0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
4060CPCE10B434

4060CPCE10B434

  • 厂商:

    SILABS(芯科科技)

  • 封装:

  • 描述:

    EZRadioPRO® Si4060 发射器 434MHz 评估板

  • 数据手册
  • 价格&库存
4060CPCE10B434 数据手册
Si4063/60-C H I G H - P ERFORMANCE , L O W -C U R R E N T T RANSMITTER Features  Smart metering Remote control  Home security and alarm  Telemetry  Garage and gate openers     Remote keyless entry Home automation Industrial control Sensor networks Health monitors Electronic shelf labels 1 20 19 18 17 16 NC 2 15 nSEL NC 3 14 SDI GND PAD TX 4 13 SDO NC 5 Description Silicon Laboratories' Si406x devices are high-performance, low-current transmitters covering the sub-GHz frequency bands from 142 to 1050 MHz. The radios are part of the EZRadioPRO® family, which includes a complete line of transmitters, receivers, and transceivers covering a wide range of applications. All parts offer extremely low active and standby current consumption. The Si406x includes optimal phase noise performance for narrow band applications, such as FCC Part90 and 169 MHz wireless Mbus. The Si4063 offers exceptional output power of up to +20 dBm with outstanding TX efficiency. The high output power allows extended ranges and highly robust communication links. The Si4060 active mode TX current consumption of 18 mA at +10 dBm coupled with extremely low standby current and fast wake times ensure extended battery life in the most demanding applications. The Si4063 can achieve up to +27 dBm output power with built-in ramping control of a low-cost external FET. The devices can meet worldwide regulatory standards: FCC, ETSI, wireless MBus, and ARIB. All devices are designed to be compliant with 802.15.4g and WMbus smart metering standards. The devices are highly flexible and can be configured via the Wireless Development Suite (WDS) available at Silicon Labs web site. Rev 1.0 10/14 SDN XOUT   XIN  GND Pin Assignments Applications Copyright © 2014 by Silicon Laboratories 12 SCLK 6 7 8 9 10 GPIO1  GPIO0  GPIO2  VDD  Power supply = 1.8 to 3.8 V Highly configurable packet handler TX 129 byte FIFO Low BOM Low battery detector Temperature sensor 20-Pin QFN package IEEE 802.15.4g compliant Suitable for FCC Part 90 Mask D, FCC part 15.247, 15,231, 15,249, ARIB T-108, T-96, T-67, China regulatory ETSI EN 300 220 GPIO3  Frequency range = 142–1050 MHz  Modulation  (G)FSK, 4(G)FSK, (G)MSK  OOK  Max output power  +20 dBm (Si4063)  +13 dBm (Si4060)  PA support for +27 or +30 dBm  Ultra low current powerdown modes 30 nA shutdown, 40 nA standby Data rate = 100 bps to 1 Mbps Fast wake times TXRamp  VDD  11 nIRQ Patents pending Si4063/60-C Si4063/60-C Functional Block Diagram GPIO3 GPIO2 XIN XOUT Loop Filter PFD / CP VCO FBDIV TX DIV 30 MHz XO Frac-N Div LO Gen Bootup OSC SDN PA PowerRamp Cntl SPI Interface Controller TX ADC Temp sensor MODEM FIFO Packet Handler LDOs PA LDO LBD 32K LP OSC TXRAMP 2 Digital Logic POR VDD GPIO0 GPIO1 Product Freq. Range Max Output Power TX Current Narrowband Operation Si4063 Major bands 142–1050 MHz +20 dBm 169 MHz: 68.5 mA  Si4060 Major bands 142–1050 MHz +13 dBm +10 dBm: 18 mA +13 dBm: 24 mA  Rev 1.0 nSEL SDI SDO SCLK nIRQ Si4063/60-C TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3. Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1. Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2. Fast Response Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 3.3. Operating Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4. Application Programming Interface (API) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.6. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4. Modulation and Hardware Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1. Modulation Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2. Hardware Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5. Internal Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1. Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.2. Transmitter (TX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 5.3. Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 6. Data Handling and Packet Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 6.1. TX FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.2. Packet Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7. Auxiliary Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.1. Wake-up Timer and 32 kHz Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.2. Low Duty Cycle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.3. Temperature, Battery Voltage, and Auxiliary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.4. Low Battery Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 8. Pin Descriptions: Si4063/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 10. Package Outline: Si4063/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 11. PCB Land Pattern: Si4063/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 12.1. Si4063/60 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 12.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Rev 1.0 3 Si4063/60-C 1. Electrical Specifications Table 1. DC Characteristics1 Parameter Min Typ Max Unit 1.8 3.3 3.8 V RC Oscillator, Main Digital Regulator, and Low Power Digital Regulator OFF — 30 — nA IStandby Register values maintained and RC oscillator/WUT OFF — 40 — nA ISleepRC RC Oscillator/WUT ON and all register values maintained, and all other blocks OFF — 740 — nA ISleepXO Sleep current using an external 32 kHz crystal. — 1.7 — µA ISensor Low battery detector ON, register values maintained, and all other blocks OFF — 1 — µA IReady Crystal Oscillator and Main Digital Regulator ON, all other blocks OFF — 1.8 — mA TUNE Mode Current ITune_TX TX Tune, High Performance Mode — 7.8 — mA TX Mode Current (Si4063) ITX_+20 +20 dBm output power, class-E match, 915 MHz, 3.3 V — 88 — mA +20 dBm output power, square-wave match, 169 MHz, 3.3 V — 68.5 — mA ITX_+10 +10 dBm output power, Class-E match, 169 MHz, 3.3 V2 — 18 — mA ITX_+13 +13 dBm output power, Class-E match, 915/868 MHz, 3.3 V2 — 24 — mA Supply Voltage Range Symbol VDD Power Saving Modes IShutdown -LBD TX Mode Current (Si4060) Test Condition Notes: 1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated. 2. Measured on direct tie RF evaluation board. 4 Rev 1.0 Si4063/60-C Table 2. Synthesizer AC Electrical Characteristics1 Parameter Synthesizer Frequency Range (Si4063/60) Synthesizer Frequency Resolution2 Symbol Test Condition FSYN FRES-960 850–1050 MHz FRES-525 420–525 MHz FRES-420 350–420 MHz FRES-350 284–350 MHz FRES-175 142–175 MHz Min Typ Max Unit 850 — 1050 MHz 350 — 525 MHz 284 — 350 MHz 142 — 175 MHz — 28.6 — Hz — 14.3 — Hz — 11.4 — Hz — 9.5 — Hz — 4.7 — Hz Synthesizer Settling Time tLOCK Measured from exiting Ready mode with XOSC running to any frequency. Including VCO Calibration. — 50 — µs Phase Noise L(fM) F = 10 kHz, 169 MHz, High Perf Mode — –117 — dBc/Hz F = 100 kHz, 169 MHz, High Perf Mode — –120 — dBc/Hz F = 1 MHz, 169 MHz, High Perf Mode — –138 — dBc/Hz F = 10 MHz, 169 MHz, High Perf Mode — –148 — dBc/Hz F = 10 kHz, 915 MHz, High Perf Mode — –102 — dBc/Hz F = 100 kHz, 915 MHz, High Perf Mode — –105 — dBc/Hz F = 1 MHz, 915 MHz, High Perf Mode — –125 — dBc/Hz F = 10 MHz, 915 MHz, High Perf Mode — –138 — dBc/Hz Notes: 1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated. 2. Default API setting for modulation deviation resolution is double the typical value specified. Rev 1.0 5 Si4063/60-C Table 3. Transmitter AC Electrical Characteristics1 Parameter Symbol Test Condition TX Frequency Range Min Typ Max Unit 850 — 1050 MHz 350 — 525 MHz 284 — 350 MHz 142 — 175 MHz FTX (G)FSK Data Rate2 DRFSK 0.1 — 500 kbps 4(G)FSK Data Rate2 DR4FSK 0.2 — 1000 kbps OOK Data Rate2 DROOK 0.1 — 120 kbps Modulation Deviation Range Modulation Deviation Resolution3 Output Power Range (Si4063)4 f960 850–1050 MHz — 1.5 — MHz f525 420–525 MHz — 750 — kHz f420 350–420 MHz — 600 — kHz f350 284–350 MHz — 500 — kHz f175 142–175 MHz — 250 — kHz FRES-960 850–1050 MHz — 28.6 — Hz