BGM13P Wireless Gecko Bluetooth ®
Module Data Sheet
The BGM13P is Silicon Labs' first PCB module solution for Bluetooth 5.0 LE connectivity.
It supports long range, high throughput, and regular LE Bluetooth PHYs. Also, with 512
kB of flash and 64 kB of RAM, the BGM13P is suited to meet Bluetooth Mesh networking
memory requirements effectively.
Based on the Silicon Labs EFR32BG13 Blue Gecko SoC, the BGM13P delivers robust
RF performance, low energy consumption, a wide selection of MCU peripherals, regulatory test certificates for various regions and countries, and a simplified development experience, all in a small form factor. Together with the certified software stacks and powerful tools also offered by Silicon Labs, the BGM13P can minimize the engineering efforts and development costs associated with adding Bluetooth 5.0 or Bluetooth Mesh
connectivity to any product, accelerating its time-to-market.
Crystals
38.4 MHz
RAM Memory
• Up to +19 dBm TX power
• -94.8 dBm RX sensitivity at 1 Mbps
• 32-bit ARM® Cortex®-M4 core at 38.4
MHz
• 512/64 kB of flash/RAM memory
• 12.9 × 15.0 × 2.2 mm
Flash Program
Memory
Debug Interface
• Antenna or U.FL connector variants
• 25 GPIO pins
Core / Memory
ETM
• Fit for Bluetooth Mesh
• True Random Number Generator
IoT end devices and gateways
Health, sports and wellness
Industrial, home and building automation
Beacons
Smart phone, tablet, and PC accessories
ARM CortexTM M4 processor
with DSP extensions, FPU and MPU
• Bluetooth 5.0 LE compliant
• Autonomous Hardware Crypto
Accelerators
BGM13P modules can be used in a wide variety of applications:
•
•
•
•
•
KEY FEATURES
LDMA
Controller
32.768 kHz
Clock Management
Energy Management
H-F Crystal
Oscillator
H-F
RC Oscillator
Voltage
Regulator
Voltage Monitor
Auxiliary H-F RC
Oscillator
L-F
RC Oscillator
DC-DC
Converter
Power-On Reset
L-F Crystal
Oscillator
Ultra L-F RC
Oscillator
Brown-Out
Detector
Other
CRYPTO
CRC
True Random
Number Generator
SMU
32-bit bus
Peripheral Reflex System
Radio Transceiver
DEMOD
LNA
I
PGA
IFADC
Q
I/O Ports
Timers and Triggers
External
Interrupts
Timer/Counter
General
Purpose I/O
Low Energy
Timer
Protocol Timer
Low Energy
Sensor Interface
AGC
Frequency
Synthesizer
RAC
PA
USART
Low Energy
UARTTM
RF Frontend
CRC
BALUN
FRC
Chip Antenna
or
U.FL Connector
Matching
Serial
Interfaces
BUFC
Antenna
I2C
Pin Reset
Pulse Counter
Watchdog Timer
Pin Wakeup
Real Time
Counter and
Calendar
Cryotimer
MOD
Analog I/F
ADC
Analog
Comparator
IDAC
Capacitive
Touch
VDAC
Op-Amp
Lowest power mode with peripheral operational:
EM0—Active
EM1—Sleep
silabs.com | Building a more connected world.
EM2—Deep Sleep
EM3—Stop
Copyright © 2022 by Silicon Laboratories
EM4—Hibernate
EM4—Shutoff
Rev. 1.4
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Feature List
1. Feature List
• Supported Protocols
• Bluetooth 5.0 LE
• Bluetooth Mesh
• Wireless System-on-Chip.
• 2.4 GHz radio
• TX power up to +19 dBm
• High Performance 32-bit 38.4 MHz ARM Cortex®-M4 with
DSP instruction and floating-point unit for efficient signal
processing
• 512 kB flash program memory
• 64 kB RAM data memory
• Embedded Trace Macrocell (ETM) for advanced debugging
• Integrated dc-dc
• High Receiver Performance
• -103.2 dBm sensitivity at 125 kbit/s GFSK
• -98.8 dBm sensitivity at 500 kbit/s GFSK
• -94.8 dBm sensitivity at 1 Mbit/s GFSK
• -91.2 dBm sensitivity at 2 Mbit/s GFSK
• Low Energy Consumption
• 9.9 mA RX current
• 8.5 mA TX current at 0 dBm output power
• 87 μA/MHz in Active Mode (EM0)
• 1.4 μA EM2 DeepSleep current (full RAM retention and
RTCC running from LFXO)
• 1.14 μA EM3 Stop current (State/RAM retention)
• Regulatory Certifications
• FCC
• CE / UKCA
• IC / ISEDC
• MIC / Telec
• Wide Operating Range
• 1.8 V to 3.8 V single power supply
• -40 °C to +85 °C
• Dimensions
• 12.9 × 15.0 × 2.2 mm (W × L × H)
silabs.com | Building a more connected world.
• Support for Internet Security
• General Purpose CRC
• True Random Number Generator (TRNG)
• 2 × Hardware Cryptographic Accelerators (CRYPTO) for
AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and
ECC
• Wide Selection of MCU Peripherals
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
• 2 × Analog Comparator (ACMP)
• 2 × Digital to Analog Converter (VDAC)
• 3 × Operational Amplifier (Opamp)
• Digital to Analog Current Converter (IDAC)
• Low-Energy Sensor Interface (LESENSE)
• Multi-channel Capacitive Sense Interface (CSEN)
• 25 pins connected to analog channels (APORT) shared between analog peripherals
• 25 General Purpose I/O pins with output state retention and
asynchronous interrupts
• 8 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS)
• 2 × 16-bit Timer/Counter
• 3 or 4 Compare/Capture/PWM channels
• 1 × 32-bit Timer/Counter
• 3 Compare/Capture/PWM channels
• 32-bit Real Time Counter and Calendar
• 16-bit Low Energy Timer for waveform generation
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up
from any Energy Mode
• 16-bit Pulse Counter with asynchronous operation
• 2 × Watchdog Timer
• 3 × Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)
• Low Energy UART (LEUART™)
• 2 × I2C interface with SMBus support and address recognition in EM3 Stop
Rev. 1.4 | 2
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Ordering Information
2. Ordering Information
Table 2.1. Ordering Information
Max TX Power
Antenna
Flash
(kB)
RAM
(kB)
GPIO
Packaging
Bluetooth LE
19 dBm
Built-in
512
64
25
Cut Tape
BGM13P32F512GA-V2R
Bluetooth LE
19 dBm
Built-in
512
64
25
Reel
BGM13P32F512GE-V2
Bluetooth LE
19 dBm
U.FL
512
64
25
Cut Tape
BGM13P32F512GE-V2R
Bluetooth LE
19 dBm
U.FL
512
64
25
Reel
BGM13P22F512GA-V2
Bluetooth LE
8 dBm
Built-in
512
64
25
Cut Tape
BGM13P22F512GA-V2R
Bluetooth LE
8 dBm
Built-in
512
64
25
Reel
BGM13P22F512GE-V2
Bluetooth LE
8 dBm
U.FL
512
64
25
Cut Tape
BGM13P22F512GE-V2R
Bluetooth LE
8 dBm
U.FL
512
64
25
Reel
Ordering Code
Protocol Stack
BGM13P32F512GA-V2
For BGM13P32 devices, the maximum TX power for the 125 kbps Bluetooth LE PHY is limited to 14 dBm in order to remain compliant
with FCC requirements. End-product manufacturers must verify that the module is configured to meet regulatory limits for each region
in accordance with the formal certification test reports.
Devices ship with the Gecko UART DFU bootloader 1.4.1 + NCP application from Bluetooth SDK 2.7.0.0. The firmware settings conform to the diagram shown in 5.1 Network Co-Processor (NCP) Application with UART Host.
silabs.com | Building a more connected world.
Rev. 1.4 | 3
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Introduction .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.3 Power . . . . . . . . . . .
3.3.1 Energy Management Unit (EMU)
3.3.2 DC-DC Converter . . . . .
3.3.3 Power Domains . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
. 9
.10
.10
3.4 General Purpose Input/Output (GPIO) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
3.5 Clocking . . . . . . . . . .
3.5.1 Clock Management Unit (CMU) .
3.5.2 Internal Oscillators and Crystals .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
.11
.11
.11
.11
.11
.12
.12
3.7 Communications and Other Digital Peripherals . . . . . . . . . .
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) .
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) .
3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . .
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
3.7.5 Low Energy Sensor Interface (LESENSE) . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
.12
.12
.12
.12
.12
3.8 Security Features . . . . . . . . . . . . . .
3.8.1 General Purpose Cyclic Redundancy Check (GPCRC)
3.8.2 Crypto Accelerator (CRYPTO) . . . . . . . .
3.8.3 True Random Number Generator (TRNG) . . . .
3.8.4 Security Management Unit (SMU) . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
.12
.13
.13
.13
3.9 Analog. . . . . . . . . . . . . .
3.9.1 Analog Port (APORT) . . . . . . .
3.9.2 Analog Comparator (ACMP) . . . . .
3.9.3 Analog to Digital Converter (ADC) . . .
3.9.4 Capacitive Sense (CSEN) . . . . . .
3.9.5 Digital to Analog Current Converter (IDAC)
3.9.6 Digital to Analog Converter (VDAC) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
.13
.13
.13
.13
.14
.14
3.2 Radio . . . . . . . . .
3.2.1 Antenna Interface . . .
3.2.2 Packet and State Trace .
3.2.3 Random Number Generator
.
.
.
3.6 Counters/Timers and PWM . . . . . . . . .
3.6.1 Timer/Counter (TIMER) . . . . . . . .
3.6.2 Wide Timer/Counter (WTIMER) . . . . . .
3.6.3 Real Time Counter and Calendar (RTCC) . .
3.6.4 Low Energy Timer (LETIMER) . . . . . .
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.6.6 Pulse Counter (PCNT) . . . . . . . . .
3.6.7 Watchdog Timer (WDOG) . . . . . . . .
silabs.com | Building a more connected world.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
7
8
8
Rev. 1.4 | 4
3.9.7 Operational Amplifiers .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
3.10 Reset Management Unit (RMU) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
3.11 Core and Memory . . . . . . . . . . . .
3.11.1 Processor Core . . . . . . . . . . . .
3.11.2 Memory System Controller (MSC) . . . . .
3.11.3 Linked Direct Memory Access Controller (LDMA)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
.14
.14
.14
3.12 Memory Map .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.15
3.13 Configuration Summary
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.16
4. Electrical Specifications
. . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Electrical Characteristics . . . . . . . .
4.1.1 Absolute Maximum Ratings . . . . . .
4.1.2 Operating Conditions . . . . . . . .
4.1.3 DC-DC Converter . . . . . . . . .
4.1.4 Current Consumption . . . . . . . .
4.1.5 Wake Up Times . . . . . . . . . .
4.1.6 Brown Out Detector (BOD) . . . . . .
4.1.7 Frequency Synthesizer . . . . . . . .
4.1.8 2.4 GHz RF Transceiver Characteristics . .
4.1.9 Oscillators . . . . . . . . . . . .
4.1.10 Flash Memory Characteristics . . . . .
4.1.11 General-Purpose I/O (GPIO) . . . . .
4.1.12 Voltage Monitor (VMON) . . . . . . .
4.1.13 Analog to Digital Converter (ADC) . . .
4.1.14 Analog Comparator (ACMP) . . . . .
4.1.15 Digital to Analog Converter (VDAC) . . .
4.1.16 Current Digital to Analog Converter (IDAC)
4.1.17 Capacitive Sense (CSEN) . . . . . .
4.1.18 Operational Amplifier (OPAMP) . . . .
4.1.19 Pulse Counter (PCNT) . . . . . . .
4.1.20 Analog Port (APORT) . . . . . . . .
4.1.21 I2C . . . . . . . . . . . . . .
4.1.22 USART SPI . . . . . . . . . . .
5. Typical Connection Diagrams
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.17
.18
.19
.20
.21
.24
.24
.25
.26
.29
.31
.32
.33
.34
.36
.38
.41
.43
.45
.48
.48
.49
.52
. . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 Network Co-Processor (NCP) Application with UART Host .
.
.
.
.
.
.
.
.
.
.
.
.
.
.54
5.2 SoC Application
.
.
.
.
.
.
.
.
.
.
.
.
.
.54
6. Layout Guidelines
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Module Placement and Application PCB Layout Guidelines .
.
.
.
.
.
.
.
.
.
.
.
.
.
.55
6.2 Effect of Plastic and Metal Materials .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.56
6.3 Locating the Module Close to Human Body .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.56
6.4 2D Radiation Pattern Plots .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.57
.
7. Hardware Design Guidelines
7.1 Power Supply Requirements .
silabs.com | Building a more connected world.
.
.
.
.
.
.
.
. . . . . . . . . . . . . . . . . . . . . . . . 59
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.59
Rev. 1.4 | 5
7.2 Reset Functions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.59
7.3 Debug and Firmware Updates . . . . .
7.3.1 Programming and Debug Connections
7.3.2 Packet Trace Interface (PTI) . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.59
.59
.59
8. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.1 BGM13P Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.60
8.2 GPIO Functionality Table
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.62
8.3 Alternate Functionality Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.71
8.4 Analog Port (APORT) Client Maps .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.82
9. Package Specifications
9.1 Package Outline
.
. . . . . . . . . . . . . . . . . . . . . . . . . . 91
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.91
9.2 Recommended PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.92
9.3 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.93
.
.
.
.
.
.
.
.
.
10. Soldering Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 94
11. Certifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.1 Qualified Antenna Types .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.95
11.2 Bluetooth .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.95
11.3 CE and UKCA - EU and UK .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.95
11.4 FCC .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.96
11.5 ISED Canada .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.97
11.6 Japan
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.99
11.7 KC South Korea .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.99
.
.
.
.
11.8 NCC Taiwan
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.100
12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
silabs.com | Building a more connected world.
Rev. 1.4 | 6
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
3. System Overview
3.1 Introduction
The BGM13P product family combines an energy-friendly MCU with a highly integrated radio transceiver and a high performance, ultra
robust antenna. The devices are well suited for any battery operated application, as well as other system where ultra-small size, reliable
high performance RF, low-power consumption and easy application development are key requirements. This section gives a short introduction to the full radio and MCU system.
A detailed block diagram of the BGM13P module is shown in the figure below.
Radio Transciever
Port I/O Configuration
IFADC
PGA
IOVDD
Digital Peripherals
LETIMER
LNA
TIMER
Frequency
Synthesizer
Q
Matching
AGC
MOD
Port A
Drivers
PAn
Port B
Drivers
PBn
Port C
Drivers
PCn
Port D
Drivers
PDn
Port F
Drivers
PFn
CRYOTIMER
RAC
PA
CRC
BALUN
RF Frontend
I
FRC
DEMOD
Chip
Antenna
or
U.FL
Connector
BUFC
Antenna
PCNT
RTC / RTCC
512 KB ISP Flash
Program Memory
I2C
64 KB RAM
CRYPTO
Memory Protection Unit
Energy Management
A A
H P
B B
CRC
LESENSE
DMA Controller
IOVDD
1V8
Floating Point Unit
PAVDD / RFVDD / DVDD
bypass
Watchdog
Timer
Analog Peripherals
IDAC
VDAC
DC-DC
Converter
VBAT
Voltage
Monitor
VREGVDD / AVDD
Voltage
Regulator
Clock Management
ULFRCO
Internal Crystals
32.768 kHz
Crystal
38.4 MHz Crystal
AUXHFRCO
Internal
Reference
12-bit ADC
LFRCO
LFXO
HFRCO
Op-Amp
VDD
APORT
Brown Out /
Power-On
Reset
LEUART
Mux & FB
Debug Signals
(shared w/GPIO)
Port
Mapper
USART
ARM Cortex-M4 Core
Input Mux
Serial Wire
and ETM
Debug /
Programming
Reset
Management
Unit
+
-
RESETn
Temp
Sense
Capacitive
Touch
HFXO
+
Analog Comparator
Figure 3.1. BGM13P Block Diagram
3.2 Radio
The BGM13P features a radio transceiver supporting Bluetooth® low energy protocol. It features a memory buffer and a low-voltage
circuit that can withstand extremely high data rates.
3.2.1 Antenna Interface
The BGM13P has two antenna solution variants. One of them is a high-performance integrated chip antenna (BGM13PxxFxxxxA) and
the other is a U.FL connector to attach an external antenna to the module (BGM13PxxFxxxxE).
silabs.com | Building a more connected world.
Rev. 1.4 | 7
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
Table 3.1. Antenna Efficiency and Peak Gain
Parameter
With optimal layout Note
Efficiency
-2 to -4 dB
Peak gain
1 dBi
Antenna efficiency, gain and radiation pattern are highly dependent on the application PCB layout and mechanical design. Refer
to 6. Layout Guidelines for PCB layout and antenna integration
guidelines for optimal performance.
3.2.2 Packet and State Trace
The BGM13P Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It
features:
• Non-intrusive trace of transmit data, receive data and state information
• Data observability on a single-pin UART data output, or on a two-pin SPI data output
• Configurable data output bitrate / baudrate
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream
3.2.3 Random Number Generator
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.
The data is suitable for use in cryptographic applications.
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.
silabs.com | Building a more connected world.
Rev. 1.4 | 8
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
3.3 Power
The BGM13P has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a
single external supply voltage is required, from which all internal voltages are created. An integrated dc-dc buck regulator is utilized to
further reduce the current consumption. Figure 3.2 Power Supply Configuration for +8 dBm Devices on page 9 and Figure 3.3 Power
Supply Configuration for +19 dBm Devices on page 9 show how the external and internal supplies of the module are connected for
different part numbers.
DVDD
PAVDD
RFVDD
VDD
VREGVDD
AVDD
IOVDD
Digital
RF PA
RF
DC-DC
Analog
I/O Interfaces
Figure 3.2. Power Supply Configuration for +8 dBm Devices
DVDD
RFVDD
VDD
VREGVDD
AVDD
PAVDD
IOVDD
Digital
RF
DC-DC
Analog
RF PA
I/O Interfaces
Figure 3.3. Power Supply Configuration for +19 dBm Devices
3.3.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple
supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen
below a chosen threshold.
silabs.com | Building a more connected world.
Rev. 1.4 | 9
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
3.3.2 DC-DC Converter
The dc-dc buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3. Patented RF noise mitigation allows operation of the dc-dc converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The dc-dc converter may also
enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the dc-dc input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply
voltage droops due to excessive output current transients.
3.3.3 Power Domains
The BGM13P has two peripheral power domains for operation in EM2 and EM3. If all of the peripherals in a peripheral power domain
are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current
consumption of the device.
Table 3.2. Peripheral Power Subdomains
Peripheral Power Domain 1
Peripheral Power Domain 2
ACMP0
ACMP1
PCNT0
CSEN
ADC0
VDAC0
LETIMER0
LEUART0
LESENSE
I2C0
APORT
I2C1
-
IDAC
3.4 General Purpose Input/Output (GPIO)
BGM13P has up to 25 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.5 Clocking
3.5.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the BGM13P. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows
software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.
silabs.com | Building a more connected world.
