0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
510FBA148M500BAG

510FBA148M500BAG

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    SMD-6

  • 描述:

    有源晶振 2.5V 148.5MHz SMD-6

  • 详情介绍
  • 数据手册
  • 价格&库存
510FBA148M500BAG 数据手册
S i 5 1 0 / 5 11 C R YS TA L O SCILLATOR (XO) 100 kH Z TO 2 5 0 M H Z Features       Supports any frequency from  100 kHz to 250 MHz  Low jitter operation 2 to 4 week lead times  Total stability includes 10-year aging  Comprehensive production test coverage includes crystal ESR and  DLD On-chip LDO regulator for power  supply noise filtering  3.3, 2.5, or 1.8 V operation Differential (LVPECL, LVDS, HCSL) or CMOS output options Optional integrated 1:2 CMOS fanout buffer Runt suppression on OE and power on Industry standard 5 x 7, 3.2 x 5, and 2.5 x 3.2 mm packages Pb-free, RoHS compliant –40 to 85 oC operation Si5602 2.5x3.2mm 5x7mm and 3.2x5mm Ordering Information: Applications See page 14. SONET/SDH/OTN Gigabit Ethernet  Fibre Channel/SAS/SATA  PCI Express 3G-SDI/HD-SDI/SDI Telecom  Switches/routers  FPGA/ASIC clock generation     Pin Assignments: See page 12. Description The Si510/511 XO utilizes Silicon Laboratories' advanced DSPLL technology to provide any frequency from 100 kHz to 250 MHz. Unlike a traditional XO where a different crystal is required for each output frequency, the Si510/511 uses one fixed crystal and Silicon Labs’ proprietary DSPLL synthesizer to generate any frequency across this range. This IC-based approach allows the crystal resonator to provide enhanced reliability, improved mechanical robustness, and excellent stability. In addition, this solution provides superior supply noise rejection, simplifying low jitter clock generation in noisy environments. Crystal ESR and DLD are individually production-tested to guarantee performance and enhance reliability. The Si510/511 is factoryconfigurable for a wide variety of user specifications, including frequency, supply voltage, output format, output enable polarity, and stability. Specific configurations are factory-programmed at time of shipment, eliminating long lead times and non-recurring engineering charges associated with custom frequency oscillators. Functional Block Diagram Low Noise Regulator Fixed Frequency Oscillator Any-Frequency 0.1 to 250 MHz DSPLL® Synthesis CLK+ 4 VDD GND 2 3 CLK Si510 (CMOS) NC 1 6 VDD OE 2 5 CLK– GND 3 4 CLK+ OE OE 11 66 V VDD DD NC NC 22 55 CLK– CLK– GND GND 33 44 CLK+ CLK+ CLK– GND Rev. 1.4 6/18 1 Si510(LVDS/LVPECL/HCSL/ Dual CMOS) VDD OE OE Copyright © 2018 by Silicon Laboratories Si511(LVDS/LVPECL/HCSL/ Dual CMOS) Si510/511 Si510/511 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2. Solder Reflow and Rework Requirements for 2.5x3.2 mm Packages . . . . . . . . . . . . . . 11 3. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Dual CMOS Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5. Si510/511 Mark Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6. Package Outline Diagram: 5 x 7 mm, 4-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7. PCB Land Pattern: 5 x 7 mm, 4-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 8. Package Outline Diagram: 5 x 7 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 9. PCB Land Pattern: 5 x 7 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 10. Package Outline Diagram: 3.2 x 5 mm, 4-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 11. PCB Land Pattern: 3.2 x 5 mm, 4-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 