUT voltage detection
VBAT switch leakage current
ILEAK
VIN = 6 V, VBAT = 0 V
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
VBAT switch resistance
Switch voltage temperature coefficient
CS output inhibit voltage temperature
coefficient
Current consumption
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
Total
Backup power supply input voltage
Remark
VBAT
1
2
3
V
4
V
5
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
⎯
⎯
0.1
μA
6
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
VIN = 6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
8
⎯
0.26
0.50
μA
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
IBAT1
IBAT2
Test
Circuit
VIN = Open, VBAT = 3.0 V, Unload
⎯
7
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
13
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
8. S-8424AAHxx
Table 10
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Voltage regulator
Parameter
Typ.
Max.
Unit
VRO
VIN = 6 V, IRO = 30 mA
4.900
5.000
5.100
V
Vdrop1
VIN = 6 V, IRO = 30 mA
⎯
356
474
mV
Load stability 1
ΔVRO1
VIN = 6 V, IRO = 0.1 to 40 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 6 to 16 V, IRO = 30 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Output voltage temperature coefficient 1
Output voltage 2
VOUT
VIN = 6 V, IOUT = 50 mA
4.900
5.000
5.100
V
Dropout voltage 2
Vdrop2
VIN = 6 V, IOUT = 50 mA
⎯
401
540
mV
Load stability 2
ΔVOUT1
VIN = 6 V, IOUT = 0.1 to 60 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 6 to 16 V, IOUT = 50 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
ΔVOUT
ΔTa • VOUT
−VDET1
CS release voltage
+VDET1
detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
⎯
VIN
CS detection voltage
Sink current
VIN voltage detection
VOUT voltage detection
VBAT voltage detection
V
2.499
2.550
2.601
V
2.625
2.690
2.754
V
2.646
2.700
2.754
V
V
V
Δ − VDET1
ΔTa • − VDET1
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
μA
ISINK
ILEAK
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
ILEAK
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
IBAT2
⎯
0.1
+VDET1
+VDET1
× 0.75
× 0.77
× 0.79
1
2
3
V
4
V
5
VOUT
VOUT
VOUT
× 0.95
× 0.97
VIN = 6 V, VBAT = 0 V
⎯
⎯
0.1
μA
6
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
VIN = 6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
8
⎯
0.26
0.50
μA
⎯
1.0
2.1
μA
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
VIN = Open, VBAT = 3.0 V, Unload
Ta = 25°C
Ta = 85°C
VBAT
⎯
+VDET1
Test
Circuit
× 0.93
IBAT1
Total
4.867
16
VBAT switch leakage current
Remark
4.753
2.924
VBAT = 3.0 V, VOUT voltage detection
Backup power supply input voltage
4.639
⎯
VSW2
Current consumption
V
V
2.856
CS output inhibit voltage
CS output inhibit voltage temperature
16
4.692
1.7
VBAT = 2.8 V, VIN voltage detection
Switch voltage temperature coefficient
⎯
4.600
2.787
VSW1
VBAT switch resistance
⎯
4.508
VIN or VBAT
Vopr
Switch voltage
coefficient
14
Min.
Dropout voltage 1
Primary power input voltage
Voltage detector
Conditions
Output voltage 1
Output voltage temperature coefficient 2
Switch unit
Symbol
⎯
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
7
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
9. S-8424AAJFxx
Table 11
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Parameter
Symbol
Conditions
Min.
Typ.
Max.
Unit
Test
Circuit
VRO
VIN = 6 V, IRO = 10 mA
3.038
3.100
3.162
V
Dropout voltage 1
Vdrop1
VIN = 6 V, IRO = 10 mA
⎯
123
167
mV
Load stability 1
ΔVRO1
VIN = 6 V, IRO = 0.1 to 15 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 6 to 16 V, IRO = 10 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
VOUT
VIN = 6 V, IOUT = 50 mA
3.038
3.100
3.162
V
Vdrop2
Voltage regulator
Output voltage 1
Output voltage temperature coefficient 1
Output voltage 2
VIN = 6 V, IOUT = 50 mA
⎯
401
540
mV
Load stability 2
ΔVOUT1
VIN = 6 V, IOUT = 0.1 to 60 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 6 to 16 V, IOUT = 50 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Dropout voltage 2
Output voltage temperature coefficient 2
Voltage detector
Primary power input voltage
−VDET1
CS release voltage
+VDET1
RESET detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
⎯
VIN
CS detection voltage
Sink current
Switch unit
ΔVOUT
ΔTa • VOUT
VIN voltage detection
⎯
VOUT voltage detection
⎯
VBAT voltage detection
⎯
2.156
2.200
2.244
V
2.256
2.312
2.367
V
2.548
2.600
2.652
V
2.682
2.748
2.814
V
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
μA
ISINK
ILEAK
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
ILEAK
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
IBAT2
VBAT
⎯
⎯
0.1
+VDET1
+VDET1
+VDET1
× 0.75
× 0.77
× 0.79
2
3
V
4
V
5
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
VIN = 6 V, VBAT = 0 V
⎯
⎯
0.1
μA
6
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
VIN = 6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
8
⎯
0.26
0.50
μA
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
IBAT1
Total
V
Ta = −40°C to +85°C
VBAT switch leakage current
Remark
4.654
V
VBAT = 3.0 V, VOUT voltage detection
Backup power supply input voltage
4.545
16
VSW2
Current consumption
4.436
⎯
CS output inhibit voltage
CS output inhibit voltage temperature
V
V
1.7
VBAT = 2.8 V, VIN voltage detection
coefficient
16
4.488
VIN or VBAT
Vopr
VSW1
Switch voltage temperature coefficient
⎯
4.400
Δ − VDET1
ΔTa • − VDET1
Switch voltage
VBAT switch resistance
⎯
4.312
1
VIN = Open, VBAT = 3.0 V, Unload
⎯
7
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
15
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
10. S-8424AAKxx
Table 12
Electrical Characteristics
(Unless otherwise specified: Ta = 25°C)
Voltage regulator
Parameter
Voltage detector
Min.
