0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
S-8424AAJFT-TB-U

S-8424AAJFT-TB-U

  • 厂商:

    SII(精工半导体)

  • 封装:

    TSSOP8

  • 描述:

    ICPOWERSUPPLYSWITCHING8TSSOP

  • 数据手册
  • 价格&库存
S-8424AAJFT-TB-U 数据手册
S-8424A Series www.ablic.com © ABLIC Inc., 2001-2019 BATTERY BACKUP SWITCHING IC Rev.4.0_00 The S-8424A Series is a CMOS IC designed for use in the switching circuits of primary and backup power supplies on a single chip. It consists of two voltage regulators, three voltage detectors, a power supply switch and its controller, as well as other functions. In addition to the switching function between the primary and backup power supply, the S-8424A Series can provide the micro controllers with three types of voltage detection output signals corresponding to the power supply voltage. Moreover adopting a special sequence for switch control enables the effective use of the backup power supply, making this IC ideal for configuring a backup system.  Features • Low power consumption Normal operation: 15 μA Max. (VIN = 6 V) Backup: 2.1 μA Max. • Voltage regulator Output voltage tolerance : ±2 % Output voltage: Independently selectable in 0.1 V steps in the range of 2.3 V to 5.4 V • Three built-in voltage detectors (CS, PREEND , RESET ) Detection voltage precision: ±2 % Detection voltage: Selectable in 0.1 V steps in the range of 2.4 V to 5.3 V (CS voltage detector) Selectable in 0.1 V steps in the range of 1.7 V to 3.4 V ( PREEND , RESET voltage detector) • Switching circuit for primary power supply and backup power supply configurable on one chip • Efficient use of backup power supply possible • Special sequence Backup voltage is not output when the primary power supply voltage does not reach the initial voltage at which the switch unit operates. • Lead-free, Sn 100%, halogen-free*1 *1. Refer to “ Product Name Structure” for details.  Package • 8-Pin TSSOP  Applications • Video camera recorders • Still video cameras • Memory cards • SRAM backup equipment 1 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series  Product Name Structure 1. Product name S-8424A xx FT - TB - x Environmental code U: Lead-free (Sn 100%), halogen-free G: Lead-free (for details, please contact our sales representatives.) IC direction in tape specification Package code FT: 8-Pin TSSOP Serial code 2. Package Package Name 8-Pin TSSOP 2 Environmental code = G Environmental code = U Package FT008-A-P-SD FT008-A-P-SD Drawing Code Tape FT008-E-C-SD FT008-E-C-SD Reel FT008-E-R-SD FT008-E-R-S1 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 3. Product name list Part No. Package Output CS Voltage RESET PREEND Voltage (V) Voltage Voltage (V) Type (V) VRO (V) VOUT −VDET1 +VDET1 −VDET2 +VDET2 −VDET3 Switch Voltage (V) +VDET3 VSW1 S-8424AAAFT-TB-x 8-Pin TSSOP 3.000 3.000 3.300 3.401 2.200 2.312 2.600 2.748 +VDET1 × 0.85 S-8424AABFT-TB-x 8-Pin TSSOP 3.300 3.300 4.000 4.129 2.300 2.420 2.500 2.640 +VDET1 × 0.77 S-8424AACFT-TB-x 8-Pin TSSOP 3.200 3.200 3.300 3.401 2.400 2.528 2.600 2.748 +VDET1 × 0.85 S-8424AADFT-TB-x 8-Pin TSSOP 5.000 5.000 4.600 4.753 2.300 2.420 2.500 2.640 +VDET1 × 0.77 S-8424AAEFT-TB-x 8-Pin TSSOP 3.150 3.150 4.200 4.337 2.300 2.420 2.500 2.640 +VDET1 × 0.77 S-8424AAFFT-TB-x 8-Pin TSSOP 3.200 3.200 4.400 4.545 2.400 2.528 2.600 2.748 +VDET1 × 0.77 S-8424AAGFT-TB-x 8-Pin TSSOP 2.800 2.800 4.400 4.545 2.400 2.528 2.600 2.748 +VDET1 × 0.77 S-8424AAHFT-TB-x 8-Pin TSSOP 5.000 5.000 4.600 4.753 2.550 2.690 2.700 2.856 +VDET1 × 0.77 S-8424AAJFT-TB-x 8-Pin TSSOP 3.100 3.100 4.400 4.545 2.200 2.312 2.600 2.748 +VDET1 × 0.77 S-8424AAKFT-TB-x 8-Pin TSSOP 3.200 3.200 4.600 4.753 2.400 2.528 2.600 2.748 +VDET1 × 0.77 Caution Set the CS voltage so that the switch voltage (VSW1) is equal to or greater than the RESET detection voltage (−VDET2). Remark 1. The selection range is as follows. VRO, VOUT: 2.3 to 5.4 V (0.1 V steps) 2.4 to 5.3 V (0.1 V steps) −VDET1: 1.7 to 3.4 V (0.1 V steps ) −VDET2: 1.7 to 3.4 V (0.1 V steps) −VDET3: +VDET1 × 0.85 or +VDET1 × 0.77 VSW1: 2. Please contact our sales representatives for products other than the above. 3. x: G or U 4. Please select products of environmental code = U for Sn 100%, halogen-free products. 3 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series  Block Diagram VOUT M1 VIN VBAT REG2 PREEND PREEND Voltage detector VSW1 Detector CS RESET CS Voltage detector VSW2 Detector RESET Voltage detector Switch controller REG1 VSS Figure 1 4 Block Diagram VRO BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00  Pin Configuration 1. 8-Pin TSSOP Table 1 Top view 1 2 3 4 8 7 6 5 Figure 2 Pin No. 1 2 3 4 5 6 7 8 Symbol VSS PREEND VBAT*1 CS RESET VOUT*2 VIN*3 VRO*4 Description Ground Output pin of PREEND voltage detector Backup power supply input pin Output pin of CS voltage detector Output pin of RESET voltage detector Output pin of voltage regulator 2 Primary power supply input pin Output pin of voltage regulator 1 *1 to *4. Mount capacitors between VSS (GND pin) and the VIN, VBAT, VOUT, and VRO pins. (Refer to the “Standard Circuit”) 5 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series  Absolute Maximum Ratings Table 2 (Unless otherwise specified: Ta = 25°C) Ratings Unit V VSS−0.3 to VSS+18 Parameter Primary power supply input voltage Symbol VIN Backup power supply input voltage Output voltage of voltage regulator VBAT VRO, VOUT VSS−0.3 to VIN+0.3 VCS VSS−0.3 to VSS+18 CS output voltage RESET output voltage V RESET PREEND output voltage Power dissipation V PREEND PD 300 (When not mounted on board) 700*1 mW °C Operating ambient temperature Topr −40 to +85 Storage temperature Tstg −40 to +125 *1. When mounted on board [Mounted board] (1) Board size: 114.3 mm × 76.2 mm × t1.6 mm (2) Board name: JEDEC STANDARD51-7 Caution When mounted on board 800 (2) Power Dissipation PD (mW) Power Dissipation PD (mW) (1) The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. 