S-8425 Series
BATTERY BACKUP SWITCHING IC
www.ablicinc.com
N
Rev.3.1_02
DE
SI
G
© ABLIC Inc., 2002-2015
NE
W
The S-8425 Series is a CMOS IC designed for use in the switching circuits of primary and backup power
supplies on a single chip. It consists of three voltage regulators, two voltage detectors, a power supply switch
and its controller, as well as other functions.
In addition to the function for switching between the primary and backup power supply, the S-8425 Series can
provide microcontrollers with two types of voltage detection output signals corresponding to the power supply
voltage.
Moreover, adopting a special sequence for switch control enables the effective use of the backup power supply,
making this IC ideal for configuring a backup system.
Features
MM
EN
DE
D
FO
R
Low power consumption
Normal operation: 15 A max. (VIN 6 V)
Backup:
2.1 A max.
Voltage regulator
Output voltage tolerance : 2%
Output voltage:
Independently selectable in 0.1 V steps in the range of 2.3 V to 5.4 V
Two built-in voltage detectors (CS, RESET)
Detection voltage tolerance: 2%
Detection voltage: Selectable in 0.1 V steps in the range of 2.4 V to 5.3 V (CS voltage detector)
Selectable in 0.1 V steps in the range of 1.7 V to 3.4 V (RESET voltage detector)
RESET release delay: 300 s min.
Switching circuit for primary power supply and backup power supply configurable on one chip
Efficient use of backup power supply possible
Special sequence
Backup voltage is not output when the primary power supply voltage does not reach the initial
voltage at which the switch unit operates.
Lead-free, Sn 100%, halogen-free*1
Packages
RE
CO
*1. Refer to “ Product Name Structure” for details.
8-Pin TSSOP
8-Pin SON(B)
Applications
NO
T
Camcorders
Digital cameras
Memory cards
SRAM backup equipment
1
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Product Name Structure
1. Product Name
FT - TB - x
DE
SI
G
S-8425A xx
N
(1) 8-Pin TSSOP
Environmental code
U: Lead-free (Sn 100%), halogen-free
G: Lead-free (for details, please contact our sales office)
W
IC direction in tape specification
NE
Package code
FT: 8-Pin TSSOP
R
Serial code
PA - TF - G
D
S-8425A xx
FO
(2) 8-Pin SON(B)
DE
Environmental code
G: Lead-free (for details, please contact our sales office)
MM
EN
IC direction in tape specification
Package code
PA: 8-Pin SON(B)
CO
Serial code
2. Packages
RE
Package Name
8-Pin TSSOP
Environmental code = G
Environmental code = U
NO
T
8-Pin SON(B)
2
Package
FT008-A-P-SD
FT008-A-P-SD
PA008-B-P-SD
Drawing Code
Tape
FT008-E-C-SD
FT008-E-C-SD
PA008-B-C-SD
Reel
FT008-E-R-SD
FT008-E-R-S1
PA008-B-R-SD
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Package
8-Pin
TSSOP
8-Pin
TSSOP
8-Pin
SON(B)
S-8425AAAFT-TB-x
S-8425AAGFT-TB-U
S-8425AAAPA-TF-G
RESET Voltage (V)
CS Voltage (V)
Switch Voltage (V)
VRO
VOUT
VCH
VDET1
VDET1
VDET2
VDET2
VSW1
3.000
3.000
3.300
3.300
3.401
2.200
2.312
VDET1 0.85
3.000
2.800
2.800
4.300
4.441
1.800
1.880
VDET1 0.85
3.000
3.000
3.300
3.300
3.401
2.200
2.312
VDET1 0.85
W
Set the CS voltage so that the switch voltage (VSW1) is equal to or greater than the RESET
detection voltage (VDET2).
NE
Caution
Output Voltage (V)
DE
SI
G
Product Name
N
3. Product Name List
Remark 1 The selection range is as follows.
2.3 to 5.4 V (0.1 V steps)
VDET1:
2.4 to 5.3 V (0.1 V steps)
VDET2:
1.7 to 3.4 V (0.1 V steps )
VSW1:
VDET1 0.85 or VDET1 0.77
FO
R
VRO, VOUT, VCH:
NO
T
RE
CO
MM
EN
DE
D
2. Please contact our sales office for the products with a voltage other than those specified above.
3. x: G or U
4. Please select products of environmental code = U for Sn 100%, halogen-free products.
3
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Block Diagram
N
VOUT
DE
SI
G
M1
VIN
REG2
VBAT
RESET
Voltage
detector
V SW2
detector
CS
Delay
circuit
NE
CS
Voltage
detector
D
FO
R
Switch
controller
DE
VSS
NO
T
RE
CO
MM
EN
Figure 1
4
RESET
W
V SW1
detector
Block Diagram
REG1
VRO
REG3
VCH
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
VCH
VBAT
CS
1
2
8
7
VRO
3
4
6
5
VOUT
VIN
RESET
VBAT
CS
1
2
8
7
VRO
3
4
6
5
VOUT
Ground
Output pin of voltage regulator 3
Backup power supply input pin
Output pin of CS voltage detector
Output pin of RESET voltage detector
Output pin of voltage regulator 2
Primary power supply input pin
Output pin of voltage regulator 1
VI N
RESET
Pin Configurations
Mount capacitors between VSS (GND) and the VIN, VBAT, VOUT, VRO, and VCH pins (see the
Standard Circuit section).
RE
CO
MM
EN
DE
D
*1.
VSS
VCH*1
VBAT*1
CS
RESET
VOUT*1
VIN*1
VRO*1
FO
Figure 2
1
2
3
4
5
6
7
8
R
VSS
VCH
Description
NE
8-Pin SON(B)
Top View
Symbol
DE
SI
G
VSS
Pin
No.
W
8-Pin TSSOP
Top View
N
Pin Configurations
NO
T
5
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Absolute Maximum Ratings
Table 1
Absolute Maximum Ratings
Symbol
Absolute Maximum Rating
Primary power supply input voltage
Backup power supply input voltage
Output voltage of voltage regulator
CS output voltage
RESET output voltage
VIN
VBAT
VRO, VOUT, VCH
VCS
VRESET
VSS0.3 to VSS18
VSS0.3 to VSS18
VSS0.3 to VIN0.3
VSS0.3 to VSS18
300 (When not mounted on board)
700*1
300 (When not mounted on board)
750*1
40 to 85
40 to 125
W
8-Pin TSSOP
Power
dissipation
PD
NE
8-Pin SON(B)
Operating ambient temperature
Storage temperature
Unit
DE
SI
G
Item
N
(Ta 25C, unless otherwise specified)
Topr
Tstg
V
V
V
V
V
mW
mW
mW
mW
C
C
FO
R
*1. When mounted on board
[Mounted board]
(1) Board size: 114.3 mm 76.2 mm t1.6 mm
(2) Board name: JEDEC STANDARD51-7
DE
700
8-Pin SON(B)
600
500
400
CO
300 8-Pin TSSOP
200
100
0
0
50
100
150
NO
T
Ambient Temperature Ta (C)
6
Figure 3
Power Dissipation PD (mW)
(2)
MM
EN
When mounted on board
800
RE
Power Dissipation PD (mW)
(1)
The absolute maximum ratings are rated values exceeding which the product could
suffer physical damage. These values must therefore not be exceeded under any
conditions.