12. Package Outline Diagram: 3.2 x 5 mm, 6-Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 13. PCB Land Pattern: 3.2 x 5.0 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 14. Package Outline Diagram: 2.5 x 3.2 mm, 4-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 15. PCB Land Pattern: 2.5 x 3.2 mm, 4-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 16. Package Outline Diagram: 2.5 x 3.2 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 17. PCB Land Pattern: 2.5 x 3.2 mm, 6-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 Rev. 1.4 Si510/511 1. Electrical Specifications Table 1. Operating Specifications VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC Parameter Supply Voltage Supply Current Symbol Test Condition Min Typ Max Unit VDD 3.3 V option 2.97 3.3 3.63 V 2.5 V option 2.25 2.5 2.75 V 1.8 V option 1.71 1.8 1.89 V CMOS, 100 MHz, single-ended — 21 26 mA LVDS (output enabled) — 19 23 mA LVPECL (output enabled) — 39 43 mA HCSL (output enabled) — 41 44 mA Tristate (output disabled) — — 18 mA IDD OE "1" Setting VIH See Note 0.80 x VDD — — V OE "0" Setting VIL See Note — — 0.20 x VDD V OE Internal Pull-Up/PullDown Resistor* RI — 45 — k Operating Temperature TA –40 — 85 o C *Note: Active high and active low polarity OE options available. Active high option includes an internal pull-up. Active low option includes an internal pull-down. See ordering information on page 14. Rev. 1.4 3 Si510/511 Table 2. Output Clock Frequency Characteristics VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC Parameter Nominal Frequency Symbol Test Condition Min Typ Max Unit FO CMOS, Dual CMOS 0.1 — 212.5 MHz FO LVDS/LVPECL/HCSL 0.1 — 250 MHz Frequency Stability Grade C –30 — +30 ppm Frequency Stability Grade B –50 — +50 ppm Frequency Stability Grade A –100 — +100 ppm Frequency Stability Grade C –20 — +20 ppm Frequency Stability Grade B –25 — +25 ppm Frequency Stability Grade A –50 — +50 ppm Total Stability* Temperature Stability Startup Time TSU Minimum VDD until output frequency (FO) within specification — — 10 ms Disable Time TD FO  10 MHz — — 5 µs FO < 10 MHz — — 40 µs FO  10 MHz — — 20 µs FO < 10 MHz — — 60 µs Enable Time TE *Note: Total stability includes initial accuracy, operating temperature, supply voltage change, load change, shock and vibration (not under operation), and 10 years aging at 40 oC. 4 Rev. 1.4 Si510/511 Table 3. Output Clock Levels and Symmetry VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC Parameter Symbol Test Condition Min Typ Max Unit CMOS Output Logic High VOH 0.85 x VDD — — V CMOS Output Logic Low VOL — — 0.15 x VDD V CMOS Output Logic High Drive IOH 3.3 V –8 — — mA 2.5 V –6 — — mA 1.8 V –4 — — mA 3.3 V 8 — — mA 2.5 V 6 — — mA 1.8 V 4 — — mA 0.1 to 212.5 MHz, CL = 15 pF 0.45 0.8 1.2 ns 0.1 to 212.5 MHz, CL = no load 0.3 0.6 0.9 ns CMOS Output Logic Low Drive IOL CMOS Output Rise/Fall Time (20 to 80% VDD) TR/TF LVPECL Output Rise/Fall Time (20 to 80% VDD) TR/TF 100 — 565 ps HCSL Output Rise/Fall Time (20 to 80% VDD) TR/TF 100 — 470 ps LVDS Output Rise/Fall Time (20 to 80% VDD) TR/TF 350 — 800 ps LVPECL Output Common Mode VOC 50  to VDD – 2 V, single-ended — VDD – 1.4 V — V LVPECL Output Swing VO 50  to VDD – 2 V, single-ended 0.55 0.8 0.90 VPPSE LVDS Output Common Mode VOC 100  line-line VDD = 3.3/2.5 V 1.13 1.23 1.33 V 100  line-line, VDD = 1.8 V 0.83 0.92 1.00 V LVDS Output Swing VO Single-ended, 100 differential termination 0.25 0.35 