FRES-525 420–525 MHz — 14.3 — Hz FRES-420 350–420 MHz — 11.4 — Hz FRES-350 284–350 MHz — 9.5 — Hz FRES-175 142–175 MHz — 4.7 — Hz PTX63 Typical range at 3.3 V with Class E match optimized for best PA efficiency –20 — +20 dBm PTX60 Typical range at 3.3 V with Class E match optimized for best PA efficiency. Efficiency can be traded off for higher Tx output power up to +13 dBm. –20 — +12.5 dBm PRF_OUT Using switched current match within 6 dB of max power — 0.25 — dB At 20 dBm PA power setting, 915 MHz, Class E match, 3.3 V, 25 °C 19 20 21 dBm Output Power Range (Si4060)4 TX RF Output Steps Output Power Variation (Si4063) Notes: 1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated. 2. The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula: Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz). 3. Default API setting for modulation deviation resolution is double the typical value specified. 4. Output power is dependent on matching components and board layout. 6 Rev 1.0 Si4063/60-C Table 3. Transmitter AC Electrical Characteristics1 (Continued) Parameter Symbol Test Condition Min Typ Max Unit Output Power Variation (Si4060) At 10 dBm PA power setting, 915 MHz, Class E match, 3.3 V, 25 °C 9.5 10 10.5 dBm Output Power Variation (Si4063) At 20 dBm PA power setting, 169 MHz, Square Wave match, 3.3 V, 25 °C 18.5 20 21 dBm Output Power Variation (Si4060) At 10 dBm PA power setting, 169 MHz, Square Wave match, 3.3 V, 25 °C — 10 — dBm TX RF Output Level Variation vs. Temperature PRF_TEMP –40 to +85 C — 2.3 — dB TX RF Output Level Variation vs. Frequency PRF_FREQ Measured across 902–928 MHz — 0.6 — dB B*T Gaussian Filtering Bandwith Time Product — 0.5 — Transmit Modulation Filtering Notes: 1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated. 2. The maximum data rate is dependent on the XTAL frequency and is calculated as per the formula: Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz). 3. Default API setting for modulation deviation resolution is double the typical value specified. 4. Output power is dependent on matching components and board layout. Rev 1.0 7 Si4063/60-C Table 4. Auxiliary Block Specifications1 Parameter Symbol Test Condition Min Typ Max Unit Temperature Sensor Sensitivity TSS — 4.5 — ADC Codes/ °C Low Battery Detector Resolution LBDRES — 50 — mV Microcontroller Clock Output Frequency Range2 Temperature Sensor Conversion XTAL Range3 30 MHz XTAL Start-Up Time 30 MHz XTAL Cap Resolution 32 kHz XTAL Start-Up Time 32 kHz Accuracy using Internal RC Oscillator POR Reset Time FMC Configurable to Fxtal or Fxtal divided by 2, 3, 7.5, 10, 15, or 30 where Fxtal is the reference XTAL frequency. In addition, 32.768 kHz is also supported. 32.768K — Fxtal Hz TEMPCT Programmable setting — 3 — ms 25 — 32 MHz — 300 — µs 30MRES — 70 — fF t32k — 2 — sec 32KRCRES — 2500 — ppm tPOR — — 6 ms XTALRange t30M Using XTAL and board layout in reference design. Start-up time will vary with XTAL type and board layout. Notes: 1. All minimum and maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to +85 °C unless otherwise stated. All typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated. 2. Microcontroller clock frequency tested in production at 1 MHz, 30 MHz, 32 MHz, and 32.768 kHz. Other frequencies tested in bench characterization. 3. XTAL Range tested in production using an external clock source (similar to using a TCXO). 8 Rev 1.0 Si4063/60-C Table 5. Digital IO Specifications (GPIO_x, SCLK, SDO, SDI, nSEL, nIRQ, SDN)1 Parameter Rise Time 2,3 Fall Time3,4 Symbol Test Condition Min Typ Max Unit TRISE 0.1 x VDD to 0.9 x VDD, CL = 10 pF, DRV = LL — 2.3 — ns TFALL 0.9 x VDD to 0.1 x VDD, CL = 10 pF, DRV = LL — 2 — ns Input Capacitance CIN — 2 — pF Logic High Level Input Voltage VIH VDD x 0.7 — — V Logic Low Level Input Voltage VIL — — VDD x 0.3 V Input Current IIN 0 3.3 V. When Vdd < 3.3 V, the Vhi will be closely following the Vdd, and ramping time will be smaller also. Vlo = 0 V when NO current needed to be sunk into TXRAMP pin. If 10 µA need to be sunk into the chip, Vlo will be 10 µA x 10k = 100 mV. 22 Rev 1.0 Si4063/60-C Number Command Summary 0x2200 PA_MODE 0x2201 PA_PWR_LVL 0x2202 PA_BIAS_CLKDUTY Adjust TX power in coarse steps and optimizes for different match configurations. 