S i 4 4 6 4 / 6 3 / 6 1/60
H I G H - P ERFORMANCE , L O W -C U R R E N T T RANSCEIVER
Features
Smart metering (802.15.4g & MBus)
Remote control
Home security and alarm
Telemetry
Garage and gate openers
1
Remote keyless entry
Home automation
Industrial control
Sensor networks
Health monitors
Electronic shelf labels
Description
XOUT
20 19 18 17 16
RXp 2
Applications
SDN
XIN
GND
Pin Assignments
15 nSEL
RXn 3
14 SDI
GND
PAD
TX 4
13 SDO
NC 5
12 SCLK
6
7
8
9
10 11 nIRQ
GPIO1
GPIO0
GPIO2
VDD
Power supply = 1.8 to 3.6 V
Excellent selectivity performance
60 dB adjacent channel
75 dB blocking at 1 MHz
Antenna diversity and T/R switch control
Highly configurable packet handler
TX and RX 64 byte FIFOs
Auto frequency control (AFC)
Automatic gain control (AGC)
Low BOM
Low battery detector
Temperature sensor
20-Pin QFN package
IEEE 802.15.4g compliant
FCC Part 90 Mask D, FCC part 15.247,
15,231, 15,249, ARIB T-108, T-96, T-67,
RCR STD-30, China regulatory
ETSI Class-I Operation with SAW
GPIO3
Frequency range = 119–1050 MHz
Receive sensitivity = –126 dBm
Modulation
(G)FSK, 4(G)FSK, (G)MSK
OOK
Max output power
+20 dBm (Si4464/63)
+16 dBm (Si4461)
+13 dBm (Si4460)
PA support for +27 or +30 dBm
Low active power consumption
10/13 mA RX
18 mA TX at +10 dBm (Si4460)
Ultra low current powerdown modes
30 nA shutdown, 50 nA standby
Data rate = 100 bps to 1 Mbps
Fast wake and hop times
TXRamp
VDD
Patents pending
Silicon Laboratories' Si446x devices are high-performance, low-current
transceivers covering the sub-GHz frequency bands from 119 to 1050 MHz. The
radios are part of the EZRadioPRO® family, which includes a complete line of
transmitters, receivers, and transceivers covering a wide range of applications. All
parts offer outstanding sensitivity of –126 dBm while achieving extremely low
active and standby current consumption. The Si4463/61/60 offers frequency
coverage in all major bands. The Si4464 offers frequency coverage in bands not
covered by Si4463/61/60. Typically, these are non-standard frequencies or
licensed frequency bands. The Si446x includes optimal phase noise, blocking,
and selectivity performance for narrow band and licensed band applications, such
as FCC Part90 and 169 MHz wireless Mbus. The 60 dB adjacent channel
selectivity with 12.5 kHz channel spacing ensures robust receive operation in
harsh RF conditions, which is particularly important for narrow band operation.
The Si4464/63 offers exceptional output power of up to +20 dBm with outstanding
TX efficiency. The high output power and sensitivity results in an industry-leading
link budget of 146 dB allowing extended ranges and highly robust communication
links. The Si4460 active mode TX current consumption of 18 mA at +10 dBm and
RX current of 10 mA coupled with extremely low standby current and fast wake
times ensure extended battery life in the most demanding applications. The
Si4464/63 can achieve up to +27 dBm output power with built-in ramping control
of a low-cost external FET. The devices can meet worldwide regulatory standards:
FCC, ETSI, and ARIB. All devices are designed to be compliant with 802.15.4g
and WMbus smart metering standards. The devices are highly flexible and can be
configured via the Wireless Development Suite (WDS) available on the Silicon
Labs web site.
Rev 1.2 1/16
Copyright © 2016 by Silicon Laboratories
Si4464/63/62/61/60
Si4464/63/61/60
Functional Block Diagram
GPIO3 GPIO2
XIN XOUT
Loop
Filter
PFD / CP
VCO
FBDIV
TX DIV
SDN
RXN
TX
LO
Gen
Bootup
OSC
IF
PKDET
RF
PKDET
LNA
PA
PGA
nSEL
SDI
SDO
SCLK
nIRQ
LDOs
Digital
Logic
POR
LBD
32K LP
OSC
PA
LDO
2
ADC
PowerRamp
Cntl
VDD
MODEM
FIFO
Packet
Handler
SPI Interface
Controller
RXP
30 MHz XO
Frac-N Div
TXRAMP
VDD
GPIO0 GPIO1
Product
Freq. Range
Max Output
Power
TX Current
RX Current
Narrow Band
Support
Image Cal
Si4464
Banded
119–960 MHz
+20 dBm
915 MHz: 85 mA
10.6/13.6 mA
Si4463
Major bands
142-1050 MHz
+20 dBm
169 MHz: 70 mA
915 MHz: 85 mA
10/13 mA
Si4461
Major bands
142-1050 MHz
+16 dBm
+13 dBm: 29 mA
+14 dBm: 33 mA
10/13 mA
Si4460
Major bands
142-1050 MHz
+13 dBm
+10 dBm: 18 mA
+11 dBm: 20 mA
10/13 mA
Rev 1.2
Si4464/63/61/60
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.1. Definition of Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1. Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Fast Response Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.3. Operating Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4. Application Programming Interface (API) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4. Modulation and Hardware Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1. MODEM_MOD_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Modulation Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3. Hardware Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4. Preamble Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5. Internal Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1. RX Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2. RX Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3. Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
5.4. Transmitter (TX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
5.5. Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
6. Data Handling and Packet Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
6.1. RX and TX FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2. Packet Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7. RX Modem Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8. Auxiliary Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.1. Wake-up Timer and 32 kHz Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2. Low Duty Cycle Mode (Auto RX Wake-Up) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
8.3. Temperature, Battery Voltage, and Auxiliary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.4. Low Battery Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
8.5. Antenna Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9. Pin Descriptions: Si4464/63/61/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11. Package Outline: Si4464/63/61/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
12. PCB Land Pattern: Si4464/63/61/60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
13.1. Si4464/63/61/60 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Rev 1.2
3
Si4464/63/61/60
1. Electrical Specifications
Table 1. DC Characteristics1
Parameter
Supply Voltage
Range
Symbol
Min
Typ
Max
Unit
1.8
3.3
3.6
V
RC Oscillator, Main Digital Regulator,
and Low Power Digital Regulator OFF
—
30
—
nA
IStandby
Register values maintained and RC
oscillator/WUT OFF
—
50
—
nA
ISleepRC
RC Oscillator/WUT ON and all register values maintained, and all other blocks OFF
—
900
—
nA
ISleepXO
Sleep current using an external 32 kHz crystal.2
—
1.7
—
µA
ISensor
Low battery detector ON, register values maintained,
and all other blocks OFF
—
1
—
µA
IReady
Crystal Oscillator and Main Digital Regulator ON,
all other blocks OFF
—
1.8
—
mA
ITune_RX
RX Tune, High Performance Mode
—
7.2
—
mA
ITune_TX
TX Tune, High Performance Mode
—
8
—
mA
IRXH
High Performance Mode
—
13.7
—
mA
—
10.7
—
mA
+20 dBm output power, class-E match, 915 MHz,
3.3 V
—
85
—
mA
+20 dBm output power, class-E match, 460 MHz,
3.3 V
—
75
—
mA
+20 dBm output power, square-wave match,
169 MHz, 3.3 V
—
70
—
mA
ITX_+16
+16 dBm output power, class-E match, 868 MHz,
3.3 V2
—
43
—
mA
ITX_+14
+14 dBm output power, Switched-current match,
868 MHz, 3.3 V2
—
37
—
mA
ITX_+13
+13 dBm output power, switched-current match,
868 MHz, 3.3 V2
—
29
—
mA
ITX_+10
+10 dBm output power, Class-E match, 868 MHz,
3.3 V2
—
18
—
mA
VDD
Power Saving Modes IShutdown
-LBD
TUNE Mode Current
RX Mode Current
IRXL
TX Mode Current
(Si4464/63)
TX Mode Current
(Si4461)
TX Mode Current
(Si4460)
Test Condition
ITX_+20
Low Power
Mode2
Notes:
1. All specifications guaranteed by production test unless otherwise noted. Production test conditions and max limits are
listed in the "Production Test Conditions" section of "1.1. Definition of Test Conditions" on page 14.