0.45 VPPSE HCSL Output Common Mode VOC 50 to ground 0.35 0.38 0.42 V HCSL Output Swing VO Single-ended 0.58 0.73 0.85 VPPSE Duty Cycle DC All formats 48 50 52 % Rev. 1.4 5 Si510/511 Table 4. Output Clock Jitter and Phase Noise (LVPECL) VDD = 2.5 or 3.3 V ±10%, TA = –40 to +85 oC; Output Format = LVPECL Symbol Test Condition Min Typ Max Unit Period Jitter (RMS) JPRMS 10k samples1 — — 1.3 ps Period Jitter (Pk-Pk) JPPKPK 10k samples1 — — 11 ps Phase Jitter (RMS) φJ 1.875 MHz to 20 MHz integration bandwidth2 (brickwall) — 0.31 0.5 ps 12 kHz to 20 MHz integration bandwidth2 (brickwall) — 0.8 1.0 ps 100 Hz — –86 — dBc/Hz 1 kHz — –109 — dBc/Hz 10 kHz — –116 — dBc/Hz 100 kHz — –123 — dBc/Hz 1 MHz — –136 — dBc/Hz 10 kHz sinusoidal noise — 3.0 — ps 100 kHz sinusoidal noise — 3.5 — ps 500 kHz sinusoidal noise — 3.5 — ps 1 MHz sinusoidal noise — 3.5 — ps LVPECL output, 156.25 MHz, offset>10 kHz — –75 — dBc Parameter Phase Noise, 156.25 MHz Additive RMS Jitter Due to External Power Supply Noise3 Spurious φN JPSR SPR Notes: 1. Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5, 250 MHz. 2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 and 250 MHz. 3. 156.25 MHz. Increase in jitter on output clock due to sinewave noise added to VDD (2.5/3.3 V = 100 mVPP). 6 Rev. 1.4 Si510/511 Table 5. Output Clock Jitter and Phase Noise (LVDS) VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC; Output Format = LVDS Symbol Test Condition Min Typ Max Unit Period Jitter (RMS) JPRMS 10k samples1 — — 2.1 ps Period Jitter (Pk-Pk) JPPKPK 10k samples1 — — 18 ps Phase Jitter (RMS) φJ 1.875 MHz to 20 MHz integration bandwidth2 (brickwall) — 0.25 0.55 ps 12 kHz to 20 MHz integration bandwidth2 (brickwall) — 0.8 1.0 ps 100 Hz — –86 — dBc/Hz 1 kHz — –109 — dBc/Hz 10 kHz — –116 — dBc/Hz 100 kHz — –123 — dBc/Hz 1 MHz — –136 — dBc/Hz LVPECL output, 156.25 MHz, offset>10 kHz — –75 — dBc Parameter Phase Noise, 156.25 MHz Spurious φN SPR Notes: 1. Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5, 250 MHz. 2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 and 250 MHz. Rev. 1.4 7 Si510/511 Table 6. Output Clock Jitter and Phase Noise (HCSL) VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC; Output Format = HCSL Symbol Test Condition Min Typ Max Unit Period Jitter (RMS) JPRMS 10k samples* — — 1.2 ps Period Jitter (Pk-Pk) JPPKPK 10k samples* — — 11 ps Phase Jitter (RMS) φJ 1.875 MHz to 20 MHz integration bandwidth*(brickwall) — 0.25 0.30 ps 12 kHz to 20 MHz integration bandwidth* (brickwall) — 0.8 1.0 ps 100 Hz — –90 — dBc/Hz 1 kHz — –112 — dBc/Hz 10 kHz — –120 — dBc/Hz 100 kHz — –127 — dBc/Hz 1 MHz — –140 — dBc/Hz LVPECL output, 156.25 MHz, offset>10 kHz — –75 — dBc Parameter Phase Noise, 156.25 MHz Spurious φN SPR *Note: Applies to an output frequency of 100 MHz. 8 Rev. 1.4 Si510/511 Table 7. Output Clock Jitter and Phase Noise (CMOS, Dual CMOS (Complementary)) VDD = 1.8 V ±5%, 2.5 or 3.3 V ±10%, TA = –40 to +85 oC; Output Format = CMOS, Dual CMOS (Complementary) Parameter Symbol Test Condition Min Typ Max Unit φJ 1.875 MHz to 20 MHz integration bandwidth2 (brickwall) — 0.25 0.35 ps 12 kHz to 20 MHz integration bandwidth2 (brickwall) — 0.8 1.0 ps 100 Hz — –86 — dBc/Hz 1 kHz — –108 — dBc/Hz 10 kHz — –115 — dBc/Hz 100 kHz — –123 — dBc/Hz 1 MHz — –136 — dBc/Hz LVPECL output, 156.25 MHz, offset>10 kHz — –75 — dBc Phase Jitter (RMS) Phase Noise, 156.25 MHz Spurious φN SPR Notes: 1. Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 MHz. 2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 MHz. Table 8. Environmental Compliance and Package Information Parameter Conditions/Test Method Mechanical Shock MIL-STD-883, Method 2002 Mechanical Vibration MIL-STD-883, Method 2007 Solderability MIL-STD-883, Method 2003 Gross and Fine Leak MIL-STD-883, Method 1014 Resistance to Solder Heat MIL-STD-883, Method 2036 Contact Pads Gold over Nickel Rev. 1.4 9 Si510/511 Table 9. Thermal Characteristics Parameter Symbol Test Condition Value Unit CLCC, Thermal Resistance Junction to Ambient JA Still air 110 °C/W 2.5x3.2mm, Thermal Resistance Junction to Ambient JA Still air 164 °C/W Table 10. Absolute Maximum Ratings1 Parameter Maximum Operating Temperature Storage Temperature Supply Voltage Input Voltage (any input pin) ESD Sensitivity (HBM, per JESD22-A114) Soldering Temperature (Pb-free profile) 2 Soldering Temperature Time at TPEAK (Pb-free profile)2 Symbol Rating Unit TAMAX 85 o C TS –55 to +125 o C VDD –0.5 to +3.8 V VI –0.5 to VDD + 0.3 V HBM 2 kV TPEAK 260 oC TP 20–40 sec Notes: 1. Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability. 2. The device is compliant with JEDEC J-STD-020E. 10 Rev. 1.4 Si510/511 2. Solder Reflow and Rework Requirements for 2.5x3.2 mm Packages Reflow of Silicon Labs' components should be done in a manner consistent with the IPC/JEDEC J-STD-20E standard. The temperature of the package is not to exceed the classification Temperature provided in the standard. The part should not be within -5°C of the classification or peak reflow temperature (TPEAK) for longer than 30 seconds. Key to maintaining the integrity of the component is providing uniform heating and cooling of the part during reflow and rework. Uniform heating is achieved through having a preheat soak and controlling the temperature ramps in the process. J-STD-20E provides minimum and maximum temperatures and times for the preheat/Soak step that need to be followed, even for rework. The entire assembly area should be heated during rework. Hot air should be flowed from both the bottom of the board and the top of the component. Heating from the top only will cause un-even heating of component and can lead to part integrity issues. Temperature Ramp-up rate are not to exceed 3°C/second. Temperature ramp-down rates from peak to final temperature are not to exceed 6°C/second. Time from 25°C to peak temperature is not to exceed 8 min for Pb-free solders. Rev. 1.4 11 Si510/511 3. Pin Descriptions OE GND 1 2 VDD 4 3 CLK Si510 (CMOS) NC 1 6 VDD OE 1 6 VDD OE 2 5 CLK–* NC 2 5 CLK–* GND 3 4 CLK+ GND 3 4 CLK+ Si510 (LVDS/LVPECL/HCSL/Dual CMOS*) Si511 (LVDS/LVPECL/HCSL/DualCMOS)*) *Supports integrated 1:2 CMOS buffer. See ordering information and section 2.1“Dual CMOS Buffer”. Table 11. Si510 Pin Descriptions (CMOS) Pin Name CMOS Function 1 OE 2 GND Output Enable. Includes internal pull-up for OE active high. Includes internal pull-down for OE active low. See ordering information. Electrical and Case Ground. 3 CLK Clock Output. 4 VDD Power Supply Voltage. Table 12. Si510 Pin Descriptions (LVPECL/LVDS/HCSL, Dual CMOS, OE Pin 2) Pin Name LVPECL/LVDS/HCSL Function 1 NC No connect. Make no external connection to this pin. 2 OE 3 GND Output Enable. Includes internal pull-up for OE active high. Includes internal pull-down for OE active low. See ordering information. Electrical and Case Ground. 4 CLK+ Clock Output. 5 CLK– Complementary Clock Output. 