Typ.
Max.
Unit
VRO
VIN = 6 V, IRO = 10 mA
3.136
3.200
3.264
V
Dropout voltage 1
Vdrop1
VIN = 6 V, IRO = 10 mA
⎯
123
167
mV
Load stability 1
ΔVRO1
VIN = 6 V, IRO = 0.1 to 15 mA
⎯
50
100
mV
Input stability 1
ΔVRO2
ΔVRO
ΔTa • VRO
VIN = 6 to 16 V, IRO = 10 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Output voltage temperature coefficient 1
Output voltage 2
VOUT
VIN = 6 V, IOUT = 50 mA
3.136
3.200
3.264
V
Dropout voltage 2
Vdrop2
VIN = 6 V, IOUT = 50 mA
⎯
401
540
mV
Load stability 2
ΔVOUT1
VIN = 6 V, IOUT = 0.1 to 60 mA
⎯
50
100
mV
Input stability 2
ΔVOUT2
VIN = 6 to 16 V, IOUT = 50 mA
⎯
5
20
mV
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Primary power input voltage
ΔVOUT
ΔTa • VOUT
⎯
⎯
16
V
4.508
4.600
4.692
V
4.639
4.753
4.867
V
2.352
2.400
2.448
V
2.467
2.528
2.589
V
2.548
2.600
2.652
V
2.682
2.748
2.814
V
VIN or VBAT
1.7
⎯
16
V
Δ − VDET1
ΔTa • − VDET1
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 2
ΔTa • − VDET 2
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
Δ − VDET 3
ΔTa • − VDET 3
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
RESET
1.50
2.30
⎯
mA
PREEND
1.50
2.30
⎯
mA
CS
1.50
2.30
⎯
mA
⎯
⎯
0.1
μA
+VDET1
+VDET1
+VDET1
× 0.75
× 0.77
× 0.79
−VDET1
CS release voltage
+VDET1
RESET detection voltage
−VDET2
RESET release voltage
+VDET2
PREEND detection voltage
−VDET3
PREEND release voltage
+VDET3
Operating voltage
Detection voltage temperature coefficient
Leakage current
⎯
VIN
CS detection voltage
Sink current
Switch unit
Conditions
Output voltage 1
Output voltage temperature coefficient 2
Vopr
ISINK
ILEAK
VIN voltage detection
⎯
VOUT voltage detection
⎯
VBAT voltage detection
⎯
VDS = 0.5 V, VIN = VBAT = 2.0 V
VDS = 16 V, VIN = 16 V
Switch voltage
VSW1
VBAT = 2.8 V, VIN voltage detection
CS output inhibit voltage
VSW2
VBAT = 3.0 V, VOUT voltage detection
VBAT switch leakage current
ILEAK
VIN = 6 V, VBAT = 0 V
VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA
VBAT switch resistance
Switch voltage temperature coefficient
CS output inhibit voltage temperature
coefficient
Current consumption
RSW
ΔVSW 1
ΔTa • VSW 1
ΔVSW 2
ΔTa • VSW 2
ISS1
Total
IBAT2
Remark
VBAT
Test
Circuit
1
2
3
V
4
V
5
VOUT
VOUT
VOUT
× 0.93
× 0.95
× 0.97
⎯
−
0.1
μA
6
⎯
30
60
Ω
7
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
4
Ta = −40°C to +85°C
⎯
±100
⎯
ppm/°C
5
VIN = 6 V, VBAT = 3.0 V, Unload
⎯
7
15
μA
8
⎯
0.26
0.50
μA
Ta = 25°C
⎯
1.0
2.1
μA
Ta = 85°C
⎯
⎯
3.5
μA
1.7
⎯
4.0
V
IBAT1
Backup power supply input voltage
16
Symbol
VIN = Open, VBAT = 3.0 V, Unload
⎯
The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section.
7
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
Test Circuits
1.
2.
VBAT
VIN
V
VRO or VOUT
VIN
↓
VSS
10 μF
100 kΩ
V
100 kΩ
VBAT VOUT
VIN
PREEND
VIN
V
100 kΩ
RESET
CS
VSS
V
V
V
To measure VDET3, apply 6 V to VIN.
3.
4.
VIN
VBAT VOUT CS
VIN
PREEND
VSS
VIN
A
A
RESET
VBAT
V
VIN
VBAT
VOUT
V
VSS
A
VDS
Measure the value after applying 6 V to VIN.
5.
6.
F.G.
VOUT
Oscilloscope
VBAT CS
100 kΩ
Oscilloscope
VIN
VSS
VIN
VBAT
VIN
A
VSS
VBAT
7.
8.