2. Guaranteed by qualification. Qualification test conditions are listed in the “Qualification Test Conditions” section in "1.1.
Definition of Test Conditions" on page 14.
4
Rev 1.2
Si4464/63/61/60
Table 2. Synthesizer AC Electrical Characteristics1
Parameter
Synthesizer Frequency
Range (Si4463/61/60)
Synthesizer Frequency
Range (Si4464)
Synthesizer Frequency
Resolution3
Symbol
Test Condition
FSYN
FSYN
Min
Typ
Max
Unit
850
—
1050
MHz
420
—
525
MHz
284
—
350
MHz
142
—
175
MHz
705
—
960
MHz
353
—
639
MHz
177
—
319
MHz
119
—
159
MHz
FRES-960
850–1050 MHz
—
28.6
—
Hz
FRES-525
420–525 MHz
—
14.3
—
Hz
FRES-350
283–350 MHz
—
9.5
—
Hz
FRES-175
142–175 MHz
—
4.7
—
Hz
FRES-960
705–960 MHz
—
28.6
—
Hz
FRES-639
470–639 MHz
—
19.1
—
Hz
FRES-479
353–479 MHz
—
14.3
—
Hz
FRES-319
235–319 MHz
—
9.5
—
Hz
FRES-239
177–239 MHz
—
7.1
—
Hz
FRES-159
119–159 MHz
—
4.7
—
Hz
Synthesizer Settling Time4
tLOCK
Measured from exiting Ready mode with
XOSC running to any frequency.
Including VCO Calibration.
—
50
—
µs
Phase Noise4
L(fM)
F = 10 kHz, 460 MHz, High Perf Mode
—
–106
—
dBc/Hz
F = 100 kHz, 460 MHz, High Perf Mode
—
–110
—
dBc/Hz
F = 1 MHz, 460 MHz, High Perf Mode
—
–123
—
dBc/Hz
F = 10 MHz, 460 MHz, High Perf Mode
—
–130
—
dBc/Hz
Synthesizer Frequency
Resolution (Si4464)3
Notes:
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are
listed in the “Production Test Conditions” section in "1.1. Definition of Test Conditions" on page 14.
2. For applications that use the major bands covered by Si4463/61/60, customers should use those parts instead of
Si4464.
3. Default API setting for modulation deviation resolution is double the typical value specified.
4. Guaranteed by qualification. Qualification test conditions are listed in the "Qualification Test Conditions" section in "1.1.
Definition of Test Conditions" on page 14.
Rev 1.2
5
Si4464/63/61/60
Table 3. Receiver AC Electrical Characteristics1
Parameter
RX Frequency
Range (Si4463/61/60)
RX Frequency
Range (Si4464)
Symbol
Test Condition
FRX
FRX
Min
Typ
Max
Unit
850
—
1050
MHz
420
—
525
MHz
284
—
350
MHz
142
—
175
MHz
705
—
960
MHz
353
—
639
MHz
177
—
319
MHz
119
—
159
MHz
Notes:
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are
listed in the "Production Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
2. For applications that use the major bands covered by Si4463/61/60, customers should use those parts instead of
Si4464.
3. Guaranteed by qualification. BER is specified for the 450–470 MHz band. Qualification test conditions are listed in the
"Qualification Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
4. For PER tests, 48 preamble symbols, 4 byte sync word, 10 byte payload and CRC-32 was used. PER and BER tested
in the 450–470 MHz band.
5. Guaranteed by bench characterization.
6
Rev 1.2
Si4464/63/61/60
Table 3. Receiver AC Electrical Characteristics1 (Continued)
Parameter
RX Sensitivity
Symbol
Test Condition
Min
Typ
Max
Unit
PRX_0.5
(BER < 0.1%)
(500 bps, GFSK, BT = 0.5,
f = 250Hz)3
—
–126
—
dBm
PRX_40
(BER < 0.1%)
(40 kbps, GFSK, BT = 0.5,
f = 20 kHz)3
—
–110
—
dBm
PRX_100
(BER < 0.1%)
(100 kbps, GFSK, BT = 0.5,
f = 50 kHz)1
—
–106
—
dBm
PRX_125
(BER < 0.1%)
(125 kbps, GFSK, BT = 0.5,
f = 62.5 kHz)3
—
–105
—
dBm
PRX_500
(BER < 0.1%)
(500 kbps, GFSK, BT = 0.5,
f = 250 kHz)3
—
–97
—
dBm
PRX_9.6
(PER 1%)
(9.6 kbps, 4GFSK, BT = 0.5,
f = kHz)3,4
—
–110
—
dBm
PRX_1M
(PER 1%)
(1 Mbps, 4GFSK, BT = 0.5,
inner deviation = 83.3 kHz)3,4
—
–88
—
dBm
PRX_OOK
(BER < 0.1%, 4.8 kbps, 350 kHz BW,
OOK, PN15 data)3
—
–110
—
dBm
(BER < 0.1%, 40 kbps, 350 kHz BW,
OOK, PN15 data)3
—
–104
—
dBm
(BER < 0.1%, 120 kbps, 350 kHz BW,
OOK, PN15 data)3
—
–99
—
dBm
1.1
—
850
kHz
—
0
0.1
ppm
—
±0.5
—
dB
RX Channel Bandwidth5
BW
BER Variation vs Power
Level3
PRX_RES
RSSI Resolution
RESRSSI
Up to +5 dBm Input Level
Notes:
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are
listed in the "Production Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
2. For applications that use the major bands covered by Si4463/61/60, customers should use those parts instead of
Si4464.