Rev. 1.4 | 10
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
3.5.2 Internal Oscillators and Crystals
The BGM13P fully integrates several oscillator sources and two crystals.
• The high-frequency crystal oscillator (HFXO) and integrated 38.4 MHz crystal provide a precise timing reference for the MCU and
radio.
• The low-frequency crystal oscillator (LFXO) and integrated 32.768 kHz crystal provide an accurate timing reference for low energy
modes and the real-time-clock circuits.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire Viewer port with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) for low power operation where high accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
3.6 Counters/Timers and PWM
3.6.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.6.2 Wide Timer/Counter (WTIMER)
WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM
outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to
4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a
buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by
the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.
3.6.3 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy
and convenient data storage in all energy modes down to EM4H.
A secondary RTC is used by the RF protocol stack for event scheduling, leaving the primary RTCC block available exclusively for application software.
3.6.4 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
silabs.com | Building a more connected world.
Rev. 1.4 | 11
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
3.6.6 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep,
EM2 Deep Sleep, and EM3 Stop.
3.6.7 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.7 Communications and Other Digital Peripherals
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.7.3 Inter-Integrated Circuit Interface (I2C)
The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave
and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates
from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system.
The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated
transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.7.4 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in
turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied
by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.7.5 Low Energy Sensor Interface (LESENSE)
The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and
measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a
programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy
budget.
3.8 Security Features
3.8.1 General Purpose Cyclic Redundancy Check (GPCRC)
The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
silabs.com | Building a more connected world.
Rev. 1.4 | 12
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
3.8.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and
SHA-256).
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO1 block is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on
data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention.
CRYPTO also provides trigger signals for DMA read and write operations.
3.8.3 True Random Number Generator (TRNG)
The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22
and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).
3.8.4 Security Management Unit (SMU)
The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the
Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to
the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and
can optionally generate an interrupt.
3.9 Analog
3.9.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins.
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are
grouped by X/Y pairs.
3.9.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
3.9.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
sources, including pins configurable as either single-ended or differential.
3.9.4 Capacitive Sense (CSEN)
The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a
switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in
adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin
or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the
combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.
silabs.com | Building a more connected world.
Rev. 1.4 | 13
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
3.9.5 Digital to Analog Current Converter (IDAC)
The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC
input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of
various step sizes.
3.9.6 Digital to Analog Converter (VDAC)
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500
ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications
such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low
frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any
CPU intervention. The VDAC is available in all energy modes down to and including EM3.
3.9.7 Operational Amplifiers
The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and
are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple
common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to
rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB
space, and cost as compared with standalone opamps because they are integrated on-chip.
3.10 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the BGM13P. A wide range of reset sources are available, including several power supply
monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.
3.11 Core and Memory
3.11.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Up to 512 kB flash program memory
• Up to 64 kB RAM data memory
• Configuration and event handling of all peripherals
• 2-pin Serial-Wire debug interface
3.11.2 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
3.11.3 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
silabs.com | Building a more connected world.
Rev. 1.4 | 14
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
3.12 Memory Map
The BGM13P memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.4. BGM13P Memory Map — Core Peripherals and Code Space
silabs.com | Building a more connected world.
Rev. 1.4 | 15
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
System Overview
Figure 3.5. BGM13P Memory Map — Peripherals
3.13 Configuration Summary
Many peripherals on the BGM13P are available in multiple instances. However, certain USART, TIMER and WTIMER instances implement only a subset of the full features for that peripheral type. The table below describes the specific features available on these peripheral instances. All remaining peripherals support full configuration.
Table 3.3. Configuration Summary
Peripheral
Configuration
Pin Connections
USART0
IrDA SmartCard
US0_TX, US0_RX, US0_CLK, US0_CS
USART1
IrDA I2S SmartCard
US1_TX, US1_RX, US1_CLK, US1_CS
USART2
IrDA SmartCard
US2_TX, US2_RX, US2_CLK, US2_CS
TIMER0
with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
-
TIM1_CC[3:0]
WTIMER0
with DTI
WTIM0_CC[2:0], WTIM0_CDTI[2:0]
silabs.com | Building a more connected world.
Rev. 1.4 | 16
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
The BGM13P module has only one external supply pin (VDD). There are several internal supply rails mentioned in the electrical specifications, whose connections vary based on transmit power configuration. Refer to 3.3 Power for the relationship between the module's
external VDD pin and internal voltage supply rails.
Refer to Table 4.2 General Operating Conditions on page 19 for more details about operational supply and temperature limits.
silabs.com | Building a more connected world.
Rev. 1.4 | 17
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.1 Absolute Maximum Ratings
Stress levels beyond those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions beyond those indicated in the operation listings of this specification is not implied.
Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality
and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
Min
Typ
Max
Unit
TSTG
-40
—
85
°C
Voltage on any supply pin
VDDMAX
-0.3
—
3.8
V
Voltage ramp rate on any
supply pin
VDDRAMPMAX
—
—
1
V / µs
DC voltage on any GPIO pin
VDIGPIN
5V tolerant GPIO pins1 2 3
-0.3
—
Min of 5.25
and IOVDD
+2
V
Standard GPIO pins
-0.3
—
IOVDD+0.3
V
—
—
10
dBm
Maximum RF level at input
Test Condition
PRFMAX2G4
Total current into supply pins IVDDMAX
Source
—
—
200
mA
Total current into VSS
ground lines
IVSSMAX
Sink
—
—
200
mA
Current per I/O pin
IIOMAX
Sink
—
—
50
mA
Source
—
—
50
mA
Sink
—
—
200
mA
Source
—
—
200
mA
-40
—
105
°C
Current for all I/O pins
Junction temperature
IIOALLMAX
TJ
Note:
1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD.
2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source
below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the
maximum IO current specifications.
3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register.
Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.
silabs.com | Building a more connected world.
Rev. 1.4 | 18
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
The following subsections define the recommended operating conditions for the module.
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Operating ambient temperature range
TA
-G temperature grade
-40
25
85
°C
VDD operating supply voltage
VVDD
DCDC in regulation
2.4
3.3
3.8
V
DCDC in bypass, 50mA load
1.8
3.3
3.8
V
HFCORECLK frequency
fCORE
VSCALE2, MODE = WS1
—
—
40
MHz
VSCALE0, MODE = WS0
—
—
20
MHz
VSCALE2
—
—
40
MHz
VSCALE0
—
—
20
MHz
HFCLK frequency
fHFCLK
silabs.com | Building a more connected world.
Rev. 1.4 | 19
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.3 DC-DC Converter
Test conditions: V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.
Table 4.3. DC-DC Converter
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, IDCDC_LOAD = 50
mA
1.8
—
VVREGVDD_
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
Output voltage programmable range1
VDCDC_O
Max load current
ILOAD_MAX
MAX
—
VVREGVDD_
V
MAX
1.8
—
VVREGVDD
V
Low noise (LN) mode, Medium or
Heavy Drive2
—
—
70
mA
Low noise (LN) mode, Light
Drive2
—
—
50
mA
Low power (LP) mode,
LPCMPBIASEMxx3 = 0
—
—
75
µA
Low power (LP) mode,
LPCMPBIASEMxx3 = 3
—
—
10
mA
Note:
1. Due to internal dropout, the dc-dc output will never be able to reach its input voltage, VVREGVDD.
2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the
EMU_DCDCLOEM01CFG register, depending on the energy mode.
silabs.com | Building a more connected world.
Rev. 1.4 | 20
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.4 Current Consumption
4.1.4.1 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VDD = 3.3 V. T = 25 °C. Minimum and maximum values in this table represent the
worst conditions across process variation at T = 25 °C.
Table 4.4. Current Consumption 3.3 V using DC-DC Converter
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash2
—
87
—
µA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
69
—
µA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
70
—
µA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
82
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
76
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
615
—
µA/MHz
38.4 MHz crystal, CPU running
while loop from flash2
—
97
—
µA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
80
—
µA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
81
—
µA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
92
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
94
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
1145
—
µA/MHz
Current consumption in EM0 IACTIVE_CCM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in Low
Noise CCM mode3
19 MHz HFRCO, CPU running
while loop from flash
—
101
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
1124
—
µA/MHz
Current consumption in EM1 IEM1_DCM
mode with all peripherals disabled, dc-dc in Low Noise
DCM mode1
38.4 MHz crystal2
—
56
—
µA/MHz
38 MHz HFRCO
—
39
—
µA/MHz
26 MHz HFRCO
—
46
—
µA/MHz
1 MHz HFRCO
—
588
—
µA/MHz
19 MHz HFRCO
—
50
—
µA/MHz
1 MHz HFRCO
—
572
—
µA/MHz
Current consumption in EM0 IACTIVE_DCM
mode with all peripherals disabled, dc-dc in Low Noise
DCM mode1
Current consumption in EM0 IACTIVE_CCM
mode with all peripherals disabled, dc-dc in Low Noise
CCM mode3
Current consumption in EM1 IEM1_DCM_VS
mode with all peripherals disabled and voltage scaling
enabled, dc-dc in Low Noise
DCM mode1
silabs.com | Building a more connected world.
Test Condition
Rev. 1.4 | 21
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Full 64 kB RAM retention and
RTCC running from LFXO
—
1.4
—
µA
Full 64 kB RAM retention and
RTCC running from LFRCO
—
1.5
—
µA
1 bank RAM retention and RTCC
running from LFRCO5
—
1.3
—
µA
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
Full 64 kB RAM retention and
CRYOTIMER running from ULFRCO
—
1.14
—
µA
Current consumption in
EM4H mode, with voltage
scaling enabled
128 byte RAM retention, RTCC
running from LFXO
—
0.75
—
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.44
—
µA
128 byte RAM retention, no RTCC
—
0.42
—
µA
No RAM retention, no RTCC
—
0.07
—
µA
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled, dc-dc in LP mode4
Current consumption in
EM4S mode
IEM4H_VS
IEM4S
Test Condition
Note:
1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.
2. CMU_HFXOCTRL_LOWPOWER=0.
3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.
4. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD.
5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
silabs.com | Building a more connected world.
Rev. 1.4 | 22
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.4.2 Current Consumption Using Radio
Unless otherwise indicated, typical conditions are: VDD = 3.3 V. T = 25 °C. DC-DC on. Minimum and maximum values in this table
represent the worst conditions across process variation at T = 25 °C.
Table 4.5. Current Consumption Using Radio
Parameter
Symbol
Test Condition
Current consumption in receive mode, active packet
reception (MCU in EM1 @
38.4 MHz, peripheral clocks
disabled), T ≤ 85 °C
IRX_ACTIVE
Current consumption in reIRX_LISTEN
ceive mode, listening for
packet (MCU in EM1 @ 38.4
MHz, peripheral clocks disabled), T ≤ 85 °C
Current consumption in
transmit mode (MCU in EM1
@ 38.4 MHz, peripheral
clocks disabled), T ≤ 85 °C
ITX
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
125 kbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
10.5
—
mA
500 kbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
10.4
—
mA
1 Mbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
9.9
—
mA
2 Mbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
10.6
—
mA
125 kbit/s, 2GFSK, F = 2.4 GHz,
No radio clock prescaling
—
10.5
—
mA
500 kbit/s, 2GFSK, F = 2.4 GHz,
No radio clock prescaling
—
10.5
—
mA
1 Mbit/s, 2GFSK, F = 2.4 GHz, No
radio clock prescaling
—
10.9
—
mA
2 Mbit/s, 2GFSK, F = 2.4 GHz, No
radio clock prescaling
—
11.6
—
mA
F = 2.4 GHz, CW, 0 dBm output
power, Radio clock prescaled by 3
—
8.5
—
mA
F = 2.4 GHz, CW, 0 dBm output
power, Radio clock prescaled by 1
—
9.6
—
mA
F = 2.4 GHz, CW, 8 dBm output
power
—
27.1
—
mA
F = 2.4 GHz, CW, 19 dBm output
power
—
131
—
mA
Rev. 1.4 | 23
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.5 Wake Up Times
Table 4.6. Wake Up Times
Parameter
Symbol
Wake up time from EM1
tEM1_WU
Wake up from EM2
tEM2_WU
Wake up from EM3
Test Condition
tEM3_WU
Min
Typ
Max
Unit
—
3
—
AHB
Clocks
Code execution from flash
—
10.9
—
µs
Code execution from RAM
—
3.8
—
µs
Code execution from flash
—
10.9
—
µs
Code execution from RAM
—
3.8
—
µs
Wake up from EM4H1
tEM4H_WU
Executing from flash
—
90
—
µs
Wake up from EM4S1
tEM4S_WU
Executing from flash
—
300
—
µs
Time from release of reset
source to first instruction execution
tRESET
Soft Pin Reset released
—
51
—
µs
Any other reset released
—
358
—
µs
Power mode scaling time
tSCALE
VSCALE0 to VSCALE2, HFCLK =
19 MHz2 3
—
31.8
—
µs
VSCALE2 to VSCALE0, HFCLK =
19 MHz4
—
4.3
—
µs
Note:
1. Time from wake up request until first instruction is executed. Wakeup results in device reset.
2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.
3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition,
peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA
(with a 2.7 µF capacitor).
4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.
4.1.6 Brown Out Detector (BOD)
Table 4.7. Brown Out Detector (BOD)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
AVDD BOD threshold
VAVDDBOD
AVDD rising
—
—
1.8
V
AVDD falling (EM0/EM1)
1.62
—
—
V
AVDD falling (EM2/EM3)
1.53
—
—
V
AVDD BOD hysteresis
VAVDDBOD_HYST
—
20
—
mV
AVDD BOD response time
tAVDDBOD_DELAY Supply drops at 0.1V/µs rate
—
2.4
—
µs
EM4 BOD threshold
VEM4DBOD
AVDD rising
—
—
1.7
V
AVDD falling
1.45
—
—
V
—
25
—
mV
—
300
—
µs
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 BOD response time
tEM4BOD_DELAY
silabs.com | Building a more connected world.
Supply drops at 0.1V/µs rate
Rev. 1.4 | 24
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.7 Frequency Synthesizer
Table 4.8. Frequency Synthesizer
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF synthesizer frequency
range
fRANGE
2400 - 2483.5 MHz
2400
—
2483.5
MHz
LO tuning frequency resolution with 38.4 MHz crystal
fRES
2400 - 2483.5 MHz
—
—
73
Hz
Frequency deviation resolution with 38.4 MHz crystal
dfRES
2400 - 2483.5 MHz
—
—
73
Hz
Maximum frequency deviation with 38.4 MHz crystal
dfMAX
2400 - 2483.5 MHz
—
—
1677
kHz
silabs.com | Building a more connected world.
Rev. 1.4 | 25
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.8 2.4 GHz RF Transceiver Characteristics
4.1.8.1 RF Transmitter General Characteristics for 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.
Table 4.9. RF Transmitter General Characteristics for 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum TX power1
POUTMAX
19 dBm-rated part numbers.
—
19
—
dBm
8 dBm-rated part numbers
—
8
—
dBm
-27
—
dBm
Minimum active TX Power
POUTMIN
CW
Output power step size
POUTSTEP
-5 dBm< Output power < 0 dBm
—
0.5
—
dB
0 dBm < output power <
POUTMAX
—
0.5
—
dB
1.8 V < VVDD < 3.3 V, dc-dc in bypass, BGM13P32
—
4.8
—
dB
2.4 V < VVDD < 3.3 V, BGM13P22
—
0.05
—
dB
2.4 V < VVDD < 3.3 V using dc-dc
converter, BGM13P32
—
1.9
—
dB
From -40 to +85 °C, BGM13P22
—
1.7
—
dB
From -40 to +85 °C, BGM13P32
—
1.6
—
dB
Over RF tuning frequency range
—
0.3
—
dB
2400
—
2483.5
MHz
Output power variation vs
supply at POUTMAX
Output power variation vs
temperature at POUTMAX
POUTVAR_V
POUTVAR_T
Output power variation vs RF POUTVAR_F
frequency at POUTMAX
RF tuning frequency range
FRANGE
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.
4.1.8.2 RF Receiver General Characteristics for 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.
Table 4.10. RF Receiver General Characteristics for 2.4 GHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Receive mode maximum
spurious emission
SPURRX
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
silabs.com | Building a more connected world.
Test Condition
Min
Typ
Max
Unit
2400
—
2483.5
MHz
30 MHz to 1 GHz
—
-57
—
dBm
1 GHz to 12 GHz
—
-47
—
dBm
216 MHz to 960 MHz, Conducted
Measurement
—
-55.2
—
dBm
Above 960 MHz, Conducted
Measurement
—
-47.2
—
dBm
Rev. 1.4 | 26
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.8.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 125 kbps Data Rate
Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.
Table 4.11. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 125 kbps Data Rate
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Sensitivity, 0.1% BER
SENS
Signal is reference signal1. Using
dc-dc converter.
—
-103.2
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1.
—
-102.8
—
dBm
Note:
1. Reference signal is defined 2GFSK at -79 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 125 kbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm.
4.1.8.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 500 kbps Data Rate
Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.
Table 4.12. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 500 kbps Data Rate
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Sensitivity, 0.1% BER
SENS
Signal is reference signal1. Using
dc-dc converter.
—
-98.8
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1.
—
-97.6
—
dBm
Note:
1. Reference signal is defined 2GFSK at -72 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 500 kbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm.
4.1.8.5 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate
Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.
Table 4.13. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Sensitivity, 0.1% BER
SENS
Signal is reference signal1. Using
dc-dc converter.
—
-94.8
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1.
—
-94.4
—
dBm
Note:
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm.
silabs.com | Building a more connected world.
Rev. 1.4 | 27
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.8.6 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate
Unless otherwise indicated, typical conditions are: T = 25 °C, VDD = 3.3 V. DC-DC on. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Conducted measurement from the antenna feedpoint.
Table 4.14. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 2 Mbps Data Rate
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Sensitivity, 0.1% BER
SENS
Signal is reference signal1. Using
dc-dc converter.
—
-91.2
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1.
—
-91.1
—
dBm
Note:
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 2 Mbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm.
silabs.com | Building a more connected world.