6 VDD Power Supply Voltage. Table 13. Si511 Pin Descriptions (LVPECL/LVDS/HCSL, Dual CMOS, OE Pin 1) 12 Pin Name LVPECL/LVDS/HCSL Function 1 OE 2 NC 3 GND Electrical and Case Ground. 4 CLK+ Clock Output. 5 CLK– Complementary Clock Output. 6 VDD Output Enable. Includes internal pull-up for OE active high. Includes internal pull-down for OE active low. See ordering information. No connect. Make no external connection to this pin. Power Supply Voltage. Rev. 1.4 Si510/511 3.1. Dual CMOS Buffer Dual CMOS output format ordering options support either complementary or in-phase output signals. This feature enables replacement of multiple XOs with a single Si510/11 device. ~ Complementary Outputs ~ In-Phase Outputs Figure 1. Integrated 1:2 CMOS Buffer Supports Complementary or In-Phase Outputs Rev. 1.4 13 Si510/511 4. Ordering Information The Si510/511 supports a wide variety of options including frequency, stability, output format, and VDD. Specific device configurations are programmed into the Si510/511 at time of shipment. Configurations can be specified using the Part Number Configuration chart below. Silicon Labs provides a web browser-based part number configuration utility to simplify this process. To access this tool refer to www.silabs.com/oscillators and click “Customize” in the product table. The Si510/511 XO series is supplied in industry-standard, RoHS compliant, leadfree, 2.5 x 3.2 mm, 3.2 x 5.0 mm, and 5 x 7 mm packages. Tape and reel packaging is an ordering option. Series Output Format OE Pin Package 510 CMOS OE on pin 1 4-pin 510 LVPECL, LVDS, HCSL, Dual CMOS OE on pin 2 6-pin 511 LVPECL, LVDS, HCSL, Dual CMOS OE on pin 1 6-pin A = Revision: A G = Temp Range: -40°C to 85°C R = Tape & Reel; Blank = &RLO7DSH 1st Option Code: Output Format VDD Output Format A 3.3V LVPECL B 3.3V LVDS C 3.3V CMOS D 3 3V 3.3V HCSL E 2.5V LVPECL F 2.5V LVDS G H 2.5V 2 5V 2.5V 51X X X X XXXMXXX X AGR 3rd Option Code: Output Enable Package Option OE Polarity CMOS Dimensions HCSL A OE Active High A 5 x 7 mm B OE Active Low B 3.2 x 5 mm & [PP J 1.8V LVDS K 1.8V CMOS L 1.8V HCSL M 3 3V 3.3V D l CMOS (I Dual (In-phase) h ) N 3.3V Dual CMOS (Complementary) P 2.5V Dual CMOS (In-phase) Q 2.5V Dual CMOS (Complementary) R 1.8V Dual CMOS (In-phase) S 1.8V Dual CMOS (Complementary) Frequency Code 2nd Option Code: Frequency Stability A F Frequency Total Temperature ±100ppm ±50ppm B ±50ppm 50pp ±25ppm 5pp C ±30ppm ±20ppm Mxxxxxx D Description i ti fOUT < 1 MHz xMxxxxx 1 MHz ” fOUT < 10 MHz xxMxxxx 10 MHz ” fOUT < 100 MHz xxxMxxx xxxxxx 100 MHz ” fOUT < 250 MHz Code if frequency requires >6 digit resolution Figure 2. Part Number Syntax Example orderable part number: 510ECB156M250AAG supports 2.5 V LVPECL, ±30 ppm total stability, OE active low in 5 x 7 mm package across –40oC to 85oC temperature range. The output frequency is 156.25 MHz. Note: CMOS and Dual CMOS maximum frequency is 212.5 MHz. 14 Rev. 1.4 Si510/511 5. Si510/511 Mark Specification Figure 3 illustrates the mark specification for the Si510/511. Use the part number configuration utility located at: www.silabs.com/VCXOpartnumber to cross-reference the mark code to a specific device configuration. 0 C CC CC T TTTTT Y Y WW 0 = Si510, 1 = Si511 CCCCC = mark code TTTTTT = assembly manufacturing code YY = year WW = work week Figure 3. Top Mark Rev. 1.4 15 Si510/511 6. Package Outline Diagram: 5 x 7 mm, 4-pin Figure 4 illustrates the package details for the 5 x 7 mm Si510/511. Table 14 lists the values for the dimensions shown in the illustration.   