3. Guaranteed by qualification. BER is specified for the 450–470 MHz band. Qualification test conditions are listed in the
"Qualification Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
4. For PER tests, 48 preamble symbols, 4 byte sync word, 10 byte payload and CRC-32 was used. PER and BER tested
in the 450–470 MHz band.
5. Guaranteed by bench characterization.
Rev 1.2
7
Si4464/63/61/60
Table 3. Receiver AC Electrical Characteristics1 (Continued)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
1-Ch Offset Selectivity,
169 MHz3
C/I1-CH
—
–60
—
dB
1-Ch Offset Selectivity,
450 MHz3
C/I1-CH
—
–58
—
dB
1-Ch Offset Selectivity,
868 / 915 MHz3
C/I1-CH
Desired Ref Signal 3 dB above sensitivity, BER < 0.1%. Interferer is CW, and
desired is modulated with 2.4 kbps
F = 1.2 kHz GFSK with BT = 0.5, RX
channel BW = 4.8 kHz,
channel spacing = 12.5 kHz
—
–53
—
dB
Blocking 1 MHz Offset3
1MBLOCK
—
–75
—
dB
Blocking 8 MHz Offset3
8MBLOCK
Desired Ref Signal 3 dB above sensitivity, BER = 0.1%. Interferer is CW, and
desired is modulated with 2.4 kbps,
F = 1.2 kHz GFSK with BT = 0.5,
RX channel BW = 4.8 kHz
No image rejection calibration. Rejection at the image frequency.
IF = 468 kHz
—
–84
—
dB
—
35
—
dB
With image rejection calibration in
Si446x. Rejection at the image frequency. IF = 468 kHz
—
55
—
dB
Image Rejection3
ImREJ
Notes:
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are
listed in the "Production Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
2. For applications that use the major bands covered by Si4463/61/60, customers should use those parts instead of
Si4464.
3. Guaranteed by qualification. BER is specified for the 450–470 MHz band. Qualification test conditions are listed in the
"Qualification Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
4. For PER tests, 48 preamble symbols, 4 byte sync word, 10 byte payload and CRC-32 was used. PER and BER tested
in the 450–470 MHz band.
5. Guaranteed by bench characterization.
8
Rev 1.2
Si4464/63/61/60
Table 4. Transmitter AC Electrical Characteristics1
Parameter
Symbol
Test Condition
TX Frequency
Range (Si4463/61/60)
Min
Typ
Max
Unit
850
—
1050
MHz
420
—
525
MHz
284
—
350
MHz
142
—
175
MHz
705
—
960
MHz
353
—
639
MHz
177
—
319
MHz
119
—
159
MHz
FTX
TX Frequency
Range (Si4464)
FTX
(G)FSK Data Rate3,4
DRFSK
0.1
—
500
kbps
4(G)FSK Data Rate3,4
DR4FSK
0.2
—
1000
kbps
OOK Data Rate3,4
DROOK
0.1
—
120
kbps
Modulation Deviation
Range3
Modulation Deviation
Range (Si4464)3
f960
850–1050 MHz
—
1.5
—
MHz
f525
420–525 MHz
—
750
—
kHz
f350
283–350 MHz
—
500
—
kHz
f175
142–175 MHz
—
250
—
kHz
f960
705–960 MHz
—
1.5
—
MHz
f639
470–639 MHz
—
1
—
MHz
f479
353–479 MHz
—
750
—
kHz
f319
235–319 MHz
—
500
—
kHz
f239
177–239 MHz
—
375
—
kHz
f159
119–159 MHz
—
250
—
kHz
Notes:
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are
listed in the "Production Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
2. For applications that use the major bands covered by Si4463/61/60, customers should use those parts instead of
Si4464.
3. Guaranteed by qualification. Qualification test conditions are listed in the "Qualification Test Conditions" section in "1.1.
Definition of Test Conditions" on page 14.
4. The maximum data rate is dependant on the XTAL frequency and is calculated as per the formula:
Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz).
5. Default API setting for modulation deviation resolution is double the typical value specified.
6. Output power is dependent on matching components and board layout.
Rev 1.2
9
Si4464/63/61/60
Table 4. Transmitter AC Electrical Characteristics1 (Continued)
Parameter
Modulation Deviation
Resolution2,5
Modulation Deviation
Resolution (Si4464)3
Symbol
Test Condition
Min
Typ
Max
Unit
FRES-960
850–1050 MHz
—
28.6
—
Hz
FRES-525
420–525 MHz
—
14.3
—
Hz
FRES-350
283–350 MHz
—
9.5
—
Hz
FRES-175
142–175 MHz
—
4.7
—
Hz
FRES-960
705–960 MHz
—
28.6
—
Hz
FRES-639
470–639 MHz
—
19.1
—
Hz
FRES-479
353–479 MHz
—
14.3
—
Hz
FRES-319
235–319 MHz
—
9.5
—
Hz
FRES-239
177–239 MHz
—
7.1
—
Hz
FRES-159
119–159 MHz
—
4.7
—
Hz
Output Power Range
(Si4464/63)6
PTX
–20
—
+20
dBm
Output Power Range
(Si4461)6
PTX61
–40
—
+16
dBm
Output Power Range
(Si4460)6
PTX60
–40
—
+13
dBm
TX RF Output Steps3
PRF_OUT
Using switched current match within
6 dB of max power
—
0.1
—
dB
TX RF Output Level3
Variation vs. Temperature
PRF_TEMP
–40 to +85 C
—
1
—
dB
TX RF Output Level
Variation vs. Frequency3
PRF_FREQ
Measured across 902–928 MHz
—
0.5
—
dB
B*T
Gaussian Filtering Bandwith Time
Product
—
0.5
—
Transmit Modulation
Filtering3
Notes:
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are
listed in the "Production Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
2. For applications that use the major bands covered by Si4463/61/60, customers should use those parts instead of
Si4464.