VOUT
VIN
VBAT
VIN
VBAT
VIN
IOUT
VSS
VBAT
↓
V
ISS
VIN
Leave open and measure the value after applying
6 V to VIN.
Figure 4
A
A IBAT
VSS
VBAT
To measure IBAT2, apply 6 V to VIN and then leave
VIN open and measure IBAT.
Test Circuits
17
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
Operation Timing Chart
VIN (V)
VRO (V)
VOUT (V)
VBAT (V)
VCS (V)
VPREEND (V )
V RESET (V )
Remark
CS, PREEND and RESET are pulled up to VOUT. Y-axis is an arbitrary scale.
Figure 5
18
Operation Timing Chart
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
Operation
The internal configuration of the S-8424A Series is as follows.
• Voltage regulator 1, which stabilizes input voltage (VIN) and outputs it to VRO
• Voltage regulator 2, which stabilizes input voltage (VIN) and outputs it to VOUT
• CS voltage detector, which monitors input voltage (VIN)
• PREEND voltage detector, which monitors output voltage (VBAT)
• RESET voltage detector, which monitors output voltage (VOUT)
• Switch unit
The functions and operations of the above-listed elements are described below.
1. Voltage Regulators
The S-8424A Series features on-chip voltage regulators with a small dropout voltage. The voltage of the VRO
and VOUT pins (the output pins of the voltage regulator) can separately be selected for the output voltage in
0.1 V steps between the range of 2.3 to 5.4 V.
[Dropout voltage Vdrop1, Vdrop2]
Assume that the voltage output from the VRO pin is VRO(E) under the conditions of output voltage 1
described in the electrical characteristics table. VIN1 is defined as the input voltage at which output voltage
from the VRO pin becomes 98% of VRO(E) when the input voltage VIN is decreased. Then, the dropout
voltage Vdrop1 is calculated by the following expression.
Vdrop1 = VIN1 − VRO(E) × 0.98
Similarly, assume that the voltage of the VOUT pin is VOUT(E) under the conditions of output voltage 2
described in the electrical characteristics table. VIN2 is defined as the input voltage at which the output
voltage from the VOUT pin becomes 98% of VOUT(E). Then, the dropout voltage Vdrop2 is calculated by
the following expression.
Vdrop2 = VIN2 − VOUT(E) × 0.98
2. Voltage Detector
The S-8424A Series incorporates three high-precision, low power consuming voltage detectors with
hysteresis characteristics. The power of the CS voltage detector is supplied from the VIN and VBAT pins.
Therefore, the output is stable as long as the primary or backup power supplies are within the operating
voltage range (1.7 to 16 V). All outputs are Nch open-drain, and need pull-up resistors of about 100 kΩ.
2.1 CS Voltage Detector
The CS voltage detector monitors the input voltage VIN (VIN pin voltage). The detection voltage can be
selected from between 2.4 and 5.3 V in 0.1 V steps. The result of detection is output at the CS pin:
“Low” for lower voltage than the detection level and “High” for higher voltage than the release level
(however, when the VOUT pin voltage is the CS output inhibit voltage (VSW2), a low level is output).
Input voltage
Release voltage
Detection voltage
Output voltage
Figure 6
Definition of Detection and Release Voltages
19
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
2.2 PREEND Voltage Detector
The PREEND voltage detector monitors the input voltage VBAT (VBAT pin voltage). The detection voltage
can be selected from between 1.7 V and 3.4 V in 0.1 V steps. A higher voltage can also be seclected
keeping a constant difference with the RESET voltage. This function enables the warning that the backup
battery is running out. The detection result is output to the PREEND pin: “Low” for lower voltages than
the detection voltage and “High” for higher voltages than the release voltage. The power supply of the
PREEND voltage detector is supplied from the VIN pin. The output is valid only when the voltage is
supplied from the VIN pin to the VOUT pin (VIN ≥ VSW1). The output is the low level when the voltage is
supplied from the VBAT pin to the VOUT pin (VIN < VSW1).
2.3 RESET Voltage Detector
The RESET voltage detector monitors the output voltage VOUT (VOUT pin voltage). The detection
voltage can be selected from between 1.7 V and 3.4 V in 0.1 V steps. The result of detection is output at
the RESET pin: “Low” for lower voltages than the detection level and “High” for higher voltages than
the release level. RESET outputs the normal logic if the VOUT pin voltage is 1.0 V or more.
Caution
The PREEND and RESET voltage detectors use the different pins, respectively.
Practically, the current is taken from the VBAT side, and consider the I/O voltage
difference (Vdif) of M1 when M1 is ON.
3. Switch Unit
The switch unit consists of the VSW1 and VSW2 detectors, a switch controller, voltage regulator 2, and switch
transistor M1 (Refer to “Figure 7 Switch Unit”).
VOUT
VIN
M1
VBAT
REG2
Switch
controller
Figure 7
VSW1
detector
VSW2
detector
Switch Unit
3.1 VSW1 Detector
The VSW1 detector monitors the power supply voltage VIN and sends the results of detection to the switch
controller. The detection voltage (VSW1) can be set to 77 ±2% or 85 ±2% of the CS release voltage
+VDET1.
20
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
3.2 VSW2 Detector
The VSW2 detector monitors the VOUT pin voltage and keeps the CS release voltage output low until the
VOUT pin voltage rises to VSW2 voltage. The CS pin output then changes from low to high if the VIN pin
voltage is more than the CS release voltage (+VDET1) when the VOUT pin voltage rises to 95 ±2% of the
output voltage of voltage regulator 2 (VOUT). The CS pin output changes from high to low regardless of
the VSW2 voltage when the VIN pin voltage drops to less than the CS detection voltage (−VDET1).