D
Caution
When not mounted on board
400
300
8-Pin TSSOP
200
100 8-Pin SON(B)
0
0
50
100
150
Ambient Temperature Ta (C)
Power Dissipation of Package
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Electrical Characteristics
S-8425AAAFT, S-8425AAAPA
Item
VRO
Dropout voltage 1
Vdrop1
IRO 3 mA
VRO1
VIN 7.2 V, IRO 100 A to 20 mA
Input stability 1
VRO2
VIN 4 V to 16 V, IRO 3 mA
Output voltage temperature coefficient 1
VOUT
VIN 7.2 V, IOUT 23 mA
Vdrop2
IOUT 23 mA
Max.
Unit
2.940
3.000
3.060
V
41
59
mV
50
100
mV
5
20
mV
100
ppm/C
2.940
3.000
3.060
V
187
252
mV
VOUT1
VIN 7.2 V, IOUT 100 A to 60 mA
50
100
mV
Input stability 2
VOUT2
VIN 4 V to 16 V, IOUT 23 mA
5
20
mV
100
ppm/C
3.234
3.300
3.366
V
90
120
mV
Ta 40C to 85C
R
VOUT
Ta VOUT
Output voltage temperature coefficient 2
NE
Load stability 2
Output voltage 3
VCH
Dropout voltage 3
Vdrop3
ICH 3 mA
Load stability 3
VCH1
VIN 7.2 V, ICH 100 A to 10 mA
50
100
mV
Input stability 3
VCH2
VIN 4.3 V to 16 V, ICH 3 mA
5
20
mV
100
ppm/C
VDET1
CS detection voltage
VDET1
RESET detection voltage
VDET2
RESET release delay time
Operating voltage
D
VOUT voltage detection
tDELAY
VIN or VBAT
3.482
V
2.200
2.244
V
2.256
2.312
2.367
V
0.3
0.8
ms
1.7
16
V
VDET2
Ta ( VDET2)
Ta 40C to 85C
100
ppm/C
ISINK
ILEAK
VDS 0.5 V
RESET
1.50
2.30
mA
VIN VBAT 2.0 V
CS
1.50
2.30
mA
A
VDS 16 V, VIN 16 V
VBAT switch leakage current
ILEAK
VIN 3.6 V, VBAT 0 V
RSW
0.1
VDET1
VDET1
VDET1
0.83
0.85
0.87
Test
Circuit
1
2
9
2
3
V
4
V
5
VOUT
VOUT
VOUT
0.93
0.95
0.97
0.1
A
6
30
60
7
VIN Open, VBAT 3 V,
IOUT 10 A to 500 A
VSW 1
Ta VSW 1
Ta 40C to 85C
100
ppm/C
4
VSW 2
Ta VSW 2
Ta 40C to 85C
100
ppm/C
5
ISS1
VIN 3.6 V,
7
15
A
IBAT1
VBAT 3 V
0.1
A
1.0
2.1
A
3.5
A
2.0
4.0
V
IBAT2
Backup power supply input voltage
3.401
ppm/C
VBAT 3 V, VOUT voltage detection
Current consumption
3.319
2.156
VSW2
CS output inhibit voltage temperature
V
V
100
CS output inhibit voltage
Switch voltage temperature coefficient
16
3.366
VBAT 2.8 V, VIN voltage detection
VBAT switch resistance
3.300
Ta 40C to 85C
VSW1
Switch voltage
3.234
VDET1
Ta ( VDET1)
CO
RE
VIN voltage detection
VDET2
Vopr
Detection voltage temperature coefficient
Sink current
Ta 40C to 85C
MM
EN
CS release voltage
RESET release voltage
FO
VIN 7.2 V, ICH 3 mA
VCH
Ta VCH
VIN
coefficient
T
o
t
a
l
Ta 40C to 85C
Dropout voltage 2
NO
T
u
n
i
t
Typ.
Output voltage 2
Leakage current
S
w
i
t
c
h
Min.
W
VRO
Ta VRO
Primary power input voltage
d
e
t
e
c
t
o
r
VIN 7.2 V, IRO 3 mA
Load stability 1
Output voltage temperature coefficient 3
V
o
l
t
a
g
e
Condition
DE
r
e
g
u
l
a
t
o
r
N
Symbol
Output voltage 1
V
o
l
t
a
g
e
Electrical Characteristics
(Ta 25C, Unless otherwise specified)
DE
SI
G
Table 2
VBAT
Unload
VIN Open, VBAT 3 V
Ta 25C
Unload
Ta 85C
8
7
Remark The number in the Test Circuit column corresponds to the circuit number in the Test Circuits section.
7
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
S-8425AAGFT
Output voltage 1
VRO
Dropout voltage 1
Vdrop1
IRO 3 mA
Load stability 1
VRO1
VIN 7.2 V, IRO 100 A to 20 mA
Input stability 1
VRO2
VIN 4 V to 16 V, IRO 3 mA
Output voltage 2
VOUT
VIN 7.2 V, IOUT 23 mA
Dropout voltage 2
Vdrop2
IOUT 23 mA
3.060
V
41
59
mV
50
100
mV
5
20
mV
100
ppm/C
2.744
2.800
2.856
V
187
252
mV
50
100
mV
Input stability 2
VOUT2
VIN 3.8 V to 16 V, IOUT 23 mA
5
20
mV
100
ppm/C
2.744
2.800
2.856
V
90
120
mV
VOUT
Ta VOUT
Output voltage temperature coefficient 2
Ta 40C to 85C
NE
VIN 7.2 V, IOUT 100 A to 60 mA
Output voltage 3
VCH
Dropout voltage 3
Vdrop3
ICH 3 mA
Load stability 3
VCH1
VIN 7.2 V, ICH 100 A to 10 mA
50
100
mV
Input stability 3
VCH2
VIN 3.8 V to 16 V, ICH 3 mA
5
20
mV
Ta 40C to 85C
100
ppm/C
VCH
Ta VCH
VDET1
CS release voltage
VDET1
RESET detection voltage
VDET2
RESET release voltage
VDET2
VIN or VBAT
V
1.764
1.800
1.836
V
1.835
1.880
1.925
V
0.3
0.8
ms
1.7
16
V
Ta 40C to 85C
100
ppm/C
ILEAK
VDS 0.5 V
RESET
1.50
2.30
mA
VIN VBAT 2.0 V
CS
1.50
2.30
mA
A
VDS 16 V, VIN 16 V
VBAT switch leakage current
ILEAK
VIN 3.6 V, VBAT 0 V
RE
4.548
VDET2
Ta ( VDET2)
VBAT 3 V, VOUT voltage detection
RSW
0.1
VDET1
VDET1
VDET1
0.83
0.85
0.87
1
2
9
2
3
V
4
V
5
VOUT
VOUT
VOUT
0.93
0.95
0.97
0.1
A
6
30
60
7
VIN Open, VBAT 3 V,
IOUT 10 A to 500 A
Ta 40C to 85C
100
ppm/C
4
VSW 2
Ta VSW 2
Ta 40C to 85C
100
ppm/C
5
ISS1
VIN 3.6 V,
7
15
A
IBAT1
VBAT 3 V
0.1
A
1.0
2.1
A
3.5
A
2.0
4.0
V
VBAT
Unload
VIN Open, VBAT 3 V
Ta 25C
Unload
Ta 85C
Remark The number in the Test Circuit column corresponds to the circuit number in the Test Circuits section.