0x2203 PA_TC Changes the ramp up/down time of the PA. Sets PA type. Adjust TX power in fine steps. 5.2.1. Si4063: +20 dBm PA The +20 dBm configuration utilizes a class-E matching configuration. Typical performance for the 900 MHz band for output power steps, voltage, and temperature are shown in Figures 8–10. The output power is changed in 128 steps through PA_PWR_LVL API. For detailed matching values, BOM, and performance at other frequencies, refer to the PA Matching application note. TXPowervs.PA_PWR_LVL 25 20 15 10 5 Ͳ5 Ͳ10 Ͳ15 Ͳ20 Ͳ25 Ͳ30 Ͳ35 Ͳ40 0 20 40 60 80 100 120 PA_PWR_LVL Figure 8. +20 dBm TX Power vs. PA_PWR_LVL TX Power vs. VDD 22 TX Power (dBm) TXPower(dBm) 0 20 18 16 14 12 10 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 Supply Voltage (VDD) Figure 9. +20 dBm TX Power vs. VDD Rev 1.0 23 Si4063/60-C TX Power vs Temp TX Power (dBm) 20.5 20 19.5 19 18.5 18 -40 -30 -20 -10 0 10 20 30 40 50 60 Temperature (C) Figure 10. +20 dBm TX Power vs. Temp 24 Rev 1.0 70 80 Si4063/60-C 5.3. Crystal Oscillator The Si406x includes an integrated crystal oscillator with a fast start-up time of less than 250 µs. The design is differential with the required crystal load capacitance integrated on-chip to minimize the number of external components. By default, all that is required off-chip is the crystal. The default crystal is 30 MHz, but the circuit is designed to handle any XTAL from 25 to 32 MHz. If a crystal different than 30 MHz is used, the POWER_UP API boot command must be modified. The WDS calculator crystal frequency field must also be changed to reflect the frequency being used. The crystal load capacitance can be digitally programmed to accommodate crystals with various load capacitance requirements and to adjust the frequency of the crystal oscillator. The tuning of the crystal load capacitance is programmed through the GLOBAL_XO_TUNE API property. The total internal capacitance is 11 pF and is adjustable in 127 steps (70 fF/step). The crystal frequency adjustment can be used to compensate for crystal production tolerances. The frequency offset characteristics of the capacitor bank are demonstrated in Figure 11. Figure 11. Capacitor Bank Frequency Offset Characteristics Utilizing the on-chip temperature sensor and suitable control software, the temperature dependency of the crystal can be canceled. A TCXO or external signal source can easily be used in place of a conventional XTAL and should be connected to the XIN pin. The incoming clock signal is recommended to be peak-to-peak swing in the range of 600 mV to 1.4 V and ac-coupled to the XIN pin. If the peak-to-peak swing of the TCXO exceeds 1.4 V peak-to-peak, then dc coupling to the XIN pin should be used. The maximum allowed swing on XIN is 1.8 V peak-to-peak. The XO capacitor bank should be set to 0 whenever an external drive is used on the XIN pin. In addition, the POWER_UP command should be invoked with the TCXO option whenever external drive is used. Rev 1.0 25 Si4063/60-C 6. Data Handling and Packet Handler 6.1. TX FIFOs By default, a 64 byte FIFO is available in the device. This can be increased to support a 129 byte FIFO via API configuration. Writing to command Register 66h loads data into the TX FIFO. The TX FIFO has a threshold for when the FIFO is almost empty, which is set by the “TX_FIFO_EMPTY” property. An interrupt event occurs when the data in the TX FIFO reaches the almost empty threshold. If more data is not loaded into the FIFO, the chip automatically exits the TX state after the PACKET_SENT interrupt occurs. The TX FIFO may be cleared or reset with the “FIFO_RESET” command. TX FIFO TX FIFO Almost Empty Threshold Figure 12. TX FIFO 6.2. Packet Handler Config 0, 2, o r 4 Bytes Con fig 0, 2, o r 4 Bytes Con