The CS pin output remains high if the VIN pin voltage stays higher than the CS detection voltage (−VDET1)
when the VOUT pin voltage drops to less than the VSW2 voltage due to an undershoot.
3.3 Switch Controller
The switch controller controls voltage regulator 2 and switch transistor M1. There are two statuses
corresponding to the power supply voltage VIN (or power supply voltage VBAT) sequence: a special
sequence status and a normal sequence status. When the power supply voltage VIN rises and becomes
equal to or exceeds the CS release voltage (+VDET1), the normal sequence status is entered, but until then
the special sequence status is maintained.
(1) Special sequence status
The switch controller sets voltage regulator 2 ON and switch transistor M1 OFF from the initial status
until the primary power supply voltage VIN is connected and reaches more than the CS release
voltage (+VDET1) in order to prevent consumption of the backup power supply regardless of the VSW1
detector status. This status is called the special sequence status.
(2) Normal sequence status
The switch controller enters the normal sequence status from the special sequence status once the
primary power supply voltage VIN reaches more than the CS release voltage (+VDET1).
Once the normal sequence is entered, the switch controller switches voltage regulator 2 and switch
transistor M1 ON/OFF as shown in Table 13 according to the power supply voltage VIN. The time
required for voltage regulator 2 to be switched from OFF to ON is a few hundred μs at most. During
this interval, voltage regulator 2 and switch transistor M1 may both switch OFF and the VOUT pin
voltage may drop. To prevent this, connect a capacitor of 10 μF or more to the VOUT pin.
When the VOUT pin voltage becomes lower than the RESET detection voltage, the status returns to
the special sequence status.
Table 13
ON/OFF Switching of Voltage Regulator 2 and
Switch Transistor M1 According to Power Supply Voltage (VIN)
Power Supply Voltage (VIN)
Voltage Regulator 2
Switch Transistor M1
VOUT Pin Voltage
VIN > VSW1
ON
OFF
VOUT
VIN < VSW1
OFF
ON
VBAT − Vdif
21
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
3.4 Switch Transistor M1
Voltage regulator 2 is also used to switch from VIN pin to VOUT pin. Therefore, no reverse current flows
from VOUT pin to VIN pin when voltage regulator 2 is OFF. The output voltage of voltage regulator 2 can
be selected from between 2.3 V and 5.4 V in 0.1 V steps.
The on-resistance of switch transistor M1 is 60 Ω or lower (IOUT = 10 to 500 μA).
Therefore, when M1 is switched ON and VOUT pin is connected to VBAT pin, the voltage drop (Vdif)
caused by M1 is 60 × IOUT (output current) at maximum., and VBAT – Vdif (max.) is output to the VOUT pin at
minimum.
When voltage regulator 2 is ON and M1 is OFF, the leakage current of M1 is kept below 0.1 μA max. (VIN
= 6 V, Ta = 25°C) with the VBAT pin grounded (VSS pin).
VOUT
Vdif
VIN
VBAT
REG2
M1
Figure 8 Definition of Vdif
22
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
Transient Response
1. Line Transient Response Against Input Voltage Variation
The input voltage variation differs depending on whether the power supply input (0 V to 10 V square wave) is
applied or the power supply variation (6 V and 10 V square waves) is applied. This section describes the
ringing waveforms and parameter dependency of each type. The test circuit is shown for reference.
Power supply application: 0 V to 10 V Square wave
Fast amplifier
Input voltage
10 V
VIN
0V
VOUT
Oscilloscope
S-8424A
Series
COUT
VSS
RL
Overshoot
Undershoot
Output voltage
P.G.
Figure 9 Power Supply Application:
0 V to 10 V Square Wave
Figure 10 Test Circuit
Power Supply Application
VOUT pin
VRO pin
COUT = 22 μF, IOUT = 50 mA, Ta = 25°C
CRO = 22 μF, IRO = 30 mA, Ta = 25°C
10 V
Input Voltage
(5 V/div)
10 V
Input Voltage
(5 V/div)
0V
Output Voltage
(0.5 V/div)
Output Voltage
(0.5 V/div)
t (100 μs/div)
t (100 μs/div)
Figure 11
0V
Ringing Waveform of Power Supply
Application (VOUT Pin)
Figure 12
Ringing Waveform of Power Supply
Application (VRO Pin)
23
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
Power supply variation: 6 V and 10 V square waves
Fast amplifier
10 V
Input
voltage
VOUT
VIN
S-8424A Series
6V
VSS
Output
Oscillo-scope
COUT
RL
Overshoot
P.G.
voltage
Undershoot
Figure 13 Power Supply Variation:
6 V and 10 V Square Waves
Figure 14 Test Circuit
Power Supply Variation
VOUT pin
COUT = 22 μF, IOUT = 50 mA, Ta = 25°C
10 V
10 V
Input Voltage 6 V
(4 V/div)
6V
Output Voltage
(50 mV/div)
t (100 μs/div)
Figure 15
Ringing Waveform of Power Supply Variation (VOUT Pin)
VRO pin
CRO = 22 μF, IRO = 30 mA, Ta = 25°C
10 V
10 V
6V
Input Voltage 6 V
(4 V/div)
Output Voltage
(50 mV/div)
t (100 μs/div)
Figure 16
24
Ringing Waveform of Power Supply Variation (VRO Pin)
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
Reference data: Dependency of output current (IOUT), load capacitance (COUT), input variation width (ΔVIN),
temperature (Ta)
For reference, the following pages describe the results of measuring the ringing amounts at the VOUT and
VRO pins using the output current (IOUT), load capacitance (COUT), input variation width (ΔVIN), and
temperature (Ta) as parameters.