8
Test
Circuit
VSW 1
Ta VSW 1
IBAT2
Backup power supply input voltage
4.441
ppm/C
VSW2
Current consumption
4.335
CS output inhibit voltage
CS output inhibit voltage temperature
V
V
100
VBAT 2.8 V, VIN voltage detection
Switch voltage temperature coefficient
16
4.386
VSW1
VBAT switch resistance
4.300
Ta 40C to 85C
ISINK
Switch voltage
4.214
VDET1
Ta ( VDET1)
CO
Sink current
tDELAY
Vopr
Detection voltage temperature coefficient
VOUT voltage detection
MM
EN
RESET release delay time
Operating voltage
VIN voltage detection
DE
CS detection voltage
R
VIN 7.2 V, ICH 3 mA
VIN
coefficient
T
o
t
a
l
3.000
VOUT1
NO
T
u
n
i
t
Unit
Load stability 2
Leakage current
S
w
i
t
c
h
Max.
Ta 40C to 85C
Typ.
2.940
W
Output voltage temperature coefficient 1
Primary power input voltage
d
e
t
e
c
t
o
r
VIN 7.2 V, IRO 3 mA
VRO
Ta VRO
Output voltage temperature coefficient 3
V
o
l
t
a
g
e
Min.
FO
r
e
g
u
l
a
t
o
r
Condition
D
V
o
l
t
a
g
e
Symbol
N
Item
Electrical Characteristics
(Ta 25C, Unless otherwise specified)
DE
SI
G
Table 3
8
7
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Test Circuits
2.
or VCH
VIN
VSS
100 k
100 k
VRO, VOUT
VIN
N
1.
↓
10 F
V
DE
SI
G
VBAT VOUT
VIN
VIN
V
RESET
CS
VSS
4.
VSS
RESET
VIN
A
V
A
VBAT
V
VOUT
V
VSS
R
VBAT VOUT CS
VIN
VIN
VBAT
NE
3.
W
V
FO
VDS
Measure the value after applying 6 V to VIN.
6.
100 k
VSS
DE
F.G.
Oscilloscope
VOUT
VIN
Oscilloscope
VBAT CS
VIN
VBAT
VIN
A
VSS
VIN
IOUT
↓
VSS
RE
NO
T
VBAT
VIN
VOUT
VBAT
ISS
V
A
A
IBAT
VSS
VIN
VBAT
Leave open and measure the value after applying 6 V to VIN.
9.
VIN
8.
CO
VBAT
MM
EN
VBAT
7.
D
5.
To measure IBAT2, apply 6 V to VIN and then leave VIN open
and measure IBAT.
100 k
VOUT
VIN
VSS
RESET
Oscilloscope
Figure 4
Test Circuits
9
BATTERY BACKUP SWITCHING IC
S-8425 Series
Timing Chart
DE
SI
G
N
Rev.3.1_02
VIN (V)
NE
W
VRO, VCH (V)
FO
R
VOUT (V)
DE
D
VBAT (V)
MM
EN
VCS (V)
CO
VRESET (V)
tDELAY
CS and RESET are pulled up to VOUT. The Y-axis is an arbitrary scale.
NO
T
Remark
RE
tDELAY
10
Figure 5
Timing Chart
tDELAY
tDELAY
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Operation
DE
SI
G
The internal configuration of the S-8425 Series is as follows.
Voltage regulator 1, which stabilizes input voltage VIN and outputs it to VRO
Voltage regulator 2, which stabilizes input voltage VIN and outputs it to VOUT
Voltage regulator 3, which stabilizes input voltage VIN and outputs it to VCH
CS voltage detector, which monitors input voltage VIN
RESET voltage detector, which monitors output voltage VOUT
Switch unit
N
The functions and operations of the above-listed elements are described below.
NE
W
1. Voltage Regulators
The S-8425 Series features on-chip voltage regulators with a small dropout voltage. The voltage of the
VRO, VOUT, and VCH pins (the output pins of the voltage regulator) can separately be selected for the
output voltage in 0.1 V steps between the range of 2.3 to 5.4 V.
MM
EN
DE
D
FO
R
[Dropout voltage Vdrop1, Vdrop2, Vdrop3]
Assume that the voltage output from the VRO pin is VRO(E) under the conditions of output voltage 1
described in the electrical characteristics table. VIN1 is defined as the input voltage at which the output
voltage from the VRO pin becomes 98% of VRO(E) when the input voltage VIN is decreased. Then, the
dropout voltage Vdrop1 is calculated by the following expression.
Vdrop1 VIN1 VRO(E) 0.98
Similarly, assume that the voltage of the VOUT pin is VOUT(E), and VCH(E) respectively under the conditions
of output voltage 2 and 3 described in the electrical characteristics table. VIN2 and VIN3 are defined as the
input voltages at which the output voltage from the VOUT pin becomes 98% of VOUT(E) and VCH(E),
respectively. Then, the dropout voltages Vdrop2 and Vdrop3 are calculated by the following expression.
Vdrop2 VIN2 VOUT(E) 0.98
Vdrop3 VIN3 VCH(E) 0.98
CO
2. Voltage Detector
The S-8425 Series incorporates two high-precision, low power consuming voltage detectors with hysteresis
characteristics. The power of the CS voltage detector is supplied from the VIN and VBAT pins.
Therefore, the output is stable as long as the primary or backup power supply is within the operating voltage
range (1.7 to 16 V). All outputs are Nch open-drain, and need pull-up resistors of about 100 k.
RE
2.1 CS Voltage Detector
The CS voltage detector monitors the input voltage VIN (VIN pin voltage). The detection voltage can be
selected from between 2.4 and 5.3 V in 0.1 V steps. The result of detection is output at the CS pin: “Low”
for lower voltage than the detection level and “High” for higher voltage than the release level (however,
when the VOUT pin voltage is the CS output inhibit voltage (VSW2), a low level is output).
NO
T
Input voltage
Release voltage
Detection voltage
Output voltage
Figure 6
Definition of Detection and Release Voltages
11
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
DE
SI
G
N
2.2 RESET Voltage Detector
The RESET voltage detector monitors the output voltage VOUT (VOUT pin voltage). The detection voltage
can be selected from between 1.7 V and 3.4 V in 0.1 V steps. The result of detection is output at the
RESET pin: “Low” for a lower voltage than the detection level and “High” for a higher voltage than the
release level. RESET outputs the normal logic if the VOUT pin voltage is 1.0 V or more.
The S-8425 Series incorporates a RESET release delay circuit.