3. Guaranteed by qualification. Qualification test conditions are listed in the "Qualification Test Conditions" section in "1.1.
Definition of Test Conditions" on page 14.
4. The maximum data rate is dependant on the XTAL frequency and is calculated as per the formula:
Maximum Symbol Rate = Fxtal/60, where Fxtal is the XTAL frequency (typically 30 MHz).
5. Default API setting for modulation deviation resolution is double the typical value specified.
6. Output power is dependent on matching components and board layout.
10
Rev 1.2
Si4464/63/61/60
Table 5. Auxiliary Block Specifications1
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Temperature Sensor
Sensitivity2
TSS
—
4.5
—
ADC
Codes/
°C
Low Battery Detector
Resolution
LBDRES
—
50
—
mV
Microcontroller Clock
Output Frequency Range3
Temperature Sensor
Conversion2
XTAL Range4
30 MHz XTAL Start-Up Time
30 MHz XTAL Cap
Resolution2
32 kHz XTAL Start-Up Time2
32 kHz Accuracy using
Internal RC Oscillator2
POR Reset Time
FMC
Configurable to Fxtal or Fxtal
divided by 2, 3, 7.5, 10, 15, or
30 where Fxtal is the reference
XTAL frequency. In addition,
32.768 kHz is also supported.
32.768K
—
Fxtal
Hz
TEMPCT
Programmable setting
—
3
—
ms
32
MHz
XTALRange
25
—
250
—
µs
30MRES
—
70
—
fF
t32k
—
2
—
sec
32KRCRES
—
2500
—
ppm
tPOR
—
—
5
ms
t30M
Using XTAL and board layout in
reference design. Start-up time
will vary with XTAL type and
board layout.
Notes:
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are
listed in the "Production Test Conditions" section in "1.1. Definition of Test Conditions" on page 14.
2. Guaranteed by qualification. Qualification test conditions are listed in the "Qualification Test Conditions" section in "1.1.
Definition of Test Conditions" on page 14.
3. Microcontroller clock frequency tested in production at 1 MHz, 30 MHz and 32.768 kHz. Other frequencies tested in
bench characterization.
4. XTAL Range tested in production using an external clock source (similar to using a TCXO).
Rev 1.2
11
Si4464/63/61/60
Table 6. Digital IO Specifications (GPIO_x, SCLK, SDO, SDI, nSEL, nIRQ, SDN)1
Parameter
Rise Time
2,3
Fall Time3,4
Symbol
Test Condition
Min
Typ
Max
Unit
TRISE
0.1 x VDD to 0.9 x VDD,
CL = 10 pF,
DRV = HH
—
2.3
—
ns
TFALL
0.9 x VDD to 0.1 x VDD,
CL = 10 pF,
DRV = HH
—
2
—
ns
Input Capacitance
CIN
—
2
—
pF
Logic High Level Input Voltage
VIH
VDD x 0.7
—
—
V
Logic Low Level Input Voltage
VIL
—
—
VDD x 0.3
V
Input Current
IIN
0 3.3 V. When Vdd < 3.3 V, the Vhi will be closely following the Vdd, and ramping time will be
smaller also.
Vlo = 0 V when NO current needed to be sunk into TXRAMP pin. If 10uA need to be sunk into the chip, Vlo will be
10 µA x 10k = 100 mV.
Number
Command
Summary
0x2200
PA_MODE
0x2201
PA_PWR_LVL
0x2202
PA_BIAS_CLKDUTY
Adjust TX power in coarse steps
and optimizes for different
match configurations.
0x2203
PA_TC
Changes the ramp up/down time
of the PA.
Sets PA type.
Adjust TX power in fine steps.
5.4.1. Si4464/63: +20 dBm PA
The +20 dBm configuration utilizes a class-E matching configuration. Typical performance for the 900 MHz band
for output power steps, voltage, and temperature are shown in Figures 10–12. The output power is changed in 128
steps through PA_PWR_LVL API. For detailed matching values, BOM, and performance at other frequencies, refer
to the PA Matching application note.
TX Power vs. PA_PWR_LVL
TX Power(dBm)
25
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
0
10
20
30
40
50
60
70
80
90 100 110 120
PA_PWR_LVL
Figure 10. +20 dBm TX Power vs. PA_PWR_LVL
Rev 1.2
35
Si4464/63/61/60
TX Power vs. PA_PWR_LVL
TX Power(dBm)
25
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
0
10
20
30
40
50
60
70
80
90 100 110 120
PA_PWR_LVL
Figure 11. +20 dBm TX Power vs. VDD
TX Power vs Temp
TX Power (dBm)
20.5
20
19.5
19
18.5
18
-40 -30 -20 -10
0
10
20
30
40
50
60
Temperature (C)
Figure 12. +20 dBm TX Power vs. Temp
36
Rev 1.2
70
80
Si4464/63/61/60
5.4.2. Si4461 +16 dBm PA
The Si4461 PA can utilize different matches to optimize the performance for 16, 14, 13 dBm, or a lower power. A
class-E match is recommended for 16 dBm to maximize the efficiency and battery life. For 13 and 14 dBm, a
switched current match is recommended to provide optimal performance over VDD and temperature variation.
Typical performance for the 900 MHz band for output power steps, voltage, and temperature are shown in Figures
13 and 14. The output power is changed in 128 steps through the PA_PWR_LVL API. For detailed matching
values, BOM, and performance at other frequencies, refer to “AN627: Si4460/61 Low-Power PA Matching.
Figure 13. +13 dBm TX Power vs. PA_PWR_LVL
Figure 14. +13 dBm TX Power vs. Supply Voltage (VDD)
Rev 1.2
37
Si4464/63/61/60
5.5. Crystal Oscillator
The Si446x includes an integrated crystal oscillator with a fast start-up time of less than 250 µs. The design is
differential with the required crystal load capacitance integrated on-chip to minimize the number of external
components. By default, all that is required off-chip is the crystal. The default crystal is 30 MHz, but the circuit is
designed to handle any XTAL from 25 to 32 MHz. If a crystal different than 30 MHz is used, the POWER_UP API
boot command must be modified. The WDS calculator crystal frequency field must also be changed to reflect the
frequency being used. The crystal load capacitance can be digitally programmed to accommodate crystals with
various load capacitance requirements and to adjust the frequency of the crystal oscillator. The tuning of the crystal
load capacitance is programmed through the GLOBAL_XO_TUNE API property. The total internal capacitance is
11 pF and is adjustable in 127 steps (70 fF/step). The crystal frequency adjustment can be used to compensate for
crystal production tolerances. The frequency offset characteristics of the capacitor bank are demonstrated in
Figure 15.