700 600 500 400 300 200 100 0 0 50 100 150 Ambient Temperature Ta (°C) Figure 3 6 When not mounted on board 400 300 200 100 0 0 50 100 150 Ambient Temperature Ta (°C) Power Dissipation of Package BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00  Electrical Characteristics 1. S-8424AAAxx Table 3 Parameter Voltage regulator Conditions Min. Typ. Max. Unit 2.940 3.000 3.060 V VIN = 7.2 V, IRO = 3 mA Dropout voltage 1 Vdrop1 VIN = 7.2 V, IRO = 3 mA ⎯ 41 59 mV Load stability 1 ΔVRO1 VIN = 7.2 V, IRO = 0.1 to 10 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 4 to 16 V, IRO = 3 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Output voltage temperature coefficient 1 Output voltage 2 VOUT VIN = 7.2 V, IOUT = 23 mA 2.940 3.000 3.060 V Vdrop2 VIN = 7.2 V, IOUT = 23 mA ⎯ 187 252 mV Load stability 2 ΔVOUT1 VIN = 7.2 V, IOUT = 0.1 to 60 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 4 to 16 V, IOUT = 23 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Dropout voltage 2 Output voltage temperature coefficient 2 Primary power input voltage Voltage detector Symbol VRO Output voltage 1 ΔVOUT ΔTa • VOUT −VDET1 CS release voltage +VDET1 RESET detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ⎯ VIN CS detection voltage Sink current Switch unit Electrical Characteristics (Unless otherwise specified: Ta = 25°C) VIN voltage detection ⎯ VOUT voltage detection ⎯ VBAT voltage detection ⎯ 2.156 2.200 2.244 V 2.256 2.312 2.367 V 2.548 2.600 2.652 V V V Δ − VDET1 ΔTa • − VDET1 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA μA ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V ILEAK RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 IBAT2 VBAT ⎯ ⎯ 0.1 +VDET1 +VDET1 +VDET1 × 0.83 × 0.85 × 0.87 1 2 3 V 4 V 5 VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 VIN = 3.6 V, VBAT = 0 V ⎯ ⎯ 0.1 μA 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 8 VIN = 3.6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA ⎯ 0.26 0.50 μA Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V IBAT1 Total V 16 VBAT switch leakage current Remark 3.482 2.814 VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 3.401 − VSW2 Current consumption 3.319 2.748 CS output inhibit voltage CS output inhibit voltage temperature V V 1.7 VBAT = 2.8 V, VIN voltage detection coefficient 16 3.366 2.682 VSW1 Switch voltage temperature coefficient ⎯ 3.300 VIN or VBAT Vopr Switch voltage VBAT switch resistance ⎯ 3.234 Test Circuit VIN = Open, VBAT = 3.0 V, Unload ⎯ 7 The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit”section. 7 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 2. S-8424AABxx Table 4 Voltage regulator Parameter Voltage detector Conditions Min. Typ. Max. Unit VRO VIN = 6 V, IRO = 30 mA 3.234 3.300 3.366 V Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA ⎯ 356 474 mV Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 40 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 6 to 16 V, IRO = 30 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Output voltage temperature coefficient 1 Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.234 3.300 3.366 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA ⎯ 401 540 mV Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Primary power input voltage ΔVOUT ΔTa • VOUT −VDET1 CS release voltage +VDET1 RESET detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current VBAT voltage detection ⎯ 4.228 V 2.254 2.300 2.346 V 2.362 2.420 2.478 V 2.450 2.500 2.550 V 2.576 2.640 2.703 V ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA ⎯ ⎯ 0.1 μA +VDET1 +VDET1 +VDET1 × 0.75 × 0.77 × 0.79 ISINK ILEAK RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V VBAT = 2.8 V, VIN voltage detection VBAT = 3.0 V VOUT voltage detection VBAT VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 Test Circuit 1 2 ppm/°C 3 V 4 V 5 VIN = 6V, VBAT = 0 V ⎯ ⎯ 0.1 μA 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 VIN = 6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA 8 μA ⎯ 0.26 0.50 Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V IBAT1 Total 4.129 Ta = −40°C to +85°C IBAT2 Remark 4.030 V ILEAK Backup power supply input voltage V V 16 VBAT switch leakage current Current consumption ⎯ 16 4.080 ⎯ VSW2 CS output inhibit voltage temperature VOUT voltage detection ⎯ 4.000 1.7 CS output inhibit voltage coefficient ⎯ ⎯ 3.920 VIN or VBAT Vopr VSW1 Switch voltage temperature coefficient VIN voltage detection Δ − VDET1 ΔTa • − VDET1 Switch voltage VBAT switch resistance ⎯ VIN CS detection voltage Sink current Switch unit Symbol Output voltage 1 Output voltage temperature coefficient 2 8 Electrical Characteristics (Unless otherwise specified: Ta = 25°C) VIN = Open, VBAT = 3.0 V, Unload ⎯ The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 3. S-8424AACxx Table 5 Parameter Voltage regulator Output voltage 1 Conditions VRO VIN = 3.6 V, IRO = 15 mA Min. Typ. Max. Unit 3.136 3.200 3.264 V Dropout voltage 1 Vdrop1 VIN = 3.6 V, IRO = 15 mA ⎯ 181 243 mV ΔVRO1 VIN = 3.6 V, IRO = 0.1 to 20 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 3.6 to 16 V, IRO = 15 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Output voltage temperature coefficient 1 Output voltage 2 VOUT VIN = 3.6 V, IOUT = 15mA 3.136 3.200 3.264 V Vdrop2 VIN = 3.6 V, IOUT = 15 mA ⎯ 123 167 mV Load stability 2 ΔVOUT1 VIN = 3.6 V, IOUT = 0.1 to 20 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 3.6 to 16 V, IOUT = 15 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Dropout voltage 2 Primary power input voltage Voltage detector Symbol Load stability 1 Output voltage temperature coefficient 2 ΔVOUT ΔTa • VOUT −VDET1 CS release voltage +VDET1 RESET detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ⎯ VIN CS detection voltage Sink current Switch unit Electrical Characteristics (Unless otherwise specified: Ta = 25°C) VIN voltage detection ⎯ VOUT voltage detection ⎯ VBAT voltage detection ⎯ 2.352 2.400 2.448 V V 2.467 2.528 2.589 2.548 2.600 2.652 V 2.682 2.748 2.814 V ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V ILEAK VIN = 3.6 V, VBAT = 0 V RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA Ta = −40°C to +85°C Ta = −40°C to +85°C VIN = 3.6 V, VBAT = 3.0 V, Unload IBAT2 VBAT VIN = Open, VBAT = 3.0 V, Unload 2 3 ⎯ ⎯ 0.1 μA +VDET1 +VDET1 V 4 × 0.83 × 0.85 × 0.87 V 5 μA 6 VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 ⎯ ⎯ 0.1 ⎯ 30 60 Ω 7 ⎯ ±100 ⎯ ppm/°C 4 ⎯ ±100 ⎯ ppm/°C 5 8 ⎯ 7 15 μA 0.26 0.50 μA Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V ⎯ 1 +VDET1 ⎯ IBAT1 Total V Ta = −40°C to +85°C VBAT switch leakage current Remark 3.482 V VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 3.401 16 VSW2 Current consumption 3.319 ⎯ CS output inhibit voltage CS output inhibit voltage temperature V V 1.7 VBAT = 2.8 V, VIN voltage detection coefficient 16 3.366 VIN or VBAT Vopr VSW1 Switch voltage temperature coefficient ⎯ 3.300 Δ − VDET1 ΔTa • − VDET1 Switch voltage VBAT switch resistance ⎯ 3.234 Test Circuit 7 The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 9 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 4. S-8424AADxx Table 6 Voltage regulator Parameter Voltage detector Conditions Min. Typ. Max. Unit VRO VIN = 6 V, IRO = 30 mA 4.900 5.000 5.100 V Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA ⎯ 356 474 mV Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 40 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 6 to 16 V, IRO = 30 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Output voltage temperature coefficient 1 Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 4.900 5.000 5.100 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA ⎯ 401 540 mV Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Primary power input voltage ΔVOUT ΔTa • VOUT −VDET1 CS release voltage +VDET1 RESET detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ⎯ VIN CS detection voltage Sink current Switch unit Symbol Output voltage 1 Output voltage temperature coefficient 2 VIN voltage detection ⎯ VOUT voltage detection ⎯ VBAT voltage detection ⎯ V 2.254 2.300 2.346 V 2.362 2.420 2.478 V 2.450 2.500 2.550 V 2.576 2.640 2.703 V ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA ⎯ ⎯ 0.1 μA +VDET1 +VDET1 +VDET1 × 0.75 × 0.77 × 0.79 ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V ILEAK VIN = 6 V, VBAT = 0 V VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 IBAT2 VBAT Test Circuit 1 2 3 V 4 V 5 VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 ⎯ ⎯ 0.1 μA 6 ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 VIN = 6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA 8 ⎯ 0.26 0.50 μA Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V IBAT1 Total 4.867 Ta = −40°C to +85°C VBAT switch leakage current Remark 4.753 V VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 4.639 16 VSW2 Current consumption V V ⎯ CS output inhibit voltage CS output inhibit voltage temperature 16 4.692 1.7 VBAT = 2.8 V, VIN voltage detection Switch voltage temperature coefficient ⎯ 4.600 VIN or VBAT Vopr VSW1 VBAT switch resistance ⎯ 4.508 Δ − VDET1 ΔTa • − VDET1 Switch voltage coefficient 10 Electrical Characteristics (Unless otherwise specified: Ta = 25°C) VIN = Open, VBAT = 3.0 V, Unload ⎯ The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 5. S-8424AAExx Table 7 Parameter Voltage regulator Conditions Min. Typ. Max. Unit 3.087 3.150 3.213 V VIN = 6 V, IRO = 30 mA Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA ⎯ 356 474 mV Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 30 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 6 to 16 V, IRO = 30 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C VOUT VIN = 6 V, IOUT = 50 mA 3.087 3.150 3.213 V Vdrop2 Output voltage temperature coefficient 1 Output voltage 2 VIN = 6 V, IOUT = 50 mA ⎯ 401 540 mV Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Dropout voltage 2 Output voltage temperature coefficient 2 Primary power input voltage Voltage detector Symbol VRO Output voltage 1 ΔVOUT ΔTa • VOUT −VDET1 CS release voltage +VDET1 RESET detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ⎯ VIN CS detection voltage Sink current Switch unit Electrical Characteristics (Unless otherwise specified: Ta = 25°C) VIN voltage detection ⎯ VOUT voltage detection ⎯ VBAT voltage detection ⎯ 2.254 2.300 2.346 V V 2.362 2.420 2.478 2.450 2.500 2.550 V 2.576 2.640 2.703 V ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA μA ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V ILEAK RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 IBAT2 VBAT ⎯ ⎯ 0.1 +VDET1 +VDET1 +VDET1 × 0.75 × 0.77 × 0.79 1 2 3 V 4 V 5 VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 VIN = 6 V, VBAT = 0 V ⎯ ⎯ 0.1 μA 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 8 VIN = 6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA ⎯ 0.26 0.50 μA Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V IBAT1 Total V Ta = −40°C to +85°C VBAT switch leakage current Remark 4.441 V VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 4.337 16 VSW2 Current consumption 4.233 ⎯ CS output inhibit voltage CS output inhibit voltage temperature V V 1.7 VBAT = 2.8 V, VIN voltage detection coefficient 16 4.284 VIN or VBAT Vopr VSW1 Switch voltage temperature coefficient ⎯ 4.200 Δ − VDET1 ΔTa • − VDET1 Switch voltage VBAT switch resistance ⎯ 4.116 Test Circuit VIN = Open, VBAT = 3.0 V, Unload ⎯ 7 The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 11 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 6. S-8424AAFxx Table 8 Electrical Characteristics (Unless otherwise specified: Ta = 25°C) Voltage regulator Parameter Typ. Max. Unit VRO VIN = 6 V, IRO = 30 mA 3.136 3.200 3.264 V Vdrop1 VIN = 6 V, IRO = 30 mA ⎯ 356 474 mV Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 30 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 6 to 16 V, IRO = 30 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Output voltage temperature coefficient 1 Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.136 3.200 3.264 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA ⎯ 401 540 mV Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 50 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C ΔVOUT ΔTa • VOUT −VDET1 CS release voltage +VDET1 RESET detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ⎯ VIN CS detection voltage Sink current VIN voltage detection ⎯ VOUT voltage detection ⎯ VBAT voltage detection ⎯ V 2.352 2.400 2.448 V 2.467 2.528 2.589 V 2.548 2.600 2.652 V 2.682 2.748 2.814 V ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA ⎯ ⎯ 0.1 μA +VDET1 +VDET1 +VDET1 × 0.75 × 0.77 × 0.79 ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V ILEAK VIN = 6 V, VBAT = 0 V VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 IBAT2 VBAT Test Circuit 1 2 3 V 4 V 5 VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 ⎯ ⎯ 0.1 μA 6 ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 VIN = 6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA 8 ⎯ 0.26 0.50 μA Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V IBAT1 Total 4.654 Ta = −40°C to +85°C VBAT switch leakage current Remark 4.545 V VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 4.436 16 VSW2 Current consumption V V ⎯ CS output inhibit voltage CS output inhibit voltage temperature 16 4.488 1.7 VBAT = 2.8 V, VIN voltage detection Switch voltage temperature coefficient ⎯ 4.400 VIN or VBAT Vopr VSW1 VBAT switch resistance ⎯ 4.312 Δ − VDET1 ΔTa • − VDET1 Switch voltage coefficient 12 Min. Dropout voltage 1 Primary power input voltage Voltage detector Conditions Output voltage 1 Output voltage temperature coefficient 2 Switch unit Symbol VIN = Open, VBAT = 3.0 V, Unload ⎯ The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 7. S-8424AAGxx Table 9 Electrical Characteristics (Unless otherwise specified: Ta = 25°C) Parameter Voltage regulator Output voltage 1 VRO VIN = 6 V, IRO = 30 mA Min. Typ. Max. Unit 2.744 2.800 2.856 V Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA ⎯ 356 474 mV ΔVRO1 VIN = 6 V, IRO = 0.1 to 30 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 6 to 16 V, IRO = 30 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C VOUT VIN = 6 V, IOUT = 50 mA 2.744 2.800 2.856 V Vdrop2 Output voltage temperature coefficient 1 Output voltage 2 VIN = 6 V, IOUT = 50 mA ⎯ 401 540 mV Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 50 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Dropout