[RESET release delay time (tDELAY)]
The interval from when the VOUT pin voltage exceeds the RESET release voltage value (VDET2) until the
output of the RESET pin is actually inverted is called the RESET release delay time.
NE
W
VOUT
V
VDET2
FO
R
VRESET
t
Definition of RESET Release Delay Time (tDELAY)
DE
Figure 7
D
tDELAY
MM
EN
3. Switch Unit
The switch unit consists of the VSW1 and VSW2
VIN
detectors, a switch controller, voltage regulator 2,
and switch transistor M1 (see Figure 8 Switch
Unit).
NO
T
RE
CO
3.1 VSW1 Detector
The VSW1 detector monitors the power supply
voltage VIN and sends the results of detection to
the switch controller. The detection voltage
(VSW1) can be set to 77 2% or 85 2% of the CS
release voltage VDET1.
12
VOUT
M1
REG2
Switch
controller
Figure 8
VBAT
VSW1
detector
Switch Unit
VSW2
detector
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
DE
SI
G
N
3.2 VSW2 Detector
The VSW2 detector monitors the VOUT pin voltage and keeps the CS release voltage output low until the
VOUT pin voltage rises to VSW2 voltage. The CS pin output then changes from low to high if the VIN pin
voltage is more than the CS release voltage (VDET1) when the VOUT pin voltage rises to 95 2% of the
output voltage of voltage regulator 2 (VOUT). The CS pin output changes from high to low regardless of the
VSW2 voltage when the VIN pin voltage drops to less than the CS detection voltage (VDET1).
The CS pin output remains high if the VIN pin voltage stays higher than the CS detection voltage
(VDET1) when the VOUT pin voltage drops to less than the VSW2 voltage due to an undershoot.
NE
W
3.3 Switch Controller
The switch controller controls voltage regulator 2 and switch transistor M1. There are two statuses
corresponding to the power supply voltage VIN (or power supply voltage VBAT) sequence: a special
sequence status and a normal sequence status. When the power supply voltage VIN rises and becomes
equal to or exceeds the CS release voltage (VDET1), the normal sequence status is entered, but until then
the special sequence status is maintained.
D
FO
R
(1) Special sequence status
The switch controller sets voltage regulator 2 ON and switch transistor M1 OFF from the initial status
until the primary power supply voltage VIN is connected and reaches more than the CS release voltage
(VDET1) in order to prevent consumption of the backup power supply regardless of the VSW1 detector
status. This status is called the special sequence status.
CO
MM
EN
DE
(2) Normal sequence status
The switch controller enters the normal sequence status from the special sequence status once the
primary power supply voltage VIN reaches more than the CS release voltage (VDET1).
Once the normal sequence is entered, the switch controller switches voltage regulator 2 and switch
transistor M1 ON/OFF as shown in Table 4 according to the power supply voltage VIN. The time
required for voltage regulator 2 to be switched from OFF to ON is a few hundred s at most. During this
interval, voltage regulator 2 and switch transistor M1 may both switch OFF and the VOUT pin voltage
may drop. To prevent this, connect a capacitor of 10 F or more to the VOUT pin.
When the VOUT pin voltage becomes lower than the RESET detection voltage, the status returns to the
special sequence status.
ON/OFF Switching of Voltage Regulator 2 and Switch Transistor M1
According to Power Supply Voltage VIN
RE
Table 4
Voltage Regulator 2
Switch Transistor M1
VOUT Pin Voltage
VIN VSW1
ON
OFF
VOUT
VIN VSW1
OFF
ON
VBAT Vdif
NO
T
Power Supply Voltage VIN
13
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
VOUT
Vdif
VIN
N
REG2
VBAT
M1
DE
SI
G
3.4 Switch Transistor M1
Voltage regulator 2 is also used to switch from the VIN
pin to the VOUT pin. Therefore, no reverse current
flows from the VOUT pin to the VIN pin when voltage
regulator 2 is OFF.
The output voltage of voltage regulator 2 can be selected
from between 2.3 V and 5.4 V in 0.1 V steps.
NO
T
RE
CO
MM
EN
DE
D
FO
R
NE
W
Figure 9 Definition of Vdif
The on-resistance of switch transistor M1 is 60 or
lower (I OUT 10 to 500 A).
Therefore, when M1 is switched ON and the VOUT pin is connected to the VBAT pin, the voltage drop Vdif
caused by M1 is 60 IOUT (output current) at maximum, and VBAT Vdif (max.) is output to the VOUT pin at
minimum.
When voltage regulator 2 is ON and M1 is OFF, the leakage current of M1 is kept below 0.1 A max. (VIN
6 V, Ta 25°C) with the VBAT pin grounded (VSS pin).
14
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Transient Response
DE
SI
G
N
1. Line Transient Response Against Input Voltage Variation
The input voltage variation differs depending on whether the power supply input (0 V10 V square wave) is
applied or the power supply variation (6 V10 V square waves) is applied. This section describes the
ringing waveforms and parameter dependency of each type. The test circuit is shown for reference.
Power supply application: 0 V10 V square wave
Fast amplifier
10 V
Input voltage
0V
VIN
VSS
P.G.
Undershoot
Figure 11
Test Circuit
FO
R
Power Supply Application:
0 V10 V Square Wave
Power Supply Application
VRO pin
DE
COUT 22 F, IOUT 50 mA, Ta 25C
10V
0V
MM
EN
Input voltage
(5 V/div)
D
VOUT pin
Output voltage
(0.5 V/div)
CRO 22 F, IRO 30 mA, Ta 25C
10V
0V
Input voltage
(5 V/div)
Output voltage
(0.5 V/div)
CO
t (100 s/div)
Ringing Waveform of Power
Supply Application (VOUT Pin)
t (100 s/div)
Figure 13
Ringing Waveform of Power
Supply Application (VRO Pin)
RE
Figure 12
VCH pin
RL
NE
Output voltage
COUT
Oscilloscope
W
Overshoot
Figure 10
S-8425
VOUT
Series
CCH 10 F, ICH 10 mA, Ta 25C
10V
NO
T
0V
Input voltage
(5 V/div)
Output voltage
(0.5 V/div)
t (100 s/div)
Figure 14
Ringing Waveform of Power
Supply Application (VCH Pin)
15
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Power supply variation: 6 V10 V square waves
Input
voltage 6 V
DE
SI
G
VIN
VOUT
S-8425 Series
N
Fast amplifier
10 V
VSS
Overshoot
Output
voltage
P.G.