Figure 4. Si510/511 Outline Diagram Table 14. Package Diagram Dimensions (mm) Dimension A b c D D1 e f E E1 H L L1 p aaa bbb ccc ddd eee Min 1.50 1.30 0.50 Nom 1.65 1.40 0.60 5.00 BSC 4.40 5.08 BSC 0.50 TYP 7.00 BSC 6.20 0.65 1.27 0.10 2.60 0.15 0.15 0.10 0.10 0.05 4.30 6.10 0.55 1.17 0.05 2.50 Max 1.80 1.50 0.70 4.50 6.30 0.75 1.37 0.15 2.70 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 16 Rev. 1.4 Si510/511 7. PCB Land Pattern: 5 x 7 mm, 4-pin Figure 5 illustrates the 5 x 7 mm PCB land pattern for the 5 x 7 mm Si510/511. Table 15 lists the values for the dimensions shown in the illustration.   Figure 5. Si510/511 PCB Land Pattern Table 15. PCB Land Pattern Dimensions (mm) Dimension (mm) C1 4.20 E 5.08 X1 1.55 Y1 1.95 Notes: General 1. 2. 3. 4. All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. This Land Pattern Design is based on the IPC-7351 guidelines. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. The stencil thickness should be 0.125 mm (5 mils). 8. The ratio of stencil aperture to land pad size should be 1:1. Card Assembly 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020D specification for Small Body Components. Rev. 1.4 17 Si510/511 8. Package Outline Diagram: 5 x 7 mm, 6-pin Figure 6 illustrates the package details for the Si510/511. Table 16 lists the values for the dimensions shown in the illustration. Figure 6. Si510/511 Outline Diagram Table 16. Package Diagram Dimensions (mm) Dimension A b c D D1 e E E1 H L L1 p R aaa bbb ccc ddd eee Min 1.50 1.30 0.50 Nom 1.65 1.40 0.60 5.00 BSC 4.40 2.54 BSC 7.00 BSC 6.20 0.65 1.27 0.10 — 0.70 REF 0.15 0.15 0.10 0.10 0.05 4.30 6.10 0.55 1.17 0.05 1.80 Max 1.80 1.50 0.70 4.50 6.30 0.75 1.37 0.15 2.60 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 18 Rev. 1.4 Si510/511 9. PCB Land Pattern: 5 x 7 mm, 6-pin Figure 7 illustrates the 5 x 7 mm PCB land pattern for the Si510/511. Table 17 lists the values for the dimensions shown in the illustration. Figure 7. Si510/511 PCB Land Pattern Table 17. PCB Land Pattern Dimensions (mm) Dimension (mm) C1 4.20 E 2.54 X1 1.55 Y1 1.95 Notes: General 1. 2. 3. 4. All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. This Land Pattern Design is based on the IPC-7351 guidelines. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. The stencil thickness should be 0.125 mm (5 mils). 8. The ratio of stencil aperture to land pad size should be 1:1. Card Assembly 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.4 19 Si510/511 10. Package Outline Diagram: 3.2 x 5 mm, 4-pin Figure 8 illustrates the package details for the 3.2 x 5 mm Si510/511. Table 18 lists the values for the dimensions shown in the illustration.   Figure 8. Si510/511 Outline Diagram Table 18. Package Diagram Dimensions (mm) Dimension A b c D D1 e f E E1 H L L1 p aaa bbb ccc ddd eee Min 1.06 1.10 0.70 Nom 1.17 1.20 0.80 3.20 BSC 2.60 2.54 BSC 0.40 TYP 5.00 BSC 4.40 0.50 1.00 0.10 1.27 0.15 0.15 0.10 0.10 0.05 2.55 4.35 0.40 0.90 0.05 1.17 Max 1.28 1.30 0.90 2.65 4.45 0.60 1.10 0.15 1.37 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 20 Rev. 1.4 Si510/511 11. PCB Land Pattern: 3.2 x 5 mm, 4-pin Figure 9 illustrates the 3.2 x 5 mm PCB land pattern for the Si510/511. Table 19 lists the values for the dimensions shown in the illustration. Figure 9. Si510/511 PCB Land Pattern Table 19. PCB Land Pattern Dimensions (mm) Dimension (mm) C1 2.60 E 2.54 X1 1.35 Y1 1.70 Notes: General 1. 2. 3. 