voltage 2 Primary power input voltage Voltage detector Conditions Load stability 1 Output voltage temperature coefficient 2 ΔVOUT ΔTa • VOUT ⎯ ⎯ 16 V 4.312 4.400 4.488 V 4.436 4.545 4.654 V VOUT voltage detection 2.352 2.400 2.448 V 2.467 2.528 2.589 V VBAT voltage detection 2.548 2.600 2.652 V 2.682 2.748 2.814 V VIN or VBAT 1.7 ⎯ 16 V Δ − VDET1 ΔTa • − VDET1 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA ⎯ ⎯ 0.1 μA +VDET1 +VDET1 +VDET1 × 0.75 × 0.77 × 0.79 −VDET1 CS release voltage +VDET1 detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient ⎯ VIN CS detection voltage Sink current Switch unit Symbol Vopr ISINK VIN voltage detection VDS = 0.5 V, VIN = VBAT = 2.0 V Leakage current ILEAK VDS = 16 V, VIN = 16 V Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VBAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA VBAT switch resistance Switch voltage temperature coefficient CS output inhibit voltage temperature coefficient Current consumption RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 Total Backup power supply input voltage Remark VBAT 1 2 3 V 4 V 5 VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 ⎯ ⎯ 0.1 μA 6 ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 VIN = 6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA 8 ⎯ 0.26 0.50 μA Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V IBAT1 IBAT2 Test Circuit VIN = Open, VBAT = 3.0 V, Unload ⎯ 7 The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 13 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 8. S-8424AAHxx Table 10 Electrical Characteristics (Unless otherwise specified: Ta = 25°C) Voltage regulator Parameter Typ. Max. Unit VRO VIN = 6 V, IRO = 30 mA 4.900 5.000 5.100 V Vdrop1 VIN = 6 V, IRO = 30 mA ⎯ 356 474 mV Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 40 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 6 to 16 V, IRO = 30 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Output voltage temperature coefficient 1 Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 4.900 5.000 5.100 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA ⎯ 401 540 mV Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C ΔVOUT ΔTa • VOUT −VDET1 CS release voltage +VDET1 detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ⎯ VIN CS detection voltage Sink current VIN voltage detection VOUT voltage detection VBAT voltage detection V 2.499 2.550 2.601 V 2.625 2.690 2.754 V 2.646 2.700 2.754 V V V Δ − VDET1 ΔTa • − VDET1 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA μA ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V ILEAK RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 IBAT2 ⎯ 0.1 +VDET1 +VDET1 × 0.75 × 0.77 × 0.79 1 2 3 V 4 V 5 VOUT VOUT VOUT × 0.95 × 0.97 VIN = 6 V, VBAT = 0 V ⎯ ⎯ 0.1 μA 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 VIN = 6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA 8 ⎯ 0.26 0.50 μA ⎯ 1.0 2.1 μA ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V VIN = Open, VBAT = 3.0 V, Unload Ta = 25°C Ta = 85°C VBAT ⎯ +VDET1 Test Circuit × 0.93 IBAT1 Total 4.867 16 VBAT switch leakage current Remark 4.753 2.924 VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 4.639 ⎯ VSW2 Current consumption V V 2.856 CS output inhibit voltage CS output inhibit voltage temperature 16 4.692 1.7 VBAT = 2.8 V, VIN voltage detection Switch voltage temperature coefficient ⎯ 4.600 2.787 VSW1 VBAT switch resistance ⎯ 4.508 VIN or VBAT Vopr Switch voltage coefficient 14 Min. Dropout voltage 1 Primary power input voltage Voltage detector Conditions Output voltage 1 Output voltage temperature coefficient 2 Switch unit Symbol ⎯ The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 9. S-8424AAJFxx Table 11 Electrical Characteristics (Unless otherwise specified: Ta = 25°C) Parameter Symbol Conditions Min. Typ. Max. Unit Test Circuit VRO VIN = 6 V, IRO = 10 mA 3.038 3.100 3.162 V Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 10 mA ⎯ 123 167 mV Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 15 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 6 to 16 V, IRO = 10 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C VOUT VIN = 6 V, IOUT = 50 mA 3.038 3.100 3.162 V Vdrop2 Voltage regulator Output voltage 1 Output voltage temperature coefficient 1 Output voltage 2 VIN = 6 V, IOUT = 50 mA ⎯ 401 540 mV Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Dropout voltage 2 Output voltage temperature coefficient 2 Voltage detector Primary power input voltage −VDET1 CS release voltage +VDET1 RESET detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ⎯ VIN CS detection voltage Sink current Switch unit ΔVOUT ΔTa • VOUT VIN voltage detection ⎯ VOUT voltage detection ⎯ VBAT voltage detection ⎯ 2.156 2.200 2.244 V 2.256 2.312 2.367 V 2.548 2.600 2.652 V 2.682 2.748 2.814 V ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA μA ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V ILEAK RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 IBAT2 VBAT ⎯ ⎯ 0.1 +VDET1 +VDET1 +VDET1 × 0.75 × 0.77 × 0.79 2 3 V 4 V 5 VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 VIN = 6 V, VBAT = 0 V ⎯ ⎯ 0.1 μA 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 VIN = 6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA 8 ⎯ 0.26 0.50 μA Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V IBAT1 Total V Ta = −40°C to +85°C VBAT switch leakage current Remark 4.654 V VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 4.545 16 VSW2 Current consumption 4.436 ⎯ CS output inhibit voltage CS output inhibit voltage temperature V V 1.7 VBAT = 2.8 V, VIN voltage detection coefficient 16 4.488 VIN or VBAT Vopr VSW1 Switch voltage temperature coefficient ⎯ 4.400 Δ − VDET1 ΔTa • − VDET1 Switch voltage VBAT switch resistance ⎯ 4.312 1 VIN = Open, VBAT = 3.0 V, Unload ⎯ 7 The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 15 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 10. S-8424AAKxx Table 12 Electrical Characteristics (Unless otherwise specified: Ta = 25°C) Voltage regulator Parameter Voltage detector Min. Typ. Max. Unit VRO VIN = 6 V, IRO = 10 mA 3.136 3.200 3.264 V Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 10 mA ⎯ 123 167 mV Load stability 1 ΔVRO1 VIN = 6 V, IRO = 0.1 to 15 mA ⎯ 50 100 mV Input stability 1 ΔVRO2 ΔVRO ΔTa • VRO VIN = 6 to 16 V, IRO = 10 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Output voltage temperature coefficient 1 Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.136 3.200 3.264 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA ⎯ 401 540 mV Load stability 2 ΔVOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA ⎯ 50 100 mV Input stability 2 ΔVOUT2 VIN = 6 to 16 V, IOUT = 50 mA ⎯ 5 20 mV Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Primary