Undershoot
Power Supply Variation:
6 V10 V Square Waves
Test Circuit
W
Figure 16
NE
Figure 15
COUT
Power Supply Variation
R
VOUT pin
FO
COUT 22 F, IOUT 50 mA, Ta 25C
10V
10V
Input voltage
(4 V/div)
6V
DE
D
6V
MM
EN
Output voltage
(50 mV/div)
t (100 s/div)
10V
RE
VRO pin
Ringing Waveform of Power Supply Variation (VOUT Pin)
CO
Figure 17
Input voltage
(4 V/div)
CRO 22 F, IRO 30 mA, Ta 25C
10V
6V
NO
T
6V
Output voltage
(50 mV/div)
t (100 s/div)
Figure 18
16
Ringing Waveform of Power Supply Variation (VRO Pin)
RL
Oscilloscope
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
VCH pin
CCH 10 F, ICH 10 mA, Ta 25C
10V
6V
N
10V
6V
DE
SI
G
Input voltage
(4 V/div)
Ringing Waveform of Power Supply Variation (VCH Pin)
NO
T
RE
CO
MM
EN
DE
D
FO
R
Figure 19
NE
t (100 s/div)
W
Output voltage
(50 mV/div)
17
BATTERY BACKUP SWITCHING IC
S-8425 Series
Reference data:
Rev.3.1_02
Dependency of output current (IOUT), load capacitance (COUT),
input variation width (VIN), temperature (Ta)
DE
SI
G
N
For reference, the following pages describe the results of measuring the ringing amounts at the VOUT and VRO
pins using the output current (IOUT), load capacitance (COUT), input variation width (VIN), and temperature (Ta)
as parameters.
1.1 IOUT Dependency
(1) VOUT pin
(2) VRO pin
COUT 22 F, VIN 6 V10 V, Ta 25C
CRO 22 F, VIN 6 V10 V, Ta 25C
0.15
0.15
0.10
20
40
IOUT (mA)
0.00
60
D
0
0.05
FO
0.05
0.00
0.20
R
0.10
W
0.20
NE
Ringing amount (V)
0.25
0
20
40
IRO (mA)
60
DE
Ringing amount (V)
0.25
(3) VCH pin
CCH 10 F, VIN 6 V10 V, Ta 25C
MM
EN
0.20
0.15
CO
0.10
0.05
0
NO
T
0.00
RE
Ringing amount (V)
0.25
18
20
40
IICH
(mA)
OUT
(mA)
Overshoot
60
Undershoot
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
1.2 COUT Dependency
(2) VRO pin
0.50
0.50
0.40
0.40
0.10
0.00
0
10
20
30
40
R
0
10
20
30
40
50
CRO (F)
FO
(3) VCH pin
ICH 10 mA, VIN 6 V10 V, Ta 25C
D
0.50
DE
0.40
0.30
0.20
0.10
0
10
MM
EN
Ringing amount (V)
0.10
0.00
50
COUT (F)
0.00
0.20
W
0.20
0.30
NE
0.30
DE
SI
G
IRO 30 mA, VIN 6 V10 V, Ta 25C
Ringing amount (V)
Ringing amount (V)
IOUT 50 mA, VIN 6 V10 V, Ta 25C
N
(1) VOUT pin
20
30
40
50
Overshoot
Undershoot
NO
T
RE
CO
CCH (F)
19
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
N
1.3 VIN Dependency
VIN shows the difference between the low voltage fixed to 6 V and the high voltage.
For example, VIN 2 V means the difference between 6 V and 8 V.
(2) VRO pin
IRO 30 mA, CRO 22 F, Ta 25C
0.30
0.20
0.15
0.10
0.10
2
3
VIN (V)
4
5
2
3
VIN (V)
4
5
D
1
DE
0.30
0
R
1
FO
0
ICH 10 mA, CCH 10 F, Ta 25C
MM
EN
0.25
0.20
0.15
0.10
0.05
1
2
3
VIN (V)
NO
T
RE
0
CO
Ringing amount (V)
0.15
0.00
(3) VCH pin
20
0.20
0.05
0.05
0.00
0.25
W
0.25
NE
Ringing amount (V)
Ringing amount (V)
0.30
0.00
DE
SI
G
(1) VOUT pin
IOUT 50 mA, COUT 22 F, Ta 25C
4
5
Overshoot
Undershoot
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
1.4 Temperature Dependency
0.30
0.25
0.25
0.15
0.10
0.05
50
0
50
Ta (C)
50
0
50
Ta (C)
100
FO
DE
MM
EN
Ringing amount (V)
66 V
V10
V V
V
VIN
IN
and 10
ICH 10 mA
CCH 10 F
0.15
0.10
0.05
50
0
50
Ta (C)
100
Overshoot
Undershoot
NO
T
RE
CO
0.00
V
6 V10 V
VIN
IN 6 and 10 V
IRO 30 mA
CRO 22 F
D
0.30
0.20
0.05
0.00
100
(3) VCH pin
0.25
0.10
R
0.00
0.15
NE
6
6 V10
V
VIN
and 10 VV
IN
IOUT 50 mA
COUT 22 F
0.20
W
0.20
DE
SI
G
0.30
N
(2) VRO pin
Ringing amount (V)
Ringing amount (V)
(1) VOUT pin
21
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Output
current
50 mA
VOUT
VIN
10 A
S-8425 Series
Overshoot
Output
Output
current
voltage
DE
SI
G
N
2. Load Transient Response Based on Output Current Fluctuation
The overshoot and undershoot are caused in the output voltage if the output current fluctuates between 10
A and 50 mA (VRO is between 10 A and 30 mA, VCH is between 10 A and 10 mA) while the input voltage
is constant. Figure 20 shows the output voltage variation due to the output current. Figure 21 shows the
test circuit for reference. The latter half of this section describes ringing waveform and parameter
dependency.
VSS
COUT
NE
W
Undershoot
Oscilloscope
Figure 20 Output Voltage Variation
due to Output Current
Figure 21
Test Circuit
R
Figures 22 to 24 show the ringing waveforms at the VOUT, VRO, and VCH pins due to the load variation.
FO
VOUT pin
VIN 6.0 V, COUT 22 F, Ta 25C
10 A
50 mA
10 A
DE
Output current
D
50 mA
MM
EN
Output voltage
(50 mV/div)
NO
T
RE
CO
t (500 ms/div)
t (50 s/div)
Figure 22 Ringing Waveform due to Load Variation (VOUT Pin)
22
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
VRO pin
30 mA
30 mA
10 A
10 A
Output voltage
W
(20 mV/div)
DE
SI
G
Output current
N
VIN 6.0 V, CRO 22 F, Ta 25C
NE
t (20 ms/div)
t (50 s/div)
Figure 23 Ringing Waveform due to Load Variation (VRO Pin)
R
VCH pin
FO
VIN 6.0 V, CCH 10 F, Ta 25C
10 mA
Output current
10 A
10 mA
D
10 A
DE
Output voltage
MM
EN
(10 mV/div)
t (5 ms/div)
Ringing Waveform due to Load Variation (VCH Pin)
NO
T
RE
CO
Figure 24
t (50 s/div)
23
BATTERY BACKUP SWITCHING IC
S-8425 Series
Dependency of input voltage (VIN), load capacitance (COUT),
output variation width (IOUT), temperature (Ta)
N
Reference data:
Rev.3.1_02
DE
SI
G
2.1 VIN Dependency
(2) VRO pin
COUT 22 F, IOUT 50 mA10 A, Ta 25C
CRO 22 F, IRO 30 mA10 A, Ta 25C
0.12
0.10
0.10
0.06
0.04
0.00
4
5
6
7
8
9
0.06
0.04
0.02
R
0.02
0.08
W
0.08
NE
Ringing amount (V)
0.12
0.00
10
FO
Ringing amount (V)
(1) VOUT pin
VIN (V)
(3) VCH pin
4
5
6
7
8
9
10
VIN (V)
D
CCH 10 F, ICH 10 mA10 A, Ta 25C
DE
0.12
MM
EN
0.08
0.06
0.04
0.02
0.00
4
CO
Ringing amount (V)
0.10
5
6
7
NO
T
RE
VIN (V)
24
8
Overshoot
9
10
Undershoot
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
2.2 COUT Dependency
(2) VRO pin
0.30
0.50
0.25
0.40
0.30
0.20
0.00
0
10
20
30
40
0.20
0.15
0.10
0.05
NE
0.10
0.00
50
10
20
30
40
50
R
CCH 10 F, ICH 10 mA10 A, Ta 25C
0.60
DE
D
0.50
FO
(3) VCH pin
0.40
0.30
0.20
0.10
0
10
MM
EN
Ringing amount (V)
0
CRO (F)
COUT (F)
0.00
DE
SI
G
0.60
N
VIN 6.0 V, IRO 30 mA10 A, Ta 25C
Ringing amount (V)
Ringing amount (V)
VIN 6.0 V, IOUT 50 mA10 A, Ta 25C
W
(1) VOUT pin
20
30
40
50
Overshoot
Undershoot
NO
T
RE
CO
CCH (F)
25
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
N
2.3 IOUT Dependency
IOUT and IRO show the fluctuation between the low current stabilized at 10 A and the high current.