1.1 IOUT Dependency
(1) VOUT pin
(2) VRO pin
COUT = 22 μF, VIN = 6 V and 10 V, Ta = 25°C
0.25
Ringing amount (V)
Ringing amount (V)
0.20
0.15
0.10
0.05
0.00
CRO = 22 μF, VIN = 6 V and 10 V, Ta = 25°C
0.25
0
20
40
0.20
0.15
0.10
0.05
0.00
60
0
20
40
60
IRO (mA)
IOUT (mA)
1.2 COUT Dependency
(1) VOUT pin
(2) VRO pin
0.40
0.30
0.20
0.10
0.00
IRO = 30 mA, VIN = 6 V and 10 V, Ta = 25°C
0.50
Ringing amount (V)
Ringing amount (V)
IOUT = 50 mA, VIN = 6 V and 10 V, Ta = 25°C
0.50
0
10
20
30
COUT (μF)
40
50
0.40
0.30
0.20
0.10
0.00
0
10
20
30
40
50
CRO (μF)
Overshoot
Undershoot
25
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
1.3 ΔVIN Dependency
ΔVIN shows the difference between the low voltage fixed to 6 V and the high voltage.
For example, ΔVIN = 2 V means the difference between 6 V and 8 V.
(1) VOUT pin
(2) VRO pin
0.30
IOUT=50 mA, COUT=22 μF, Ta=25°C
0.30
0.25
Ringing amount (V)
Ringing amount (V)
0.25
IRO=30 mA, CRO=22 μF, Ta=25°C
0.20
0.15
0.10
0.05
0.00
0
1
2
3
4
0.20
0.15
0.10
0.05
0.00
5
0
ΔVIN (V)
1
2
3
ΔVIN (V)
4
5
1.4 Temperature Dependency
(2) VRO pin
0.30
0.30
0.25
0.25
Ringing amount (V)
Ringing amount (V)
(1) VOUT pin
0.20
0.15
0.10
0.05
VIN=6 ↔10 V,
IOUT=50 mA,
COUT=22 μF
0.20
0.15
0.10
0.05
0.00
0.00
–50
0
50
Ta (°C)
100
VIN=6 ↔10 V,
IOUT=30 mA,
CRO=22 μF
–50
0
50
100
Ta (°C)
Overshoot
Undershoot
26
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
2. Load Transient Response Based on Output Current Fluctuation
The overshoot and undershoot are caused in the output voltage if the output current fluctuates between 10 μA and
50 mA (VRO is between 10 μA and 30 mA) while the input voltage is constant. Figure 17 shows the output
voltage variation due to the output current. Figure 18 shows the test circuit for reference. The latter half of this
section describes ringing waveform and parameter dependency.
Output
current
50 mA
VIN
10 μA
COUT
VSS
Overshoot
Oscilloscope
VOUT
S-8424A
Series
Undershoot
Output
current
Figure 17 Output Voltage Variation due to
Output Current
Figure 18 Test Circuit
Figure 19 shows the ringing waveforms at the VOUT pin and Figure 20 shows the ringing waveforms at the VRO
pin due to the load variation, respectively.
VOUT pin
VIN = 6.0 V, COUT = 22 μF, Ta = 25°C
50 mA
Output current
50 mA
10 μA
10 μA
Output voltage
(50 mV/div)
t (50 μs/div)
t (500 ms/div)
Figure 19 Ringing Waveform due to Load Variation (VOUT Pin)
VRO pin
VIN=6.0 V, CRO=22 μF, Ta=25°C
30 mA
Output current
30 mA
10 μA
10 μA
Output voltage
(20 mV/div)
t (20 ms/div)
Figure 20
t (50 μs/div)
Ringing Waveform due to Load Variation (VRO Pin)
27
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
Reference data: Dependency of input voltage (VIN), load capacitance (COUT), output variation width (ΔIOUT), and
temperature (Ta)
2.1 VIN Dependency
(1) VOUT pin
(2) VRO pin
COUT = 22 μF, IOUT = 50 mA and 10 μA, Ta = 25°C
0.12
CRO = 22 μF, IRO = 30 mA and 10 μA, Ta = 25°C
0.12
0.10
Ringing amount (V)
Ringing amount (V)
0.10
0.08
0.06
0.04
0.02
0.00
4
5
6
7
8
9 10
0.08
0.06
0.04
0.02
0.00
4
5
VIN (V)
6
7
8
9 10
VIN (V)
2.2 COUT Dependency
(2) VRO pin
VIN = 6.0 V, IOUT = 50 mA and 10 μA, Ta = 25°C
0.60
VIN = 6.0 V, IRO = 30 mA and 10 μA, Ta = 25°C
0.30
0.50
0.25
Ringing amount (V)
Ringing amount (V)
(1) VOUT pin
0.40
0.30
0.20
0.15
0.10
0.05
0.10
0.00
0.20
0
10
20
30
COUT (μF)
40
50
0.00
0
10
20
30
40
50
CRO (μF)
Overshoot
Undershoot
28
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
2.3 ΔIOUT Dependency
ΔIOUT and ΔIRO show the fluctuation between the low current stabilized at 10 μA and the high current.
example, ΔIOUT = 10 mA means a fluctuation between 10 μA and 10 mA.
