EFM32 Giant Gecko Series 1 Family
EFM32GG11 Family Data Sheet
The EFM32 Giant Gecko Series 1 MCUs are the world’s most
energy-friendly microcontrollers, featuring new connectivity interfaces and user interface features.
• ARM Cortex-M4 at 72 MHz
• Ultra low energy operation
• 80 µA/MHz in Energy Mode 0 (EM0)
• 2.1 μA EM2 Deep Sleep current (RTCC
running with state and RAM retention)
EFM32GG11 includes a powerful 32-bit ARM® Cortex®-M4 and provides robust security
via a unique cryptographic hardware engine supporting AES, ECC, SHA, and True Random Number Generator (TRNG). New features include an SD/MMC/SDIO controller, Octal/Quad-SPI memory controller, 10/100 Ethernet MAC, CAN bus controller, highly robust
capacitive sensing, enhanced alpha blending graphics engine, and LESENSE/PCNT enhancements for smart energy meters. These features, combined with ultra-low current
active mode and short wake-up time from energy-saving modes, make EFM32GG11 microcontrollers well suited for any battery-powered application, as well as other systems
requiring high performance and low-energy consumption.
• Octal/Quad-SPI memory interface w/ XIP
• SD/MMC/SDIO Host Controller
• 10/100 Ethernet MAC with 802.3az EEE,
IEEE1588
• Dual CAN 2.0 Bus Controller
• Crystal-free low-energy USB
• Hardware cryptographic engine supports
AES, ECC, SHA, and TRNG
Example applications:
• Robust capacitive touch sense
• Mid- and high-tier wearables
• IoT devices
• Smart energy meters
• Industrial and factory automation
• Home automation and security
• 5 V tolerant I/O
Core / Memory
Clock Management
TM
ARM Cortex
M4 processor
with FPU and
MPU
• Footprint compatible with select EFM32
packages
ETM
High Frequency
Crystal Oscillator
High Frequency
RC Oscillator
PLL
Universal HF RC
Oscillator
Flash Program
Memory
Debug Interface
Auxiliary High
Freq. RC Osc.
Ultra Low Freq.
RC Oscillator
RAM Memory
LDMA
Controller
Low Frequency
Crystal Oscillator
Low Frequency
RC Oscillator
Energy Management
Voltage
Regulator
Voltage/Temp
Monitor
DC-DC
Converter
Power-On Reset
Brown-Out
Detector
Backup Domain
Other
CRYPTO
CRC
True Random
Number Generator
SMU
32-bit bus
Peripheral Reflex System
Serial Interfaces
I/O Ports
USART
UART
10/100 Ethernet
SD / MMC / SDIO
CAN
Quad-SPI
LEUSB
(crystal free)
Low Energy
UARTTM
EBI + pixel-alpha
TFT Driver
External
Interrupts
General
Purpose I/O
Pin Reset
Pin Wakeup
I2C
Timers and Triggers
Analog Interfaces
Timer/Counter
Low Energy
Sensor IF
Low Energy LCD
Controller
ADC
Low Energy Timer
Real Time Counter
VDAC
Operational
Amplifier
Pulse Counter
Watchdog Timer
Analog
Comparator
IDAC
CRYOTIMER
Capacitive
Sensing
Real Time Counter
and Calendar
Lowest power mode with peripheral operational:
EM0 - Active
EM1 - Sleep
silabs.com | Building a more connected world.
EM2 – Deep Sleep
EM3 - Stop
EM4H - Hibernate
EM4S - Shutoff
Rev. 1.0
EFM32GG11 Family Data Sheet
Feature List
1. Feature List
The EFM32GG11 highlighted features are listed below.
• ARM Cortex-M4 CPU platform
• High performance 32-bit processor @ up to 72 MHz
• DSP instruction support and Floating Point Unit
• Memory Protection Unit
• Wake-up Interrupt Controller
• Flexible Energy Management System
• 80 μA/MHz in Active Mode (EM0)
• 2.1 μA EM2 Deep Sleep current (16 kB RAM retention and
RTCC running from LFRCO)
• Integrated DC-DC buck converter
• Up to 2048 kB flash program memory
• Dual-bank with read-while-write support
• Up to 512 kB RAM data memory
• 256 kB with ECC (SEC-DED)
• Octal/Quad-SPI Flash Memory Interface
• Supports 3 V and 1.8 V memories
• 1/2/4/8-bit data bus
• Quad-SPI Execute In Place (XIP)
• Communication Interfaces
• Low-energy Universal Serial Bus (USB) with Device and
Host support
• Fully USB 2.0 compliant
• On-chip PHY and embedded 5V to 3.3V regulator
• Crystal-free Device mode operation
• Patent-pending Low-Energy Mode (LEM)
• SD/MMC/SDIO Host Controller
• SD v3.01, SDIO v3.0 and MMC v4.51
• 1/4/8-bit bus width
• 10/100 Ethernet MAC with MII/RMII interface
• IEEE1588-2008 precision time stamping
• Energy Efficient Ethernet (802.3az)
• Up to 2× CAN Bus Controller
• Version 2.0A and 2.0B up to 1 Mbps
• 6× Universal Synchronous/Asynchronous Receiver/ Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
• Triple buffered full/half-duplex operation with flow control
• Ultra high speed (36 MHz) operation on one instance
• 2× Universal Asynchronous Receiver/ Transmitter
• 2× Low Energy UART
• Autonomous operation with DMA in Deep Sleep Mode
• 3× I2C Interface with SMBus support
• Address recognition in EM3 Stop Mode
silabs.com | Building a more connected world.