power input voltage ΔVOUT ΔTa • VOUT ⎯ ⎯ 16 V 4.508 4.600 4.692 V 4.639 4.753 4.867 V 2.352 2.400 2.448 V 2.467 2.528 2.589 V 2.548 2.600 2.652 V 2.682 2.748 2.814 V VIN or VBAT 1.7 ⎯ 16 V Δ − VDET1 ΔTa • − VDET1 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 2 ΔTa • − VDET 2 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C Δ − VDET 3 ΔTa • − VDET 3 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C RESET 1.50 2.30 ⎯ mA PREEND 1.50 2.30 ⎯ mA CS 1.50 2.30 ⎯ mA ⎯ ⎯ 0.1 μA +VDET1 +VDET1 +VDET1 × 0.75 × 0.77 × 0.79 −VDET1 CS release voltage +VDET1 RESET detection voltage −VDET2 RESET release voltage +VDET2 PREEND detection voltage −VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ⎯ VIN CS detection voltage Sink current Switch unit Conditions Output voltage 1 Output voltage temperature coefficient 2 Vopr ISINK ILEAK VIN voltage detection ⎯ VOUT voltage detection ⎯ VBAT voltage detection ⎯ VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VBAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 μA VBAT switch resistance Switch voltage temperature coefficient CS output inhibit voltage temperature coefficient Current consumption RSW ΔVSW 1 ΔTa • VSW 1 ΔVSW 2 ΔTa • VSW 2 ISS1 Total IBAT2 Remark VBAT Test Circuit 1 2 3 V 4 V 5 VOUT VOUT VOUT × 0.93 × 0.95 × 0.97 ⎯ − 0.1 μA 6 ⎯ 30 60 Ω 7 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 4 Ta = −40°C to +85°C ⎯ ±100 ⎯ ppm/°C 5 VIN = 6 V, VBAT = 3.0 V, Unload ⎯ 7 15 μA 8 ⎯ 0.26 0.50 μA Ta = 25°C ⎯ 1.0 2.1 μA Ta = 85°C ⎯ ⎯ 3.5 μA 1.7 ⎯ 4.0 V IBAT1 Backup power supply input voltage 16 Symbol VIN = Open, VBAT = 3.0 V, Unload ⎯ The number in the Test Circuit column corresponds to the circuit number in the “Test Circuit” section. 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00  Test Circuits 1. 2. VBAT VIN V VRO or VOUT VIN ↓ VSS 10 μF 100 kΩ V 100 kΩ VBAT VOUT VIN PREEND VIN V 100 kΩ RESET CS VSS V V V To measure VDET3, apply 6 V to VIN. 3. 4. VIN VBAT VOUT CS VIN PREEND VSS VIN A A RESET VBAT V VIN VBAT VOUT V VSS A VDS Measure the value after applying 6 V to VIN. 5. 6. F.G. VOUT Oscilloscope VBAT CS 100 kΩ Oscilloscope VIN VSS VIN VBAT VIN A VSS VBAT 7. 8. VOUT VIN VBAT VIN VBAT VIN IOUT VSS VBAT ↓ V ISS VIN Leave open and measure the value after applying 6 V to VIN. Figure 4 A A IBAT VSS VBAT To measure IBAT2, apply 6 V to VIN and then leave VIN open and measure IBAT. Test Circuits 17 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series  Operation Timing Chart VIN (V) VRO (V) VOUT (V) VBAT (V) VCS (V) VPREEND (V ) V RESET (V ) Remark CS, PREEND and RESET are pulled up to VOUT. Y-axis is an arbitrary scale. Figure 5 18 Operation Timing Chart BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00  Operation The internal configuration of the S-8424A Series is as follows. • Voltage regulator 1, which stabilizes input voltage (VIN) and outputs it to VRO • Voltage regulator 2, which stabilizes input voltage (VIN) and outputs it to VOUT • CS voltage detector, which monitors input voltage (VIN) • PREEND voltage detector, which monitors output voltage (VBAT) • RESET voltage detector, which monitors output voltage (VOUT) • Switch unit The functions and operations of the above-listed elements are described below. 1. Voltage Regulators The S-8424A Series features on-chip voltage regulators with a small dropout voltage. The voltage of the VRO and VOUT pins (the output pins of the voltage regulator) can separately be selected for the output voltage in 0.1 V steps between the range of 2.3 to 5.4 V. [Dropout voltage Vdrop1, Vdrop2] Assume that the voltage output from the VRO pin is VRO(E) under the conditions of output voltage 1 described in the electrical characteristics table. VIN1 is defined as the input voltage at which output voltage from the VRO pin becomes 98% of VRO(E) when the input voltage VIN is decreased. Then, the dropout voltage Vdrop1 is calculated by the following expression. Vdrop1 = VIN1 − VRO(E) × 0.98 Similarly, assume that the voltage of the VOUT pin is VOUT(E) under the conditions of output voltage 2 described in the electrical characteristics table. VIN2 is defined as the input voltage at which the output voltage from the VOUT pin becomes 98% of VOUT(E). Then, the dropout voltage Vdrop2 is calculated by the following expression. Vdrop2 = VIN2 − VOUT(E) × 0.98 2. Voltage Detector The S-8424A Series incorporates three high-precision, low power consuming voltage detectors with hysteresis characteristics. The power of the CS voltage detector is supplied from the VIN and VBAT pins. Therefore, the output is stable as long as the primary or backup power supplies are within the operating voltage range (1.7 to 16 V). All outputs are Nch open-drain, and need pull-up resistors of about 100 kΩ. 2.1 CS Voltage Detector The CS voltage detector monitors the input voltage VIN (VIN pin voltage). The detection voltage can be selected from between 2.4 and 5.3 V in 0.1 V steps. The result of detection is output at the CS pin: “Low” for lower voltage than the detection level and “High” for higher voltage than the release level (however, when the VOUT pin voltage is the CS output inhibit voltage (VSW2), a low level is output). Input voltage Release voltage Detection voltage Output voltage Figure 6 Definition of Detection and Release Voltages 19 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 2.2 PREEND Voltage Detector The PREEND voltage detector monitors the input voltage VBAT (VBAT pin voltage). The detection voltage can be selected from between 1.7 V and 3.4 V in 0.1 V steps. A higher voltage can also be seclected keeping a constant difference with the RESET voltage. This function enables the warning that the backup battery is running out. The detection result is output to the PREEND pin: “Low” for lower voltages than the detection voltage and “High” for higher voltages than the release voltage. The power supply of the PREEND voltage detector is supplied from the VIN pin. The output is valid only when the voltage is supplied from the VIN pin to the VOUT pin (VIN ≥ VSW1). The output is the low level when the voltage is supplied from the VBAT pin to the VOUT pin (VIN < VSW1). 2.3 RESET Voltage Detector The RESET voltage detector monitors the output voltage VOUT (VOUT pin voltage). The detection voltage can be selected from between 1.7 V and 3.4 V in 0.1 V steps. The result of detection is output at the RESET pin: “Low” for lower voltages than the detection level and “High” for higher voltages than the release level. RESET outputs the normal logic if the VOUT pin voltage is 1.0 V or more. Caution The PREEND and RESET voltage detectors use the different pins, respectively. Practically, the current is taken from the VBAT side, and consider the I/O voltage difference (Vdif) of M1 when M1 is ON. 3. Switch Unit The switch unit consists of the VSW1 and VSW2 detectors, a switch controller, voltage regulator 2, and switch transistor M1 (Refer to “Figure 7 Switch Unit”). VOUT VIN M1 VBAT REG2 Switch controller Figure 7 VSW1 detector VSW2 detector Switch Unit 3.1 VSW1 Detector The VSW1 detector monitors the power supply voltage VIN and sends the results of detection to the switch controller. The detection voltage (VSW1) can be set to 77 ±2% or 85 ±2% of the CS release voltage +VDET1. 