Figure 15. Capacitor Bank Frequency Offset Characteristics
Utilizing the on-chip temperature sensor and suitable control software, the temperature dependency of the crystal
can be canceled.
A TCXO or external signal source can easily be used in place of a conventional XTAL and should be connected to
the XIN pin. The incoming clock signal is recommended to have a peak-to-peak swing in the range of 600 mV to
1.4 V and ac-coupled to the XIN pin. If the peak-to-peak swing of the TCXO exceeds 1.4 V peak-to-peak, then dc
coupling to the XIN pin should be used. The maximum allowed swing on XIN is 1.8 V peak-to-peak.
The XO capacitor bank should be set to 0 whenever an external drive is used on the XIN pin. In addition, the
POWER_UP command should be invoked with the TCXO option whenever external drive is used.
38
Rev 1.2
Si4464/63/61/60
6. Data Handling and Packet Handler
6.1. RX and TX FIFOs
Two 64-byte FIFOs are integrated into the chip, one for RX and one for TX, as shown in Figure 16. Writing to
command Register 66h loads data into the TX FIFO, and reading from command Register 77h reads data from the
RX FIFO. The TX FIFO has a threshold for when the FIFO is almost empty, which is set by the “TX_FIFO_EMPTY”
property. An interrupt event occurs when the data in the TX FIFO reaches the almost empty threshold. If more data
is not loaded into the FIFO, the chip automatically exits the TX state after the PACKET_SENT interrupt occurs. The
RX FIFO has one programmable threshold, which is programmed by setting the “RX_FIFO_FULL” property. When
the incoming RX data crosses the Almost Full Threshold, an interrupt will be generated to the microcontroller via
the nIRQ pin. The microcontroller will then need to read the data from the RX FIFO. The RX Almost Full Threshold
indication implies that the host can read at least the threshold number of bytes from the RX FIFO at that time. Both
the TX and RX FIFOs may be cleared or reset with the “FIFO_RESET” command.
RX FIFO
TX FIFO
RX FIFO Almost
Full Threshold
TX FIFO Almost
Empty Threshold
Figure 16. TX and RX FIFOs
6.2. Packet Handler
Config
0, 2, o r 4
Bytes
Con fig
0, 2, o r 4
Bytes
Con fig
0, 2, o r 4
B ytes
C RC Field 5 (op t)
Field 5 (opt)
Data
C RC Field 4 (op t)
Field 4 (opt)
Data
C RC Field 3 (op t)
Field 3 (opt)
Data
Con fig
C RC Field 2 (op t)
1-4 Bytes
F ield 2 (o pt)
Pkt Len gth or Data
Field 1
Header or Data
1-255 Bytes
C RC Field 1 (op t)
Preamble
Sync Word
When using the FIFOs, automatic packet handling may be enabled for TX mode, RX mode, or both. The usual
fields for network communication, such as preamble, synchronization word, headers, packet length, and CRC, can
be configured to be automatically added to the data payload. The fields needed for packet generation normally
change infrequently and can therefore be stored in registers. Automatically adding these fields to the data payload
in TX mode and automatically checking them in RX mode greatly reduces the amount of communication between
the microcontroller and Si446x. It also greatly reduces the required computational power of the microcontroller. The
general packet structure is shown in Figure 17. Any or all of the fields can be enabled and checked by the internal
packet handler.
Con fig
0, 2, or 4
Bytes
0, 2, or 4
Bytes
Figure 17. Packet Handler Structure
Rev 1.2
39
Si4464/63/61/60
The fields are highly programmable and can be used to check any kind of pattern in a packet structure. The
general functions of the packet handler include the following:
Detection/validation
of Preamble quality in RX mode (PREAMBLE_VALID signal)
of Sync word in RX mode (SYNC_OK signal)
Detection of valid packets in RX mode (PKT_VALID signal)
Detection of CRC errors in RX mode (CRC_ERR signal)
Data de-whitening and/or Manchester decoding (if enabled) in RX mode
Match/Header checking in RX mode
Storage of Data Field bytes into FIFO memory in RX mode
Construction of Preamble field in TX mode
Construction of Sync field in TX mode
Construction of Data Field from FIFO memory in TX mode
Construction of CRC field (if enabled) in TX mode
Data whitening and/or Manchester encoding (if enabled) in TX mode
For details on how to configure the packet handler, see “AN626: Packet Handler Operation for Si446x RFICs”.
Detection
40
Rev 1.2
Si4464/63/61/60
7. RX Modem Configuration
The Si446x can easily be configured for different data rate, deviation, frequency, etc. by using the WDS settings
calculator, which generates an initialization file for use by the host MCU.
8. Auxiliary Blocks
8.1. Wake-up Timer and 32 kHz Clock Source
The chip contains an integrated wake-up timer that can be used to periodically wake the chip from sleep mode. The
wake-up timer runs from either the internal 32 kHz RC Oscillator, or from an external 32 kHz XTAL.
The wake-up timer can be configured to run when in sleep mode. If WUT_EN = 1 in the GLOBAL_WUT_CONFIG
property, prior to entering sleep mode, the wake-up timer will count for a time specified defined by the
GLOBAL_WUT_R and GLOBAL_WUT_M properties. At the expiration of this period, an interrupt will be generated
on the nIRQ pin if this interrupt is enabled in the INT_CTL_CHIP_ENABLE property. The microcontroller will then
need to verify the interrupt by reading the chip interrupt status either via GET_INT_STATUS or a fast response
register. The formula for calculating the Wake-Up Period is as follows:
WUT_R
42
WUT = WUT_M ----------------------------- ms
32 768
The RC oscillator frequency will change with temperature; so, a periodic recalibration is required. The RC oscillator
is automatically calibrated during the POWER_UP command and exits from the Shutdown state. To enable the
recalibration feature, CAL_EN must be set in the GLOBAL_WUT_CONFIG property, and the desired calibration
period should be selected via WUT_CAL_PERIOD[2:0] in the same API property. During the calibration, the
32 kHz RC oscillator frequency is compared to the 30 MHz XTAL and then adjusted accordingly. The calibration
needs to start the 30 MHz XTAL, which increases the average current consumption; so, a longer CAL_PERIOD
results in a lower average current consumption. The 32 kHz XTAL accuracy is comprised of both the XTAL
parameters and the internal circuit. The XTAL accuracy can be defined as the XTAL initial error + XTAL aging +
XTAL temperature drift + detuning from the internal oscillator circuit. The error caused by the internal circuit is
typically less than 10 ppm.
