CY28346-2
Clock Synthesizer with Differential CPU Outputs
Features
• Compliant with Intel® CK 408 Mobile Clock Synthesizer
specifications
• Spread Spectrum electromagnetic interference (EMI)
reduction
• 3.3V power supply
• Dial-a-Frequency features
• 3 differential CPU clocks
• Dial-a-dB™ features
• 10 copies of PCI clocks
• Extended operating temperature range, 0C to 85C
• 5/6 copies of 3V66 clocks
• 56-pin TSSOP packages
• SMBus support with Read Back capabilities
Table 1. Frequency Table[1]
S2
S1
S0
CPU
(0:2)
3V66
66BUFF(0:2)/
3V66(0:4)
66IN/
3V66-5
PCIF/PCI
REF
USB/
DOT
1
0
0
66M
66M
66IN
66-MHz clock input
66IN/2
14.318M
48M
1
0
1
100M
66M
66IN
66-MHz clock input
66IN/2
14.318M
48M
1
1
0
200M
66M
66IN
66-MHz clock input
66IN/2
14.318M
48M
1
1
1
133M
66M
66IN
66-MHz clock input
66IN/2
14.318M
48M
0
0
0
66M
66M
66M
66M
33 M
14.318M
48M
0
0
1
100M
66M
66M
66M
33 M
14.318M
48M
0
1
0
200M
66M
66M
66M
33 M
14.318M
48M
0
1
1
133M
66M
66M
66M
33 M
14.318M
48M
M
0
0
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Hi-Z
M
0
1
TCLK/2
TCLK/4
TCLK/4
TCLK/4
TCLK/8
TCLK
TCLK/2
Block Diagram
Pin Configuration
XIN
XOUT
REF
CPUT(0:2)
CPUC(0:2)
PLL1
CPU_STP#
IREF
VSSIREF
3V66_1/VCH
MULT0
VTT_PWRGD#
/2
PCI_STP#
PCI(0:6)
PCI_F(0:2)
PLL2
48M_USB
48M_DOT
PD#
SDATA
SCLK
WD
Logic
I2C
Logic
66B[0:2]/3V66[2:4]
VDDA
Power
Up Logic
66IN/3V66-5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
CY28346-2
3V66_0
S(0:2)
VDD
XIN
XOUT
VSS
PCIF0
PCIF1
PCIF2
VDD
VSS
PCI0
PCI1
PCI2
PCI3
VDD
VSS
PCI4
PCI5
PCI6
VDD
VSS
66B0/3V66_2
66B1/3V66_3
66B2/3V66_4
66IN/3V66_5
PD#
VDDA
VSSA
VTT_PWRGD#
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
REF
S1
S0
CPU_STP#
CPUT0
CPUC0
VDD
CPUT1
CPUC1
VSS
VDD
CPUT2
CPUC2
MULT0
IREF
VSSIREF
S2
48M_USB
48M_DOT
VDD
VSS
3V66_1/VCH
PCI_STP#
3V66_0
VDD
VSS
SCLK
SDATA
Note:
1. TCLK is a test clock driven on the XTAL_IN input during test mode. M = driven to a level between 1.0V and 1.8V. If the S2 pin is at a M level during power-up, a
0 state will be latched into the devices internal state register.
........................ Document #: 38-07509 Rev. *B Page 1 of 19
400 West Cesar Chavez, Austin, TX 78701
1+(512) 416-8500
1+(512) 416-9669
www.silabs.com
CY28346-2
Pin Description
Pin
Name
PWR
I/O
Description
2
XIN
VDD
I
Oscillator Buffer Input. Connect to a crystal or to an external clock.
3
XOUT
VDD
O
Oscillator Buffer Output. Connect to a crystal. Do not connect when an
external clock is applied at XIN.
VDD
O
Differential host output clock pairs. See Table 1 for frequencies and
functionality.
VDDP
O
PCI clock outputs. Are synchronous to 66IN or 3V66 clock. See Table 1.
52, 51, 49, 48, CPUT(0:2),
45, 44
CPUC(0:2)
10, 11, 12, 13, PCI(0:6)
16, 17, 18
5, 6, 7
PCIF (0:2)
VDD
O
33-MHz PCI clocks, which are 2 copies of 66IN or 3V66 clocks, may
be free running (not stopped when PCI_STP# is asserted LOW) or
may be stoppable depending on the programming of SMBus
register Byte3, Bits (3:5).
56
REF
VDD
O
Buffered output copy of the device’s XIN clock.
42
IREF
VDD
I
Current reference programming input for CPU buffers. A resistor is
connected between this pin and VSSIREF.