20 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 3.2 VSW2 Detector The VSW2 detector monitors the VOUT pin voltage and keeps the CS release voltage output low until the VOUT pin voltage rises to VSW2 voltage. The CS pin output then changes from low to high if the VIN pin voltage is more than the CS release voltage (+VDET1) when the VOUT pin voltage rises to 95 ±2% of the output voltage of voltage regulator 2 (VOUT). The CS pin output changes from high to low regardless of the VSW2 voltage when the VIN pin voltage drops to less than the CS detection voltage (−VDET1). The CS pin output remains high if the VIN pin voltage stays higher than the CS detection voltage (−VDET1) when the VOUT pin voltage drops to less than the VSW2 voltage due to an undershoot. 3.3 Switch Controller The switch controller controls voltage regulator 2 and switch transistor M1. There are two statuses corresponding to the power supply voltage VIN (or power supply voltage VBAT) sequence: a special sequence status and a normal sequence status. When the power supply voltage VIN rises and becomes equal to or exceeds the CS release voltage (+VDET1), the normal sequence status is entered, but until then the special sequence status is maintained. (1) Special sequence status The switch controller sets voltage regulator 2 ON and switch transistor M1 OFF from the initial status until the primary power supply voltage VIN is connected and reaches more than the CS release voltage (+VDET1) in order to prevent consumption of the backup power supply regardless of the VSW1 detector status. This status is called the special sequence status. (2) Normal sequence status The switch controller enters the normal sequence status from the special sequence status once the primary power supply voltage VIN reaches more than the CS release voltage (+VDET1). Once the normal sequence is entered, the switch controller switches voltage regulator 2 and switch transistor M1 ON/OFF as shown in Table 13 according to the power supply voltage VIN. The time required for voltage regulator 2 to be switched from OFF to ON is a few hundred μs at most. During this interval, voltage regulator 2 and switch transistor M1 may both switch OFF and the VOUT pin voltage may drop. To prevent this, connect a capacitor of 10 μF or more to the VOUT pin. When the VOUT pin voltage becomes lower than the RESET detection voltage, the status returns to the special sequence status. Table 13 ON/OFF Switching of Voltage Regulator 2 and Switch Transistor M1 According to Power Supply Voltage (VIN) Power Supply Voltage (VIN) Voltage Regulator 2 Switch Transistor M1 VOUT Pin Voltage VIN > VSW1 ON OFF VOUT VIN < VSW1 OFF ON VBAT − Vdif 21 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 3.4 Switch Transistor M1 Voltage regulator 2 is also used to switch from VIN pin to VOUT pin. Therefore, no reverse current flows from VOUT pin to VIN pin when voltage regulator 2 is OFF. The output voltage of voltage regulator 2 can be selected from between 2.3 V and 5.4 V in 0.1 V steps. The on-resistance of switch transistor M1 is 60 Ω or lower (IOUT = 10 to 500 μA). Therefore, when M1 is switched ON and VOUT pin is connected to VBAT pin, the voltage drop (Vdif) caused by M1 is 60 × IOUT (output current) at maximum., and VBAT – Vdif (max.) is output to the VOUT pin at minimum. When voltage regulator 2 is ON and M1 is OFF, the leakage current of M1 is kept below 0.1 μA max. (VIN = 6 V, Ta = 25°C) with the VBAT pin grounded (VSS pin). VOUT Vdif VIN VBAT REG2 M1 Figure 8 Definition of Vdif 22 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00  Transient Response 1. Line Transient Response Against Input Voltage Variation The input voltage variation differs depending on whether the power supply input (0 V to 10 V square wave) is applied or the power supply variation (6 V and 10 V square waves) is applied. This section describes the ringing waveforms and parameter dependency of each type. The test circuit is shown for reference. Power supply application: 0 V to 10 V Square wave Fast amplifier Input voltage 10 V VIN 0V VOUT Oscilloscope S-8424A Series COUT VSS RL Overshoot Undershoot Output voltage P.G. Figure 9 Power Supply Application: 0 V to 10 V Square Wave Figure 10 Test Circuit Power Supply Application VOUT pin VRO pin COUT = 22 μF, IOUT = 50 mA, Ta = 25°C CRO = 22 μF, IRO = 30 mA, Ta = 25°C 10 V Input Voltage (5 V/div) 10 V Input Voltage (5 V/div) 0V Output Voltage (0.5 V/div) Output Voltage (0.5 V/div) t (100 μs/div) t (100 μs/div) Figure 11 0V Ringing Waveform of Power Supply Application (VOUT Pin) Figure 12 Ringing Waveform of Power Supply Application (VRO Pin) 23 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series Power supply variation: 6 V and 10 V square waves Fast amplifier 10 V Input voltage VOUT VIN S-8424A Series 6V VSS Output Oscillo-scope COUT RL Overshoot P.G. voltage Undershoot Figure 13 Power Supply Variation: 6 V and 10 V Square Waves Figure 14 Test Circuit Power Supply Variation VOUT pin COUT = 22 μF, IOUT = 50 mA, Ta = 25°C 10 V 10 V Input Voltage 6 V (4 V/div) 6V Output Voltage (50 mV/div) t (100 μs/div) Figure 15 Ringing Waveform of Power Supply Variation (VOUT Pin) VRO pin CRO = 22 μF, IRO = 30 mA, Ta = 25°C 10 V 10 V 6V Input Voltage 6 V (4 V/div) Output Voltage (50 mV/div) t (100 μs/div) Figure 16 24 Ringing Waveform of Power Supply Variation (VRO Pin) BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 Reference data: Dependency of output current (IOUT), load capacitance (COUT), input variation width (ΔVIN), temperature (Ta) For reference, the following pages describe the results of measuring the ringing amounts at the VOUT and VRO pins using the output current (IOUT), load capacitance (COUT), input variation width (ΔVIN), and temperature (Ta) as parameters. 