4. All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. This Land Pattern Design is based on the IPC-7351 guidelines. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. The stencil thickness should be 0.125 mm (5 mils). 8. The ratio of stencil aperture to land pad size should be 1:1. Card Assembly 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.4 21 Si510/511 12. Package Outline Diagram: 3.2 x 5 mm, 6-Pin Figure 10 illustrates the package details for the 3.2 x 5 mm Si510/511. Table 20 lists the values for the dimensions shown in the illustration. Figure 10. Si510/511 Outline Diagram Table 20. Package Diagram Dimensions (mm) Dimension A b c D D1 e E E1 H L L1 p R aaa bbb ccc ddd eee Min 1.06 0.54 0.35 2.55 4.35 0.45 0.80 0.05 1.17 Nom 1.17 0.64 0.45 3.20 BSC 2.60 1.27 BSC 5.00 BSC 4.40 0.55 0.90 0.10 1.27 0.32 REF 0.15 0.15 0.10 0.10 0.05 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 22 Rev. 1.4 Max 1.33 0.74 0.55 2.65 4.45 0.65 1.00 0.15 1.37 Si510/511 13. PCB Land Pattern: 3.2 x 5.0 mm, 6-pin Figure 11 illustrates the 3.2 x 5.0 mm PCB land pattern for the Si510/511. Table 21 lists the values for the dimensions shown in the illustration.   Figure 11. Si510/511 Recommended PCB Land Pattern Table 21. PCB Land Pattern Dimensions (mm) Dimension C1 (mm) 2.60 E 1.27 X1 0.80 Y1 1.70 Notes: General 1. 2. 3. 4. All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. This Land Pattern Design is based on the IPC-7351 guidelines. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. The stencil thickness should be 0.125 mm (5 mils). 8. The ratio of stencil aperture to land pad size should be 1:1. Card Assembly 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. Rev. 1.4 23 Si510/511 14. Package Outline Diagram: 2.5 x 3.2 mm, 4-pin Figure 12 illustrates the package details for the 2.5 x 3.2 mm Si510/511. Table 22 lists the values for the dimensions shown in the illustration. Figure 12. Si510/511 Outline Diagram 24 Rev. 1.4 Si510/511 Table 22. Package Diagram Dimensions (mm) Dimension A A1 A2 W D e E L E1 SE aaa bbb ddd Min — Nom — 0.26 REF 0.7 REF Max 1.1 0.65 0.7 0.75 0.85 3.20 BSC 2.10 BSC 2.50 BSC 0.9 1.65 BSC 0.825 BSC 0.1 0.2 0.08 0.95 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. Rev. 1.4 25 Si510/511 15. PCB Land Pattern: 2.5 x 3.2 mm, 4-pin Figure illustrates the 2.5 x 3.2 mm PCB land pattern for the Si510/511. Table 23 lists the values for the dimensions shown in the illustration. Figure 13. Si510/511 Recommended PCB Land Pattern Table 23. PCB Land Pattern Dimensions (mm) Dimension C1 (mm) 2.0 E 2.10 X1 0.95 Y1 1.15 Notes: General 1. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. 2. This Land Pattern Design is based on the IPC-7351 guidelines. Solder Mask Design 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins. Card Assembly 7. A No-Clean, Type-3 solder paste is recommended. 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 26 Rev. 1.4 Si510/511 16. Package Outline Diagram: 2.5 x 3.2 mm, 6-pin Figure 14 illustrates the package details for the 2.5 x 3.2 mm Si510/511. Table 24 lists the values for the dimensions shown in the illustration. Figure 14. Si510/511 Outline Diagram Rev. 1.4 27 Si510/511 Table 24. Package Diagram Dimensions (mm) Dimension A A1 A2 W D e E M L D1 E1 SE aaa bbb ddd Min — Nom — 0.26 REF 0.7 REF Max 1.1 0.65 0.7 0.75 0.45 3.20 BSC 1.25 BSC 2.50 BSC 0.30 BSC 0.5 2.5 BSC 1.65 BSC 0.825 BSC 0.1 0.2 0.08 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 28 Rev. 1.4 0.55 Si510/511 17. PCB Land Pattern: 2.5 x 3.2 mm, 6-pin Figure 15 illustrates the 2.5 x 3.2 mm PCB land pattern for the Si510/511. Table 25 lists the values for the dimensions shown in the illustration. Figure 15. Si510/511 Recommended PCB Land Pattern Table 25. PCB Land Pattern Dimensions (mm) Dimension C1 (mm) 1.9 E 2.50 X1 0.70 Y1 1.05 Notes: General 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. 