(1) VOUT pin
(2) VRO pin
0.12
COUT = 22 μF, VIN = 6 V, Ta = 25°C
Ringiing amount (V)
0.12
Ringing amount (V)
For
0.10
0.08
0.06
0.04
0.02
CRO=22 μF, VIN=6.0 V, Ta=25°C
0.10
0.08
0.06
0.04
0.02
0.00
0
0.00
0
10 20 30 40 50 60
ΔIRO (mA)
10 20 30 40 50 60
ΔIOUT (mA)
2.4 Temperature Dependency
(1) VOUT pin
(2) VRO pin
VIN=6.0 V, IOUT=50 mA ↔ 10 μA, COUT=22 μF
0.16
VIN=6.0 V, IRO=30 mA ↔ 10 μA, CRO=22 μF
0.08
0.07
0.12
Ringing amount (V)
Ringing amount (V)
0.14
0.10
0.08
0.06
0.04
0.02
0.00
−50
0.06
0.05
0.04
0.03
0.02
0.01
0
50
Ta (°C)
100
0.00
−50
0
50
100
Ta (°C)
Overshoot
Undershoot
29
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
Standard Circuit
VRO
+
1 kΩ
VRO
VBAT
VIN
VOUT
6V
+
+
S-8424A
Series
10 μF
10 μF
VSS
10 μF
0.1 μF
3V
VOUT
100 kΩ
RESET
CS
VOUT
PREEND
VOUT
VOUT
100 kΩ
100 kΩ
Figure 21
Standard Circuit
Caution 1. Be sure to add a 10 μF or more capacitor to the VOUT and VRO pins.
2. The above connections and values will not guarantee correct operation. Before setting these
values, perform sufficient evaluation on the application to be actually used.
30
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
Precautions
• In applications with small IRO or IOUT, the output voltages VRO and VOUT may rise, causing the load stability to
exceed standard levels. Set IRO and IOUT to 10 μA or more.
• Attach the proper capacitor to the VOUT pin to prevent the RESET voltage detector (which monitors the VOUT
pin) from coming active due to undershoot.
• Watch for overshoot and ensure it does not exceed the ratings of the IC chips and/or capacitors attached to the
VRO and VOUT pins.
• Add a 10 μF or more capacitor to the VOUT and VRO pins.
• When VIN rises from the voltage more than VSW1, a low pulse of less than 4 ms flows through the PREEND pin
even when VBAT is more than the PREEND release voltage. Thus when monitoring the PREEND pin, make
sure to take the 4 ms interval or more after the rise of VIN.
• Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
Application Circuits
1. When Using Timer Micro controllers for Backup to display PREEND in the primary CPU
+
100 kΩ
VOUT
+
10 μF
1 kΩ
6V
3V
VIN
100 kΩ
S-8424A
Series
VBAT
10 μF
VCC
CS
CS
Timer
microcontroller
PREEND
0.1 μ F
RESET
+ VRO
10 μF
RESET
VSS
100 kΩ
VCC
RESET
Main CPU
INT
Address data
Figure 22
Application Circuit 1
31
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
2. When Using Secondary Battery as Backup Battery
+
+
10 μF
10 μ F
VRO
VOUT
VIN
100 kΩ
S-8424A
Series
+
10 μF
6V
VCC
VBAT
100 kΩ
Microcontroller
CS
INT
0.1 μF
RESET
3V
RESET
VSS
Figure 23
Remark
Application Circuit 2
The backup battery can be floating-recharged by using voltage regulator 1.
3. Memory Card
Card unit
VIN
VIN
+
VOUT
10 μF +
S-8424A
Series
10 μ F
100 kΩ 100 kΩ
BDT2
PREEND
BDT1
RESET
100 kΩ
SRAM
CS
CS
VBAT
VSS
0.1 μ F
3V
CS
Figure 24
Caution
32
Application Circuit 3
The above connections and values will not guarantee correct operation. Before setting these
values, perform sufficient evaluation on the application to be actually used.