For example, IOUT 10 mA means a fluctuation between 10 A and 10 mA.
(2) VRO pin
CRO 22 F, VIN 6 V, Ta 25C
0.12
0.10
0.08
0.06
0.02
0.06
0.04
0.02
0.00
10 20 30 40 50 60
FO
0
R
0.00
IOUT (mA)
0.12
MM
EN
0.10
10 20 30 40 50 60
IRO (mA)
DE
CCH 10 F, VIN 6 V, Ta 25C
0
D
(3) VCH pin
0.08
0.06
0.04
CO
Ringing amount (V)
0.08
NE
0.04
0.10
W
Ringing amount (V)
Ringing amount (V)
0.12
0.02
RE
0.00
0
10 20 30 40 50 60
NO
T
ICH (mA)
26
DE
SI
G
(1) VOUT pin
COUT 22 F, VIN 6 V, Ta 25C
Overshoot
Undershoot
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
2.4 Temperature Dependency
0.08
0.14
0.07
0.10
0.08
0.06
0.04
0.04
0.03
0.02
0.01
0.00
0.00
0
50
50
100
R
50
0
50
100
Ta (C)
FO
Ta (C)
(3) VCH pin
D
VIN 6 V, ICH 10 mA10 A, CCH 10 F
0.16
DE
0.14
0.12
0.10
MM
EN
Ringing amount (V)
0.05
NE
0.02
0.06
W
0.12
DE
SI
G
0.16
N
(2) VRO pin
VIN 6.0 V, IRO 30 mA10 A, CRO 22 F
Ringing amount (V)
Ringing amount (V)
(1) VOUT pin
VIN 6.0 V, IOUT 50 A10 A, COUT 22 F
0.08
0.06
0.04
0.00
50
CO
0.02
0
50
Overshoot
Undershoot
NO
T
RE
Ta (C)
100
27
BATTERY BACKUP SWITCHING IC
S-8425 Series
Standard Circuit
VCH
10 F
VCH
1 k
VRO
VBAT
VIN
VOUT
6V
S-8425
Series
10 F
10 F
VOUT
10 F
RESET
R
100 k
Standard Circuit
FO
Figure 25
3V
NE
VOUT
100 k
0.1 F
W
VOUT
VSS
CS
DE
SI
G
VRO
N
Rev.3.1_02
Caution Be sure to add a 10 F or more capacitor to the VOUT, VRO, and VCH pins.
NO
T
RE
CO
MM
EN
DE
D
The above connection diagram and constant will not guarantee successful
operation. Perform thorough evaluation using the actual application to set the
constant.
28
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Precautions
FO
When Using Secondary Battery as Backup Battery
R
Application Circuit
10 F
D
VIN
10 F
6V
S-8425
Series
VRO
MM
EN
DE
VCH VOUT
VBAT
100 k
10 F
VCC
100 k
10 F
CS
Microcontroller
INT
0.1 F
3V
RESET
RESET
The above connection diagram and constant will not guarantee successful
operation. Perform thorough evaluation using the actual application to set the
constant.
RE
Caution
CO
VSS
Remark
NO
T
NE
W
DE
SI
G
N
In applications in which any one of IRO, IOUT, or ICH is small, the output voltages VRO, VOUT, and VCH may
rise, causing the load stability to exceed standard levels. Set IRO, IOUT, or ICH to 10 A or more.
Attach the proper capacitor to the VOUT pin to prevent the RESET voltage detector (which monitors the
VOUT pin) from becoming active due to undershoot.
Watch for overshoot and ensure it does not exceed the ratings of the IC chips and/or capacitors
attached to the VRO, VOUT, and VCH pins.
Add a 10 F or more capacitor to the VOUT, VRO, and VCH pins.
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
ABLIC Inc. claims no responsibility for any and all disputes arising out of or in connection with any
infringement by products including this IC of patents owned by a third party.
The backup battery can be floating-recharged by using voltage regulator 3.