Rev. 1.4 | 28
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.9 Oscillators
4.1.9.1 Low-Frequency Crystal Oscillator (LFXO)
Table 4.15. Low-Frequency Crystal Oscillator (LFXO)
Parameter
Symbol
Crystal frequency
fLFXO
Overall frequency tolerance
in all conditions1
FTLFXO
Test Condition
Min
Typ
Max
Unit
—
32.768
—
kHz
-100
—
100
ppm
Min
Typ
Max
Unit
—
38.4
—
MHz
-40
—
40
ppm
Note:
1. Nominal crystal frequency tolerance of ± 20 ppm.
4.1.9.2 High-Frequency Crystal Oscillator (HFXO)
Table 4.16. High-Frequency Crystal Oscillator (HFXO)
Parameter
Symbol
Test Condition
Crystal frequency
fHFXO
38.4 MHz required for radio transciever operation
Frequency tolerance for the
crystal
FTHFXO
4.1.9.3 Low-Frequency RC Oscillator (LFRCO)
Table 4.17. Low-Frequency RC Oscillator (LFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency
fLFRCO
ENVREF1 = 1
31.3
32.768
33.6
kHz
ENVREF1 = 0
31.3
32.768
33.4
kHz
—
500
—
µs
ENVREF = 1 in
CMU_LFRCOCTRL
—
342
—
nA
ENVREF = 0 in
CMU_LFRCOCTRL
—
494
—
nA
Startup time
tLFRCO
Current consumption 2
ILFRCO
Note:
1. In CMU_LFRCOCTRL register.
2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
silabs.com | Building a more connected world.
Rev. 1.4 | 29
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.9.4 High-Frequency RC Oscillator (HFRCO)
Table 4.18. High-Frequency RC Oscillator (HFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency accuracy
fHFRCO_ACC
At production calibrated frequencies, across supply voltage and
temperature
-2.5
—
2.5
%
Start-up time
tHFRCO
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
µs
fHFRCO ≤ 4 MHz
—
2.5
—
µs
fHFRCO = 38 MHz
—
267
299
µA
fHFRCO = 32 MHz
—
224
248
µA
fHFRCO = 26 MHz
—
189
211
µA
fHFRCO = 19 MHz
—
154
172
µA
fHFRCO = 16 MHz
—
133
148
µA
fHFRCO = 13 MHz
—
118
135
µA
fHFRCO = 7 MHz
—
89
100
µA
fHFRCO = 4 MHz
—
34
44
µA
fHFRCO = 2 MHz
—
29
40
µA
fHFRCO = 1 MHz
—
26
36
µA
—
0.8
—
%
Current consumption on all
supplies
IHFRCO
Coarse trim step size (% of
period)
SSHFRCO_COARS
Fine trim step size (% of period)
SSHFRCO_FINE
—
0.1
—
%
Period jitter
PJHFRCO
—
0.2
—
% RMS
Frequency limits
fHFRCO_BAND
FREQRANGE = 0, FINETUNINGEN = 0
3.47
—
6.15
MHz
FREQRANGE = 3, FINETUNINGEN = 0
6.24
—
11.45
MHz
FREQRANGE = 6, FINETUNINGEN = 0
11.3
—
19.8
MHz
FREQRANGE = 7, FINETUNINGEN = 0
13.45
—
22.8
MHz
FREQRANGE = 8, FINETUNINGEN = 0
16.5
—
29.0
MHz
FREQRANGE = 10, FINETUNINGEN = 0
23.11
—
40.63
MHz
FREQRANGE = 11, FINETUNINGEN = 0
27.27
—
48
MHz
FREQRANGE = 12, FINETUNINGEN = 0
33.33
—
54
MHz
E
silabs.com | Building a more connected world.
Rev. 1.4 | 30
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.9.5 Ultra-low Frequency RC Oscillator (ULFRCO)
Table 4.19. Ultra-low Frequency RC Oscillator (ULFRCO)
Parameter
Symbol
Oscillation frequency
fULFRCO
Test Condition
Min
Typ
Max
Unit
0.95
1
1.07
kHz
Min
Typ
Max
Unit
10000
—
—
cycles
10
—
—
years
Burst write, 128 words, average
time per word
20
26.3
30
µs
Single word
62
68.9
80
µs
4.1.10 Flash Memory Characteristics1
Table 4.20. Flash Memory Characteristics1
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
RETFLASH
Word (32-bit) programming
time
tW_PROG
Test Condition
Page erase time2
tPERASE
20
29.5
40
ms
Mass erase time3
tMERASE
20
30
40
ms
Device erase time4 5
tDERASE
—
56.2
70
ms
Erase current6
IERASE
—
—
2.0
mA
Write current6
IWRITE
—
—
3.5
mA
Supply voltage during flash
erase and write
VFLASH
1.62
—
3.6
V
Page Erase
Note:
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup
and hold times for flash control signals are included.
3. Mass erase is issued by the CPU and erases all flash.
4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW).
5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup
and hold times for flash control signals are included.
6. Measured at 25 °C.
silabs.com | Building a more connected world.
Rev. 1.4 | 31
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.11 General-Purpose I/O (GPIO)
Table 4.21. General-Purpose I/O (GPIO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input low voltage
VIL
GPIO pins
—
—
VDD*0.3
V
Input high voltage
VIH
GPIO pins
VDD*0.7
—
—
V
Output high voltage relative
to IOVDD
VOH
Sourcing 3 mA, VDD ≥ 3 V,
VDD*0.8
—
—
V
VDD*0.6
—
—
V
VDD*0.8
—
—
V
VDD*0.6
—
—
V
—
—
VDD*0.2
V
—
—
VDD*0.4
V
—
—
VDD*0.2
V
—
—
VDD*0.4
V
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sourcing 20 mA, VDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Output low voltage relative to VOL
IOVDD
Sinking 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, VDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sinking 8 mA, VDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
GPIO ≤ VDD
—
0.1
30
nA
Input leakage current on
5VTOL pads above VDD
I5VTOLLEAK
VDD < GPIO ≤ VDD + 2 V
—
3.3
15
µA
I/O pin pull-up/pull-down resistor
RPUD
30
40
65
kΩ
15
25
45
ns
—
1.8
—
ns
—
4.5
—
ns
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
Output fall time, From 70%
to 30% of VDD
tIOOF
CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
silabs.com | Building a more connected world.
Rev. 1.4 | 32
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output rise time, From 30%
to 70% of VDD
tIOOR
CL = 50 pF,
Min
Typ
Max
Unit
—
2.2
—
ns
—
7.4
—
ns
100
—
—
ns
Min
Typ
Max
Unit
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
RESETn low time to ensure
pin reset
TRESET
Note:
1. In GPIO_Pn_CTRL register.
4.1.12 Voltage Monitor (VMON)
Table 4.22. Voltage Monitor (VMON)
Parameter
Symbol
Test Condition
Supply current (including
I_SENSE)
IVMON
In EM0 or EM1, 1 active channel
—
6.3
8
µA
In EM0 or EM1, All channels active
—
12.5
15
µA
In EM2, EM3 or EM4, 1 channel
active and above threshold
—
62
—
nA
In EM2, EM3 or EM4, 1 channel
active and below threshold
—
62
—
nA
In EM2, EM3 or EM4, All channels
active and above threshold
—
99
—
nA
In EM2, EM3 or EM4, All channels
active and below threshold
—
99
—
nA
In EM0 or EM1
—
2
—
µA
In EM2, EM3 or EM4
—
2
—
nA
1.62
—
3.4
V
Coarse
—
200
—
mV
Fine
—
20
—
mV
Supply drops at 1V/µs rate
—
460
—
ns
—
26
—
mV
Loading of monitored supply
ISENSE
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
tVMON_RES
Hysteresis
VVMON_HYST
silabs.com | Building a more connected world.
Rev. 1.4 | 33
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.13 Analog to Digital Converter (ADC)
Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.
Table 4.23. Analog to Digital Converter (ADC)
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range1
VADCIN
Test Condition
Single ended
Differential
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
—
—
VFS
V
-VFS/2
—
VFS/2
V
1
—
VAVDD
V
Power supply rejection2
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4
—
270
290
µA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 4
—
125
—
µA
62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 4
—
80
—
µA
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer.
SPROG = 0, GPBIASACC = 1 4
Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL
SPROG = 0, GPBIASACC = 1 4
—
45
—
µA
—
8
—
µA
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP
Duty-cycled operation.
AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4
—
105
—
µA
35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4
—
70
—
µA
Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP
Continuous operation. WARMUPMODE3 = KEEPADCWARM
1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4
—
325
—
µA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 4
—
175
—
µA
62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 4
—
125
—
µA
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer.
SPROG = 0, GPBIASACC = 0 4
Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL
SPROG = 0, GPBIASACC = 0 4
—
85
—
µA
—
16
—
µA
Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP
Continuous operation. WARMUPMODE3 = KEEPADCWARM
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP
Duty-cycled operation.
AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4
—
160
—
µA
35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4
—
125
—
µA
Current from HFPERCLK
HFPERCLK = 16 MHz
—
140
—
µA
IADC_CLK
silabs.com | Building a more connected world.
Rev. 1.4 | 34
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
ADC clock frequency
Min
Typ
Max
Unit
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time5
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE3 = NORMAL
—
—
5
µs
WARMUPMODE3 = KEEPINSTANDBY
—
—
2
µs
WARMUPMODE3 = KEEPINSLOWACC
—
—
1
µs
Internal reference6, differential
measurement
58
67
—
dB
External reference7, differential
measurement
—
68
—
dB
Spurious-free dynamic range SFDRADC
(SFDR)
1 MSamples/s, 10 kHz full-scale
sine wave
—
75
—
dB
Differential non-linearity
(DNL)
DNLADC
12 bit resolution, No missing codes
-1
—
2
LSB
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
-6
—
6
LSB
Offset error
VADCOFFSETERR
-3
0
3
LSB
Gain error in ADC
VADCGAIN
Using internal reference
—
-0.2
3.5
%
Using external reference
—
-1
—
%
—
-1.84
—
mV/°C
Startup time of reference
generator and ADC core
SNDR at 1Msps and fIN =
10kHz
Temperature sensor slope
tADCSTART
SNDRADC
VTS_SLOPE
Test Condition
Note:
1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than
the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on
EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.
3. In ADCn_CNTL register.
4. In ADCn_BIASPROG register.
5. Derived from ADCCLK.
6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The
differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum
value is production-tested using sine wave input at 1.5 dB lower than full scale.
7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or
SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential
input range with this configuration is ± 1.25 V.
silabs.com | Building a more connected world.
Rev. 1.4 | 35
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.14 Analog Comparator (ACMP)
Table 4.24. Analog Comparator (ACMP)
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
Supply voltage
VACMPVDD
Active current not including
voltage reference3
IACMP
Current consumption of inter- IACMPREF
nal voltage reference3
Hysteresis (VCM = 1.25 V,
BIASPROG2 = 0x10, FULLBIAS2 = 1)
VACMPHYST
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
ACMPVDD =
ACMPn_CTRL_PWRSEL 1
—
—
VACMPVDD
V
BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0
1.8
—
VVREGVDD_
V
0x10 < BIASPROG2 ≤ 0x20 and
FULLBIAS2 = 1
2.1
BIASPROG2 = 0x10, FULLBIAS2
=0
—
306
—
nA
BIASPROG2 = 0x02, FULLBIAS2
=1
—
6.1
11
µA
BIASPROG2 = 0x20, FULLBIAS2
=1
—
74
92
µA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
µA
VADIV selected as input using
VDD/1
—
2.4
—
µA
HYSTSEL4 = HYST0
-3
0
3
mV
HYSTSEL4 = HYST1
5
18
27
mV
HYSTSEL4 = HYST2
12
33
50
mV
HYSTSEL4 = HYST3
17
46
67
mV
HYSTSEL4 = HYST4
23
57
86
mV
HYSTSEL4 = HYST5
26
68
104
mV
HYSTSEL4 = HYST6
30
79
130
mV
HYSTSEL4 = HYST7
34
90
155
mV
HYSTSEL4 = HYST8
-3
0
3
mV
HYSTSEL4 = HYST9
-27
-18
-5
mV
HYSTSEL4 = HYST10
-50
-33
-12
mV
HYSTSEL4 = HYST11
-67
-45
-17
mV
HYSTSEL4 = HYST12
-86
-57
-23
mV
HYSTSEL4 = HYST13
-104
-67
-26
mV
HYSTSEL4 = HYST14
-130
-78
-30
mV
HYSTSEL4 = HYST15
-155
-88
-34
mV
MAX
—
VVREGVDD_
V
MAX
Rev. 1.4 | 36
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Comparator delay5
tACMPDELAY
BIASPROG2 = 0x10, FULLBIAS2
=0
—
3.7
10
µs
BIASPROG2 = 0x02, FULLBIAS2
=1
—
360
1000
ns
BIASPROG2 = 0x20, FULLBIAS2
=1
—
35
—
ns
-35
—
35
mV
Offset voltage
VACMPOFFSET
BIASPROG2 =0x10, FULLBIAS2
=1
Reference voltage
VACMPREF
Internal 1.25 V reference
1
1.25
1.47
V
Internal 2.5 V reference
1.98
2.5
2.8
V
CSRESSEL6 = 0
—
infinite
—
kΩ
CSRESSEL6 = 1
—
15
—
kΩ
CSRESSEL6 = 2
—
27
—
kΩ
CSRESSEL6 = 3
—
39
—
kΩ
CSRESSEL6 = 4
—
51
—
kΩ
CSRESSEL6 = 5
—
102
—
kΩ
CSRESSEL6 = 6
—
164
—
kΩ
CSRESSEL6 = 7
—
239
—
kΩ
Capacitive sense internal re- RCSRES
sistance
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.
2. In ACMPn_CTRL register.
3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP +
IACMPREF.
4. In ACMPn_HYSTERESIS registers.
5. ± 100 mV differential drive.
6. In ACMPn_INPUTSEL register.
silabs.com | Building a more connected world.
Rev. 1.4 | 37
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.15 Digital to Analog Converter (VDAC)
DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.
Table 4.25. Digital to Analog Converter (VDAC)
Parameter
Symbol
Output voltage
VDACOUT
Test Condition
Min
Typ
Max
0
—
VVREF
V
-VVREF
—
VVREF
V
500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4
—
396
—
µA
44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4
—
72
—
µA
200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, REFSEL = 4,
SETTLETIME = 0x02, WARMUPTIME = 0x0A
—
1.2
—
µA
µA/MHz
Single-Ended
Differential1
Current consumption including references (2 channels)2
IDAC
Unit
Current from HFPERCLK3
IDAC_CLK
—
5.8
—
Sample rate
SRDAC
—
—
500
ksps
DAC clock frequency
fDAC
—
—
1
MHz
Conversion time
tDACCONV
fDAC = 1 MHz
2
—
—
µs
Settling time
tDACSETTLE
50% fs step settling to 5 LSB
—
2.5
—
µs
Startup time
tDACSTARTUP
Enable to 90% fs output, settling
to 10 LSB
—
—
12
µs
Output impedance
ROUT
DRIVESTRENGTH = 2, 0.4 V ≤
VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <
IOUT < 400 µA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 2, 0.1 V ≤
VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <
IOUT < 100 µA, Full supply range
—
2
—
Ω
Vout = 50% fs. DC
—
65.5
—
dB
Power supply rejection ratio4 PSRR
silabs.com | Building a more connected world.
Rev. 1.4 | 38
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Signal to noise and distortion SNDRDAC
ratio (1 kHz sine wave),
Noise band limited to 250
kHz
Test Condition
Min
Typ
Max
500 ksps, single-ended, internal
1.25 V reference
—
60.4
—
dB
500 ksps, single-ended, internal
2.5 V reference
—
61.6
—
dB
500 ksps, single-ended, 3.3 V
VDD reference
—
64.0
—
dB
500 ksps, differential, internal
1.25 V reference
—
63.3
—
dB
500 ksps, differential, internal
2.5 V reference
—
64.4
—
dB
500 ksps, differential, 3.3 V VDD
reference
—
65.8
—
dB
—
65.3
—
dB
—
66.7
—
dB
500 ksps, single-ended, 3.3 V
VDD reference
—
70.0
—
dB
500 ksps, differential, internal
1.25 V reference
—
67.8
—
dB
500 ksps, differential, internal
2.5 V reference
—
69.0
—
dB
500 ksps, differential, 3.3 V VDD
reference
—
68.5
—
dB
—
70.2
—
dB
Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal
ratio (1 kHz sine wave),
1.25 V reference
Noise band limited to 22 kHz
500 ksps, single-ended, internal
2.5 V reference
Unit
Total harmonic distortion
THD
Differential non-linearity5
DNLDAC
-0.99
—
1
LSB
Intergral non-linearity
INLDAC
-4
—
4
LSB
Offset error6
VOFFSET
T = 25 °C
-8
—
8
mV
Across operating temperature
range
-25
—
25
mV
T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or
2V5LN)
-2.5
—
2.5
%
T = 25 °C, Internal reference (REFSEL = 1V25 or 2V5)
-5
—
5
%
T = 25 °C, External reference
(REFSEL = VDD or EXT)
-1.8
—
1.8
%
Across operating temperature
range, Low-noise internal reference (REFSEL = 1V25LN or
2V5LN)
-3.5
—
3.5
%
Across operating temperature
range, Internal reference (REFSEL = 1V25 or 2V5)
-7.5
—
7.5
%
Across operating temperature
range, External reference (REFSEL = VDD or EXT)
-2.0
—
2.0
%
Gain error6
VGAIN
silabs.com | Building a more connected world.
Rev. 1.4 | 39
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
External load capactiance,
OUTSCALE=0
CLOAD
Test Condition
Min
Typ
Max
—
—
75
Unit
pF
Note:
1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is
limited to the single-ended range.
2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive
the load.
3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when
the clock to the DAC peripheral is enabled in the CMU.
4. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale
5. Entire range is monotonic and has no missing codes.
6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.
silabs.com | Building a more connected world.
Rev. 1.4 | 40
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.16 Current Digital to Analog Converter (IDAC)
Table 4.26. Current Digital to Analog Converter (IDAC)
Parameter
Symbol
Number of ranges
NIDAC_RANGES
Output current
IIDAC_OUT
Linear steps within each
range
NIDAC_STEPS
Step size
SSIDAC
Total accuracy, STEPSEL1 = ACCIDAC
0x10
Start up time
tIDAC_SU
silabs.com | Building a more connected world.
Test Condition
Min
Typ
Max
Unit
—
4
—
ranges
RANGSEL1 = RANGE0
0.05
—
1.6
µA
RANGSEL1 = RANGE1
1.6
—
4.7
µA
RANGSEL1 = RANGE2
0.5
—
16
µA
RANGSEL1 = RANGE3
2
—
64
µA
—
32
—
steps
RANGSEL1 = RANGE0
—
50
—
nA
RANGSEL1 = RANGE1
—
100
—
nA
RANGSEL1 = RANGE2
—
500
—
nA
RANGSEL1 = RANGE3
—
2
—
µA
EM0 or EM1, AVDD=3.3 V, T = 25
°C
-3
—
3
%
EM0 or EM1, Across operating
temperature range
-18
—
22
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE0, AVDD =
3.3 V, T = 25 °C
—
-2
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE1, AVDD =
3.3 V, T = 25 °C
—
-1.7
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE2, AVDD =
3.3 V, T = 25 °C
—
-0.8
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE3, AVDD =
3.3 V, T = 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD = 3.3 V,
T = 25 °C
—
-0.7
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD = 3.3 V,
T = 25 °C
—
-0.6
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD = 3.3 V,
T = 25 °C
—
-0.5
—
%
Output within 1% of steady state
value
—
5
—
µs
Rev. 1.4 | 41
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value),
Current consumption2
IIDAC
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
Output voltage compliance in ICOMP_SINK
sink mode, sink current
change relative to current
sunk at IOVDD
Test Condition
Min
Typ
Max
Unit
Range setting is changed
—
5
—
µs
Step value is changed
—
1
—
µs
EM0 or EM1 Source mode, excluding output current, Across operating temperature range
—
11
15
µA
EM0 or EM1 Sink mode, excluding output current, Across operating temperature range
—
13
18
µA
EM2 or EM3 Source mode, excluding output current, T = 25 °C
—
0.023
—
µA
EM2 or EM3 Sink mode, excluding output current, T = 25 °C
—
0.041
—
µA
EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C
—
11
—
µA
EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C
—
13
—
µA
RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.11
—
%
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.06
—
%
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
—
0.04
—
%
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
—
0.03
—
%
RANGESEL1=0, output voltage =
100 mV
—
0.12
—
%
RANGESEL1=1, output voltage =
100 mV
—
0.05
—
%
RANGESEL1=2, output voltage =
150 mV
—
0.04
—
%
RANGESEL1=3, output voltage =
250 mV
—
0.03
—
%
Note:
1. In IDAC_CURPROG register.
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).
silabs.com | Building a more connected world.