1.1 IOUT Dependency (1) VOUT pin (2) VRO pin COUT = 22 μF, VIN = 6 V and 10 V, Ta = 25°C 0.25 Ringing amount (V) Ringing amount (V) 0.20 0.15 0.10 0.05 0.00 CRO = 22 μF, VIN = 6 V and 10 V, Ta = 25°C 0.25 0 20 40 0.20 0.15 0.10 0.05 0.00 60 0 20 40 60 IRO (mA) IOUT (mA) 1.2 COUT Dependency (1) VOUT pin (2) VRO pin 0.40 0.30 0.20 0.10 0.00 IRO = 30 mA, VIN = 6 V and 10 V, Ta = 25°C 0.50 Ringing amount (V) Ringing amount (V) IOUT = 50 mA, VIN = 6 V and 10 V, Ta = 25°C 0.50 0 10 20 30 COUT (μF) 40 50 0.40 0.30 0.20 0.10 0.00 0 10 20 30 40 50 CRO (μF) Overshoot Undershoot 25 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 1.3 ΔVIN Dependency ΔVIN shows the difference between the low voltage fixed to 6 V and the high voltage. For example, ΔVIN = 2 V means the difference between 6 V and 8 V. (1) VOUT pin (2) VRO pin 0.30 IOUT=50 mA, COUT=22 μF, Ta=25°C 0.30 0.25 Ringing amount (V) Ringing amount (V) 0.25 IRO=30 mA, CRO=22 μF, Ta=25°C 0.20 0.15 0.10 0.05 0.00 0 1 2 3 4 0.20 0.15 0.10 0.05 0.00 5 0 ΔVIN (V) 1 2 3 ΔVIN (V) 4 5 1.4 Temperature Dependency (2) VRO pin 0.30 0.30 0.25 0.25 Ringing amount (V) Ringing amount (V) (1) VOUT pin 0.20 0.15 0.10 0.05 VIN=6 ↔10 V, IOUT=50 mA, COUT=22 μF 0.20 0.15 0.10 0.05 0.00 0.00 –50 0 50 Ta (°C) 100 VIN=6 ↔10 V, IOUT=30 mA, CRO=22 μF –50 0 50 100 Ta (°C) Overshoot Undershoot 26 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 2. Load Transient Response Based on Output Current Fluctuation The overshoot and undershoot are caused in the output voltage if the output current fluctuates between 10 μA and 50 mA (VRO is between 10 μA and 30 mA) while the input voltage is constant. Figure 17 shows the output voltage variation due to the output current. Figure 18 shows the test circuit for reference. The latter half of this section describes ringing waveform and parameter dependency. Output current 50 mA VIN 10 μA COUT VSS Overshoot Oscilloscope VOUT S-8424A Series Undershoot Output current Figure 17 Output Voltage Variation due to Output Current Figure 18 Test Circuit Figure 19 shows the ringing waveforms at the VOUT pin and Figure 20 shows the ringing waveforms at the VRO pin due to the load variation, respectively. VOUT pin VIN = 6.0 V, COUT = 22 μF, Ta = 25°C 50 mA Output current 50 mA 10 μA 10 μA Output voltage (50 mV/div) t (50 μs/div) t (500 ms/div) Figure 19 Ringing Waveform due to Load Variation (VOUT Pin) VRO pin VIN=6.0 V, CRO=22 μF, Ta=25°C 30 mA Output current 30 mA 10 μA 10 μA Output voltage (20 mV/div) t (20 ms/div) Figure 20 t (50 μs/div) Ringing Waveform due to Load Variation (VRO Pin) 27 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series Reference data: Dependency of input voltage (VIN), load capacitance (COUT), output variation width (ΔIOUT), and temperature (Ta) 2.1 VIN Dependency (1) VOUT pin (2) VRO pin COUT = 22 μF, IOUT = 50 mA and 10 μA, Ta = 25°C 0.12 CRO = 22 μF, IRO = 30 mA and 10 μA, Ta = 25°C 0.12 0.10 Ringing amount (V) Ringing amount (V) 0.10 0.08 0.06 0.04 0.02 0.00 4 5 6 7 8 9 10 0.08 0.06 0.04 0.02 0.00 4 5 VIN (V) 6 7 8 9 10 VIN (V) 2.2 COUT Dependency (2) VRO pin VIN = 6.0 V, IOUT = 50 mA and 10 μA, Ta = 25°C 0.60 VIN = 6.0 V, IRO = 30 mA and 10 μA, Ta = 25°C 0.30 0.50 0.25 Ringing amount (V) Ringing amount (V) (1) VOUT pin 0.40 0.30 0.20 0.15 0.10 0.05 0.10 0.00 0.20 0 10 20 30 COUT (μF) 40 50 0.00 0 10 20 30 40 50 CRO (μF) Overshoot Undershoot 28 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 2.3 ΔIOUT Dependency ΔIOUT and ΔIRO show the fluctuation between the low current stabilized at 10 μA and the high current. example, ΔIOUT = 10 mA means a fluctuation between 10 μA and 10 mA. (1) VOUT pin (2) VRO pin 0.12 COUT = 22 μF, VIN = 6 V, Ta = 25°C Ringiing amount (V) 0.12 Ringing amount (V) For 0.10 0.08 0.06 0.04 0.02 CRO=22 μF, VIN=6.0 V, Ta=25°C 0.10 0.08 0.06 0.04 0.02 0.00 0 0.00 0 10 20 30 40 50 60 ΔIRO (mA) 10 20 30 40 50 60 ΔIOUT (mA) 2.4 Temperature Dependency (1) VOUT pin (2) VRO pin VIN=6.0 V, IOUT=50 mA ↔ 10 μA, COUT=22 μF 0.16 VIN=6.0 V, IRO=30 mA ↔ 10 μA, CRO=22 μF 0.08 0.07 0.12 Ringing amount (V) Ringing amount (V) 0.14 0.10 0.08 0.06 0.04 0.02 0.00 −50 0.06 0.05 0.04 0.03 0.02 0.01 0 50 Ta (°C) 100 0.00 −50 0 50 100 Ta (°C) Overshoot Undershoot 29 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series  Standard Circuit VRO + 1 kΩ VRO VBAT VIN VOUT 6V + + S-8424A Series 10 μF 10 μF VSS 10 μF 0.1 μF 3V VOUT 100 kΩ RESET CS VOUT PREEND VOUT VOUT 100 kΩ 100 kΩ Figure 21 Standard Circuit Caution 1. Be sure to add a 10 μF or more capacitor to the VOUT and VRO pins. 2. The above connections and values will not guarantee correct operation. Before setting these values, perform sufficient evaluation on the application to be actually used. 30 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00  Precautions • In applications with small IRO or IOUT, the output voltages VRO and VOUT may rise, causing the load stability to exceed standard levels. Set IRO and IOUT to 10 μA or more. • Attach the proper capacitor to the VOUT pin to prevent the RESET voltage detector (which monitors the VOUT pin) from coming active due to undershoot. • Watch for overshoot and ensure it does not exceed the ratings of the IC chips and/or capacitors attached to the VRO and VOUT pins. • Add a 10 μF or more capacitor to the VOUT and VRO pins. • When VIN rises from the voltage more than VSW1, a low pulse of less than 4 ms flows through the PREEND pin even when VBAT is more than the PREEND release voltage. Thus when monitoring the PREEND pin, make sure to take the 4 ms interval or more after the rise of VIN. • Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.  Application Circuits 1. When Using Timer Micro controllers for Backup to display PREEND in the primary CPU + 100 kΩ VOUT + 10 μF 1 kΩ 6V 3V VIN 100 kΩ S-8424A Series VBAT 10 μF VCC CS CS Timer microcontroller PREEND 0.1 μ F RESET + VRO 10 μF RESET VSS 100 kΩ VCC RESET Main CPU INT Address data Figure 22 Application Circuit 1 31 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 2. When Using Secondary Battery as Backup Battery + + 10 μF 10 μ F VRO VOUT VIN 100 kΩ S-8424A Series + 10 μF 6V VCC VBAT 100 kΩ Microcontroller CS INT 0.1 μF RESET 3V RESET VSS Figure 23 Remark Application Circuit 2 The backup battery can be floating-recharged by using voltage regulator 1. 3. Memory Card Card unit VIN VIN + VOUT 10 μF + S-8424A Series 10 μ F 100 kΩ 100 kΩ BDT2 PREEND BDT1 RESET 100 kΩ SRAM CS CS VBAT VSS 0.1 μ F 3V CS Figure 24 Caution 32 Application Circuit 3 The above connections and values will not guarantee correct operation. Before setting these values, perform sufficient evaluation on the application to be actually used. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00  Characteristics 1. Voltage Regulator Unit (VRO = VOUT = 3.0 V) 1.1 Input Voltage (VIN) vs. Output Voltage (VRO) Characteristics (REG1) (1) Ta = 85°C (2) Ta = 25°C IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA 3.2 3.2 2.8 VRO (V) VRO (V) IRO = 10 mA IRO = 90 mA 2.4 2.0 2.0 3.0 4.0 IRO = 10 mA 2.8 IRO = 90 mA 2.4 2.0 2.0 5.0 3.0 VIN (V) 4.0 5.0 VIN (V) (3) Ta = −40°C IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA VRO (V) 3.2 IRO = 10 mA 2.8 IRO = 90 mA 2.4 2.0 2.0 3.0 VIN (V) 4.0 5.0 1.2 Input Voltage (VIN) vs. Output Voltage (VOUT) Characteristics (REG2) (1) Ta = 85°C (2) Ta = 25°C IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA 3.2 3.2 2.8 VOUT (V) VOUT (V) IOUT = 10 mA IOUT = 90 mA 2.4 2.0 2.0 3.0 4.0 5.0 IOUT = 10 mA 2.8 IOUT = 90 mA 2.4 2.0 2.0 3.0 4.0 5.0 VIN (V) VIN (V) (3) Ta = −40°C IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA VOUT (V) 3.2 IOUT = 10 mA 2.8 IOUT = 90 mA 2.4 2.0 2.0 3.0 VIN (V) 4.0 5.0 33 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 1.3 Output Current (IRO) vs. Dropout Voltage (Vdrop1) Characteristics 1.0 0.8 Vdrop2 (V) Vdrop1 (V) 1.0 Ta = 85°C 25°C − 40°C 0.8 1.4 Output Current (IOUT) vs. Dropout Voltage (Vdrop2) Characteristics 0.6 0.4 0.2 0.4 0.2 0.0 0.0 0 0.02 0.04 IRO (A) 0.06 1.5 Output Current (IRO) vs. Output Voltage (VRO) Characteristics 0 0.02 VRO (V) VIN = 6 V 2.85 1μ Ta = −40°C 25°C 85°C 3.15 3.05 2.95 3.05 VIN = 6 V 2.95 100 μ 10 m 2.85 1μ 1 100 μ 1.7 Output voltage (VRO) Temperature Characteristics 30 V IN = 6 V, IRO = 30 mA Based on VRO voltage when Ta is 25°C 10 ΔVOUT (mV) ΔVRO (mV) 20 0 −10 20 VIN = 6 V, IOUT = 50 mA 10 Based on VOUT voltage when Ta is 25°C 0 −10 −20 −20 −30 −40 0 −20 20 40 60 80 0 −40 −20 100 20 40 60 80 100 Ta (°C) Ta (°C) 1.9 Input Stability (VRO) Temperature Characteristics 1.10 Input Stability (VOUT) Temperature Characteristics 20 20 ΔVOUT2 (mV) ΔVRO2 (mV) 1 1.8 Output voltage (VOUT) Temperature Characteristics 30 15 10 5 15 10 5 0 0 − 40 − 20 0 20 40 60 80 − 40 100 − 20 0 Ta (°C) 30 30 ΔVOUT (mV) 40 20 10 0 −20 0 20 Ta (°C) 40 60 80 100 1.12 Load Stability (VRO) Temperature Characteristics 40 −40 20 Ta (°C) 1.11 Load Stability (VRO) Temperature Characteristics ΔVRO1 (mV) 10 m IRO (A) IRO (A) 34 0.06 3.25 Ta = −40°C 25°C 85°C 3.15 −30 0.04 IOUT (A) 1.6 Output Current (IOUT) vs. Output Voltage (VOUT) Characteristics 3.25 VOUT (V) Ta = 85°C 25°C −40°C 0.6 40 60 80 100 20 10 0 −40 −20 0 20 Ta (°C) 40 60 80 100 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 2. Voltage Detector 2.1 CS Voltage Detector (−VDET1 = 3.3 V) (1) Detection voltage (−VDET1) temperature characteristics (2) Output current (ISINK) characteristics 20 25 Based on CS (−VDET1) voltage when Ta is 25°C CS ISINK (mA) Δ CS (mV) 10 30 0 −10 Ta = 25°C VIN = 3 V 20 15 10 VIN = 1.7 V 5 −20 −40 −20 0 20 40 60 80 0 100 0.0 1.0 Ta (°C) 2.0 3.0 4.0 VDS (V) (3) Output current (ISINK) temperature characteristics 10 CS ISINK (mA) 8 VIN = V BAT = 2.0 V, V DS = 0.5 V 6 4 2 0 −40 −20 0 20 40 Ta ( °C) 60 80 100 2.2 RESET Voltage Detector (−VDET2 = 2.2 V) (1) Detection voltage (−VDET2) temperature characteristics (2) Output current (ISINK) characteristics 20 30 10 25 when Ta is 25°C RESET ISINK (mA) ΔRESET (mV) Based on RESET (−VDET2) voltage 0 −10 −20 −40 −20 0 20 40 60 80 100 Ta ( °C) VIN = 3 V Ta = 25°C 20 15 10 VIN = 1.7 V 5 0 0.0 1.0 2.0 3.0 4.0 VDS (V) (3) Output current (ISINK) temperature characteristics RESET ISINK (mA) 10 VIN = VBAT = 2.0 V, VDS = 0.5 V 8 6 4 2 0 −40 −20 0 20 40 Ta (°C) 60 80 100 35 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 2.3 PREEND Voltage Detector (−VDET3 = 2.6 V) (2) Output current (ISINK) characteristics (1) Detection voltage (−VDET3) temperature characteristics 30 25 Based on PREEND (−VDET3) voltage when Ta is 25°C 10 PREEND ISINK (mA) ΔPREEND (mV) 20 0 −10 −20 −40 −20 0 20 40 60 80 100 VDS (V) PREEND ISINK (mA) 10 VIN = VBAT = 2.0 V, V DS = 0.5 V 6 4 2 0 −40 −20 0 20 Ta ( °C) 36 40 20 15 10 VIN = 1.7 V 5 0 0.0 1.0 2.0 VDS (V) (3) Output current (ISINK) temperature characteristics 8 VIN = 3 V Ta = 25 °C 60 80 100 3.0 4.0 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.4.0_00 3. Switch Unit 3.1 Switch Voltage (VSW1) Temperature Characteristics 3.2 CS Output Inhibit Voltage (VSW2) Temperature Characteristics 20 20 0 −10 −20 −40 − 20 0 20 40 60 80 0 −10 −20 100 Ta (°C) 3.3 Input Voltage (VBAT) vs. VBAT Switch Resistance(RSW) Characteristics −20 0 20 Ta (°C) 40 60 80 100 60 50 50 IOUT = 500 μA 40 RSW (Ω) RSW (Ω) −40 3.4 VBAT Switch Resistance (RSW) Temperature Characteristics 60 30 20 10 0 Based on VSW2 voltage when Ta is 25°C 10 Based on V SW1 voltage when Ta is 25°C Δ VSW2 (mV) Δ VSW1 (mV) 10 VBAT = 3 V, IOUT = 500 μA 40 30 20 10 1 2 3 4 5 0 −40 −20 0 20 40 60 80 100 Ta (°C) VBAT (V) 3.5 VBAT Switch Leakage Current (ILEAK) Temperature Characteristics 30 ILEAK (nA) 25 20 VIN = 6.0 V, VBAT = 0 V 15 10 5 0 −40 −20 0 20 40 60 80 100 Ta (°C) 37 BATTERY BACKUP SWITCHING IC Rev.4.0_00 S-8424A Series 4. Consumption Current 4.1 VIN vs. VIN Consumption Current (ISS1) Characteristics 4.2 VBAT vs. VBAT2 Consumption Current (IBAT2) Characteristics 16 2.0 Ta = 85°C 25°C −40°C 8 4 0 0 2 4 6 8 10 VIN (V) 12 14 16 0.0 2.0 18 2.8 3.2 3.6 4.0 (2) IBAT2 2.0 12 VIN = 6.0 V, VBAT = 3.0 V 1.5 IBAT2 (μA) ISS1 (μA) 2.4 VBAT (V) 16 8 4 −40 −20 0 20 Ta (°C) 38 1.0 0.5 4.3 Consumption Current Temperature Characteristics (1) ISS1 0 Ta = 85°C 25°C −40°C 1.5 IBAT2 (μA) ISS1 (μA) 12 40 60 80 100 VIN = open, VBAT = 3.0 V 1.0 0.5 0.0 −40 −20 0 20 Ta (°C) 40 60 80 100 +0.3 3.00 -0.2 8 5 1 4 0.17±0.05 0.2±0.1 0.65 No. FT008-A-P-SD-1.2 TITLE TSSOP8-E-PKG Dimensions No. FT008-A-P-SD-1.2 ANGLE UNIT mm ABLIC Inc. 4.0±0.1 2.0±0.05 ø1.55±0.05 0.3±0.05 +0.1 8.0±0.1 ø1.55 -0.05 (4.4) +0.4 6.6 -0.2 1 8 4 5 Feed direction No. FT008-E-C-SD-1.0 TITLE TSSOP8-E-Carrier Tape FT008-E-C-SD-1.0 No. ANGLE UNIT mm ABLIC Inc. 13.4±1.0 17.5±1.0 Enlarged drawing in the central part ø21±0.8 2±0.5 ø13±0.5 No. FT008-E-R-SD-1.0 TITLE TSSOP8-E-Reel No. FT008-E-R-SD-1.0 QTY. ANGLE UNIT mm ABLIC Inc. 3,000 13.4±1.0 17.5±1.0 Enlarged drawing in the central part ø21±0.8 2±0.5 ø13±0.5 No. FT008-E-R-S1-1.0 TITLE TSSOP8-E-Reel No. FT008-E-R-S1-1.0 QTY. ANGLE UNIT mm ABLIC Inc. 4,000 Disclaimers (Handling Precautions) 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice. 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein. 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein. 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges. 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use. 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures. 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes. 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products. 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction. The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility. 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use. 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc. 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used. 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc. 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative. 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling. 2.4-2019.07 www.ablic.com
S-8424AAJFT-TB-U 价格&库存

很抱歉,暂时无法提供与“S-8424AAJFT-TB-U”相匹配的价格&库存,您可以联系我们找货

免费人工找货