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
Characteristics
1. Voltage Regulator Unit (VRO = VOUT = 3.0 V)
1.1 Input Voltage (VIN) vs. Output Voltage (VRO) Characteristics (REG1)
(1) Ta = 85°C
(2) Ta = 25°C
IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
3.2
3.2
2.8
VRO (V)
VRO (V)
IRO = 10 mA
IRO = 90 mA
2.4
2.0
2.0
3.0
4.0
IRO = 10 mA
2.8
IRO = 90 mA
2.4
2.0
2.0
5.0
3.0
VIN (V)
4.0
5.0
VIN (V)
(3) Ta = −40°C
IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
VRO (V)
3.2
IRO = 10 mA
2.8
IRO = 90 mA
2.4
2.0
2.0
3.0
VIN (V)
4.0
5.0
1.2 Input Voltage (VIN) vs. Output Voltage (VOUT) Characteristics (REG2)
(1) Ta = 85°C
(2) Ta = 25°C
IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
3.2
3.2
2.8
VOUT (V)
VOUT (V)
IOUT = 10 mA
IOUT = 90 mA
2.4
2.0
2.0
3.0
4.0
5.0
IOUT = 10 mA
2.8
IOUT = 90 mA
2.4
2.0
2.0
3.0
4.0
5.0
VIN (V)
VIN (V)
(3) Ta = −40°C
IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
VOUT (V)
3.2
IOUT = 10 mA
2.8
IOUT = 90 mA
2.4
2.0
2.0
3.0
VIN (V)
4.0
5.0
33
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
1.3 Output Current (IRO) vs. Dropout Voltage (Vdrop1) Characteristics
1.0
0.8
Vdrop2 (V)
Vdrop1 (V)
1.0
Ta = 85°C
25°C
− 40°C
0.8
1.4 Output Current (IOUT) vs. Dropout Voltage (Vdrop2) Characteristics
0.6
0.4
0.2
0.4
0.2
0.0
0.0
0
0.02
0.04
IRO (A)
0.06
1.5 Output Current (IRO) vs. Output Voltage (VRO) Characteristics
0
0.02
VRO (V)
VIN = 6 V
2.85
1μ
Ta = −40°C
25°C
85°C
3.15
3.05
2.95
3.05
VIN = 6 V
2.95
100 μ
10 m
2.85
1μ
1
100 μ
1.7 Output voltage (VRO) Temperature Characteristics
30
V IN = 6 V, IRO = 30 mA
Based on VRO voltage when Ta is 25°C
10
ΔVOUT (mV)
ΔVRO (mV)
20
0
−10
20
VIN = 6 V, IOUT = 50 mA
10
Based on VOUT voltage when Ta is 25°C
0
−10
−20
−20
−30
−40
0
−20
20
40
60
80
0
−40 −20
100
20
40
60
80 100
Ta (°C)
Ta (°C)
1.9 Input Stability (VRO) Temperature Characteristics
1.10 Input Stability (VOUT) Temperature Characteristics
20
20
ΔVOUT2 (mV)
ΔVRO2 (mV)
1
1.8 Output voltage (VOUT) Temperature Characteristics
30
15
10
5
15
10
5
0
0
− 40
− 20
0
20
40
60
80
− 40
100
− 20
0
Ta (°C)
30
30
ΔVOUT (mV)
40
20
10
0
−20
0
20
Ta (°C)
40
60
80
100
1.12 Load Stability (VRO) Temperature Characteristics
40
−40
20
Ta (°C)
1.11 Load Stability (VRO) Temperature Characteristics
ΔVRO1 (mV)
10 m
IRO (A)
IRO (A)
34
0.06
3.25
Ta = −40°C
25°C
85°C
3.15
−30
0.04
IOUT (A)
1.6 Output Current (IOUT) vs. Output Voltage (VOUT) Characteristics
3.25
VOUT (V)
Ta = 85°C
25°C
−40°C
0.6
40
60
80
100
20
10
0
−40
−20
0
20
Ta (°C)
40
60
80
100
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
2. Voltage Detector
2.1 CS Voltage Detector (−VDET1 = 3.3 V)
(1) Detection voltage (−VDET1) temperature
characteristics
(2) Output current (ISINK) characteristics
20
25
Based on CS (−VDET1) voltage when Ta is 25°C
CS ISINK (mA)
Δ CS (mV)
10
30
0
−10
Ta = 25°C
VIN = 3 V
20
15
10
VIN = 1.7 V
5
−20
−40
−20
0
20
40
60
80
0
100
0.0
1.0
Ta (°C)
2.0
3.0
4.0
VDS (V)
(3) Output current (ISINK) temperature characteristics
10
CS ISINK (mA)
8
VIN = V BAT = 2.0 V, V DS = 0.5 V
6
4
2
0
−40
−20
0
20
40
Ta ( °C)
60
80
100
2.2 RESET Voltage Detector (−VDET2 = 2.2 V)
(1) Detection voltage (−VDET2) temperature
characteristics
(2) Output current (ISINK) characteristics
20
30
10
25
when Ta is 25°C
RESET ISINK (mA)
ΔRESET (mV)
Based on RESET (−VDET2) voltage
0
−10
−20
−40
−20
0
20
40
60
80
100
Ta ( °C)
VIN = 3 V
Ta = 25°C
20
15
10
VIN = 1.7 V
5
0
0.0
1.0
2.0
3.0
4.0
VDS (V)
(3) Output current (ISINK) temperature characteristics
RESET ISINK (mA)
10
VIN = VBAT = 2.0 V, VDS = 0.5 V
8
6
4
2
0
−40
−20
0
20 40
Ta (°C)
60
80
100
35
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
2.3 PREEND Voltage Detector (−VDET3 = 2.6 V)
(2) Output current (ISINK) characteristics
(1) Detection voltage (−VDET3) temperature
characteristics
30
25
Based on PREEND (−VDET3) voltage
when Ta is 25°C
10
PREEND ISINK (mA)
ΔPREEND (mV)
20
0
−10
−20
−40
−20
0
20
40
60
80
100
VDS (V)
PREEND ISINK (mA)
10
VIN = VBAT = 2.0 V, V DS = 0.5 V
6
4
2
0
−40
−20
0
20
Ta ( °C)
36
40
20
15
10
VIN = 1.7 V
5
0
0.0
1.0
2.0
VDS (V)
(3) Output current (ISINK) temperature characteristics
8
VIN = 3 V
Ta = 25 °C
60
80
100
3.0
4.0
BATTERY BACKUP SWITCHING IC
S-8424A Series
Rev.4.0_00
3. Switch Unit
3.1 Switch Voltage (VSW1) Temperature
Characteristics
3.2 CS Output Inhibit Voltage (VSW2) Temperature
Characteristics
20
20
0
−10
−20
−40
− 20
0
20
40
60
80
0
−10
−20
100
Ta (°C)
3.3 Input Voltage (VBAT) vs. VBAT Switch
Resistance(RSW) Characteristics
−20
0
20
Ta (°C)
40
60
80
100
60
50
50
IOUT = 500 μA
40
RSW (Ω)
RSW (Ω)
−40
3.4 VBAT Switch Resistance (RSW) Temperature
Characteristics
60
30
20
10
0
Based on VSW2 voltage when Ta is 25°C
10
Based on V SW1 voltage when Ta is 25°C
Δ VSW2 (mV)
Δ VSW1 (mV)
10
VBAT = 3 V, IOUT = 500 μA
40