Rev. 1.4 | 42
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.17 Capacitive Sense (CSEN)
Table 4.27. Capacitive Sense (CSEN)
Parameter
Symbol
Test Condition
Single conversion time (1x
accumulation)
tCNV
Maximum external capacitive CEXTMAX
load
Min
Typ
Max
Unit
12-bit SAR Conversions
—
20.2
—
µs
16-bit SAR Conversions
—
26.4
—
µs
Delta Modulation Conversion (single comparison)
—
1.55
—
µs
IREFPROG=7 (Gain = 1x), including routing parasitics
—
68
—
pF
IREFPROG=0 (Gain = 10x), including routing parasitics
—
680
—
pF
—
1
—
kΩ
12-bit SAR conversions, 20 ms
conversion rate, IREFPROG=7
(Gain = 1x), 10 channels bonded
(total capacitance of 330 pF)1
—
326
—
nA
Delta Modulation conversions, 20
ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of
330 pF)1
—
226
—
nA
12-bit SAR conversions, 200 ms
conversion rate, IREFPROG=7
(Gain = 1x), 10 channels bonded
(total capacitance of 330 pF)1
—
33
—
nA
Delta Modulation conversions,
200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of
330 pF)1
—
25
—
nA
12-bit SAR conversions, 20 ms
scan rate, IREFPROG=0 (Gain =
10x), 8 samples per scan1
—
690
—
nA
Delta Modulation conversions, 20
ms scan rate, 8 comparisons per
sample (DMCR = 1, DMR = 2),
IREFPROG=0 (Gain = 10x), 8
samples per scan1
—
515
—
nA
12-bit SAR conversions, 200 ms
scan rate, IREFPROG=0 (Gain =
10x), 8 samples per scan1
—
79
—
nA
Delta Modulation conversions,
200 ms scan rate, 8 comparisons
per sample (DMCR = 1, DMR =
2), IREFPROG=0 (Gain = 10x), 8
samples per scan1
—
57
—
nA
Maximum external series im- REXTMAX
pedance
Supply current, EM2 bonded ICSEN_BOND
conversions, WARMUPMODE=NORMAL, WARMUPCNT=0
Supply current, EM2 scan
conversions, WARMUPMODE=NORMAL, WARMUPCNT=0
ICSEN_EM2
silabs.com | Building a more connected world.
Rev. 1.4 | 43
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Supply current, continuous
conversions, WARMUPMODE=KEEPCSENWARM
ICSEN_ACTIVE
SAR or Delta Modulation conversions of 33 pF capacitor, IREFPROG=0 (Gain = 10x), always
on
—
90.5
—
µA
HFPERCLK supply current
ICSEN_HFPERCLK Current contribution from
HFPERCLK when clock to CSEN
block is enabled.
—
2.25
—
µA/MHz
Note:
1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the peripheral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a
specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)).
silabs.com | Building a more connected world.
Rev. 1.4 | 44
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.18 Operational Amplifier (OPAMP)
Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as
specified in table footnotes1 2.
Table 4.28. Operational Amplifier (OPAMP)
Parameter
Symbol
Test Condition
Supply voltage (from AVDD)
VOPA
HCMDIS = 0, Rail-to-rail input
range
Input voltage
VIN
Min
Typ
Max
Unit
2
—
3.8
V
HCMDIS = 1
1.62
—
3.8
V
HCMDIS = 0, Rail-to-rail input
range
VVSS
—
VOPA
V
HCMDIS = 1
VVSS
—
VOPA-1.2
V
Input impedance
RIN
100
—
—
MΩ
Output voltage
VOUT
VVSS
—
VOPA
V
Load capacitance3
CLOAD
OUTSCALE = 0
—
—
75
pF
OUTSCALE = 1
—
—
37.5
pF
DRIVESTRENGTH = 2 or 3, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Buffer connection,
Full supply range
—
0.25
—
Ω
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <
IOUT < 400 µA, Buffer connection,
Full supply range
—
0.6
—
Ω
DRIVESTRENGTH = 2 or 3, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Buffer connection,
Full supply range
—
0.4
—
Ω
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <
IOUT < 100 µA, Buffer connection,
Full supply range
—
1
—
Ω
Buffer connection
0.99
1
1.01
-
3x Gain connection
2.93
2.99
3.05
-
16x Gain connection
15.07
15.7
16.33
-
DRIVESTRENGTH = 3, OUTSCALE = 0
—
580
—
µA
DRIVESTRENGTH = 2, OUTSCALE = 0
—
176
—
µA
DRIVESTRENGTH = 1, OUTSCALE = 0
—
13
—
µA
DRIVESTRENGTH = 0, OUTSCALE = 0
—
4.7
—
µA
Output impedance
Internal closed-loop gain
Active current4
ROUT
GCL
IOPA
silabs.com | Building a more connected world.
Rev. 1.4 | 45
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Open-loop gain
GOL
Loop unit-gain frequency5
Phase margin
Output voltage noise
UGF
PM
NOUT
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
DRIVESTRENGTH = 3
—
135
—
dB
DRIVESTRENGTH = 2
—
137
—
dB
DRIVESTRENGTH = 1
—
121
—
dB
DRIVESTRENGTH = 0
—
109
—
dB
DRIVESTRENGTH = 3, Buffer
connection
—
3.38
—
MHz
DRIVESTRENGTH = 2, Buffer
connection
—
0.9
—
MHz
DRIVESTRENGTH = 1, Buffer
connection
—
132
—
kHz
DRIVESTRENGTH = 0, Buffer
connection
—
34
—
kHz
DRIVESTRENGTH = 3, 3x Gain
connection
—
2.57
—
MHz
DRIVESTRENGTH = 2, 3x Gain
connection
—
0.71
—
MHz
DRIVESTRENGTH = 1, 3x Gain
connection
—
113
—
kHz
DRIVESTRENGTH = 0, 3x Gain
connection
—
28
—
kHz
DRIVESTRENGTH = 3, Buffer
connection
—
67
—
°
DRIVESTRENGTH = 2, Buffer
connection
—
69
—
°
DRIVESTRENGTH = 1, Buffer
connection
—
63
—
°
DRIVESTRENGTH = 0, Buffer
connection
—
68
—
°
DRIVESTRENGTH = 3, Buffer
connection, 10 Hz - 10 MHz
—
146
—
µVrms
DRIVESTRENGTH = 2, Buffer
connection, 10 Hz - 10 MHz
—
163
—
µVrms
DRIVESTRENGTH = 1, Buffer
connection, 10 Hz - 1 MHz
—
170
—
µVrms
DRIVESTRENGTH = 0, Buffer
connection, 10 Hz - 1 MHz
—
176
—
µVrms
DRIVESTRENGTH = 3, 3x Gain
connection, 10 Hz - 10 MHz
—
313
—
µVrms
DRIVESTRENGTH = 2, 3x Gain
connection, 10 Hz - 10 MHz
—
271
—
µVrms
DRIVESTRENGTH = 1, 3x Gain
connection, 10 Hz - 1 MHz
—
247
—
µVrms
DRIVESTRENGTH = 0, 3x Gain
connection, 10 Hz - 1 MHz
—
245
—
µVrms
Rev. 1.4 | 46
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Slew rate6
SR
DRIVESTRENGTH = 3,
INCBW=17
—
4.7
—
V/µs
DRIVESTRENGTH = 3,
INCBW=0
—
1.5
—
V/µs
DRIVESTRENGTH = 2,
INCBW=17
—
1.27
—
V/µs
DRIVESTRENGTH = 2,
INCBW=0
—
0.42
—
V/µs
DRIVESTRENGTH = 1,
INCBW=17
—
0.17
—
V/µs
DRIVESTRENGTH = 1,
INCBW=0
—
0.058
—
V/µs
DRIVESTRENGTH = 0,
INCBW=17
—
0.044
—
V/µs
DRIVESTRENGTH = 0,
INCBW=0
—
0.015
—
V/µs
Startup time8
TSTART
DRIVESTRENGTH = 2
—
—
12
µs
Input offset voltage
VOSI
DRIVESTRENGTH = 2 or 3, T =
25 °C
-2
—
2
mV
DRIVESTRENGTH = 1 or 0, T =
25 °C
-2
—
2
mV
DRIVESTRENGTH = 2 or 3,
across operating temperature
range
-12
—
12
mV
DRIVESTRENGTH = 1 or 0,
across operating temperature
range
-30
—
30
mV
DC power supply rejection
ratio9
PSRRDC
Input referred
—
70
—
dB
DC common-mode rejection
ratio9
CMRRDC
Input referred
—
70
—
dB
Total harmonic distortion
THDOPA
DRIVESTRENGTH = 2, 3x Gain
connection, 1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
—
90
—
dB
DRIVESTRENGTH = 0, 3x Gain
connection, 0.1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
—
90
—
dB
silabs.com | Building a more connected world.
Rev. 1.4 | 47
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V,
VOUTPUT = 0.5 V.
2. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5
V. Nominal voltage gain is 3.
3. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to
drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause
another ~10 µA current when the OPAMP drives 1.5 V between output and ground.
5. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth
product of the OPAMP and 1/3 attenuation of the feedback network.
6. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range.
7. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3,
or the OPAMP may not be stable.
8. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV.
9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR
and CMRR specifications do not apply to this transition region.
4.1.19 Pulse Counter (PCNT)
Table 4.29. Pulse Counter (PCNT)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input frequency
FIN
Asynchronous Single and Quadrature Modes
—
—
10
MHz
Sampled Modes with Debounce
filter set to 0.
—
—
8
kHz
Min
Typ
Max
Unit
4.1.20 Analog Port (APORT)
Table 4.30. Analog Port (APORT)
Parameter
Symbol
Test Condition
Supply current1 2
IAPORT
Operation in EM0/EM1
—
7
—
µA
Operation in EM2/EM3
—
63
—
nA
Note:
1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current.
2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of
the requests by the specified continuous current number.
silabs.com | Building a more connected world.
Rev. 1.4 | 48
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.21 I2C
4.1.21.1 I2C Standard-mode (Sm)1
Table 4.31. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
µs
SCL clock high time
tHIGH
4
—
—
µs
SDA set-up time
tSU_DAT
250
—
—
ns
SDA hold time3
tHD_DAT
100
—
3450
ns
Repeated START condition
set-up time
tSU_STA
4.7
—
—
µs
(Repeated) START condition tHD_STA
hold time
4
—
—
µs
STOP condition set-up time
tSU_STO
4
—
—
µs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
µs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
silabs.com | Building a more connected world.
Rev. 1.4 | 49
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.21.2 I2C Fast-mode (Fm)1
Table 4.32. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
µs
SCL clock high time
tHIGH
0.6
—
—
µs
SDA set-up time
tSU_DAT
100
—
—
ns
SDA hold time3
tHD_DAT
100
—
900
ns
Repeated START condition
set-up time
tSU_STA
0.6
—
—
µs
(Repeated) START condition tHD_STA
hold time
0.6
—
—
µs
STOP condition set-up time
tSU_STO
0.6
—
—
µs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
µs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
silabs.com | Building a more connected world.
Rev. 1.4 | 50
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.21.3 I2C Fast-mode Plus (Fm+)1
Table 4.33. I2C Fast-mode Plus (Fm+)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
1000
kHz
SCL clock low time
tLOW
0.5
—
—
µs
SCL clock high time
tHIGH
0.26
—
—
µs
SDA set-up time
tSU_DAT
50
—
—
ns
SDA hold time
tHD_DAT
100
—
—
ns
Repeated START condition
set-up time
tSU_STA
0.26
—
—
µs
(Repeated) START condition tHD_STA
hold time
0.26
—
—
µs
STOP condition set-up time
tSU_STO
0.26
—
—
µs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
µs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.
silabs.com | Building a more connected world.
Rev. 1.4 | 51
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
4.1.22 USART SPI
SPI Master Timing
Table 4.34. SPI Master Timing
Parameter
Symbol
SCLK period 1 2 3
tSCLK
CS to MOSI 1 2
Test Condition
Min
Typ
Max
Unit
2*
tHFPERCLK
—
—
ns
tCS_MO
-12.5
—
14
ns
SCLK to MOSI 1 2
tSCLK_MO
-8.5
—
10.5
ns
MISO setup time 1 2
tSU_MI
IOVDD = 1.62 V
90
—
—
ns
IOVDD = 3.0 V
42
—
—
ns
-9
—
—
ns
tH_MI
MISO hold time 1 2
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
3. tHFPERCLK is one period of the selected HFPERCLK.
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.1. SPI Master Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.4 | 52
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.35. SPI Slave Timing
Parameter
Symbol
SCLK period 1 2 3
Test Condition
Min
Typ
Max
Unit
tSCLK
6*
tHFPERCLK
—
—
ns
SCLK high time1 2 3
tSCLK_HI
2.5 *
tHFPERCLK
—
—
ns
SCLK low time1 2 3
tSCLK_LO
2.5 *
tHFPERCLK
—
—
ns
CS active to MISO 1 2
tCS_ACT_MI
4
—
70
ns
CS disable to MISO 1 2
tCS_DIS_MI
4
—
50
ns
MOSI setup time 1 2
tSU_MO
12.5
—
—
ns
MOSI hold time 1 2 3
tH_MO
13
—
—
ns
SCLK to MISO 1 2 3
tSCLK_MI
6 + 1.5 *
tHFPERCLK
—
45 + 2.5 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
3. tHFPERCLK is one period of the selected HFPERCLK.
CS
tCS_ACT_MI
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
tSCLK_LO
tSCLK
tH_MO
MOSI
tSCLK_MI
MISO
Figure 4.2. SPI Slave Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.4 | 53
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Typical Connection Diagrams
5. Typical Connection Diagrams
5.1 Network Co-Processor (NCP) Application with UART Host
The BGM13P can be controlled over the UART interface as a peripheral to an external host processor. Typical power supply, programming/debug, and host interface connections are shown in the figure below. Refer to AN958: Debugging and Programming Interfaces for
Custom Designs for more details.
RESETn
GPIO
GND
PD13
RESETn
PD14
VDD
PD15
PF7
PA0
PF6
Wireless
Module
+3.3 V
RESETn
RX
RESETn
TMS / SWDIO (PF1)
PTI_FRAME (PB13)
PF5
CTS
PA3
PF3
TDI
PA4
PF2
TDO / SWO
PA5
PF1
TMS / SWDIO
PB11
PF0
TCK / SWCLK
PTI_FRAME
PTI_DATA
PC11
PF4
PC10
PC9
PA2
PC8
PA1
PC7
TX
GND
1
3
5
7
9
+3.3 V
RTS
PC6
VSS
Host CPU
GND
PB13
VDD
+3.3 V
2
4
6
8
10
TDO / SWO (PF2)
TCK / SWCLK (PF0)
PTI_DATA (PB11)
Mini Simplicity Debug Connector
GND
(optional)
Figure 5.1. Connection Diagram: UART NCP Configuration
5.2 SoC Application
The BGM13P can be used in a standalone SoC configuration with no external host processor. Typical power supply and programming/
debug connections are shown in the figure below. Refer to AN958: Debugging and Programming Interfaces for Custom Designs for
more details.
PF7
RESETn
+3.3 V
+3.3 V
PF6
Wireless
Module
PA2
PF5
VDD
PA1
PF4
PF3
TDI
nCS
PA4
PF2
TDO / SWO
SCLK
PA5
PF1
TMS / SWDIO
MISO
PB11
PF0
TCK / SWCLK
MOSI
GND
PC11
PA3
Serial Flash
(optional)
VSS
PA0
PC10
PTI_DATA
PD15
PC9
Mini Simplicity Debug Connector
VDD
PC8
TDO / SWO (PF2)
TCK / SWCLK (PF0)
PTI_DATA (PB11)
PD14
PC7
TMS / SWDIO (PF1)
PTI_FRAME (PB13)
2
4
6
8
10
RESETn
PC6
RESETn
1
3
5
7
9
GND
PD13
PB13
+3.3 V
GND
GND
(optional)
PTI_FRAME
Figure 5.2. Connection Diagram: SoC Configuration
silabs.com | Building a more connected world.
Rev. 1.4 | 54
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Layout Guidelines
6. Layout Guidelines
For optimal performance of the BGM13P (with integrated antenna), please follow the PCB layout guidelines and ground plane recommendations indicated in this section.
6.1 Module Placement and Application PCB Layout Guidelines
• Place the module at the edge of the PCB, as shown in Figure 6.1 Recommended Application PCB Layout for BGM13P with Integrated Antenna on page 55.
• Do not place any metal (traces, components, battery, etc.) within the clearance area of the antenna.
• Connect all ground pads directly to a solid ground plane.
• Place the ground vias as close to the ground pads as possible.
• Do not place plastic or any other dielectric material in contact with the antenna.
Align module edge with PCB edge
GND
Place vias close to
each of the
module’s GND pads
Antenna Clearance
No metal in this area
GND
Wireless Module
(Top View)
GND
GND
Place vias along all PCB edges
Figure 6.1. Recommended Application PCB Layout for BGM13P with Integrated Antenna
silabs.com | Building a more connected world.
Rev. 1.4 | 55
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Layout Guidelines
Figure 6.2 Non-optimal Module Placements for BGM13P with Integrated Antenna on page 56 shows examples of layouts that will
result in severely degraded RF performance.
Figure 6.2. Non-optimal Module Placements for BGM13P with Integrated Antenna
The amount of ground plane surrounding the sides of the module will also impact the maximum RF range, as shown in Figure
6.3 Impact of GND Plane Size vs. Range for BGM13P on page 56.
Figure 6.3. Impact of GND Plane Size vs. Range for BGM13P
6.2 Effect of Plastic and Metal Materials
Do not place plastic or any other dielectric material in close proximity to the antenna.