28
VTT_PWRGD#
VDD
I
Qualifying input that latches S(0:2) and MULT0. When this input is at
a logic low, the S(0:2) and MULT0 are latched.
39
48M_USB
VDD48
O
Fixed 48-MHz USB clock outputs.
38
48M_DOT
VDD48
O
Fixed 48-MHZ DOT clock outputs.
33
3V66_0
VDD
O
3.3V 66-MHz fixed frequency clock.
35
3V66_1/VCH
VDD
O
3.3V clock selectable with SMBus byte0, Bit5, when Byte5, Bit5.
When Byte 0 Bit 5 is at a logic 1, then this pin is a 48M output clock. When
byte0, Bit5 is a logic 0, then this is a 66M output clock (default).
25
PD#
VDD
I
PU
This pin is a power-down mode pin. A logic LOW level causes the
device to enter a power-down state. All internal logic is turned off except
for the SMBus logic. All output buffers are stopped.
43
MULT0
VDD
I
PU
Programming input selection for CPU clock current multiplier.
55, 54
S(0,1)
I
I
Frequency select inputs. See Table 1
29
SDATA
I
I
Serial data input. Conforms to the SMBus specification of a Slave
Receive/Transmit device. It is an input when receiving data. It is an open
drain output when acknowledging or transmitting data.
30
SCLK
I
I
Serial clock input. Conforms to the SMBus specification.
40
S2
VDD
I
T
Frequency select input. See Table 1. This is a Tri-level input that is
driven HIGH, LOW, or driven to a intermediate level.
34
PCI_STP#
VDD
I
PU
PCI clock disable input. When asserted LOW, PCI (0:6) clocks are
synchronously disabled in a LOW state. This pin does not effect PCIF
(0:2) clocks’ outputs if they are programmed to be PCIF clocks via the
device’s SMBus interface.
53
CPU_STP#
VDD
I
PU
CPU clock disable input. When asserted LOW, CPUT (0:2) clocks are
synchronously disabled in a HIGH state and CPUC(0:2) clocks are
synchronously disabled in a LOW state.
24
66IN/3V66_5
VDD
I/O
Input connection for 66CLK(0:2) output clock buffers if S2 = 1, or
output clock for fixed 66-MHz clock if S2 = 0. See Table 1.
21, 22, 23
66B(0:2)/
3V66(2:4)
VDD
O
3.3V clock outputs. These clocks are buffered copies of the 66IN clock
or fixed at 66 MHz. See Table 1.
1, 8, 14, 19, 32, VDD
37, 46, 50
–
PWR 3.3V power supply.
4, 9, 15, 20, 27, VSS
31, 36, 47
–
PWR Common ground.
........................ Document #: 38-07509 Rev. *B Page 2 of 19
CY28346-2
Pin Description (continued)
Pin
Name
PWR
I/O
Description
41
VSSIREF
–
PWR Current reference programming input for CPU buffers. A resistor is
connected between this pin and IREF. This pin should also be returned
to device VSS.
26
VDDA
–
PWR Analog power input. Used for PLL and internal analog circuits. It is also
specifically used to detect and determine when power is at an acceptable
level to enable the device to operate.
Serial Data Interface
Data Protocol
To enhance the flexibility and function of the clock synthesizer,
a two-signal serial interface is provided. Through the Serial
Data Interface, various device functions, such as individual
clock output buffers, can be individually enabled or disabled.
The registers associated with the Serial Data Interface
initializes to their default setting upon power-up, and therefore
use of this interface is optional. Clock device register changes
are normally made upon system initialization, if any are
required. The interface can also be used during system
operation for power management functions.
The clock driver serial protocol accepts block write and block
read operations from the controller. For block write/read
operation, the bytes must be accessed in sequential order
from lowest to highest byte (most significant bit first) with the
ability to stop after any complete byte has been transferred.
The block write and block read protocol is outlined in Table 2.
The slave receiver address is 11010010 (D2h).
Table 2. Block Read and Block Write Protocol
Block Write Protocol
Bit
1
2:8
Description
Start
Slave address – 7 bits
9
Write = 0
10
Acknowledge from slave
11:18
19
20:27
28
29:36
37
38:45
46
Command Code – 8 bit
‘00000000’ stands for block operation
Acknowledge from slave
Byte Count – 8 bits
Acknowledge from slave
Block Read Protocol
Bit
1
2:8
9
10
11:18
19
20
21:27
Description
Start
Slave address – 7 bits
Write = 0
Acknowledge from slave
Command Code – 8 bit
‘00000000’ stands for block operation
Acknowledge from slave
Repeat start
Slave address – 7 bits
Data byte 1 – 8 bits
28
Read = 1
Acknowledge from slave
29
Acknowledge from slave
Data byte 2 – 8 bits
Acknowledge from slave
30:37
38
....