• Up to 144 General Purpose I/O Pins
• Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
• Configurable peripheral I/O locations
• 5 V tolerance on select pins
• Asynchronous external interrupts
• Output state retention and wake-up from Shutoff Mode
• Up to 24 Channel DMA Controller
• Up to 24 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
• External Bus Interface for up to 4x256 MB of external
memory mapped space
• TFT Controller with Direct Drive
• Per-pixel alpha-blending engine
• Hardware Cryptography
• AES 128/256-bit keys
• ECC B/K163, B/K233, P192, P224, P256
• SHA-1 and SHA-2 (SHA-224 and SHA-256)
• True Random Number Generator (TRNG)
• Hardware CRC engine
• Single-cycle computation with 8/16/32-bit data and 16-bit
(programmable)/32-bit (fixed) polynomial
• Security Management Unit (SMU)
• Fine-grained access control for on-chip peripherals
• Integrated Low-energy LCD Controller with up to 8×36 segments
• Voltage boost, contrast and autonomous animation
• Patented low-energy LCD driver
• Backup Power Domain
• RTCC and retention registers in a separate power domain,
available down to energy mode EM4H
• Operation from backup battery when main power absent/
insufficient
• Ultra Low-Power Precision Analog Peripherals
• 2× 12-bit 1 Msamples/s Analog to Digital Converter (ADC)
• On-chip temperature sensor
• 2× 12-bit 500 ksamples/s Digital to Analog Converter
(VDAC)
• Digital to Analog Current Converter (IDAC)
• Up to 4× Analog Comparator (ACMP)
• Up to 4× Operational Amplifier (OPAMP)
• Robust current-based capacitive sensing with up to 64 inputs and wake-on-touch (CSEN)
• Up to 108 GPIO pins are analog-capable. Flexible analog
peripheral-to-pin routing via Analog Port (APORT)
• Supply Voltage Monitor
Rev. 1.0 | 2
EFM32GG11 Family Data Sheet
Feature List
• Timers/Counters
• 7× 16-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels (4 + 4 on one
timer instance)
• Dead-Time Insertion on several timer instances
• 4× 32-bit Timer/Counter
• 32-bit Real Time Counter and Calendar (RTCC)
• 24-bit Real Time Counter (RTC)
• 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup
from any Energy Mode
• 2× 16-bit Low Energy Timer for waveform generation
• 3× 16-bit Pulse Counter with asynchronous operation
• 2× Watchdog Timer with dedicated RC oscillator
• Low Energy Sensor Interface (LESENSE)
• Autonomous sensor monitoring in Deep Sleep Mode
• Wide range of sensors supported, including LC sensors and
capacitive buttons
• Up to 16 inputs
• Ultra efficient Power-on Reset and Brown-Out Detector
• Debug Interface
• 2-pin Serial Wire Debug interface
• 1-pin Serial Wire Viewer
• 4-pin JTAG interface
• Embedded Trace Macrocell (ETM)
silabs.com | Building a more connected world.