fig 0, 2, o r 4 B ytes C RC Field 5 (op t) Field 5 (opt) Data C RC Field 4 (op t) Field 4 (opt) Data C RC Field 3 (op t) Field 3 (opt) Data Con fig C RC Field 2 (op t) 1-4 Bytes F ield 2 (o pt) Pkt Len gth or Data Field 1 Header or Data 1-255 Bytes C RC Field 1 (op t) Preamble Sync Word When using the FIFOs, automatic packet handling may be enabled. The usual fields for network communication, such as preamble, synchronization word, headers, packet length, and CRC, can be configured to be automatically added to the data payload. The fields needed for packet generation normally change infrequently and can therefore be stored in registers. Automatically adding these fields to the data payload in TX mode greatly reduces the amount of communication between the microcontroller and Si406x. It also greatly reduces the required computational power of the microcontroller. The general packet structure is shown in Figure 13. Any or all of the fields can be enabled and checked by the internal packet handler. Con fig 0, 2, or 4 Bytes 0, 2, or 4 Bytes Figure 13. Packet Handler Structure The fields are highly programmable and can be used to check any kind of pattern in a packet structure. The general functions of the packet handler include the following: Construction of Preamble field in TX mode Construction of Sync field in TX mode Construction of Data Field from FIFO memory in TX mode Construction of CRC field (if enabled) in TX mode Data whitening and/or Manchester encoding (if enabled) in TX mode 26 Rev 1.0 Si4063/60-C 7. Auxiliary Blocks 7.1. Wake-up Timer and 32 kHz Clock Source The chip contains an integrated wake-up timer that can be used to periodically wake the chip from sleep mode. The wake-up timer runs from either the internal 32 kHz RC Oscillator, or from an external 32 kHz XTAL. The wake-up timer can be configured to run when in sleep mode. If WUT_EN = 1 in the GLOBAL_WUT_CONFIG property, prior to entering sleep mode, the wake-up timer will count for a time specified defined by the GLOBAL_WUT_R and GLOBAL_WUT_M properties. At the expiration of this period, an interrupt will be generated on the nIRQ pin if this interrupt is enabled in the INT_CTL_CHIP_ENABLE property. The microcontroller will then need to verify the interrupt by reading the chip interrupt status either via GET_INT_STATUS or a fast response register. The formula for calculating the Wake-Up Period is as follows: WUT_R 42 WUT = WUT_M  -----------------------------  ms  32.768 The RC oscillator frequency will change with temperature; so, a periodic recalibration is required. The RC oscillator is automatically calibrated during the POWER_UP command and exits from the Shutdown state. To enable the recalibration feature, CAL_EN must be set in the GLOBAL_WUT_CONFIG property, and the desired calibration period should be selected via WUT_CAL_PERIOD[2:0] in the same API property. During the calibration, the 32 kHz RC oscillator frequency is compared to the 30 MHz XTAL and then adjusted accordingly. The calibration needs to start the 30 MHz XTAL, which increases the average current consumption; so, a longer CAL_PERIOD results in a lower average current consumption. The 32 kHz XTAL accuracy is comprised of both the XTAL parameters and the internal circuit. The XTAL accuracy can be defined as the XTAL initial error + XTAL aging + XTAL temperature drift + detuning from the internal oscillator circuit. The error caused by the internal circuit is typically less than 10 ppm. 7.2. Low Duty Cycle Mode The low duty cycle (LDC) mode is implemented to automatically wake-up the transmitter to send a packet. It allows low average current polling operation by the Si406x for which the wake-up timer (WUT) is used. TX LDC operation must be set via the GLOBAL_WUT_CONFIG property when setting up the WUT. The LDC wake-up period is determined by the following formula: WUT_R 42 LDC = WUT_LDC  -----------------------------  ms  32.768 where the WUT_LDC parameter can be set by the GLOBAL_WUT_LDC property. The WUT