......................
....
Data Byte (N–1) –8 bits
47
....
Acknowledge from slave
48:55
....
Data Byte N –8 bits
56
....
Acknowledge from slave
....
Data bytes from slave/Acknowledge
....
Stop
....
Data byte N from slave – 8 bits
....
Not Acknowledge
....
Stop
........................ Document #: 38-07509 Rev. *B Page 3 of 19
39:46
Byte count from slave – 8 bits
Acknowledge
Data byte from slave – 8 bits
Acknowledge
Data byte from slave – 8 bits
Acknowledge
CY28346-2
Byte 0: CPU Clock Register
Bit @Pup
7
Name
Description
0
Spread Spectrum Enable, 0 = Spread Off, 1 = Spread On. This is a Read and Write control bit.
6
0
CPU clock Power-down Mode Select.
0 = Drive CPUT(0:2) to 4 or 6 IREF and drive CPUC(0:2) to low when PD# is asserted LOW.
1 = Three-state all CPU outputs. This is only applicable when PD# is LOW. It is not applicable to
CPU_STP#.
5
0
4
Pin 53
3
Pin 34
2
Pin 40
Frequency Select Bit 2. Reflects the value of SEL2 (pin 40). This bit is Read-only.
1
Pin 55
Frequency Select Bit 1. Reflects the value of SEL1 (pin 55). This bit is Read-only.
0
Pin 54
Frequency Select Bit 0. Reflects the value of SEL0 (pin 54). This bit is Read-only.
3V66_1/VCH
3V66_1/VCH frequency Select, 0 = 66M selected, 1 = 48M selected
This is a Read and Write control bit.
CPUT,CPUC
CPU_STP#. Reflects the current value of the external CPU_STP# (pin 53) This bit is Read-only.
PCI
Reflects the current value of the internal PCI_STP# function when read. Internally PCI_STP# is
a logical AND function of the internal SMBus register bit and the external PCI_STP# pin.
Byte 1: CPU Clock Register
Bit @Pup
7
Pin 43
Name
MULT0
Description
MULT0 (Pin 43) Value. This bit is Read-only.
Controls functionality of CPUT/C(0:2) outputs when CPU_STP# is asserted. 0 = Drive CPUT(0:2) to
4 or 6 IREF and drive CPUC(0:2) to low when CPU_STP# asserted LOW. 1 = Three-state all CPU
CPU_STP#
outputs. This bit will override Byte0, Bit6 such that even if it is a 0, when PD# goes low the CPU outputs
will be three-stated.
6
0
5
0
CPUT2
CPUC2
Controls CPU2 functionality when CPU_STP# is asserted LOW
1 = Free Running, 0 = Stopped LOW with CPU_STP# asserted LOW
This is a Read and Write control bit.
4
0
CPUT1
CPUC1
Controls CPU1 functionality when CPU_STP# is asserted LOW
1 = Free Running, 0 = Stopped LOW with CPU_STP# asserted LOW
This is a Read and Write control bit.
3
0
CPUT0
CPUC0
Controls CPUT0 functionality when CPU_STP# is asserted LOW
1 = Free Running, 0 = Stopped LOW with CPU_STP# asserted LOW
This is a Read and Write control bit.
2
1
CPUT2
CPUC2
CPUT/C2 Output Control, 1 = enabled, 0 = disable HIGH and CPUC2 disables LOW
This is a Read and Write control bit.
1
1
CPUT1
CPUC1
CPUT/C1 Output Control, 1 = enabled, 0 = disable HIGH and CPUC1 disables LOW
This is a Read and Write control bit.
0
1
CPUT0
CPUC0
CPUT/C0 Output Control, 1 = enabled, 0 = disable HIGH and CPUC0 disables LOW
This is a Read and Write control bit.