Any metallic objects in close proximity to the antenna will prevent the antenna from radiating freely. The minimum recommended distance of metallic and/or conductive objects is 10 mm in any direction from the antenna except in the directions of the application PCB
ground planes.
6.3 Locating the Module Close to Human Body
Placing the module in contact with or very close to the human body will negatively impact antenna efficiency and reduce range.
silabs.com | Building a more connected world.
Rev. 1.4 | 56
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Layout Guidelines
6.4 2D Radiation Pattern Plots
Figure 6.4. Typical 2D Radiation Pattern – Front View
Figure 6.5. Typical 2D Radiation Pattern – Side View
silabs.com | Building a more connected world.
Rev. 1.4 | 57
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Layout Guidelines
Figure 6.6. Typical 2D Radiation Pattern – Top View
silabs.com | Building a more connected world.
Rev. 1.4 | 58
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Hardware Design Guidelines
7. Hardware Design Guidelines
The BGM13P is an easy-to-use module with regard to hardware application design. The guidelines in this section should be followed to
guarantee optimal performance.
7.1 Power Supply Requirements
Coin cell batteries cannot withstand high peak currents (e.g. higher than 15 mA). If the peak current exceeds 15 mA it is recommended
to place a 47 - 100 µF capacitor in parallel with the coin cell battery to improve battery life time. Note that the total current consumption
of the application is a combination of the radio, peripherals and MCU current consumption, and all power consumers must be taken into
account. BGM13P should be powered by a unipolar supply voltage with nominal value of 3.3 V.
7.2 Reset Functions
The BGM13P can be reset by three different methods: by pulling the RESET line low, by the internal watchdog timer or by software
command. The reset state in BGM13P does not provide any power saving functionality and is not recommended as a means to conserve power. BGM13P has an internal system power-up reset function. The RESET pin includes an on-chip pull-up resistor and can be
left unconnected if no external reset switch or source is used.
7.3 Debug and Firmware Updates
Refer to the following application note: AN958: Debugging and Programming Interfaces for Custom Designs.
7.3.1 Programming and Debug Connections
It is recommended to expose the debug pins in your own hardware design for firmware update and debug purposes. The following table
lists the required pins for JTAG connection and SWD connections.
Certain debug pins have internal pull-down or pull-ups enabled by default, and leaving them enabled may increase current consumption
if left connected to supply or ground. If the JTAG pins are enabled, the module must be power cycled to return to a SWD debug configuration.
Table 7.1. Debug Pins
Pin Name
Pin Number
JTAG Signal
SWD Signal
Comments
PF3
24
TDI
N/A
This pin is disabled after reset. Once enabled the pin
has a built-in pull-up.
PF2
23
TDO
N/A
This pin is disabled after reset.
PF1
22
TMS
SWDIO
Pin is enabled after reset and has a built-in pull-up.
PF0
21
TCK
SWCLK
Pin is enabled after reset and has a built-in pull-down.
7.3.2 Packet Trace Interface (PTI)
The BGM13P integrates a true PHY-level packet trace interface (PTI) with the MAC, allowing complete, non-intrusive capture of all
packets to and from the EFR32 Wireless STK development tools. The PTI_DATA and PTI_FRAME signals are configurable via software. Refer to Table 8.3 Alternate Functionality Overview on page 71 for pin availability.
silabs.com | Building a more connected world.
Rev. 1.4 | 59
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
8. Pin Definitions
8.1 BGM13P Device Pinout
Figure 8.1. BGM13P Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 8.2 GPIO Functionality Table or 8.3 Alternate Functionality Overview.
Table 8.1. BGM13P Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
GND
1
12
20
31
Ground
PD13
2
GPIO
PD14
3
GPIO
PD15
4
GPIO
PA0
5
GPIO
PA1
6
GPIO
PA2
7
GPIO
PA3
8
GPIO
silabs.com | Building a more connected world.
Rev. 1.4 | 60
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA4
9
GPIO
PA5
10
GPIO (5V)
PB11
11
GPIO
PB13
13
GPIO
PC6
14
GPIO (5V)
PC7
15
GPIO (5V)
PC8
16
GPIO (5V)
PC9
17
GPIO (5V)
PC10
18
GPIO (5V)
PC11
19
GPIO (5V)
PF0
21
GPIO (5V)
PF1
22
GPIO (5V)
PF2
23
GPIO (5V)
PF3
24
GPIO (5V)
PF4
25
GPIO (5V)
PF5
26
GPIO (5V)
PF6
27
GPIO (5V)
PF7
28
GPIO (5V)
30
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
VDD
29
Module Power Supply
RESETn
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.4 | 61
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
8.2 GPIO Functionality Table
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO
pin, followed by the functionality available on that pin. Refer to 8.3 Alternate Functionality Overview for a list of GPIO locations available
for each function.
Table 8.2. GPIO Functionality Table
GPIO Name
PA0
PA1
PA2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSDY BUSCX
ADC0_EXTN
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29
WTIM0_CC0 #0 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0 US0_RX
#31 US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
US1_TX #0 US1_RX
#31 US1_CLK #30
US1_CS #29
US1_CTS #28
US1_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT #30
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
LES_CH8
BUSCY BUSDX
ADC0_EXTP
VDAC0_EXT
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30
WTIM0_CC0 #1 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1 US0_RX
#0 US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
US1_TX #1 US1_RX
#0 US1_CLK #31
US1_CS #30
US1_CTS #29
US1_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT #31
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
LES_CH9
VDAC0_OUT1ALT /
OPA1_OUTALT #1
BUSDY BUSCX
OPA0_P
TIM0_CC0 #2
TIM0_CC1 #1
TIM0_CC2 #0
TIM0_CDTI0 #31
TIM0_CDTI1 #30
TIM0_CDTI2 #29
TIM1_CC0 #2
TIM1_CC1 #1
TIM1_CC2 #0
TIM1_CC3 #31
WTIM0_CC0 #2
WTIM0_CC1 #0 LETIM0_OUT0 #2 LETIM0_OUT1 #1
PCNT0_S0IN #2
PCNT0_S1IN #1
US0_TX #2 US0_RX
#1 US0_CLK #0
US0_CS #31
US0_CTS #30
US0_RTS #29
US1_TX #2 US1_RX
#1 US1_CLK #0
US1_CS #31
US1_CTS #30
US1_RTS #29
LEU0_TX #2
LEU0_RX #1
I2C0_SDA #2
I2C0_SCL #1
FRC_DCLK #2
FRC_DOUT #1
FRC_DFRAME #0
MODEM_DCLK #2
MODEM_DIN #1
MODEM_DOUT #0
PRS_CH6 #2
PRS_CH7 #1
PRS_CH8 #0
PRS_CH9 #10
ACMP0_O #2
ACMP1_O #2
LES_CH10
silabs.com | Building a more connected world.
Rev. 1.4 | 62
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
GPIO Name
PA3
PA4
PA5
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
VDAC0_OUT0 /
OPA0_OUT
TIM0_CC0 #3
TIM0_CC1 #2
TIM0_CC2 #1
TIM0_CDTI0 #0
TIM0_CDTI1 #31
TIM0_CDTI2 #30
TIM1_CC0 #3
TIM1_CC1 #2
TIM1_CC2 #1
TIM1_CC3 #0
WTIM0_CC0 #3
WTIM0_CC1 #1 LETIM0_OUT0 #3 LETIM0_OUT1 #2
PCNT0_S0IN #3
PCNT0_S1IN #2
US0_TX #3 US0_RX
#2 US0_CLK #1
US0_CS #0
US0_CTS #31
US0_RTS #30
US1_TX #3 US1_RX
#2 US1_CLK #1
US1_CS #0
US1_CTS #31
US1_RTS #30
LEU0_TX #3
LEU0_RX #2
I2C0_SDA #3
I2C0_SCL #2
FRC_DCLK #3
FRC_DOUT #2
FRC_DFRAME #1
MODEM_DCLK #3
MODEM_DIN #2
MODEM_DOUT #1
PRS_CH6 #3
PRS_CH7 #2
PRS_CH8 #1
PRS_CH9 #0
ACMP0_O #3
ACMP1_O #3
LES_CH11
GPIO_EM4WU8
VDAC0_OUT1ALT /
OPA1_OUTALT #2
BUSDY BUSCX
OPA0_N
TIM0_CC0 #4
TIM0_CC1 #3
TIM0_CC2 #2
TIM0_CDTI0 #1
TIM0_CDTI1 #0
TIM0_CDTI2 #31
TIM1_CC0 #4
TIM1_CC1 #3
TIM1_CC2 #2
TIM1_CC3 #1
WTIM0_CC0 #4
WTIM0_CC1 #2
WTIM0_CC2 #0 LETIM0_OUT0 #4 LETIM0_OUT1 #3
PCNT0_S0IN #4
PCNT0_S1IN #3
US0_TX #4 US0_RX
#3 US0_CLK #2
US0_CS #1
US0_CTS #0
US0_RTS #31
US1_TX #4 US1_RX
#3 US1_CLK #2
US1_CS #1
US1_CTS #0
US1_RTS #31
LEU0_TX #4
LEU0_RX #3
I2C0_SDA #4
I2C0_SCL #3
FRC_DCLK #4
FRC_DOUT #3
FRC_DFRAME #2
MODEM_DCLK #4
MODEM_DIN #3
MODEM_DOUT #2
PRS_CH6 #4
PRS_CH7 #3
PRS_CH8 #2
PRS_CH9 #1
ACMP0_O #4
ACMP1_O #4
LES_CH12
VDAC0_OUT0ALT /
OPA0_OUTALT #0
BUSCY BUSDX
TIM0_CC0 #5
TIM0_CC1 #4
TIM0_CC2 #3
TIM0_CDTI0 #2
TIM0_CDTI1 #1
TIM0_CDTI2 #0
TIM1_CC0 #5
TIM1_CC1 #4
TIM1_CC2 #3
TIM1_CC3 #2
WTIM0_CC0 #5
WTIM0_CC1 #3
WTIM0_CC2 #1 LETIM0_OUT0 #5 LETIM0_OUT1 #4
PCNT0_S0IN #5
PCNT0_S1IN #4
US0_TX #5 US0_RX
#4 US0_CLK #3
US0_CS #2
US0_CTS #1
US0_RTS #0
US1_TX #5 US1_RX
#4 US1_CLK #3
US1_CS #2
US1_CTS #1
US1_RTS #0
US2_TX #0 US2_RX
#31 US2_CLK #30
US2_CS #29
US2_CTS #28
US2_RTS #27
LEU0_TX #5
LEU0_RX #4
I2C0_SDA #5
I2C0_SCL #4
FRC_DCLK #5
FRC_DOUT #4
FRC_DFRAME #3
MODEM_DCLK #5
MODEM_DIN #4
MODEM_DOUT #3
CMU_CLKI0 #4
PRS_CH6 #5
PRS_CH7 #4
PRS_CH8 #3
PRS_CH9 #2
ACMP0_O #5
ACMP1_O #5
LES_CH13
ETM_TCLK #1
silabs.com | Building a more connected world.
Rev. 1.4 | 63
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
GPIO Name
PB11
PB13
PC6
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSCY BUSDX
OPA2_P
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3
WTIM0_CC0 #15
WTIM0_CC1 #13
WTIM0_CC2 #11
WTIM0_CDTI0 #7
WTIM0_CDTI1 #5
WTIM0_CDTI2 #3
LETIM0_OUT0 #6
LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6 US0_RX
#5 US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
US1_TX #6 US1_RX
#5 US1_CLK #4
US1_CS #3
US1_CTS #2
US1_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
BUSCY BUSDX
OPA2_N
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5
WTIM0_CC0 #17
WTIM0_CC1 #15
WTIM0_CC2 #13
WTIM0_CDTI0 #9
WTIM0_CDTI1 #7
WTIM0_CDTI2 #5
LETIM0_OUT0 #8
LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8 US0_RX
#7 US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
US1_TX #8 US1_RX
#7 US1_CLK #6
US1_CS #5
US1_CTS #4
US1_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
CMU_CLKI0 #0
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
BUSBY BUSAX
TIM0_CC0 #11
TIM0_CC1 #10
TIM0_CC2 #9
TIM0_CDTI0 #8
TIM0_CDTI1 #7
TIM0_CDTI2 #6
TIM1_CC0 #11
TIM1_CC1 #10
TIM1_CC2 #9
TIM1_CC3 #8
WTIM0_CC0 #26
WTIM0_CC1 #24
WTIM0_CC2 #22
WTIM0_CDTI0 #18
WTIM0_CDTI1 #16
WTIM0_CDTI2 #14
LETIM0_OUT0 #11
LETIM0_OUT1 #10
PCNT0_S0IN #11
PCNT0_S1IN #10
US0_TX #11
US0_RX #10
US0_CLK #9
US0_CS #8
US0_CTS #7
US0_RTS #6
US1_TX #11
US1_RX #10
US1_CLK #9
US1_CS #8
US1_CTS #7
US1_RTS #6
LEU0_TX #11
LEU0_RX #10
I2C0_SDA #11
I2C0_SCL #10
FRC_DCLK #11
FRC_DOUT #10
FRC_DFRAME #9
MODEM_DCLK #11
MODEM_DIN #10
MODEM_DOUT #9
CMU_CLK0 #2
CMU_CLKI0 #2
PRS_CH0 #8
PRS_CH9 #11
PRS_CH10 #0
PRS_CH11 #5
ACMP0_O #11
ACMP1_O #11
ETM_TCLK #3
silabs.com | Building a more connected world.
Rev. 1.4 | 64
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
GPIO Name
PC7
PC8
PC9
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #12
TIM0_CC1 #11
TIM0_CC2 #10
TIM0_CDTI0 #9
TIM0_CDTI1 #8
TIM0_CDTI2 #7
TIM1_CC0 #12
TIM1_CC1 #11
TIM1_CC2 #10
TIM1_CC3 #9
WTIM0_CC0 #27
WTIM0_CC1 #25
WTIM0_CC2 #23
WTIM0_CDTI0 #19
WTIM0_CDTI1 #17
WTIM0_CDTI2 #15
LETIM0_OUT0 #12
LETIM0_OUT1 #11
PCNT0_S0IN #12
PCNT0_S1IN #11
US0_TX #12
US0_RX #11
US0_CLK #10
US0_CS #9
US0_CTS #8
US0_RTS #7
US1_TX #12
US1_RX #11
US1_CLK #10
US1_CS #9
US1_CTS #8
US1_RTS #7
LEU0_TX #12
LEU0_RX #11
I2C0_SDA #12
I2C0_SCL #11
FRC_DCLK #12
FRC_DOUT #11
FRC_DFRAME #10
MODEM_DCLK #12
MODEM_DIN #11
MODEM_DOUT #10
CMU_CLK1 #2
PRS_CH0 #9
PRS_CH9 #12
PRS_CH10 #1
PRS_CH11 #0
ACMP0_O #12
ACMP1_O #12
ETM_TD0
BUSBY BUSAX
TIM0_CC0 #13
TIM0_CC1 #12
TIM0_CC2 #11
TIM0_CDTI0 #10
TIM0_CDTI1 #9
TIM0_CDTI2 #8
TIM1_CC0 #13
TIM1_CC1 #12
TIM1_CC2 #11
TIM1_CC3 #10
WTIM0_CC0 #28
WTIM0_CC1 #26
WTIM0_CC2 #24
WTIM0_CDTI0 #20
WTIM0_CDTI1 #18
WTIM0_CDTI2 #16
LETIM0_OUT0 #13
LETIM0_OUT1 #12
PCNT0_S0IN #13
PCNT0_S1IN #12
US0_TX #13
US0_RX #12
US0_CLK #11
US0_CS #10
US0_CTS #9
US0_RTS #8
US1_TX #13
US1_RX #12
US1_CLK #11
US1_CS #10
US1_CTS #9
US1_RTS #8
LEU0_TX #13
LEU0_RX #12
I2C0_SDA #13
I2C0_SCL #12
FRC_DCLK #13
FRC_DOUT #12
FRC_DFRAME #11
MODEM_DCLK #13
MODEM_DIN #12
MODEM_DOUT #11
PRS_CH0 #10
PRS_CH9 #13
PRS_CH10 #2
PRS_CH11 #1
ACMP0_O #13
ACMP1_O #13
ETM_TD1
BUSAY BUSBX
TIM0_CC0 #14
TIM0_CC1 #13
TIM0_CC2 #12
TIM0_CDTI0 #11
TIM0_CDTI1 #10
TIM0_CDTI2 #9
TIM1_CC0 #14
TIM1_CC1 #13
TIM1_CC2 #12
TIM1_CC3 #11
WTIM0_CC0 #29
WTIM0_CC1 #27
WTIM0_CC2 #25
WTIM0_CDTI0 #21
WTIM0_CDTI1 #19
WTIM0_CDTI2 #17
LETIM0_OUT0 #14
LETIM0_OUT1 #13
PCNT0_S0IN #14
PCNT0_S1IN #13
US0_TX #14
US0_RX #13
US0_CLK #12
US0_CS #11
US0_CTS #10
US0_RTS #9
US1_TX #14
US1_RX #13
US1_CLK #12
US1_CS #11
US1_CTS #10
US1_RTS #9
LEU0_TX #14
LEU0_RX #13
I2C0_SDA #14
I2C0_SCL #13
FRC_DCLK #14
FRC_DOUT #13
FRC_DFRAME #12
MODEM_DCLK #14
MODEM_DIN #13
MODEM_DOUT #12
PRS_CH0 #11
PRS_CH9 #14
PRS_CH10 #3
PRS_CH11 #2
ACMP0_O #14
ACMP1_O #14
ETM_TD2
silabs.com | Building a more connected world.
Rev. 1.4 | 65
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
GPIO Name
PC10
PC11
PD13
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
BUSBY BUSAX
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12
WTIM0_CC0 #30
WTIM0_CC1 #28
WTIM0_CC2 #26
WTIM0_CDTI0 #22
WTIM0_CDTI1 #20
WTIM0_CDTI2 #18
LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
US1_TX #15
US1_RX #14
US1_CLK #13
US1_CS #12
US1_CTS #11
US1_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
I2C1_SDA #19
I2C1_SCL #18
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT #13
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
ETM_TD3
GPIO_EM4WU12
BUSAY BUSBX
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13
WTIM0_CC0 #31
WTIM0_CC1 #29
WTIM0_CC2 #27
WTIM0_CDTI0 #23
WTIM0_CDTI1 #21
WTIM0_CDTI2 #19
LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
US1_TX #16
US1_RX #15
US1_CLK #14
US1_CS #13
US1_CTS #12
US1_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
I2C1_SDA #20
I2C1_SCL #19
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT #14
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
VDAC0_OUT0ALT /
OPA0_OUTALT #1
BUSCY BUSDX
OPA1_P
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18
WTIM0_CDTI0 #29
WTIM0_CDTI1 #27
WTIM0_CDTI2 #25
LETIM0_OUT0 #21
LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21
US0_RX #20
US0_CLK #19
US0_CS #18
US0_CTS #17
US0_RTS #16
US1_TX #21
US1_RX #20
US1_CLK #19
US1_CS #18
US1_CTS #17
US1_RTS #16
LEU0_TX #21
LEU0_RX #20
I2C0_SDA #21
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT #19
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
LES_CH5
silabs.com | Building a more connected world.