period must be set in conjunction with the LDC mode duration; for the relevant API properties, see the wake-up timer (WUT) section. Figure 14. TX LDC Sequences In TX LDC mode, the transmitter periodically wakes itself up to transmit a packet that is in the data buffer. If a packet has been transmitted, nIRQ goes low if the option is set in the INT_CTL_ENABLE property. After transmitting, the transmitter immediately returns to the WUT state and stays there until the next wake-up time expires. Rev 1.0 27 Si4063/60-C 7.3. Temperature, Battery Voltage, and Auxiliary ADC The Si406x family contains an integrated auxiliary ADC for measuring internal battery voltage, an internal temperature sensor, or an external component over a GPIO. The ADC utilizes a SAR architecture and achieves 11-bit resolution. The Effective Number of Bits (ENOB) is 9 bits. When measuring external components, the input voltage range is 1 V, and the conversion rate is between 300 Hz to 2.44 kHz. The ADC value is read by first sending the GET_ADC_READING command and enabling the inputs that are desired to be read: GPIO, battery, or temp. The temperature sensor accuracy at 25 °C is typically ±2 °C. 7.4. Low Battery Detector The low battery detector (LBD) is enabled and utilized as part of the wake-up-timer (WUT). The LBD function is not available unless the WUT is enabled, but the host MCU can manually check the battery voltage anytime with the auxiliary ADC. The LBD function is enabled in the GLOBAL_WUT_CONFIG API property. The battery voltage will be compared against the threshold each time the WUT expires. The threshold for the LBD function is set in GLOBAL_LOW_BATT_THRESH. The threshold steps are in increments of 50 mV, ranging from a minimum of 1.5 V up to 3.05 V. The accuracy of the LBD is ±3%. The LBD notification can be configured as an interrupt on the nIRQ pin or enabled as a direct function on one of the GPIOs. 28 Rev 1.0 Si4063/60-C SDN 1 XOUT XIN GND GPIO2 GPIO3 8. Pin Descriptions: Si4063/60 20 19 18 17 16 NC 2 15 nSEL NC 3 14 SDI GND PAD TX 4 13 SDO Pin Pin Name 7 8 9 VDD GPIO0 10 11 nIRQ GPIO1 6 TXRamp 12 SCLK VDD NC 5 I/0 Description I Shutdown Input Pin. 0–VDD V digital input. SDN should be = 0 in all modes except Shutdown mode. When SDN = 1, the chip will be completely shut down, and the contents of the registers will be lost. Can be used to reset the chip 1 SDN 2 NC Leave pin floating. 3 NC Leave pin floating. Transmit Output Pin. 4 TX O 5 NC 6 VDD VDD 7 TXRAMP O 8 VDD VDD 9 GPIO0 I/O General Purpose Digital I/O. 10 GPIO1 I/O May be configured through the registers to perform various functions including: Microcontroller Clock Output, FIFO status, POR, Wake-Up timer, Low Battery Detect, etc. The PA output is an open-drain connection, so the L-C match must supply VDD (+3.3 VDC nominal) to this pin. It is recommended to connect this pin to GND per the reference design schematic. Not connected internally to any circuitry. +1.8 to +3.8 V Supply Voltage Input to Internal Regulators. The recommended VDD supply voltage is +3.3 V. Programmable Bias Output with Ramp Capability for External FET PA. See "5.2. Transmitter (TX)" on page 22. +1.8 to +3.8 V Supply Voltage Input to Internal Regulators. The recommended VDD supply voltage is +3.3 V. General Microcontroller Interrupt Status Output. 11 nIRQ O When the Si406x exhibits any one of the interrupt events, the nIRQ pin will be set low = 0. The Microcontroller can then determine the state of the interrupt by reading the interrupt status. No external resistor pull-up is required, but it may be desirable if multiple interrupt lines are connected. Rev 1.0 29 Si4063/60-C Pin Pin Name I/0 Description Serial Clock Input. 12 SCLK I 13 SDO O 0–VDD V digital input. This pin provides the serial data clock function for the 4-line serial data bus. Data is clocked into the Si406x on positive edge transitions. 0–VDD V Digital Output. Provides a serial readback function of the internal control registers. Serial Data Input. 