• Pre-Programmed Bootloader
• Wide Operating Range
• 1.8 V to 3.8 V single power supply
• Integrated DC-DC, down to 1.8 V output with up to 200 mA
load current for system
• Standard (-40 °C to 85 °C TAMB) and Extended (-40 °C to
125 °C TJ) temperature grades available
• Packages
• QFN64 (9x9 mm)
• TQFP64 (10x10 mm)
• TQFP100 (14x14 mm)
• BGA112 (10x10 mm)
• BGA120 (7x7 mm)
• BGA152 (8x8 mm)
• BGA192 (7x7mm)
Rev. 1.0 | 3
EFM32GG11 Family Data Sheet
Ordering Information
2. Ordering Information
RAM
(kB)
USB
Ethernet
QSPI
EFM32GG11B820F2048GL192-B
2048
512
Yes
Yes
Yes
Yes
EFM32GG11B840F1024GL192-B
1024
512
Yes
Yes
Yes
Yes
EFM32GG11B820F2048GL152-B
2048
512
Yes
Yes
Yes
EFM32GG11B820F2048IL152-B
2048
512
Yes
Yes
EFM32GG11B840F1024GL152-B
1024
512
Yes
EFM32GG11B840F1024IL152-B
1024
512
EFM32GG11B820F2048GL120-B
2048
EFM32GG11B820F2048IL120-B
LCD
Flash
(kB)
SDIO
Ordering Code
DC-DC Converter
Table 2.1. Ordering Information
GPIO
Package
Temp Range
Yes
Yes
144
BGA192
-40 to +85°C
Yes
Yes
144
BGA192
-40 to +85°C
Yes
Yes
Yes
121
BGA152
-40 to +85°C
Yes
Yes
Yes
Yes
121
BGA152
-40 to +125°C
Yes
Yes
Yes
Yes
Yes
121
BGA152
-40 to +85°C
Yes
Yes
Yes
Yes
Yes
Yes
121
BGA152
-40 to +125°C
512
Yes
Yes
Yes
Yes
Yes
Yes
95
BGA120
-40 to +85°C
2048
512
Yes
Yes
Yes
Yes
Yes
Yes
95
BGA120
-40 to +125°C
EFM32GG11B840F1024GL120-B
1024
512
Yes
Yes
Yes
Yes
Yes
Yes
95
BGA120
-40 to +85°C
EFM32GG11B840F1024IL120-B
1024
512
Yes
Yes
Yes
Yes
Yes
Yes
95
BGA120
-40 to +125°C
EFM32GG11B820F2048GQ100-B
2048
512
Yes
Yes
Yes
Yes
Yes
Yes
80
QFP100
-40 to +85°C
EFM32GG11B820F2048IQ100-B
2048
512
Yes
Yes
Yes
Yes
Yes
Yes
80
QFP100
-40 to +125°C
EFM32GG11B840F1024GQ100-B
1024
512
Yes
Yes
Yes
Yes
Yes
Yes
80
QFP100
-40 to +85°C
EFM32GG11B840F1024IQ100-B
1024
512
Yes
Yes
Yes
Yes
Yes
Yes
80
QFP100
-40 to +125°C
EFM32GG11B820F2048GQ64-B
2048
512
Yes
Yes
Yes
Yes
Yes
Yes
47
QFP64
-40 to +85°C
EFM32GG11B820F2048GM64-B
2048
512
Yes
Yes
Yes
Yes
Yes
Yes
50
QFN64
-40 to +85°C
EFM32GG11B820F2048IQ64-B
2048
512
Yes
Yes
Yes
Yes
Yes
Yes
47
QFP64
-40 to +125°C
EFM32GG11B820F2048IM64-B
2048
512
Yes
Yes
Yes
Yes
Yes
Yes
50
QFN64
-40 to +125°C
EFM32GG11B840F1024GQ64-B
1024
512
Yes
Yes
Yes
Yes
Yes
Yes
47
QFP64
-40 to +85°C
EFM32GG11B840F1024GM64-B
1024
512
Yes
Yes
Yes
Yes
Yes
Yes
50
QFN64
-40 to +85°C
EFM32GG11B840F1024IQ64-B
1024
512
Yes
Yes
Yes
Yes
Yes
Yes
47
QFP64
-40 to +125°C
EFM32GG11B840F1024IM64-B
1024
512
Yes
Yes
Yes
Yes
Yes
Yes
50
QFN64
-40 to +125°C
EFM32GG11B520F2048GL120-B
2048
512
Yes
No
No
No
No
Yes
95
BGA120
-40 to +85°C
EFM32GG11B510F2048GL120-B
2048
384
Yes
No
No
No
No
Yes
95
BGA120
-40 to +85°C
EFM32GG11B520F2048IL120-B
2048
512
Yes
No
No
No
No
Yes
95
BGA120
-40 to +125°C
EFM32GG11B510F2048IL120-B
2048
384
Yes
No
No
No
No
Yes
95
BGA120
-40 to +125°C
EFM32GG11B520F2048GQ100-B
2048
512
Yes
No
No
No
No
Yes
83
QFP100
-40 to +85°C
EFM32GG11B510F2048GQ100-B
2048
384
Yes
No
No
No
No
Yes
83
QFP100
-40 to +85°C
EFM32GG11B520F2048IQ100-B
2048
512
Yes
No
No
No
No
Yes
83
QFP100
-40 to +125°C
EFM32GG11B510F2048IQ100-B
2048
384
Yes
No
No
No
No
Yes
83
QFP100
-40 to +125°C
silabs.com | Building a more connected world.