Rev 1.2
41
Si4464/63/61/60
Table 15. WUT Specific Commands and Properties
API Properties
Description
Requirements/Notes
GLOBAL_WUT_CONFIG
GLOBAL WUT configuration
WUT_EN—Enable/disable wake up timer.
WUT_LBD_EN—Enable/disable low battery detect
measurement on WUT interval.
WUT_LDC_EN:
0 = Disable low duty cycle operation.
1 = RX LDC operation
treated as wake up START_RX
WUT state is used
2 = TX LDC operation
treated as wakeup START_TX
WUT state is used
CAL_EN—Enable calibration of the 32 kHz RC
oscillator
WUT_CAL_PERIOD[2:0]—Sets calibration period.
GLOBAL_WUT_M_15_8
Sets HW WUT_M[15:8]
WUT_M—Parameter to set the actual wakeup time.
See equation above.
GLOBAL_ WUT_M_7_0
Sets HW WUT_M[7:0]
WUT_M—Parameter to set the actual wakeup time.
See equation above.
GLOBAL_WUT_R
Sets WUT_R[4:0]
Sets WUT_SLEEP to choose
WUT state
WUT_R—Parameter to set the actual wakeup time.
See equation above.
WUT_SLEEP:
0 = Go to ready state after WUT
1 = Go to sleep state after WUT
GLOBAL_WUT_LDC
Sets FW internal WUT_LDC
WUT_LDC—Parameter to set the actual wakeup
time. See equation in "8.2. Low Duty Cycle Mode
(Auto RX Wake-Up)" on page 43.
Table 16. WUT Related API Commands and Properties
Command/Property
Description
Requirements/Notes
WUT Interrupt Enable
INT_CTL_ENABLE
INT_CTL_CHIP_ENABLE
Interrupt enable property
CHIP_INT_STATUS_EN—Enables chip status
interrupt.
Chip interrupt enable property WUT_EN—Enables WUT interrupt.
32 kHz Clock Source Selection
GLOBAL_CLK_CFG
Clock configuration options
CLK_32K_SEL[2:0]—Configuring the source of
WUT.
WUT Interrupt Output
GPIO_PIN_CFG
Host can enable interrupt on
WUT expire
GPIOx_MODE[5:0] = 14 and
NIRQ_MODE[5:0] = 39.
RX/TX Operation
START_RX/TX
42
START RX/TX when wake up
START = 1.
timer expire
Rev 1.2
Si4464/63/61/60
8.2. Low Duty Cycle Mode (Auto RX Wake-Up)
The low duty cycle (LDC) mode is implemented to automatically wake-up the receiver to check if a valid signal is
available or to enable the transmitter to send a packet. It allows low average current polling operation by the Si446x
for which the wake-up timer (WUT) is used. RX and TX LDC operation must be set via the
GLOBAL_WUT_CONFIG property when setting up the WUT. The LDC wake-up period is determined by the
following formula:
WUT_R
42
LDC = WUT_LDC ----------------------------- ms
32 768
where the WUT_LDC parameter can be set by the GLOBAL_WUT_LDC property. The WUT period must be set in
conjunction with the LDC mode duration; for the relevant API properties, see the wake-up timer (WUT) section.
Figure 18. RX and TX LDC Sequences
The basic operation of RX LDC mode is shown in Figure 19. The receiver periodically wakes itself up to work on
RX_STATE during LDC mode duration. If a valid preamble is not detected, a receive error is detected, or an entire
packet is not received, the receiver returns to the WUT state (i.e., ready or sleep) at the end of LDC mode duration
and remains in that mode until the beginning of the next wake-up period. If a valid preamble or sync word is
detected, the receiver delays the LDC mode duration to receive the entire packet. If a packet is not received during
two LDC mode durations, the receiver returns to the WUT state at the last LDC mode duration until the beginning
of the next wake-up period.
Figure 19. Low Duty Cycle Mode for RX
In TX LDC mode, the transmitter periodically wakes itself up to transmit a packet that is in the data buffer. If a
packet has been transmitted, nIRQ goes low if the option is set in the INT_CTL_ENABLE property. After
transmitting, the transmitter immediately returns to the WUT state and stays there until the next wake-up time
expires.
Rev 1.2
43
Si4464/63/61/60
8.3. Temperature, Battery Voltage, and Auxiliary ADC
The Si446x family contains an integrated auxiliary ADC for measuring internal battery voltage, an internal
temperature sensor, or an external component over a GPIO. The ADC utilizes a SAR architecture and achieves
11-bit resolution. The Effective Number of Bits (ENOB) is 9 bits. When measuring external components, the input
voltage range is 1 V, and the conversion rate is between 300 Hz to 2.44 kHz. The ADC value is read by first
sending the GET_ADC_READING command and enabling the inputs that are desired to be read: GPIO, battery, or
temp. The temperature sensor accuracy at 25 °C is typically ±2 °C.
Command
Stream
GET_ADC_READING
Command
7
6
5
4
3
CMD
2
1
0x14
ADC_EN
0
0
0
ADC_CFG
Reply
TEMPERATURE_EN BATTERY_VOLTAGE_EN ADC_GPIO_EN ADC_GPIO_PIN[1:0]
UDTIME[3:0]
GPIO_ATT[3:0]
Stream
GET_ADC_READING Reply
7
6
5
4
3
CTS
CTS[7:0]
GPIO_ADC
GPIO_ADC[15:8]
GPIO_ADC
GPIO_ADC[7:0]
BATTERY_ADC
BATTERY_ADC[15:8]
BATTERY_ADC
BATTERY_ADC[7:0]
TEMP_ADC
TEMP_ADC[15:8]
TEMP_ADC
TEMP_ADC[7:0]
RESERVED
Reserved
RESERVED
Reserved
2
1
Parameters
TEMPERATURE_EN
0 = Do not perform ADC conversion of temperature. This will read 0 value in reply TEMPERATURE.
1 = Perform ADC conversion of temperature. This results in TEMP_ADC.
Temp (°C) = TEMP_ADC[15:0] x 568/2560 – 297
BATTERY_VOLTAGE_EN
0 = Don't do ADC conversion of battery voltage, will read 0 value in reply BATTERY_ADC
1 = Do ADC conversion of battery voltage, results in BATTERY_ADC. Vbatt = 3*BATTERY_ADC/1280
ADC_GPIO_EN
0 = Don't do ADC conversion on GPIO, will read 0 value in reply
1 = Do ADC conversion of GPIO, results in GPIO_ADC. Vgpio = GPIO_ADC/GPIO_ADC_DIV where
GPIO_ADC_DIV is defined by GPIO_ATT selection.