Rev. 1.4 | 66
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
GPIO Name
PD14
PD15
PF0
Pin Alternate Functionality / Description
Analog
Timers
Communication
BUSDY BUSCX
VDAC0_OUT1 /
OPA1_OUT
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19
WTIM0_CDTI0 #30
WTIM0_CDTI1 #28
WTIM0_CDTI2 #26
LETIM0_OUT0 #22
LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22
US0_RX #21
US0_CLK #20
US0_CS #19
US0_CTS #18
US0_RTS #17
US1_TX #22
US1_RX #21
US1_CLK #20
US1_CS #19
US1_CTS #18
US1_RTS #17
LEU0_TX #22
LEU0_RX #21
I2C0_SDA #22
I2C0_SCL #21
VDAC0_OUT0ALT /
OPA0_OUTALT #2
BUSCY BUSDX
OPA1_N
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20
WTIM0_CDTI0 #31
WTIM0_CDTI1 #29
WTIM0_CDTI2 #27
LETIM0_OUT0 #23
LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21
WTIM0_CDTI1 #30
WTIM0_CDTI2 #28
LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
BUSBY BUSAX
silabs.com | Building a more connected world.
Radio
Other
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT #20
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
LES_CH6
GPIO_EM4WU4
US0_TX #23
US0_RX #22
US0_CLK #21
US0_CS #20
US0_CTS #19
US0_RTS #18
US1_TX #23
US1_RX #22
US1_CLK #21
US1_CS #20
US1_CTS #19
US1_RTS #18
LEU0_TX #23
LEU0_RX #22
I2C0_SDA #23
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT #21
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
LES_CH7
DBG_SWO #2
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
US1_TX #24
US1_RX #23
US1_CLK #22
US1_CS #21
US1_CTS #20
US1_RTS #19
US2_TX #14
US2_RX #13
US2_CLK #12
US2_CS #11
US2_CTS #10
US2_RTS #9
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT #22
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
BOOT_TX
Rev. 1.4 | 67
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PF1
PF2
PF3
Timers
Communication
Radio
Other
BUSAY BUSBX
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22
WTIM0_CDTI1 #31
WTIM0_CDTI2 #29
LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
US1_TX #25
US1_RX #24
US1_CLK #23
US1_CS #22
US1_CTS #21
US1_RTS #20
US2_TX #15
US2_RX #14
US2_CLK #13
US2_CS #12
US2_CTS #11
US2_RTS #10
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT #23
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
BOOT_RX
BUSBY BUSAX
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23
WTIM0_CDTI2 #30
LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
US1_TX #26
US1_RX #25
US1_CLK #24
US1_CS #23
US1_CTS #22
US1_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT #24
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO
DBG_SWO #0
GPIO_EM4WU0
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24
WTIM0_CDTI2 #31
LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
US1_TX #27
US1_RX #26
US1_CLK #25
US1_CS #24
US1_CTS #23
US1_RTS #22
US2_TX #16
US2_RX #15
US2_CLK #14
US2_CS #13
US2_CTS #12
US2_RTS #11
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT #25
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI
BUSAY BUSBX
silabs.com | Building a more connected world.
Rev. 1.4 | 68
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PF4
PF5
BUSBY BUSAX
BUSAY BUSBX
silabs.com | Building a more connected world.
Timers
Communication
Radio
Other
TIM0_CC0 #28
TIM0_CC1 #27
TIM0_CC2 #26
TIM0_CDTI0 #25
TIM0_CDTI1 #24
TIM0_CDTI2 #23
TIM1_CC0 #28
TIM1_CC1 #27
TIM1_CC2 #26
TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27
PCNT0_S0IN #28
PCNT0_S1IN #27
US0_TX #28
US0_RX #27
US0_CLK #26
US0_CS #25
US0_CTS #24
US0_RTS #23
US1_TX #28
US1_RX #27
US1_CLK #26
US1_CS #25
US1_CTS #24
US1_RTS #23
US2_TX #17
US2_RX #16
US2_CLK #15
US2_CS #14
US2_CTS #13
US2_RTS #12
LEU0_TX #28
LEU0_RX #27
I2C0_SDA #28
I2C0_SCL #27
FRC_DCLK #28
FRC_DOUT #27
FRC_DFRAME #26
MODEM_DCLK #28
MODEM_DIN #27
MODEM_DOUT #26
PRS_CH0 #4
PRS_CH1 #3
PRS_CH2 #2
PRS_CH3 #1
ACMP0_O #28
ACMP1_O #28
TIM0_CC0 #29
TIM0_CC1 #28
TIM0_CC2 #27
TIM0_CDTI0 #26
TIM0_CDTI1 #25
TIM0_CDTI2 #24
TIM1_CC0 #29
TIM1_CC1 #28
TIM1_CC2 #27
TIM1_CC3 #26 LETIM0_OUT0 #29 LETIM0_OUT1 #28
PCNT0_S0IN #29
PCNT0_S1IN #28
US0_TX #29
US0_RX #28
US0_CLK #27
US0_CS #26
US0_CTS #25
US0_RTS #24
US1_TX #29
US1_RX #28
US1_CLK #27
US1_CS #26
US1_CTS #25
US1_RTS #24
US2_TX #18
US2_RX #17
US2_CLK #16
US2_CS #15
US2_CTS #14
US2_RTS #13
LEU0_TX #29
LEU0_RX #28
I2C0_SDA #29
I2C0_SCL #28
FRC_DCLK #29
FRC_DOUT #28
FRC_DFRAME #27
MODEM_DCLK #29
MODEM_DIN #28
MODEM_DOUT #27
PRS_CH0 #5
PRS_CH1 #4
PRS_CH2 #3
PRS_CH3 #2
ACMP0_O #29
ACMP1_O #29
Rev. 1.4 | 69
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PF6
PF7
BUSBY BUSAX
BUSAY BUSBX
silabs.com | Building a more connected world.
Timers
Communication
Radio
Other
TIM0_CC0 #30
TIM0_CC1 #29
TIM0_CC2 #28
TIM0_CDTI0 #27
TIM0_CDTI1 #26
TIM0_CDTI2 #25
TIM1_CC0 #30
TIM1_CC1 #29
TIM1_CC2 #28
TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT1 #29
PCNT0_S0IN #30
PCNT0_S1IN #29
US0_TX #30
US0_RX #29
US0_CLK #28
US0_CS #27
US0_CTS #26
US0_RTS #25
US1_TX #30
US1_RX #29
US1_CLK #28
US1_CS #27
US1_CTS #26
US1_RTS #25
US2_TX #19
US2_RX #18
US2_CLK #17
US2_CS #16
US2_CTS #15
US2_RTS #14
LEU0_TX #30
LEU0_RX #29
I2C0_SDA #30
I2C0_SCL #29
FRC_DCLK #30
FRC_DOUT #29
FRC_DFRAME #28
MODEM_DCLK #30
MODEM_DIN #29
MODEM_DOUT #28
CMU_CLK1 #7
PRS_CH0 #6
PRS_CH1 #5
PRS_CH2 #4
PRS_CH3 #3
ACMP0_O #30
ACMP1_O #30
TIM0_CC0 #31
TIM0_CC1 #30
TIM0_CC2 #29
TIM0_CDTI0 #28
TIM0_CDTI1 #27
TIM0_CDTI2 #26
TIM1_CC0 #31
TIM1_CC1 #30
TIM1_CC2 #29
TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT1 #30
PCNT0_S0IN #31
PCNT0_S1IN #30
US0_TX #31
US0_RX #30
US0_CLK #29
US0_CS #28
US0_CTS #27
US0_RTS #26
US1_TX #31
US1_RX #30
US1_CLK #29
US1_CS #28
US1_CTS #27
US1_RTS #26
US2_TX #20
US2_RX #19
US2_CLK #18
US2_CS #17
US2_CTS #16
US2_RTS #15
LEU0_TX #31
LEU0_RX #30
I2C0_SDA #31
I2C0_SCL #30
FRC_DCLK #31
FRC_DOUT #30
FRC_DFRAME #29
MODEM_DCLK #31
MODEM_DIN #30
MODEM_DOUT #29
CMU_CLKI0 #1
CMU_CLK0 #7
PRS_CH0 #7
PRS_CH1 #6
PRS_CH2 #5
PRS_CH3 #4
ACMP0_O #31
ACMP1_O #31
GPIO_EM4WU1
Rev. 1.4 | 70
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
8.3 Alternate Functionality Overview
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO
pin. Refer to 8.2 GPIO Functionality Table for a list of functions available on each GPIO pin.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 8.3. Alternate Functionality Overview
Alternate
Functionality
ACMP0_O
LOCATION
0-3
4-7
8 - 11
12 - 15
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
2: PA2
6: PB11
3: PA3
ACMP1_O
16 - 19
20 - 23
16: PC11
21: PD13
24: PF0
28: PF4
13: PC8
22: PD14
25: PF1
29: PF5
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
21: PD13
24: PF0
28: PF4
15: PC10
28 - 31
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
13: PC8
22: PD14
25: PF1
29: PF5
2: PA2
6: PB11
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
3: PA3
15: PC10
16: PC11
24 - 27
Description
Analog comparator
ACMP0, digital output.
Analog comparator
ACMP1, digital output.
0: PA0
Analog to digital
converter ADC0 external reference input negative pin.
0: PA1
Analog to digital
converter ADC0 external reference input positive pin.
BOOT_RX
0: PF1
Bootloader RX.
BOOT_TX
0: PF0
Bootloader TX.
ADC0_EXTN
ADC0_EXTP
CMU_CLK0
CMU_CLK1
CMU_CLKI0
0: PA1
5: PD14
2: PC6
6: PF2
3: PC11
7: PF7
0: PA0
5: PD15
2: PC7
6: PF3
3: PC10
7: PF6
0: PB13
4: PA5
1: PF7
2: PC6
silabs.com | Building a more connected world.
Clock Management
Unit, clock output
number 0.
Clock Management
Unit, clock output
number 1.
Clock Management
Unit, clock input
number 0.
Rev. 1.4 | 71
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
0: PF0
DBG_SWCLKTCK
DBG_SWDIOTMS
16 - 19
20 - 23
24 - 27
28 - 31
Description
Debug-interface
Serial Wire clock
input and JTAG
Test Clock.
Debug-interface
Serial Wire data input / output and
JTAG Test Mode
Select.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull up.
0: PF2
1: PB13
2: PD15
3: PC11
0: PF3
Debug-interface
Serial Wire viewer
Output.
Note that this function is not enabled
after reset, and
must be enabled by
software to be
used.
Debug-interface
JTAG Test Data In.
Note that this function becomes available after the first
valid JTAG command is received,
and has a built-in
pull up when JTAG
is active.
DBG_TDI
0: PF2
Debug-interface
JTAG Test Data
Out.
Note that this function becomes available after the first
valid JTAG command is received.
DBG_TDO
ETM_TCLK
12 - 15
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull down.
0: PF1
DBG_SWO
8 - 11
1: PA5
3: PC6
3: PC7
ETM_TD0
silabs.com | Building a more connected world.
Embedded Trace
Module ETM clock .
Embedded Trace
Module ETM data
0.
Rev. 1.4 | 72
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
3: PC8
Embedded Trace
Module ETM data
1.
3: PC9
Embedded Trace
Module ETM data
2.
3: PC10
Embedded Trace
Module ETM data
3.
ETM_TD1
ETM_TD2
ETM_TD3
FRC_DCLK
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
2: PA2
6: PB11
3: PA3
FRC_DFRAME
21: PD13
24: PF0
28: PF4
13: PC8
22: PD14
25: PF1
29: PF5
14: PC9
23: PD15
26: PF2
30: PF6
16: PC11
27: PF3
31: PF7
20: PD14
24: PF2
28: PF6
15: PC10
0: PA2
4: PB11
9: PC6
12: PC9
1: PA3
6: PB13
10: PC7
13: PC10
21: PD15
25: PF3
29: PF7
11: PC8
14: PC11
22: PF0
26: PF4
30: PA0
23: PF1
27: PF5
31: PA1
2: PA4
3: PA5
FRC_DOUT
19: PD13
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
3: PA4
Frame Controller,
Data Sniffer Clock.
Frame Controller,
Data Sniffer Frame
active
Frame Controller,
Data Sniffer Output.
0: PF2
Pin can be used to
wake the system
up from EM4
0: PF7
Pin can be used to
wake the system
up from EM4
0: PD14
Pin can be used to
wake the system
up from EM4
0: PA3
Pin can be used to
wake the system
up from EM4
0: PB13
Pin can be used to
wake the system
up from EM4
0: PC10
Pin can be used to
wake the system
up from EM4
GPIO_EM4WU0
GPIO_EM4WU1
GPIO_EM4WU4
GPIO_EM4WU8
GPIO_EM4WU9
GPIO_EM4WU12
I2C0_SCL
Description
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
3: PA4
silabs.com | Building a more connected world.
I2C0 Serial Clock
Line input / output.
Rev. 1.4 | 73
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
I2C0_SDA
LOCATION
0-3
4-7
8 - 11
12 - 15
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
2: PA2
6: PB11
3: PA3
16 - 19
20 - 23
16: PC11
21: PD13
24: PF0
28: PF4
13: PC8
22: PD14
25: PF1
29: PF5
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
15: PC10
19: PC10
LES_CH7
LES_CH8
LES_CH9
LES_CH10
LES_CH11
LES_CH12
LES_CH13
LETIM0_OUT0
20: PC11
I2C1 Serial Data input / output.
LESENSE channel
5.
0: PD14
LESENSE channel
6.
0: PD15
LESENSE channel
7.
0: PA0
LESENSE channel
8.
0: PA1
LESENSE channel
9.
0: PA2
LESENSE channel
10.
0: PA3
LESENSE channel
11.
0: PA4
LESENSE channel
12.
0: PA5
LESENSE channel
13.
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
2: PA2
6: PB11
16: PC11
21: PD13
24: PF0
28: PF4
13: PC8
22: PD14
25: PF1
29: PF5
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
15: PC10
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
3: PA4
LEU0_RX
I2C0 Serial Data input / output.
0: PD13
3: PA3
LETIM0_OUT1
Description
I2C1 Serial Clock
Line input / output.
19: PC11
I2C1_SDA
LES_CH6
28 - 31
18: PC10
I2C1_SCL
LES_CH5
24 - 27
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
3: PA4
silabs.com | Building a more connected world.
Low Energy Timer
LETIM0, output
channel 0.
Low Energy Timer
LETIM0, output
channel 1.
LEUART0 Receive
input.
Rev. 1.4 | 74
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
LEU0_TX
LOCATION
0-3
4-7
8 - 11
12 - 15
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
2: PA2
6: PB11
3: PA3
MODEM_DCLK
16: PC11
21: PD13
24: PF0
28: PF4
13: PC8
22: PD14
25: PF1
29: PF5
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
21: PD13
24: PF0
28: PF4
16: PC11
24 - 27
28 - 31
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
13: PC8
22: PD14
25: PF1
29: PF5
2: PA2
6: PB11
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
15: PC10
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
20: PD14
24: PF2
28: PF6
3: PA4
MODEM_DOUT
20 - 23
15: PC10
3: PA3
MODEM_DIN
16 - 19
0: PA2
4: PB11
9: PC6
12: PC9
1: PA3
6: PB13
10: PC7
13: PC10
21: PD15
25: PF3
29: PF7
11: PC8
14: PC11
22: PF0
26: PF4
30: PA0
23: PF1
27: PF5
31: PA1
2: PA4
19: PD13
3: PA5
LEUART0 Transmit
output. Also used
as receive input in
half duplex communication.
MODEM data clock
out.
MODEM data in.
MODEM data out.
0: PA4
Operational Amplifier 0 external negative input.
0: PA2
Operational Amplifier 0 external positive input.
0: PD15
Operational Amplifier 1 external negative input.
0: PD13
Operational Amplifier 1 external positive input.
0: PB13
Operational Amplifier 2 external negative input.
0: PB11
Operational Amplifier 2 external positive input.
OPA0_N
OPA0_P
OPA1_N
OPA1_P
OPA2_N
OPA2_P
PCNT0_S0IN
Description
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
2: PA2
6: PB11
3: PA3
silabs.com | Building a more connected world.
21: PD13
24: PF0
28: PF4
13: PC8
22: PD14
25: PF1
29: PF5
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
15: PC10
16: PC11
Pulse Counter
PCNT0 input number 0.
Rev. 1.4 | 75
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
PCNT0_S1IN
LOCATION
0-3
4-7
8 - 11
12 - 15
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
3: PA4
PRS_CH0
PRS_CH1
PRS_CH2
PRS_CH3
0: PF0
4: PF4
8: PC6
12: PC10
1: PF1
5: PF5
9: PC7
13: PC11
2: PF2
6: PF6
10: PC8
3: PF3
7: PF7
11: PC9
0: PF1
4: PF5
1: PF2
5: PF6
2: PF3
6: PF7
3: PF4
7: PF0
0: PF2
4: PF6
1: PF3
5: PF7
2: PF4
6: PF0
3: PF5
7: PF1
0: PF3
4: PF7
12: PD13
1: PF4
5: PF0
13: PD14
2: PF5
6: PF1
14: PD15
3: PF6
7: PF2
16 - 19
Peripheral Reflex
System PRS, channel 4.
PRS_CH6
Peripheral Reflex
System PRS, channel 5.
5: PD15
4: PA4
1: PA1
5: PA5
2: PA2
6: PB11
Pulse Counter
PCNT0 input number 1.
Peripheral Reflex
System PRS, channel 3.
4: PD14
0: PA0
Description
Peripheral Reflex
System PRS, channel 2.
6: PD15
3: PD13
28 - 31
Peripheral Reflex
System PRS, channel 1.
5: PD14
PRS_CH5
24 - 27
Peripheral Reflex
System PRS, channel 0.
4: PD13
PRS_CH4
20 - 23
8: PB13
15: PD13
16: PD14
17: PD15
Peripheral Reflex
System PRS, channel 6.
3: PA3
PRS_CH7
0: PA1
4: PA5
1: PA2
5: PB11
2: PA3
7: PB13
10: PA0
Peripheral Reflex
System PRS, channel 7.
3: PA4
silabs.com | Building a more connected world.
Rev. 1.4 | 76
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
PRS_CH8
LOCATION
0-3
4-7
8 - 11
12 - 15
0: PA2
4: PB11
9: PA0
1: PA3
6: PB13
10: PA1
5: PB13
8: PA0
12: PC7
1: PA4
9: PA1
13: PC8
2: PA5
10: PA2
14: PC9
3: PB11
11: PC6
15: PC10
16 - 19
20 - 23
24 - 27
28 - 31
Description
Peripheral Reflex
System PRS, channel 8.