4. This Land Pattern Design is based on the IPC-7351 guidelines. Solder Mask Design 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. Stencil Design 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 7. The stencil thickness should be 0.125 mm (5 mils). 8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins. Card Assembly 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. Rev. 1.4 29 Si510/511 REVISION HISTORY Revision 1.4 June, 2018  Changed “Trays” to “Coil Tape” in the Ordering Guide. Revision 1.3 December, 2017  Added new 2.5 x 3.2 mm package options. Revision 1.2  Updated Table 3. Separated  LVPECL and HCSL output Rise/Fall time specs. Min Rise/Fall times added. Revision 1.1  Updated Table 3.  CMOS Output Rise/Fall Time Test Condition updated. Revision 1.0  Updated Table 1 on page 3. Updates to supply current typical and maximum values for CMOS, LVDS, LVPECL and HCSL. frequency test condition corrected to 100 MHz. Updates to OE VIH minimum and VIL maximum values. CMOS  Updated Table 2 on page 4. Dual CMOS nominal frequency maximum added. stability footnotes clarified for 10 year aging at 40 °C. Disable time maximum values updated. Enable time parameter added. Total  Updated Table 3 on page 5. CMOS output rise / fall time typical and maximum values updated. output rise / fall time maximum value updated. LVPECL output swing maximum value updated. LVDS output common mode typical and maximum values updated. HCSL output swing maximum value updated. Duty cycle minimum and maximum values tightened to 48/52%. LVPECL/HCSL  Updated Table 4 on page 6. Phase jitter test condition and maximum value updated. noise typical values updated. Additive RMS jitter due to external power supply noise typical values updated. Footnote 3 updated limiting the VDD to 2.5/3.3V Phase Added Tables 5, 6, 7 for LVDS, HCSL, CMOS, and Dual CMOS operations. Moved Absolute Maximum Ratings table.  Added note to Figure 2 clarifying CMOS and Dual CMOS maximum frequency.  Updated Figure 10 outline diagram to correct pinout.   30 Rev. 1.4 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW Quality Support and Community www.silabs.com/CBPro www.silabs.com/quality community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com
510FBA148M500BAG
物料型号: Si510/511

器件简介: - Si510/511是一款由Silicon Labs生产的晶体振荡器(XO),支持100 kHz至250 MHz的任何频率。 - 它使用了Silicon Laboratories的先进DSPLL技术,通过一个固定晶体和专有的DSPLL合成器生成所需频率。 - 提供了优越的电源噪声抑制,并简化了在嘈杂环境中生成低抖动时钟的复杂性。

引脚分配: 见文档第12页。

参数特性: - 工作电压:3.3V、2.5V或1.8V。 - 电源电流:在1.8V选项下,CMOS、100MHz、单端输出时为21mA至26mA。 - 总稳定性包括10年老化。 - 工作温度范围:-40至85摄氏度。 - 封装信息:行业标准的5 x 7 mm、3.2 x 5 mm和2.5 x 3.2 mm封装。

功能详解: - Si510/511使用一个固定晶体,通过DSPLL技术生成跨越100 kHz至250 MHz的任何频率。 - 提供了差分(LVPECL, LVDS, HCSL)或CMOS输出选项。 - 可选集成1:2 CMOS扇出缓冲器。 - 通过生产测试覆盖了晶体ESR和DLD,确保性能和提高可靠性。

应用信息: - SONET/SDH/OTN、Gigabit Ethernet、Fibre Channel/SAS/SATA、PCI Express、3G-SDI/HD-SDI/SDI、电信交换机/路由器、FPGA/ASIC时钟生成。

封装信息: - 提供了多种封装选项,包括2.5 x 3.2 mm、3.2 x 5 mm和5 x 7 mm,符合行业标准。 - 所有封装均为无铅、符合RoHS标准的。
510FBA148M500BAG 价格&库存

很抱歉,暂时无法提供与“510FBA148M500BAG”相匹配的价格&库存,您可以联系我们找货

免费人工找货