30
20
10
1
2
3
4
5
0
−40
−20
0
20
40
60
80
100
Ta (°C)
VBAT (V)
3.5 VBAT Switch Leakage Current (ILEAK) Temperature
Characteristics
30
ILEAK (nA)
25
20
VIN = 6.0 V, VBAT = 0 V
15
10
5
0
−40
−20
0
20
40
60
80
100
Ta (°C)
37
BATTERY BACKUP SWITCHING IC
Rev.4.0_00
S-8424A Series
4. Consumption Current
4.1 VIN vs. VIN Consumption Current (ISS1)
Characteristics
4.2 VBAT vs. VBAT2 Consumption Current (IBAT2)
Characteristics
16
2.0
Ta = 85°C
25°C
−40°C
8
4
0
0
2
4
6
8
10
VIN (V)
12
14
16
0.0
2.0
18
2.8
3.2
3.6
4.0
(2) IBAT2
2.0
12
VIN = 6.0 V, VBAT = 3.0 V
1.5
IBAT2 (μA)
ISS1 (μA)
2.4
VBAT (V)
16
8
4
−40
−20
0
20
Ta (°C)
38
1.0
0.5
4.3 Consumption Current Temperature
Characteristics
(1) ISS1
0
Ta = 85°C
25°C
−40°C
1.5
IBAT2 (μA)
ISS1 (μA)
12
40
60
80
100
VIN = open, VBAT = 3.0 V
1.0
0.5
0.0
−40
−20
0
20
Ta (°C)
40
60
80
100
+0.3
3.00 -0.2
8
5
1
4
0.17±0.05
0.2±0.1
0.65
No. FT008-A-P-SD-1.2
TITLE
TSSOP8-E-PKG Dimensions
No.
FT008-A-P-SD-1.2
ANGLE
UNIT
mm
ABLIC Inc.
4.0±0.1
2.0±0.05
ø1.55±0.05
0.3±0.05
+0.1
8.0±0.1
ø1.55 -0.05
(4.4)
+0.4
6.6 -0.2
1
8
4
5
Feed direction
No. FT008-E-C-SD-1.0
TITLE
TSSOP8-E-Carrier Tape
FT008-E-C-SD-1.0
No.
ANGLE
UNIT
mm
ABLIC Inc.
13.4±1.0
17.5±1.0
Enlarged drawing in the central part
ø21±0.8
2±0.5
ø13±0.5
No. FT008-E-R-SD-1.0
TITLE
TSSOP8-E-Reel
No.
FT008-E-R-SD-1.0
QTY.
ANGLE
UNIT
mm
ABLIC Inc.
3,000
13.4±1.0
17.5±1.0
Enlarged drawing in the central part
ø21±0.8
2±0.5
ø13±0.5
No. FT008-E-R-S1-1.0
TITLE
TSSOP8-E-Reel
No.
FT008-E-R-S1-1.0
QTY.
ANGLE
UNIT
mm
ABLIC Inc.
4,000
Disclaimers (Handling Precautions)
1.
All the information described herein (product data, specifications, figures, tables, programs, algorithms and
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without
notice.
2.
The circuit examples and the usages described herein are for reference only, and do not guarantee the success of
any specific mass-production design.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products
described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other
right due to the use of the information described herein.
3.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described
herein.
4.
Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute
maximum ratings, operation voltage range and electrical characteristics, etc.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to
the use of the products outside their specified ranges.
5.
Before using the products, confirm their applications, and the laws and regulations of the region or country where they
are used and verify suitability, safety and other factors for the intended use.
6.
When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related
laws, and follow the required procedures.
7.
The products are strictly prohibited from using, providing or exporting for the purposes of the development of
weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands
caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear,
biological or chemical weapons or missiles, or use any other military purposes.
8.
The products are not designed to be used as part of any device or equipment that may affect the human body, human
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by
ABLIC, Inc. Do not apply the products to the above listed devices and equipments.
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of
the products.
9.
In general, semiconductor products may fail or malfunction with some probability. The user of the products should
therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread
prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social
damage, etc. that may ensue from the products' failure or malfunction.
The entire system in which the products are used must be sufficiently evaluated and judged whether the products are
allowed to apply for the system on customer's own responsibility.
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the
product design by the customer depending on the intended use.
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be
careful when handling these with the bare hands to prevent injuries, etc.
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
13. The information described herein contains copyright information and know-how of ABLIC Inc. The information
described herein does not convey any license under any intellectual property rights or any other rights belonging to
ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this
document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express
permission of ABLIC Inc.
14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales
representative.
15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into
the English language and the Chinese language, shall be controlling.
2.4-2019.07
www.ablic.com