Byte 2: PCI Clock Control Register (all bits are read and write functional)
Bit
@Pup
Name
Description
7
0
REF
REF Output Control. 0 = high strength, 1 = low strength
6
1
PCI6
PCI6 Output Control. 1 = enabled, 0 = forced LOW
5
1
PCI5
PCI5 Output Control. 1 = enabled, 0 = forced LOW
4
1
PCI4
PCI4 Output Control. 1 = enabled, 0 = forced LOW
3
1
PCI3
PCI3 Output Control. 1 = enabled, 0 = forced LOW
2
1
PCI2
PCI2 Output Control. 1 = enabled, 0 = forced LOW
1
1
PCI1
PCI1 Output Control. 1 = enabled, 0 = forced LOW
0
1
PCI0
PCI0 Output Control. 1 = enabled, 0 = forced LOW
........................ Document #: 38-07509 Rev. *B Page 4 of 19
CY28346-2
Byte 3: PCIF Clock and 48M Control Register (all bits are read and write functional)
Bit
@Pup
Name
Description
7
1
48M_DOT
48M_DOT Output Control,1 = enabled, 0 = forced LOW
6
1
48M_USB
48M_USB Output Control,1 = enabled, 0 = forced LOW
5
0
PCIF2
PCI_STP#, control of PCIF2.
0 = Free Running, 1 = Stopped when PCI_STP# is LOW
4
0
PCIF1
PCI_STP#, control of PCIF1.
0 = Free Running, 1 = Stopped when PCI_STP# is LOW
3
0
PCIF0
PCI_STP#, control of PCIF0.
0 = Free Running, 1 = Stopped when PCI_STP# is LOW
2
1
PCIF2
PCIF2 Output Control. 1=running, 0=forced LOW
1
1
PCIF1
PCIF1 Output Control. 1= running, 0=forced LOW
0
1
PCIF0
PCIF0 Output Control. 1= running, 0=forced LOW
Byte 4: DRCG Control Register(all bits are read and write functional)
Bit
@Pup
Name
Description
7
0
SS2 Spread Spectrum control bit (0 = down spread, 1 = center spread)
6
0
Reserved
5
1
3V66_0
4
1
3V66_1/VCH
3
1
3V66_5
2
1
66B2/3V66_4
66B2/3V66_4 Output Enabled. 1 = enabled, 0 = disabled
1
1
66B1/3V66_3
66B1/3V66_3 Output Enabled. 1 = enabled, 0 = disabled
0
1
66B0/3V66_2
66B0/3V66_2 Output Enabled. 1 = enabled, 0 = disabled
3V66_0 Output Enabled. 1 = enabled, 0 = disabled
3V66_1/VCH Output Enable. 1 = enabled, 0 = disabled
3V66_5 Output Enable. 1 = enabled, 0 = disabled
Byte 5: Clock Control Register (all bits are read and write functional)
Bit
@Pup
Name
Description
7
0
SS1 Spread Spectrum control bit
6
1
SS0 Spread Spectrum control bit
5
0
66IN to 66M delay Control MSB
4
0
66IN to 66M delay Control LSB
3
0
Reserved
2
0
48M_DOT edge rate control. When set to 1, the edge is slowed by 15%.
1
0
Reserved
0
0
USB edge rate control. When set to 1, the edge is slowed by 15%
Byte 6: Silicon Signature Register[2] (all bits are read-only)
Bit
@Pup
7
0
6
0
5
0
4
1
3
0
2
0
1
1
0
1
Name
Description
Vendor Code, 011 = IMI
Note:
2. When writing to this register the device will acknowledge the write operation, but the data itself will be ignored.
........................ Document #: 38-07509 Rev. *B Page 5 of 19
CY28346-2
Byte 7: Watchdog Time Stamp Register
Bit
@Pup
Name
Description
7
0
Reserved
6
0
Reserved
5
0
Reserved
4
0
Reserved
3
0
Reserved
2
0
Reserved
1
0
Reserved
0
0
Reserved
Byte 8: Dial-a-Frequency Control Register N (all bits are read and write functional)
Bit
@Pup
7
0
Name
N7, MSB
Description
6
0
N6
5
0
N5
4
0
N4
3
0
N3
2
0
N2
1
0
N3
0
0
N0, LSB
Byte 9: Dial-a-Frequency Control Register R (all bits are read and write functional)
Bit
@Pup
7
0
Name
R6 MSB
Description
6
0
R5
5
0
R4
4
0
R3
3
0
R2
2
0
R1
1
0
R0, LSB
0
0
R and N register load gate 0 = gate closed (data is latched), 1 = gate open
(data is loading from SMBus registers into R and N)
Dial-a-Frequency Feature
Dial-a-dB Features
SMBus Dial-a-Frequency feature is available in this device via
Byte8 and Byte9. See our App Note AN-0025 for details on our
Dial-a-Frequency feature.
SMBus Dial-a-dB feature is available in this device via Byte8
and Byte9.
P is a large value PLL constant that depends on the frequency
selection achieved through the hardware selectors (S1, S0).
P value may be determined from Table 3.