2: PA4
3: PA5
0: PA3
PRS_CH9
PRS_CH10
0: PC6
4: PC10
1: PC7
5: PC11
16: PC11
Peripheral Reflex
System PRS, channel 9.
Peripheral Reflex
System PRS, channel 10.
2: PC8
3: PC9
PRS_CH11
0: PC7
4: PC11
1: PC8
5: PC6
Peripheral Reflex
System PRS, channel 11.
2: PC9
3: PC10
TIM0_CC0
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
2: PA2
6: PB11
3: PA3
TIM0_CC1
21: PD13
24: PF0
28: PF4
13: PC8
22: PD14
25: PF1
29: PF5
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
15: PC10
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
20: PD14
24: PF2
28: PF6
3: PA4
TIM0_CC2
16: PC11
0: PA2
4: PB11
9: PC6
12: PC9
1: PA3
6: PB13
10: PC7
13: PC10
21: PD15
25: PF3
29: PF7
11: PC8
14: PC11
22: PF0
26: PF4
30: PA0
23: PF1
27: PF5
31: PA1
2: PA4
19: PD13
3: PA5
0: PA3
TIM0_CDTI0
TIM0_CDTI1
5: PB13
8: PC6
12: PC10
18: PD13
20: PD15
24: PF3
28: PF7
1: PA4
9: PC7
13: PC11
19: PD14
21: PF0
25: PF4
29: PA0
2: PA5
10: PC8
22: PF1
26: PF5
30: PA1
3: PB11
11: PC9
23: PF2
27: PF6
31: PA2
17: PD13
20: PF0
24: PF4
28: PA0
0: PA4
4: PB13
8: PC7
1: PA5
7: PC6
9: PC8
18: PD14
21: PF1
25: PF5
29: PA1
10: PC9
19: PD15
22: PF2
26: PF6
30: PA2
23: PF3
27: PF7
31: PA3
2: PB11
11: PC10
silabs.com | Building a more connected world.
12: PC11
Timer 0 Capture
Compare input /
output channel 0.
Timer 0 Capture
Compare input /
output channel 1.
Timer 0 Capture
Compare input /
output channel 2.
Timer 0 Complimentary Dead Time
Insertion channel 0.
Timer 0 Complimentary Dead Time
Insertion channel 1.
Rev. 1.4 | 77
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
TIM0_CDTI2
TIM1_CC0
LOCATION
0-3
4-7
0: PA5
6: PC6
8: PC8
16: PD13
20: PF1
24: PF5
28: PA1
1: PB11
7: PC7
9: PC9
17: PD14
21: PF2
25: PF6
29: PA2
10: PC10
18: PD15
22: PF3
26: PF7
30: PA3
11: PC11
19: PF0
23: PF4
27: PA0
31: PA4
16: PC11
21: PD13
24: PF0
28: PF4
3: PB13
8 - 11
1: PA1
5: PA5
11: PC6
13: PC8
22: PD14
25: PF1
29: PF5
2: PA2
6: PB11
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
15: PC10
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
20: PD14
24: PF2
28: PF6
0: PA2
4: PB11
9: PC6
12: PC9
1: PA3
6: PB13
10: PC7
13: PC10
21: PD15
25: PF3
29: PF7
11: PC8
14: PC11
22: PF0
26: PF4
30: PA0
23: PF1
27: PF5
31: PA1
2: PA4
19: PD13
5: PB13
8: PC6
12: PC10
18: PD13
20: PD15
24: PF3
28: PF7
1: PA4
9: PC7
13: PC11
19: PD14
21: PF0
25: PF4
29: PA0
2: PA5
10: PC8
22: PF1
26: PF5
30: PA1
3: PB11
11: PC9
23: PF2
27: PF6
31: PA2
20: PD14
24: PF2
28: PF6
0: PA2
4: PB11
9: PC6
12: PC9
1: PA3
6: PB13
10: PC7
13: PC10
21: PD15
25: PF3
29: PF7
11: PC8
14: PC11
22: PF0
26: PF4
30: PA0
23: PF1
27: PF5
31: PA1
2: PA4
19: PD13
3: PA5
0: PA3
US0_CS
US0_CTS
5: PB13
8: PC6
12: PC10
18: PD13
20: PD15
24: PF3
28: PF7
1: PA4
9: PC7
13: PC11
19: PD14
21: PF0
25: PF4
29: PA0
2: PA5
10: PC8
22: PF1
26: PF5
30: PA1
3: PB11
11: PC9
23: PF2
27: PF6
31: PA2
17: PD13
20: PF0
24: PF4
28: PA0
0: PA4
4: PB13
8: PC7
1: PA5
7: PC6
9: PC8
18: PD14
21: PF1
25: PF5
29: PA1
10: PC9
19: PD15
22: PF2
26: PF6
30: PA2
23: PF3
27: PF7
31: PA3
2: PB11
12: PC11
11: PC10
US0_RTS
28 - 31
12: PC7
0: PA3
US0_CLK
24 - 27
8: PB13
3: PA5
TIM1_CC3
20 - 23
4: PA4
3: PA4
TIM1_CC2
16 - 19
0: PA0
3: PA3
TIM1_CC1
12 - 15
0: PA5
6: PC6
8: PC8
16: PD13
20: PF1
24: PF5
28: PA1
1: PB11
7: PC7
9: PC9
17: PD14
21: PF2
25: PF6
29: PA2
10: PC10
18: PD15
22: PF3
26: PF7
30: PA3
11: PC11
19: PF0
23: PF4
27: PA0
31: PA4
3: PB13
silabs.com | Building a more connected world.
Description
Timer 0 Complimentary Dead Time
Insertion channel 2.
Timer 1 Capture
Compare input /
output channel 0.
Timer 1 Capture
Compare input /
output channel 1.
Timer 1 Capture
Compare input /
output channel 2.
Timer 1 Capture
Compare input /
output channel 3.
USART0 clock input / output.
USART0 chip select input / output.
USART0 Clear To
Send hardware
flow control input.
USART0 Request
To Send hardware
flow control output.
Rev. 1.4 | 78
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
US0_RX
LOCATION
0-3
4-7
8 - 11
12 - 15
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
21: PD13
24: PF0
28: PF4
3: PA4
US0_TX
US1_CLK
16 - 19
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
13: PC8
22: PD14
25: PF1
29: PF5
2: PA2
6: PB11
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
20: PD14
24: PF2
28: PF6
15: PC10
0: PA2
4: PB11
9: PC6
12: PC9
1: PA3
6: PB13
10: PC7
13: PC10
21: PD15
25: PF3
29: PF7
11: PC8
14: PC11
22: PF0
26: PF4
30: PA0
23: PF1
27: PF5
31: PA1
2: PA4
0: PA3
US1_CTS
19: PD13
5: PB13
8: PC6
12: PC10
18: PD13
20: PD15
24: PF3
28: PF7
1: PA4
9: PC7
13: PC11
19: PD14
21: PF0
25: PF4
29: PA0
2: PA5
10: PC8
22: PF1
26: PF5
30: PA1
3: PB11
11: PC9
23: PF2
27: PF6
31: PA2
17: PD13
20: PF0
24: PF4
28: PA0
0: PA4
4: PB13
8: PC7
1: PA5
7: PC6
9: PC8
18: PD14
21: PF1
25: PF5
29: PA1
10: PC9
19: PD15
22: PF2
26: PF6
30: PA2
23: PF3
27: PF7
31: PA3
2: PB11
12: PC11
11: PC10
US1_RTS
US1_RX
28 - 31
4: PA4
3: PA5
US1_CS
24 - 27
0: PA0
3: PA3
16: PC11
20 - 23
0: PA5
6: PC6
8: PC8
16: PD13
20: PF1
24: PF5
28: PA1
1: PB11
7: PC7
9: PC9
17: PD14
21: PF2
25: PF6
29: PA2
10: PC10
18: PD15
22: PF3
26: PF7
30: PA3
11: PC11
19: PF0
23: PF4
27: PA0
31: PA4
3: PB13
0: PA1
4: PA5
10: PC6
12: PC8
20: PD13
24: PF1
28: PF5
1: PA2
5: PB11
11: PC7
13: PC9
21: PD14
25: PF2
29: PF6
2: PA3
7: PB13
14: PC10
22: PD15
26: PF3
30: PF7
15: PC11
23: PF0
27: PF4
31: PA0
3: PA4
silabs.com | Building a more connected world.
Description
USART0 Asynchronous Receive.
USART0 Synchronous mode Master
Input / Slave Output (MISO).
USART0 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
USART0 Synchronous mode Master
Output / Slave Input (MOSI).
USART1 clock input / output.
USART1 chip select input / output.
USART1 Clear To
Send hardware
flow control input.
USART1 Request
To Send hardware
flow control output.
USART1 Asynchronous Receive.
USART1 Synchronous mode Master
Input / Slave Output (MISO).
Rev. 1.4 | 79
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
US1_TX
LOCATION
0-3
4-7
8 - 11
12 - 15
0: PA0
4: PA4
8: PB13
12: PC7
1: PA1
5: PA5
11: PC6
2: PA2
6: PB11
3: PA3
16 - 19
20 - 23
16: PC11
21: PD13
24: PF0
28: PF4
13: PC8
22: PD14
25: PF1
29: PF5
14: PC9
23: PD15
26: PF2
30: PF6
27: PF3
31: PF7
15: PC10
US2_CLK
12: PF0
16: PF5
13: PF1
17: PF6
14: PF3
18: PF7
24 - 27
28 - 31
Description
USART1 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
USART1 Synchronous mode Master
Output / Slave Input (MOSI).
30: PA5
USART2 clock input / output.
15: PF4
11: PF0
US2_CS
12: PF1
16: PF6
13: PF3
17: PF7
29: PA5
USART2 chip select input / output.
14: PF4
15: PF5
US2_CTS
10: PF0
12: PF3
11: PF1
13: PF4
16: PF7
28: PA5
USART2 Clear To
Send hardware
flow control input.
14: PF5
15: PF6
US2_RTS
9: PF0
12: PF4
10: PF1
13: PF5
11: PF3
14: PF6
27: PA5
USART2 Request
To Send hardware
flow control output.
15: PF7
US2_RX
13: PF0
16: PF4
14: PF1
17: PF5
15: PF3
18: PF6
31: PA5
USART2 Synchronous mode Master
Input / Slave Output (MISO).
19: PF7
0: PA5
14: PF0
16: PF3
15: PF1
17: PF4
18: PF5
US2_TX
19: PF6
0: PA1
VDAC0_EXT
silabs.com | Building a more connected world.
USART2 Asynchronous Receive.
20: PF7
USART2 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
USART2 Synchronous mode Master
Output / Slave Input (MOSI).
Digital to analog
converter VDAC0
external reference
input pin.
Rev. 1.4 | 80
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
0: PA3
Digital to Analog
Converter DAC0
output channel
number 0.
0: PA5
Digital to Analog
Converter DAC0 alternative output for
channel 0.
VDAC0_OUT0 /
OPA0_OUT
VDAC0_OUT0AL
T / OPA0_OUTALT
1: PD13
2: PD15
0: PD14
Digital to Analog
Converter DAC0
output channel
number 1.
1: PA2
Digital to Analog
Converter DAC0 alternative output for
channel 1.
VDAC0_OUT1 /
OPA1_OUT
VDAC0_OUT1AL
T / OPA1_OUTALT
WTIM0_CC0
WTIM0_CC1
2: PA4
0: PA0
4: PA4
1: PA1
5: PA5
15: PB11
17: PB13
26: PC6
28: PC8
27: PC7
29: PC9
2: PA2
30: PC10
3: PA3
31: PC11
0: PA2
13: PB11
24: PC6
28: PC10
1: PA3
15: PB13
25: PC7
29: PC11
2: PA4
26: PC8
3: PA5
27: PC9
0: PA4
WTIM0_CC2
Description
11: PB11
13: PB13
1: PA5
22: PC6
24: PC8
23: PC7
25: PC9
Wide timer 0 Capture Compare input / output channel
0.
Wide timer 0 Capture Compare input / output channel
1.
Wide timer 0 Capture Compare input / output channel
2.
26: PC10
27: PC11
7: PB11
9: PB13
WTIM0_CDTI0
18: PC6
20: PC8
29: PD13
19: PC7
21: PC9
30: PD14
22: PC10
31: PD15
Wide timer 0 Complimentary Dead
Time Insertion
channel 0.
23: PC11
WTIM0_CDTI1
3: PB11
5: PB11
16: PC6
20: PC10
7: PB13
17: PC7
21: PC11
5: PB13
WTIM0_CDTI2
28: PD14
29: PD15
18: PC8
30: PF0
19: PC9
31: PF1
14: PC6
16: PC8
25: PD13
28: PF0
15: PC7
17: PC9
26: PD14
29: PF1
18: PC10
27: PD15
30: PF2
19: PC11
silabs.com | Building a more connected world.
27: PD13
Wide timer 0 Complimentary Dead
Time Insertion
channel 1.
Wide timer 0 Complimentary Dead
Time Insertion
channel 2.
31: PF3
Rev. 1.4 | 81
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
8.4 Analog Port (APORT) Client Maps
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 8.2 APORT Connection Diagram on page 82 shows the APORT routing for this device family (note that available features
may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.
PF1
ACMP0
PF2
NEG
PF3
PF4
PF5
1X
2X
3X
4X
NEXT0
NEXT2
NEG
1Y
2Y
3Y
4Y
NEXT1
ADC0
AX
AY
BX
BY
EXTP
EXTN
POS
NEG
OPA0
OUT
POS
DY
DX
CY
CX
PB13
NEG
OPA2_N
OUT2
1X
IDAC0
OPA1_P
1X
2X
3X
4X
POS
OPA1_N
1Y
2Y
3Y
4Y
NEG
1Y
OUT0ALT
OPA0_N
OUT1ALT
OUT0
OPA1
OUT2
OUT2ALT
OUT1
OUT2
OUT3
OUT4
NEXT2
VDAC0_OUT1ALT
PA5
PA4
PA3
OPA0_P
OUT1
OUT1ALT
OUT1
OUT2
OUT3
OUT4
NEXT1
VDAC0_OUT0ALT
OUT1ALT
ADC_EXTP
OUT
VDAC0_OUT1ALT
PA2
PA1
ADC_EXTN
PA0
OPA1_N
OUT0ALT
PD15
VDAC0_OUT0ALT
OUT1
OUT
PB11
OPA2_P
OPA2_P
1X
2X
3X
4X
OPA2_N
1Y
2Y
3Y
4Y
PB12
1X
1Y
3X
3Y
2X
2Y
4X
4Y
VDAC0_OUT0ALT
BUSAX, BUSBY, ...
PB14
VDAC0_OUT0ALT
APORTnX, APORTnY
AX, BY, …
PB15
ACMP1
OPA1_P
CEXT_SENSE
OUT0
OUT0ALT
OUT1
OUT2
OUT3
OUT4
NEXT0
1Y
2Y
3Y
4Y
NEXT1
NEXT0
POS
OUT0ALT
CSEN
OPA0_N
1Y
2Y
3Y
4Y
1X
2X
3X
4X
NEXT1
NEXT0
OUT1ALT
CEXT
OPA0_P
1X
2X
3X
4X
NEG
OPA2
nX, nY
1Y
2Y
3Y
4Y
NEXT1
NEXT0
POS
PF6
PF7
PC6
PC7
PC9
PC8
PC10
PC11
POS
PF0
1X
2X
3X
4X
NEXT1
NEXT0
PD14
PD13
PD12
PD11
PD10
PD9
Figure 8.2. APORT Connection Diagram
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.
silabs.com | Building a more connected world.
Rev. 1.4 | 82
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared
bus used by this connection is indicated in the Bus column.
CH0
CH1
CH2
CH3
CH4
CH5
CH6
PC6
PC6
PA0
PD13
PD14
PD15
PD13
PD14
PD15
PA0
PA1
PA1
PA2
CH7
PC8
PC7
PC7
PC8
PC9
PC10
PA4
PA3
PA3
PA4
PA5
PA5
PA2
PF0
PB11
PB11
CH8
CH9
PC9
PC11
PC11
PF1
PF1
PB13
PB13
silabs.com | Building a more connected world.
CH10
PC10
CH11
CH12
CH13
CH14
CH15
CH16
PF0
CH17
CH18
PF2
PF3
PF3
PF2
CH19
CH20
CH21
PF4
PF4
PF6
PF5
PF7
PF7
PF5
PF6
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
BUSAX
BUSAY
BUSBX
BUSBY
BUSCX
BUSCY
BUSDX
BUSDY
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
Table 8.4. ACMP0 Bus and Pin Mapping
Rev. 1.4 | 83
silabs.com | Building a more connected world.
PD14
PA0
PA2
PA4
BUSDY
PB11
PA5
PB11
PA5
PD13
PD15
PA1
PD13
PD15
PA1
PA3
PB13
PB13
PA3
BUSCY
BUSDX
PD14
PA0
PA2
PA4
BUSCX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Table 8.5. ACMP1 Bus and Pin Mapping
Rev. 1.4 | 84
silabs.com | Building a more connected world.
PD14
PA0
PA2
PA4
BUSDY
PB11
PA5
PB11
PA5
PD13
PD15
PA1
PD13
PD15
PA1
PA3
PB13
PB13
PA3
BUSCY
BUSDX
PD14
PA0
PA2
PA4
BUSCX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Table 8.6. ADC0 Bus and Pin Mapping
Rev. 1.4 | 85
silabs.com | Building a more connected world.
PD13
PD15
PA1
PA3
PA5
PB11
PB13
BUSCY
PD14
PA0
PA2
PA4
BUSCX
PC6
PC8
PC10
PC7
PC9
PC11
PF1
PF3
PD13
PD15
PA1
PA3
PA5
PD14
PA0
PA2
PA4
BUSCX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
CH2
CH1
CH0
CH2
CH1
CH0
CH3
Table 8.8. IDAC0 Bus and Pin Mapping
CH3
PD13
PD15
PA1
PA3
PA5
PF0
PF2
PF4
PF5
PB11
BUSCY
PB11
PF7
BUSBX
PB13
PF6
BUSBY
APORT3Y APORT3X APORT1Y APORT1X
PB13
BUSDX
CEXT_SENSE
CH4
PD14
PA0
PA2
PA4
BUSDY
APORT4Y APORT4X APORT2Y APORT2X
CEXT
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT1Y APORT1X Port
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Table 8.7. CSEN Bus and Pin Mapping
Rev. 1.4 | 86
silabs.com | Building a more connected world.
PD13
PD15
PA1
PA3
PA5
PD14
PA0
PA2
PA4
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PD14
PA0
PA2
PA4
BUSDY
BUSCY
PD13
PD15
PA1
PA3
PA5
PB11
BUSAX
PB11
BUSBX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PB13
BUSCX
OPA0_P
PB13
BUSDX
APORT4X APORT3X APORT2X APORT1X
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
Table 8.9. VDAC0 / OPA Bus and Pin Mapping
OPA0_N
Rev. 1.4 | 87
silabs.com | Building a more connected world.