ADC_GPIO_PIN[1:0] - Select GPIOx pin. The pin must be set as input.
0 = Measure voltage of GPIO0
1 = Measure voltage of GPIO1
2 = Measure voltage of GPIO2
3 = Measure voltage of GPIO3
UDTIME[7:4] - ADC conversion Time = SYS_CLK / 12 / 2^(UDTIME + 1). Defaults to 0xC if ADC_CFG is 0.
44
0
Rev 1.2
0
Si4464/63/61/60
Selecting shorter conversion times will result in lower ADC resolution and longer times will result in higher ADC
resolution.
GPIO_ATT[3:0] - Sets attenuation of gpio input voltage when vgpio measured. Defaults to 0xC if ADC_CFG is 0.
0x0 = ADC range 0 to 0.8V. GPIO_ADC_DIV = 2560
0x4 = ADC range 0 to 1.6V. GPIO_ADC_DIV = 1280
0x8 = ADC range 0 to 2.4V. GPIO_ADC_DIV = 853.33
0x9 = ADC range 0 to 3.6V. GPIO_ADC_DIV = 426.66
0xC = ADC range 0 to 3.2V. GPIO_ADC_DIV = 640
Response
GPIO_ADC[15:0]
- ADC value of voltage on GPIO
- ADC value of battery voltage
TEMP_ADC[15:0] - ADC value of temperature sensor voltage
RESERVED[7:0] - RESERVED FOR FUTURE USE
RESERVED[7:0] - RESERVED FOR FUTURE USE
BATTERY_ADC[15:0]
8.4. Low Battery Detector
The low battery detector (LBD) is enabled and utilized as part of the wake-up-timer (WUT). The LBD function is not
available unless the WUT is enabled, but the host MCU can manually check the battery voltage anytime with the
auxiliary ADC. The LBD function is enabled in the GLOBAL_WUT_CONFIG API property. The battery voltage will
be compared against the threshold each time the WUT expires. The threshold for the LBD function is set in
GLOBAL_LOW_BATT_THRESH. The threshold steps are in increments of 50 mV, ranging from a minimum of
1.5 V up to 3.05 V. The accuracy of the LBD is ±3%. The LBD notification can be configured as an interrupt on the
nIRQ pin or enabled as a direct function on one of the GPIOs.
8.5. Antenna Diversity
To mitigate the problem of frequency-selective fading due to multipath propagation, some transceiver systems use
a scheme known as antenna diversity. In this scheme, two antennas are used. Each time the transceiver enters RX
mode the receive signal strength from each antenna is evaluated. This evaluation process takes place during the
preamble portion of the packet. The antenna with the strongest received signal is then used for the remainder of
that RX packet. The same antenna will also be used for the next corresponding TX packet. This chip fully supports
antenna diversity with an integrated antenna diversity control algorithm. The required signals needed to control an
external SPDT RF switch (such as a PIN diode or GaAs switch) are available on the GPIOx pins. The operation of
these GPIO signals is programmable to allow for different antenna diversity architectures and configurations. The
antdiv[2:0] bits are found in the MODEM_ANT_DIV_CONTROL API property descriptions and enable the antenna
diversity mode. The GPIO pins are capable of sourcing up to 5 mA of current; so, it may be used directly to
forward-bias a PIN diode if desired. The antenna diversity algorithm will automatically toggle back and forth
between the antennas until the packet starts to arrive. The recommended preamble length for optimal antenna
selection is 8 bytes.
Rev 1.2
45
Si4464/63/61/60
SDN
1
XOUT
XIN
GND
GPIO2
GPIO3
9. Pin Descriptions: Si4464/63/61/60
20 19 18 17 16
RXp 2
15 nSEL
RXn 3
14 SDI
GND
PAD
TX 4
13 SDO
Pin
Pin Name
7
8
9
VDD
GPIO0
10 11 nIRQ
GPIO1
6
TXRamp
12 SCLK
VDD
NC 5
I/0
Description
1
SDN
I
Shutdown Input Pin.
0–VDD V digital input. SDN should be = 0 in all modes except Shutdown mode.
When SDN = 1, the chip will be completely shut down, and the contents of the
registers will be lost.
2
RXp
I
Differential RF Input Pins of the LNA.
3
RXn
I
See application schematic for example matching network.
4
TX
O
5
NC
6
VDD
VDD
7
TXRAMP
O
8
VDD
VDD
9
GPIO0
I/O
General Purpose Digital I/O.
10
GPIO1
I/O
May be configured through the registers to perform various functions including:
Microcontroller Clock Output, FIFO status, POR, Wake-Up timer, Low Battery
Detect, TRSW, AntDiversity control, etc.
Transmit Output Pin.
The PA output is an open-drain connection, so the L-C match must supply
VDD (+3.3 VDC nominal) to this pin.
No Connect. Not connected internally to any circuitry.
+1.8 to +3.6 V Supply Voltage Input to Internal Regulators.
The recommended VDD supply voltage is +3.3 V.
Programmable Bias Output with Ramp Capability for External FET PA.
See "5.4. Transmitter (TX)" on page 34.
+1.8 to +3.6 V Supply Voltage Input to Internal Regulators.
The recommended VDD supply voltage is +3.3 V.
General Microcontroller Interrupt Status Output.
11
46
nIRQ
O
When the Si4463/61 exhibits any one of the interrupt events, the nIRQ pin will
be set low = 0. The Microcontroller can then determine the state of the interrupt by reading the interrupt status. No external resistor pull-up is required, but
it may be desirable if multiple interrupt lines are connected.
Rev 1.2
Si4464/63/61/60
Pin
Pin Name
I/0
Description
Serial Clock Input.
12
SCLK
I
13
SDO
O
0–VDD V digital input. This pin provides the serial data clock function for the
4-line serial data bus. Data is clocked into the Si4463/61 on positive edge transitions.
0–VDD V Digital Output.
Provides a serial readback function of the internal control registers.
Serial Data Input.
14
SDI
I
0–VDD V digital input. This pin provides the serial data stream for the 4-line
serial data bus.
Serial Interface Select Input.
15
nSEL
I
0–VDD V digital input. This pin provides the Select/Enable function for the
4-line serial data bus.
Crystal Oscillator Output.
16
XOUT
O
17
XIN
I
18
GND
GND
19
GPIO2
I/O
General Purpose Digital I/O.