14 SDI I 0–VDD V digital input. This pin provides the serial data stream for the 4-line serial data bus. Serial Interface Select Input. 15 nSEL I 0–VDD V digital input. This pin provides the Select/Enable function for the 4-line serial data bus. Crystal Oscillator Output. 16 XOUT O 17 XIN I Crystal Oscillator Input. Connect to an external 25 to 32 MHz crystal, or connect to an external source. When using an XTAL, leave floating per the reference design schematic. When using a TCXO, connect to TCXO GND, which should be separate from the board’s reference ground plane. 18 GND GND 19 GPIO2 I/O General Purpose Digital I/O. 20 GPIO3 I/O May be configured through the registers to perform various functions, including Microcontroller Clock Output, FIFO status, POR, Wake-Up timer, Low Battery Detect. GND The exposed metal paddle on the bottom of the Si406x supplies the RF and circuit ground(s) for the entire chip. It is very important that a good solder connection is made between this exposed metal paddle and the ground plane of the PCB underlying the Si406x. PKG 30 Connect to an external 25 to 32 MHz crystal, or leave floating when driving with an external source on XIN. PADDLE_GND Rev 1.0 Si4063/60-C 9. Ordering Information Part Number* Description Package Type Operating Temperature Si4063-C2A-GM ISM EZRadioPRO Transmitter QFN-20 Pb-free –40 to 85 °C Si4060-C2A-GM ISM EZRadioPRO Transmitter QFN-20 Pb-free –40 to 85 °C *Note: Add an “(R)” at the end of the device part number to denote tape and reel option. Rev 1.0 31 Si4063/60-C 10. Package Outline: Si4063/60 Figure 15 illustrates the package details for the Si406x. Table 14 lists the values for the dimensions shown in the illustration.   2X bbb C B A D D2 Pin 1 (Laser) e 20 20x L 1 E E2 2X aaa C A1 20x b ccc C ddd eee C A A3 SEATING PLANE C Figure 15. 20-Pin Quad Flat No-Lead (QFN) 32 Rev 1.0 C A B Si4063/60-C Table 14. Package Dimensions Dimension Min Nom Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 A3 b 0.20 REF 0.18 0.25 D D2 0.30 4.00 BSC 2.45 2.60 e 0.50 BSC E 4.00 BSC 2.75 E2 2.45 2.60 2.75 L 0.30 0.40 0.50 aaa 0.15 bbb 0.15 ccc 0.10 ddd 0.10 eee 0.08 Notes: 1. All dimensions are shown in millimeters (mm) unless otherwise noted. 2. Dimensioning and tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VGGD-8. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. Rev 1.0 33 Si4063/60-C 11. PCB Land Pattern: Si4063/60 Figure 16 illustrates the PCB land pattern details for the Si406x. Table 15 lists the values for the dimensions shown in the illustration. Figure 16. PCB Land Pattern 34 Rev 1.0 Si4063/60-C Table 15. PCB Land Pattern Dimensions Symbol Millimeters Min Max C1 3.90 4.00 C2 3.90 4.00 E 0.50 REF X1 0.20 0.30 X2 2.55 2.65 Y1 0.65 0.75 Y2 2.55 2.65 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This land pattern design is based on IPC-7351 guidelines. Solder Mask Design 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads. 7. A 2x2 array of 1.10 x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad. Card Assembly 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for small body components. Rev 1.0 35 Si4063/60-C 12. Top Marking 12.1. Si4063/60 Top Marking 12.2. Top Marking Explanation Mark Method YAG Laser Line 1 Marking Part Number 40632A = Si4063 Rev 2A1 40602A = Si4060 Rev 2A1 Line 2 Marking TTTTT = Internal Code Internal tracking code.2 Line 3 Marking YY = Year WW = Workweek Assigned by the Assembly House. Corresponds to the last significant digit of the year and workweek of the mold date. Notes: 1. The first letter after the part number is part of the ROM revision. The last letter indicates the firmware revision. 2. The first letter of this line is part of the ROM revision. 36 Rev 1.0 Simplicity Studio One-click access to MCU tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! www.silabs.com/simplicity MCU Portfolio www.silabs.com/mcu SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com
4060CPCE10B434 价格&库存

很抱歉,暂时无法提供与“4060CPCE10B434”相匹配的价格&库存,您可以联系我们找货

免费人工找货