PD14
PA0
PA2
PA4
BUSDY
PD13
PD15
PA1
PA3
PA5
PC6
PC8
PC10
PF0
PF2
PF4
PF6
PC7
PC9
PC11
PF1
PF3
PF5
PF7
PD13
PD15
PA1
PA3
PA5
PB11
BUSDX
PB11
BUSAY
PD14
PA0
PA2
PA4
BUSCX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
APORT4X APORT3X APORT2X APORT1X
PB13
BUSBY
OPA2_N
PB13
BUSCY
APORT4Y APORT3Y APORT2Y APORT1Y
PD14
PA0
PA2
PA4
BUSDY
PD13
PD15
PA1
PA3
PA5
PB11
PB13
BUSCY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
OPA1_N
OPA1_P
Rev. 1.4 | 88
silabs.com | Building a more connected world.
PD14
PA0
PA2
PA4
BUSDY
PD13
PD15
PA1
PA3
PA5
PB11
PB13
BUSCY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PD13
PD15
PA1
PA3
PA5
PB11
PB13
BUSDX
PD14
PA0
PA2
PA4
BUSCX
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSBX
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSAX
APORT4X APORT3X APORT2X APORT1X
PD14
PA0
PA2
PA4
BUSDY
PD13
PD15
PA1
PA3
PA5
PB11
PB13
BUSCY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
OPA2_OUT
OPA2_P
VDAC0_OUT0 / OPA0_OUT
Rev. 1.4 | 89
silabs.com | Building a more connected world.
PD14
PA0
PA2
PA4
BUSDY
PD13
PD15
PA1
PA3
PA5
PB11
PB13
BUSCY
PC6
PC8
PC10
PF0
PF2
PF4
PF6
BUSBY
PC7
PC9
PC11
PF1
PF3
PF5
PF7
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Pin Definitions
VDAC0_OUT1 / OPA1_OUT
Rev. 1.4 | 90
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Package Specifications
9. Package Specifications
9.1 Package Outline
Figure 9.1. BGM13P with Antenna - Top and Side View
Figure 9.2. BGM13P with U.FL - Top and Side View
silabs.com | Building a more connected world.
Rev. 1.4 | 91
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Package Specifications
Figure 9.3. BGM13P - Bottom View
9.2 Recommended PCB Land Pattern
The figure below shows the recommended land pattern. The antenna clearance section is not required for BGM13P module versions
with a U.FL connector.
Figure 9.4. BGM13P Recommended PCB Land Pattern
silabs.com | Building a more connected world.
Rev. 1.4 | 92
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Package Specifications
9.3 Package Marking
The figure below shows the module markings printed on the RF-shield.
Figure 9.5. BGM13P Package Marking
Note: Module memory size in the Ordering Code (F512) is encoded as "H" in the package top mark.
Mark Description
The package marking consists of:
• BGM13Pxxxxxxx - Part number designation.
• Model: BGM13Pxxxx – Model number designation.
• QR Code: YYWWMMABCDE
• YY - Last two digits of the assembly year.
• WW - Two-digit workweek when the device was assembled.
• MMABCDE - Silicon Labs unit code.
• YYWWTTTTTT
• YY – Last two digits of the assembly year.
• WW – Two-digit workweek when the device was assembled.
• TTTTTT – Manufacturing trace code. The first letter is the device revision.
• Certification marks such as the CE logo, FCC and IC IDs, etc. will be engraved on the grayed out area, according to regulatory body
requirements.
silabs.com | Building a more connected world.
Rev. 1.4 | 93
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Soldering Recommendations
10. Soldering Recommendations
The BGM13P is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven, and particular type of solder paste used.
•
•
•
•
•
•
•
•
Refer to technical documentations of particular solder paste for profile configurations.
Avoid using more than two reflow cycles.
A no-clean, type-3 solder paste is recommended.
A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
Recommended stencil thickness is 0.100mm (4 mils).
Refer to the recommended PCB land pattern for an example stencil aperture size.
For further recommendation, please refer to the JEDEC/IPC J-STD-020, IPC-SM-782 and IPC 7351 guidelines.
Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use different
parameters and fine tune their SMT process as required for their application and tooling.
silabs.com | Building a more connected world.
Rev. 1.4 | 94
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Certifications
11. Certifications
11.1 Qualified Antenna Types
The BGM13P variants supporting an external antenna have been designed to operate with a standard 2.14 dBi dipole antenna. Any
antenna of a different type or with a gain higher than 2.14 dBi is strictly prohibited for use with this device. Using an antenna of a different type or gain more than 2.14 dBi will require additional testing for FCC, CE and IC. The required antenna impedance is 50 Ω.
Table 11.1. Qualified Antennas for BGM13P
Antenna Type
Maximum Gain
Dipole
2.14 dBi
11.2 Bluetooth
The BGM13P is pre-qualified as a Low Energy RF-PHY tested component, having Declaration ID of D037287 and QDID of 101562. For
the qualification of an end product embedding the BGM13P, the above should be combined with the most up to date Wireless Gecko
Link Layer and Host components.
11.3 CE and UKCA - EU and UK
The BGM13P22 module is in conformity with the essential requirements and other relevant requirements of the Radio Equipment Directive (RED) (2014/53/EU) and of the UK's Radio Equipment Regulations (RER) (S.I. 2017/1206). Please note that every application using the BGM13P22 will need to perform the radio EMC tests on the end product, according to EN 301 489-17. It is ultimately the responsibility of the manufacturer to ensure the compliance of the end-product. The specific product assembly may have an impact to RF
radiated characteristics, and manufacturers should carefully consider RF radiated testing with the end-product assembly.
The modules are entitled to carry the CE and UKCA Marks, and a formal Declaration of Conformity (DoC) is available at the product
web page which is reachable starting from https://www.silabs.com/.
With regards to the Bluetooth Low Energy protocol, the BGM13P32 module is in conformity with the essential requirements and other
relevant requirements of the Radio Equipment Directive (RED) and of the UK's Radio Equipment Regulations (RER) at up to 10 dBm
RF transmit power when not using Adaptive Frequency Hopping (AFH). With early module firmware versions that do not support AFH
and that do not have built-in functionality to limit the max RF transmit power to 10 dBm automatically, it is responsibility of the endproduct's manufacturer to limit output power accordingly. With newer firmware versions supporting AFH, the end-product’s manufacturer has the option to enable AFH and transmit at full output power while the module remains compliant or, alternatively, to disable AFH
in which case the max RF transmit power will be automatically limited to 10 dBm, making the module compliant in all cases. Please
refer to the firmware change log to verify which version introduced AFH.
silabs.com | Building a more connected world.
Rev. 1.4 | 95
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Certifications
11.4 FCC
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that may cause undesirable operation.
Any changes or modifications not expressly approved by Silicon Labs could void the user’s authority to operate the equipment.
FCC RF Radiation Exposure Statement:
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter meets both portable and mobile limits as demonstrated
in the RF Exposure Analysis. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter
except in accordance with FCC multi-transmitter product procedures.
OEM Responsibilities to comply with FCC Regulations:
OEM integrator is responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).
• With BGM13P32 the antenna(s) must be installed such that a minimum separation distance of 50.5 mm is maintained between the
radiator (antenna) and all persons at all times.
• With BGM13P22 the antenna(s) must be installed such that a minimum separation distance of 9 mm is maintained between the radiator (antenna) and all persons at all times.
• The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures.
Important Note:
In the event that the above conditions cannot be met (for certain configurations or co-location with another transmitter), then the FCC
authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.
End Product Labeling
The variants of BGM13P Modules are labeled with their own FCC ID. If the FCC ID is not visible when the module is installed inside
another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed
module. In that case, the final end product must be labeled in a visible area with the following:
"Contains Transmitter Module FCC ID: QOQBGM13P"
Or
"Contains FCC ID: QOQBGM13P"
The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or
change RF related parameters in the user manual of the end product.
silabs.com | Building a more connected world.
Rev. 1.4 | 96
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Certifications
11.5 ISED Canada
ISEDC
This radio transmitter (IC: 5123A-BGM13P) has been approved by Industry Canada to operate with the antenna types listed above, with
the maximum permissible gain indicared. Antenna types not included in this list, having a gain greater than the maximum gain indicated
for that type, are strictly prohibited for use with this device.
This device complies with Industry Canada’s license-exempt RSS standards. Operation is subject to the following two conditions:
1. This device may not cause interference; and
2. This device must accept any interference, including interference that may cause undesired operation of the device
RF Exposure Statement
Exception from routine SAR evaluation limits are given in RSS-102 Issue 5.
The models BGM13P32A and BGM13P32E meet the given requirements when the minimum separation distance to human body is 40
mm.
The models BGM13P22A and BGM13P22E meet the given requirements when the minimum separation distance to human body is 20
mm.
RF exposure or SAR evaluation is not required when the separation distance is same or more than stated above. If the separation distance is less than stated above the OEM integrator is responsible for evaluating the SAR.
OEM Responsibilities to comply with IC Regulations
The BGM13P modules have been certified for integration into products only by OEM integrators under the following conditions:
• The antenna(s) must be installed such that a minimum separation distance as stated above is maintained between the radiator (antenna) and all persons at all times.
• The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter.
As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital
device emissions, PC peripheral requirements, etc.).
IMPORTANT NOTE
In the event that these conditions cannot be met (for certain configurations or co-location with another transmitter), then the ISEDC
authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate ISEDC authorization.
End Product Labeling
The BGM13P module is labeled with its own IC ID. If the IC ID is not visible when the module is installed inside another device, then the
outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final
end product must be labeled in a visible area with the following:
“Contains Transmitter Module IC: 5123A-BGM13P ”
or
“Contains IC: 5123A-BGM13P”
The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or
change RF related parameters in the user manual of the end product.
silabs.com | Building a more connected world.
Rev. 1.4 | 97
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Certifications
ISEDC (Français)
Industrie Canada a approuvé l’utilisation de cet émetteur radio (IC: 5123A-BGM13P) en conjonction avec des antennes de type dipolaire à 2.14dBi ou des antennes embarquées, intégrée au produit. L’utilisation de tout autre type d’antenne avec ce composant est proscrite.
Ce composant est conforme aux normes RSS, exonérées de licence d'Industrie Canada. Son mode de fonctionnement est soumis aux
deux conditions suivantes:
1. Ce composant ne doit pas générer d’interférences.
2. Ce composant doit pouvoir est soumis à tout type de perturbation y compris celle pouvant nuire à son bon fonctionnement.
Déclaration d'exposition RF
L'exception tirée des limites courantes d'évaluation SAR est donnée dans le document RSS-102 Issue 5.
Les modules BGM13P32A and BGM13P32E répondent aux exigences requises lorsque la distance minimale de séparation avec le
corps humain est de 40 mm.
Les modules BGM13P22A and BGM13P22E répondent aux exigences requises lorsque la distance minimale de séparation avec le
corps humain est de 20 mm.
La déclaration d’exposition RF ou l'évaluation SAR n'est pas nécessaire lorsque la distance de séparation est identique ou supérieure à
celle indiquée ci-dessus. Si la distance de séparation est inférieure à celle mentionnées plus haut, il incombe à l'intégrateur OEM de
procédé à une évaluation SAR.
Responsabilités des OEM pour une mise en conformité avec le Règlement du Circuit Intégré
Le module BGM13P a été approuvé pour l'intégration dans des produits finaux exclusivement réalisés par des OEM sous les conditions
suivantes:
• L'antenne (s) doit être installée de sorte qu'une distance de séparation minimale indiquée ci-dessus soit maintenue entre le radiateur
(antenne) et toutes les personnes avoisinante, ce à tout moment.
• Le module émetteur ne doit pas être localisé ou fonctionner avec une autre antenne ou un autre transmetteur que celle indiquée
plus haut.
Tant que les deux conditions ci-dessus sont respectées, il n’est pas nécessaire de tester ce transmetteur de façon plus poussée. Cependant, il incombe à l’intégrateur OEM de s’assurer de la bonne conformité du produit fini avec les autres normes auxquelles il pourrait être soumis de fait de l’utilisation de ce module (par exemple, les émissions des périphériques numériques, les exigences de périphériques PC, etc.).
REMARQUE IMPORTANTE
ans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou co-implantation avec un autre émetteur), l'autorisation ISEDC n'est plus considérée comme valide et le numéro d’identification ID IC ne peut pas être apposé sur le produit final.
Dans ces circonstances, l'intégrateur OEM sera responsable de la réévaluation du produit final (y compris le transmetteur) et de l'obtention d'une autorisation ISEDC distincte.
Étiquetage des produits finis
Les modules BGM13P sont étiquetés avec leur propre ID IC. Si l'ID IC n'est pas visible lorsque le module est intégré au sein d'un autre
produit, cet autre produit dans lequel le module est installé devra porter une étiquette faisant apparaitre les référence du module intégré. Dans un tel cas, sur le produit final doit se trouver une étiquette aisément lisible sur laquelle figurent les informations suivantes:
“Contient le module transmetteur: 5123A-BGM13P ”
or
“Contient le circuit: 5123A-BGM13P”
L'intégrateur OEM doit être conscient qu’il ne doit pas fournir, dans le manuel d’utilisation, d'informations relatives à la façon d'installer
ou de d’enlever ce module RF ainsi que sur la procédure à suivre pour modifier les paramètres liés à la radio.
silabs.com | Building a more connected world.
Rev. 1.4 | 98
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Certifications
11.6 Japan
The BGM13P22A and BGM13P22E are certified in Japan with certification number 209-J00282.
Since September 1, 2014 it is allowed (and highly recommended) that a manufacturer who integrates a radio module in their host
equipment can place the certification mark and certification number (the same marking/number as depicted on the label of the radio
module) on the outside of the host equipment. The certification mark and certification number must be placed close to the text in the
Japanese language which is provided below. This change in the Radio Law has been made in order to enable users of the combination
of host and radio module to verify if they are actually using a radio device which is approved for use in Japan.
Certification Text to be Placed on the Outside Surface of the Host Equipment:
Translation of the text:
“This equipment contains specified radio equipment that has been certified to the Technical Regulation Conformity Certification under
the Radio Law.”
The "Giteki" marking shown in the figures below must be affixed to an easily noticeable section of the specified radio equipment. Note
that additional information may be required if the device is also subject to a telecom approval.
Figure 11.1. GITEKI Mark and ID
Figure 11.2. GITEKI Mark
11.7 KC South Korea
The BGM13P22A and BGM13P22E have an RF certification for import and use in South-Korea.
Certification number: R-C-BGT-BGM13P22
The RF-certified module is meant to be integrated into an end-product, which is then exempted from doing the RF emission testing, as
long as the recommended design guidance is followed, and the approved antennas are used.
EMC testing and any other relevant test applicable to the end-product, plus appropriate labelling of the end-product, might still be required for the full regulatory compliance.
silabs.com | Building a more connected world.
Rev. 1.4 | 99
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Certifications
11.8 NCC Taiwan
The BGM13P22A and BGM13P22E are certified in Taiwan. ID: CCAM18LP1260T0 (BGM13P22A) and CCAM18LP1261T2
(BGM13P22E).
According to NCC Low Power Radio Wave Radiation Equipment Management Regulations:
Article 12
A low-power RF equipment that has passed the type approval shall not change the frequency, increase the
power or change the characteristics and functions of the original design without permission.
Article 14
The use of low-power RF equipment shall not affect flight safety and interfere with legal communications; if interference is found, it shall be immediately deactivated and improved until no interference is found.
Legal communication in the preceding paragraph refers to radio communications operating in accordance with
the provisions of the Telecommunications Act.
Low-power RF equipment must withstand interference from legitimate communications or radiological, radiated
electrical equipment for industrial, scientific, and medical applications.
silabs.com | Building a more connected world.
Rev. 1.4 | 100
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Revision History
12. Revision History
Revision 1.4
November, 2022
• Updated certifications to reflect UK specifics: 1. Feature List and 11.3 CE and UKCA - EU and UK
• Updated 9.3 Package Marking
Revision 1.3
June, 2022
• Added timing specifications for RESETn low time in Table 4.21 General-Purpose I/O (GPIO) on page 32.
• Removed BIASPROG = 1, FULLBIAS = 0 specifications from Table 4.24 Analog Comparator (ACMP) on page 36.
• Removed all references to RFSENSE.
Revision 1.21
April, 2020
•
•
•
•
•
•
•
•
•
In the front page block diagram, updated the lowest energy mode for LETIMER.
Removed Wake On Radio references wherever applicable since this feature is not supported by the software.
Updated 3.6.4 Low Energy Timer (LETIMER) lowest energy mode.
Updated PTI description 7.3.2 Packet Trace Interface (PTI).
Updated Section 9.1 Package Outline.
Updated dimensions 9.2 Recommended PCB Land Pattern.
Updated 9.3 Package Marking images and description.
Updated text in 11.3 CE and UKCA - EU and UK.
Updated 11.7 KC South Korea certification.
Revision 1.2
January 2019
• Moved 11.7 Taiwan NCC to 11.8 Taiwan NCC.
• Updated text in 11.8 Taiwan NCC.
• Added 11.7 KC South Korea.
• Updated text and images in section 9.4 Package Marking.
• Updated text in section 11.3 CE.
Revision 1.1
September 2018
• Added 19 dBm part numbers (BGM13P32) and associated specifications and details.
Revision 1.01
August 2018
• Added Electrical Specifications Tables for VDAC, CSEN, OPAMP, PCNT and APORT.
• Table 8.2 GPIO Functionality Table on page 62: Sorted by GPIO name.
• Removed unbonded I/O from APORT mapping tables.
• Added package dimensions for devices with U.FL connection.
• Removed tape and reel specifications section.
Revision 1.0
February 2018
• Updated 4.1 Electrical Characteristics with latest characterization data and test limits.
• Added certification details.
silabs.com | Building a more connected world.
Rev. 1.4 | 101
BGM13P Wireless Gecko Bluetooth ® Module Data Sheet
Revision History
Revision 0.2
December 2017
• Added V2 part numbers to Table 2.1 Ordering Information on page 3.
Revision 0.1
September 15, 2017
• Initial Release.
silabs.com | Building a more connected world.
Rev. 1.4 | 102
Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support & Community
www.silabs.com/community
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.
Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more
information, visit www.silabs.com/about-us/inclusive-lexicon-project
Trademark Information
Silicon Laboratories Inc. ® , Silicon Laboratories ® , Silicon Labs ® , SiLabs ® and the Silicon Labs logo ® , Bluegiga ® , Bluegiga Logo ® , EFM ® , EFM32 ® , EFR, Ember® , Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals ® , WiSeConnect , n-Link, ThreadArch ® , EZLink® , EZRadio ® , EZRadioPRO ® ,
Gecko ® , Gecko OS, Gecko OS Studio, Precision32 ® , Simplicity Studio ® , Telegesis, the Telegesis Logo ® , USBXpress ® , Zentri, the Zentri logo and Zentri DMS, Z-Wave ® , and others
are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
www.silabs.com