I/O
May be configured through the registers to perform various functions, including
Microcontroller Clock Output, FIFO status, POR, Wake-Up timer, Low Battery
Detect, TRSW, AntDiversity control, etc.
GND
The exposed metal paddle on the bottom of the Si446x supplies the RF and circuit ground(s) for the entire chip. It is very important that a good solder connection is made between this exposed metal paddle and the ground plane of the
PCB underlying the Si446x.
20
PKG
GPIO3
PADDLE_GND
Connect to an external 25 to 32 MHz crystal, or leave floating when driving
with an external source on XIN.
Crystal Oscillator Input.
Connect to an external 25 to 32 MHz crystal, or connect to an external source.
Connect to PCB ground.
Rev 1.2
47
Si4464/63/61/60
10. Ordering Information
Part Number1,2
Description
Package Type
Si4464-Bxx-FM
ISM EZRadioPRO Transceiver
QFN-20
Pb-free
–40 to 85 °C
Si4463-Bxx-FM
ISM EZRadioPRO Transceiver
QFN-20
Pb-free
–40 to 85 °C
Si4461-Bxx-FM
ISM EZRadioPRO Transceiver
QFN-20
Pb-free
–40 to 85 °C
Si4460-Bxx-FM
ISM EZRadioPRO Transceiver
QFN-20
Pb-free
–40 to 85 °C
Notes:
1. Add an “(R)” at the end of the device part number to denote tape and reel option.
2. For Bxx, the first “x” indicates the ROM version, and the second “x” indicates the FW version in OTP.
48
Operating
Temperature
Rev 1.2
Si4464/63/61/60
11. Package Outline: Si4464/63/61/60
Figure 20 illustrates the package details for the Si446x. Table 17 lists the values for the dimensions shown in the
illustration.
2X
bbb C
B
A
D
D2
Pin 1 (Laser)
e
20
20x L
1
E
E2
2X
aaa C
A1
20x b
ccc C
ddd
C A B
eee C
A
SEATING PLANE
A3
C
Figure 20. 20-Pin Quad Flat No-Lead (QFN)
Rev 1.2
49
Si4464/63/61/60
Table 17. Package Dimensions
Dimension
Min
Nom
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
b
0.20 REF
0.18
0.25
D
D2
0.30
4.00 BSC
2.45
2.60
e
0.50 BSC
E
4.00 BSC
2.75
E2
2.45
2.60
2.75
L
0.30
0.40
0.50
aaa
0.15
bbb
0.15
ccc
0.10
ddd
0.10
eee
0.08
Notes:
1. All dimensions are shown in millimeters (mm) unless otherwise noted.
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220,
Variation VGGD-8.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C
specification for Small Body Components.
50
Rev 1.2
Si4464/63/61/60
12. PCB Land Pattern: Si4464/63/61/60
Figure 21 illustrates the PCB land pattern details for the Si446x. Table 18 lists the values for the dimensions shown
in the illustration.
Figure 21. PCB Land Pattern
Rev 1.2
51
Si4464/63/61/60
Table 18. PCB Land Pattern Dimensions
Symbol
Millimeters
Min
Max
C1
3.90
4.00
C2
3.90
4.00
E
0.50 REF
X1
0.20
0.30
X2
2.55
2.65
Y1
0.65
0.75
Y2
2.55
2.65
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This land pattern design is based on IPC-7351 guidelines.
Solder Mask Design
3. All metal pads are to be non-solder mask defined (NSMD). Clearance
between the solder mask and the metal pad is to be 60 µm minimum, all
the way around the pad.
Stencil Design
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal
walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for the
perimeter pads.
7. A 2x2 array of 1.10 x 1.10 mm openings on 1.30 mm pitch should be
used for the center ground pad.
Card Assembly
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for small body components.
52
Rev 1.2
Si4464/63/61/60
13. Top Marking
13.1. Si4464/63/61/60 Top Marking
13.2. Top Marking Explanation
Mark Method
YAG Laser
Line 1 Marking
Part Number
44641B = Si4464 Rev 1B1
44631B = Si4463 Rev 1B1
44611B = Si4461 Rev 1B1
44601B = Si4460 Rev 1B1
Line 2 Marking
TTTTT = Internal Code
Internal tracking code.2
Line 3 Marking
YY = Year
WW = Workweek
Assigned by the Assembly House. Corresponds to the last
significant digit of the year and workweek of the mold date.
Notes:
1. The first letter after the part number is part of the ROM revision. The last letter indicates the firmware
revision.
2. The first letter of this line is part of the ROM revision.
Rev 1.2
53
Si4464/63/61/60
DOCUMENT CHANGE LIST
Revision 0.4 to Revision 1.0
Updated Table 3 on page 6.
Updated Table 6 on page 12.
Updated Figure 13 on page 37.
Replaced Table 12 on page 28.
Updated "11. Package Outline: Si4464/63/61/60" on
page 49.
Revision 1.0 to Revision 1.1
Updated RX Mode Current in Table 1 on page 4.
Updated Synthesizer Frequency Range in Table 2
on page 5.
Updated RX Frequency Range and RX Sensitivity in
Table 3 on page 6.
Updated TX Frequency Range in Table 4 on page 9.
Updated Temperature Sensor Sensitivity in Table 5
on page 11.
Updated Drive Strength in Table 6 on page 12.
Updated Figure 1 and Figure 2 on page 16.
Updated "3.2. Fast Response Registers" on page
19.
Updated Table 9 on page 20.
Updated Figure 9 on page 29.
Updated "5.2.4. Received Signal Strength Indicator"
on page 31.
Updated "5.4. Transmitter (TX)" on page 34.
Updated "8.3. Temperature, Battery Voltage, and
Auxiliary ADC" on page 44.
Updated "9. Pin Descriptions: Si4464/63/61/60" on
page 46.
Updated "11. Package Outline: Si4464/63/61/60" on
page 49.
Revision 1.1 to Revision 1.2
54
Updated all instances of frequency range for
Si4463/61/60 and Si4464, primarily in the electrical
specifications Tables.
Removed emissions and harmonics specifications
from the electrical specifications.
Updated Tables 13 and 14 to reflect frequency
coverage.
Updated sections 5.2.3 and 5.2.4.
Updated “13.1. Si4464/63/61/60 Top Marking”.
Updated “9. Pin Descriptions: Si4464/63/61/60” for
pins 16 and 17.
Rev 1.2
Si4464/63/61/60
NOTES:
Rev 1.2
55
Si4464/63/61/60
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering
team.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
56
Rev 1.2