Figure 26
Application Circuit
29
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
Characteristics
1. Voltage Regulator Unit
3.2
2.8
IRO 90 mA
2.4
2.0
2.0
3.0
4.0
4.0
5.0
FO
R
VIN (V)
VIN (V)
4.0
D
IRO 90 mA
2.4
3.0
3.0
5.0
DE
VRO (V)
IRO 10 mA
2.8
2.0
2.0
IRO 90 mA
2.4
NE
VIN (V)
(3) Ta 40C
IRO 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
3.2
2.8
2.0
2.0
5.0
IRO 10 mA
W
IRO 10 mA
VRO (V)
VRO (V)
3.2
DE
SI
G
N
1.1 Input Voltage (VIN) vs. Output Voltage (VRO) Characteristics (REG1) (VRO 3.0 V)
(1) Ta 85C
(2) Ta 25C
IRO 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
IRO 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
2.4
2.0
2.0
CO
2.8
IOUT 90 mA
3.0
4.0
5.0
VIN (V)
NO
T
(3) Ta 40C
IOUT 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
VOUT (V)
3.2
IOUT 10 mA
2.8
2.4
IOUT 90 mA
2.0
2.0
30
3.0
VIN (V)
4.0
5.0
3.2
VOUT (V)
IOUT 10 mA
RE
VOUT (V)
3.2
MM
EN
1.2 Input Voltage (VIN) vs. Output Voltage (VOUT) Characteristics (REG2) (VOUT 3.0 V )
(1) Ta 85C
(2) Ta 25C
IOUT 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
IOUT 10 mA, 30 mA, 50 mA, 70 mA, 90 mA
IOUT 10 mA
2.8
2.4
2.0
2.0
IOUT 90 mA
3.0
4.0
VIN (V)
5.0
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
N
1.3 Input Voltage (VIN) vs. Output Voltage (VOUT) Characteristics (REG3) (VCH 3.3 V)
(1) Ta 85C
(2) Ta 25C
3.5
VCH (V)
ICH 10 mA
3.1
2.7
ICH 70 mA
3.0
4.0
5.0
VIN (V)
6.0
ICH 10 mA
3.1
2.7
ICH 70 mA
2.3
2.0
7.0
IRO 10 mA, 30 mA, 50 mA, 70 mA
6.0
7.0
R
ICH 10 mA
2.7
FO
3.1
ICH 70 mA
4.0
5.0
VIN (V)
6.0
7.0
D
3.0
NO
T
RE
CO
MM
EN
DE
2.3
2.0
4.0
5.0
VIN (V)
NE
(3) Ta 40C
3.5
3.0
W
2.3
2.0
VCH (V)
VCH (V)
3.5
IRO 10 mA, 30 mA, 50 mA, 70 mA
DE
SI
G
IRO 10 mA, 30 mA, 50 mA, 70 mA
31
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
0.8
Vdrop2 (V)
0.8
Vdrop1 (V)
1.0
Ta 85C
25C
40C
0.6
0.4
0.2
0
0.4
0.02
0.04
0.0
0.06
0
FO
D
0.4
0.0
0.02
0.04
ICH (A)
0.06
DE
0
MM
EN
1.7 Output Current (IRO) vs. Output Voltage
(VRO) Characteristics
3.2
Ta 40C
25C
85C
3.1
2.9
1
100
10 m
1
RE
2.8
VIN 6 V
CO
3.0
IRO (A)
NO
T
3.2
Ta 40C
25C
85C
3.0
2.9
2.8
VIN 6 V
1
100
10 m
ICH (A)
3.2
Ta 40C
25C
85C
3.1
3.0
2.9
2.8
VIN 6 V
1
100
10 m
IOUT (A)
1.9 Output Current (IOUT) vs. Output Voltage
(VCH) Characteristics
3.1
1.8 Output Current (IOUT) vs. Output Voltage
(VOUT) Characteristics
VOUT (V)
Vdrop3 (V)
R
Ta = 85C
25C
40C
0.8
V RO (V)
0.06
NE
2.0
1.2
0.04
IOUT (A)
1.6 Output Current (ICH) vs. Dropout Voltage
(Vdrop3) Characteristics
1.6
0.02
W
IRO (A)
VCH (V)
Ta = 85C
25C
40C
0.6
0.2
0.0
32
DE
SI
G
1.0
N
1.5 Output Current (IOUT) vs. Dropout Voltage
(Vdrop2) Characteristics
1.4 Output Current (IRO) vs. Dropout Voltage
(Vdrop1) Characteristics
1
1
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
1.11 Output Voltage (VOUT) Temperature
Characteristics
30
30
VOUT (mV)
10
VIN = 6 V, IOUT = 50 mA
Based on VOUT voltage when Ta is 25C
20
VIN = 6 V, IRO = 30 mA
Based on VRO voltage when Ta is 25C
0
10
20
30
10
DE
SI
G
20
VRO (mV)
N
1.10 Output Voltage (VRO) Temperature
Characteristics
0
10
20
30
40
20
0
20
40
60
80
40
100
20
VIN = 6 V, ICH = 10 mA
Based on VCH voltage when Ta is 25C
80
100
R
20
0
20
40
60
80
100
D
40
FO
20
DE
Ta (C)
1.13 Input Stability (VRO2) Temperature
Characteristics
MM
EN
20
15
10
5
40
20
CO
0
0
20
40
60
80
100
Ta (C)
1.14 Input Stability (VOUT2) Temperature
Characteristics
20
VOUT2(mV)
VCH (mV)
0
10
30
VRO2 (mV)
60
NE
30
10
40
Ta (C)
1.12 Output Voltage (VCH) Temperature
Characteristics
20
20
W
Ta (C)
0
15
10
5
0
-40
-20
0
20
40
60
80
100
Ta (C)
RE
1.15 Input Stability (VCH2) Temperature
Characteristics
20
VCH2 (mV)
NO
T
15
10
5
0
40
20
0
20
40
60
80
100
Ta (C)
33
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
40
30
30
20
10
0
20
10
0
40
20
0
20
40
60
80
40
100
20
NE
40
R
20
10
FO
VCH1 (mV)
30
0
0
20
40
80
100
NO
T
RE
CO
MM
EN
DE
Ta (C)
60
D
20
34
20
Ta (C)
1.18 Load Stability (VCH1) Temperature
Characteristics
40
0
W
Ta (C)
DE
SI
G
40
N
1.17 Load Stability (VOUT1) Temperature
Characteristics
VOUT1 (mV)
VRO1 (mV)
1.16 Load Stability (VRO1) Temperature
Characteristics
40
60
80
100
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
2. Voltage Detector
2.1 CS Voltage Detector (VDET1 3.3 V)
(1) Detection voltage (VDET1) temperature
characteristics
30
20
25
Based on CS (VDET1) voltage when Ta is 25C)
CS ISINK (mA)
0
10
20
0
20
40
Ta (C)
60
80
VIN 1.7 V
VIN = VBAT = 2.0 V, VDS = 0.5 V
8
0.0
1.0
4
0
20
40
60
80
VDS (V)
100
20
MM
EN
2.2 RESET Voltage Detector (VDET2 2.4 V)
(1) Detection voltage (VDET2) temperature
characteristics
Based on RESET (VDET2) voltage
10
when Ta is 25C
10
20
0
20
40
60
80
30
25
VIN 3 V
Ta 25C
20
15
10
VIN 1.7 V
5
0
0.0
100
RE
40
CO
0
(2) Output current (ISINK) characteristics
RESET ISINK (mA)
20
DE
40
Ta (C)
1.0
2.0
Ta (C)
NO
T
6
5
Delay time (ms)
VIN V BAT 2.0 V, V DS 0.5 V
6
4
2
4
3
20
40
Ta (C)
60
80
100
Worst
2
Typ
1
0
0
4.0
(4) RESET release delay time
10
40 20
3.0
VDS (V)
(3) Output current (ISINK) temperature
characteristics
RESET ISINK (mA)
4.0
D
2
0
3.0
FO
6
8
2.0
R
10
CS ISINK (mA)
10
0
100
(3) Output current (ISINK) temperature
characteristics
RESET (mV)
15
NE
40
20
VIN 3 V
20
5
20
0
Ta 25C
W
CS (mV)
10
DE
SI
G
N
(2) Output current (ISINK) characteristics
40 20
0
20
40
60
80
100
Ta (C)
35
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
3. Switch Unit
3.1 Switch Voltage (VSW1) Temperature
Characteristics
N
3.2 CS Output Inhibit Voltage (VSW2)
Temperature Characteristics
20
20
0
10
20
40
20
0
20
40
60
80
0
10
20
100
40
20
Ta (C)
60
80
100
W
NE
RSW ()
30
R
30
VBAT 3 V, IOUT 500 A
40
20
20
FO
RSW ()
50
IOUT 500 A
40
10
10
2
3
4
VBAT (V)
DE
30
20
15
10
5
40
20
0
MM
EN
VIN 6.0 V, IBAT 0 V
25
20
40
RE
CO
Ta (C)
NO
T
0
5
D
1
3.5 VBAT Switch Leakage Current (ILEAK)
Temperature Characteristics