Table 3. P Value
S(1:0)
P
00
32005333
01
48008000
10
96016000
11
64010667
........................ Document #: 38-07509 Rev. *B Page 6 of 19
Spread Spectrum Clock Generation (SSCG)
Spread Spectrum is a modulation technique used to
minimizing EMI radiation generated by repetitive digital
signals. A clock presents the greatest EMI energy at the center
frequency it is generating. Spread Spectrum distributes this
energy over a specific and controlled frequency bandwidth
therefore causing the average energy at any one point in this
band to decrease in value. This technique is achieved by
modulating the clock away from its resting frequency by a
certain percentage (which also determines the amount of EMI
reduction). In this device, Spread Spectrum is enabled by
setting specific register bits in the SMBus control Bytes.
Table 4 is a listing of the modes and percentages of Spread
Spectrum modulation that this device incorporates.
CY28346-2
Configured as DRCG (66M), SMBus Byte0, Bit 5 = ‘0’
Table 4. Spread Spectrum
The default condition for this pin is to power up in a 66M
operation. In 66M operation this output is SSCG capable and
when spreading is turned on, this clock will be modulated.
SS2
SS1
SS0
Spread Mode
Spread%
0
0
0
Down
+0.00, –0.25
0
0
1
Down
+0.00, –0.50
Configured as VCH (48M), SMBus Byte0, Bit 5 = ‘1’
0
1
0
Down
+0.00, –0.75
In this mode, the output is configured as a 48-MHz non-spread
spectrum output. This output is phase aligned with the other
48M outputs (USB and DOT), to within 1 ns pin-to-pin skew.
The switching of 3V66_1/VCH into VCH mode occurs at
system power on. When the SMBus Bit 5 of Byte 0 is
programmed from a ‘0’ to a ‘1’, the 3V66_1/VCH output may
glitch while transitioning to 48M output mode.
0
1
1
Down
+0.00, –1.00
1
0
0
Center
+0.13, –0.13
1
0
1
Center
+0.25, –0.25
1
1
0
Center
+0.37, –0.37
1
1
1
Center
+0.50, –1.50
Special Functions
PCIF and IOAPIC Clock Outputs
The PCIF clock outputs are intended to be used, if required,
for systems IOAPIC clock functionality. ANY two of the PCIF
clock outputs can be used as IOAPIC 33-MHz clock outputs.
They are 3.3V outputs will be divided down via a simple
resistive voltage divider to meet specific system IOAPIC clock
voltage requirements. In the event these clocks are not
required, then these clocks can be used as general PCI clocks
or disabled via the assertion of the PCI_STP# pin.
3V66_1/VCH Clock Output
The 3V66_1/VCH pin has a dual functionality that is selectable
via SMBus.
PD# (Power-down) Clarification
The PD# (Power-down) pin is used to shut off ALL clocks prior
to shutting off power to the device. PD# is an asynchronous
active LOW input. This signal is synchronized internally to the
device powering down the clock synthesizer. PD# is an
asynchronous function for powering up the system. When PD#
is low, all clocks are driven to a LOW value and held there and
the VCO and PLLs are also powered down. All clocks are shut
down in a synchronous manner so has not to cause glitches
while transitioning to the low ‘stopped’ state.
PD#—Assertion
When PD# is sampled LOW by two consecutive rising edges
of the CPUC clock, then on the next HIGH-to-LOW transition
of PCIF, the PCIF clock is stopped LOW. On the next
HIGH-to-LOW transition of 66Buff, the 66Buff clock is stopped
LOW. From this time, each clock will stop LOW on its next
HIGH-to-LOW transition, except the CPUT clock. The CPU
clocks are held with the CPUT clock pin driven HIGH with a
value of 2 x Iref, and CPUC undriven. After the last clock has
stopped, the rest of the generator will be shut down.
66Buff
PCIF
PW RDW N#
CPU 133MHz
CPU# 133MHz
3V66
66In
USB 48MHz
REF 14.318MHz
Figure 1. Power-down Assertion Timing Waveforms—Buffered Mode
........................ Document #: 38-07509 Rev. *B Page 7 of 19
CY28346-2
PW RDW N#
C P U T 133M H z
C P U C 133M H z
P C I 33M H z
A G P 66M H z
U S B 48M H z
R E F 1 4 .3 1 8 M H z
D D R T 133M H z
D D R C 133M H z
S D R A M 133M H z
Figure 2. Power-down Assertion Timing Waveforms—Unbuffered Mode
PD# Deassertion
The power-up latency between PD# rising to a valid logic ‘1’
level and the starting of all clocks is less than 3.0 ms.
30uS min
400uS max
0.25mS
Sample
Inputs straps
VDDA = 2.0V
Wait for