ILEAK (nA)
40
60
50
36
20
3.4 VBAT Switch Resistance (RSW) Temperature
Characteristics
60
0
0
Ta (C)
3.3 Input Voltage (VBAT) vs. VBAT Switch
Resistance (RSW) Characteristics
0
DE
SI
G
10
Based on V SW1 voltage when Ta is 25C
VSW2 (mV)
VSW1 (mV)
Based on VSW2 voltage when Ta is 25C
10
60
80
100
40
20
0
20
Ta (C)
40
60
80
100
BATTERY BACKUP SWITCHING IC
S-8425 Series
Rev.3.1_02
4. Current Consumption
4.2 VBAT vs. VBAT2 Current Consumption (IBAT2)
Characteristics
16
IBAT2 (A)
4
1.0
0.5
0
2
4
6
8
10
VIN (V)
12
14
16
0.0
2.0
18
(2) IBAT2
16
2.0
4.0
IBAT2 (A)
VIN 6.0 V, VBAT 3.0 V
1.5
VIN open, VBAT 3.0 V
FO
ISS1 (A)
3.6
R
(1) ISS1
12
2.8
3.2
VBAT (V)
NE
4.3 Current Consumption Temperature
Characteristics
2.4
W
ISS1 (A)
Ta 85C
25C
40C
1.5
8
8
4
1.0
40
20
0
20
40
80
100
0.0
40
20
0
20
40
60
80
100
Ta (C)
NO
T
RE
CO
MM
EN
Ta (C)
60
D
0.5
DE
0
DE
SI
G
2.0
Ta 85C
25C
40C
12
0
N
4.1 VIN vs. VIN Current Consumption (ISS1)
Characteristics
37
+0.3
5
1
4
NE
W
DE
SI
G
8
N
3.00 -0.2
DE
D
FO
R
0.17±0.05
MM
EN
0.2±0.1
CO
0.65
NO
T
RE
No. FT008-A-P-SD-1.2
TITLE
TSSOP8-E-PKG Dimensions
No.
FT008-A-P-SD-1.2
ANGLE
UNIT
mm
ABLIC Inc.
4.0±0.1
2.0±0.05
ø1.55±0.05
DE
SI
G
N
0.3±0.05
+0.1
8.0±0.1
NE
W
ø1.55 -0.05
FO
R
(4.4)
+0.4
MM
EN
DE
D
6.6 -0.2
8
1
4
Feed direction
NO
T
RE
CO
5
No. FT008-E-C-SD-1.0
TITLE
TSSOP8-E-Carrier Tape
FT008-E-C-SD-1.0
No.
ANGLE
UNIT
mm
ABLIC Inc.
N
DE
SI
G
W
NE
R
FO
D
2±0.5
ø13±0.5
CO
MM
EN
ø21±0.8
17.5±1.0
DE
Enlarged drawing in the central part
13.4±1.0
NO
T
RE
No. FT008-E-R-SD-1.0
TITLE
TSSOP8-E-Reel
No.
FT008-E-R-SD-1.0
QTY.
ANGLE
UNIT
mm
ABLIC Inc.
3,000
N
DE
SI
G
W
NE
R
FO
D
2±0.5
ø13±0.5
CO
MM
EN
ø21±0.8
17.5±1.0
DE
Enlarged drawing in the central part
13.4±1.0
NO
T
RE
No. FT008-E-R-S1-1.0
TITLE
TSSOP8-E-Reel
FT008-E-R-S1-1.0
No.
QTY.
ANGLE
UNIT
mm
ABLIC Inc.
4,000
0.80±0.1
3.00±0.2
DE
SI
G
N
0.525typ.
(2.4)
NE
W
(ø1.0)
+0.1
DE
D
FO
R
0.125 -0.05
MM
EN
0.65
+0.1
CO
0.30 -0.05
NO
T
RE
No. PA008-B-P-SD-4.0
TITLE
SON8B-B-PKG Dimensions
PA008-B-P-SD-4.0
No.
ANGLE
UNIT
mm
ABLIC Inc.
N
8.0±0.1
4.0±0.1
ø1.55±0.05
NE
W
DE
SI
G
2.0±0.05
1.2±0.1
ø1.55±0.05
0.3±0.05
5
8
DE
1
MM
EN
4
D
FO
R
3.4±0.1
Feed direction
NO
T
RE
CO
No. PA008-B-C-SD-1.1
TITLE
SON8B-B-Carrier Tape
No.
PA008-B-C-SD-1.1
ANGLE
UNIT
mm
ABLIC Inc.
FO
R
NE
W
DE
SI
G
N
2±0.3
D
MM
EN
DE
Enlarged drawing in the central part
13.5±0.5
CO
ø13±0.2
NO
T
RE
No. PA008-B-R-SD-1.1
TITLE
SON8B-B-Reel
No.
PA008-B-R-SD-1.1
QTY.
ANGLE
UNIT
mm
ABLIC Inc.
3,000
Disclaimers (Handling Precautions)
All the information described herein (product data, specifications, figures, tables, programs, algorithms and application
circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
2.
The circuit examples and the usages described herein are for reference only, and do not guarantee the success of
any specific mass-production design.
ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein
(hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use
of the information described herein.
3.
ABLIC Inc. is not responsible for damages caused by the incorrect information described herein.
4.
Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings,
operation voltage range and electrical characteristics, etc.
ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the
products outside their specified ranges.
5.
When using the products, confirm their applications, and the laws and regulations of the region or country where they
are used and verify suitability, safety and other factors for the intended use.
6.
When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related
laws, and follow the required procedures.
7.
The products must not be used or provided (exported) for the purposes of the development of weapons of mass
destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to
develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.
8.
The products are not designed to be used as part of any device or equipment that may affect the human body, human
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do
not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc.
Especially, the products cannot be used for life support devices, devices implanted in the human body and devices
that directly affect human life, etc.
Prior consultation with our sales office is required when considering the above uses.
ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products.
9.
Semiconductor products may fail or malfunction with some probability.
The user of the products should therefore take responsibility to give thorough consideration to safety design including
redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or
death, fires and social damage, etc. that may ensue from the products' failure or malfunction.
The entire system must be sufficiently evaluated and applied on customer's own responsibility.
MM
EN
DE
D
FO
R
NE
W
DE
SI
G
N
1.
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the
product design by the customer depending on the intended use.
CO
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be
careful when handling these with the bare hands to prevent injuries, etc.
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
RE
13. The information described herein contains copyright information and know-how of ABLIC Inc.
The information described herein does not convey any license under any intellectual property rights or any other
rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any
part of this document described herein for the purpose of disclosing it to a third-party without the express permission
of ABLIC Inc. is strictly prohibited.
NO
T
14. For more details on the information described herein, contact our sales office.
2.0-2018.01
www.ablicinc.com