Rev. 1.0 | 4
EFM32GG11 Family Data Sheet
RAM
(kB)
USB
Ethernet
QSPI
EFM32GG11B520F2048GQ64-B
2048
512
Yes
No
No
No
EFM32GG11B510F2048GQ64-B
2048
384
Yes
No
No
No
EFM32GG11B520F2048GM64-B
2048
512
Yes
No
No
EFM32GG11B510F2048GM64-B
2048
384
Yes
No
EFM32GG11B520F2048IQ64-B
2048
512
Yes
EFM32GG11B510F2048IQ64-B
2048
384
EFM32GG11B520F2048IM64-B
2048
EFM32GG11B510F2048IM64-B
LCD
Flash
(kB)
SDIO
Ordering Code
DC-DC Converter
Ordering Information
GPIO
Package
Temp Range
No
Yes
50
QFP64
-40 to +85°C
No
Yes
50
QFP64
-40 to +85°C
No
No
Yes
53
QFN64
-40 to +85°C
No
No
No
Yes
53
QFN64
-40 to +85°C
No
No
No
No
Yes
50
QFP64
-40 to +125°C
Yes
No
No
No
No
Yes
50
QFP64
-40 to +125°C
512
Yes
No
No
No
No
Yes
53
QFN64
-40 to +125°C
2048
384
Yes
No
No
No
No
Yes
53
QFN64
-40 to +125°C
EFM32GG11B420F2048GL120-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
93
BGA120
-40 to +85°C
EFM32GG11B420F2048IL120-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
93
BGA120
-40 to +125°C
EFM32GG11B420F2048GL112-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
87
BGA112
-40 to +85°C
EFM32GG11B420F2048IL112-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
87
BGA112
-40 to +125°C
EFM32GG11B420F2048GQ100-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
83
QFP100
-40 to +85°C
EFM32GG11B420F2048IQ100-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
83
QFP100
-40 to +125°C
EFM32GG11B420F2048GQ64-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
50
QFP64
-40 to +85°C
EFM32GG11B420F2048GM64-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
53
QFN64
-40 to +85°C
EFM32GG11B420F2048IQ64-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
50
QFP64
-40 to +125°C
EFM32GG11B420F2048IM64-B
2048
512
No
Yes
Yes
Yes
Yes
Yes
53
QFN64
-40 to +125°C
EFM32GG11B320F2048GL112-B
2048
512
No
No
No
No
No
Yes
90
BGA112
-40 to +85°C
EFM32GG11B310F2048GL112-B
2048
384
No
No
No
No
No
Yes
90
BGA112
-40 to +85°C
EFM32GG11B320F2048GQ100-B
2048
512
No
No
No
No
No
Yes
86
QFP100
-40 to +85°C
EFM32GG11B310F2048GQ100-B
2048
384
No
No
No
No
No
Yes
86
QFP100
-40 to +85°C
EFM32GG11B120F2048GQ64-B
2048
512
No
No
No
No
No
No
53
QFP64
-40 to +85°C
EFM32GG11B110F2048GQ64-B
2048
384
No
No
No
No
No
No
53
QFP64
-40 to +85°C
EFM32GG11B120F2048GM64-B
2048
512
No
No
No
No
No
No
56
QFN64
-40 to +85°C
EFM32GG11B110F2048GM64-B
2048
384
No
No
No
No
No
No
56
QFN64
-40 to +85°C
EFM32GG11B120F2048IQ64-B
2048
512
No
No
No
No
No
No
53
QFP64
-40 to +125°C
EFM32GG11B110F2048IQ64-B
2048
384
No
No
No
No
No
No
53
QFP64
-40 to +125°C
EFM32GG11B120F2048IM64-B
2048
512
No
No
No
No
No
No
56
QFN64
-40 to +125°C
EFM32GG11B110F2048IM64-B
2048
384
No
No
No
No
No
No
56
QFN64
-40 to +125°C
silabs.com | Building a more connected world.
Rev. 1.0 | 5
EFM32GG11 Family Data Sheet
Ordering Information
EFM32 G G 1 1 B 820 F 2048 G L 192 – A R
Tape and Reel (Optional)
Revision
Pin Count
Package – M (QFN), L (BGA), Q (QFP)
Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C)
Flash Memory Size in kB
Memory Type (Flash)
Feature Set Code
Performance Grade – B (Basic)
Device Configuration
Series
Gecko
Family – G (Giant)
Energy Friendly Microcontroller 32-bit
Figure 2.1. Ordering Code Key
silabs.com | Building a more connected world.
Rev. 1.0 | 6
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Introduction .
.
.
.
.
.
.
.
11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
3.2 Power . . . . . . . . . . .
3.2.1 Energy Management Unit (EMU)
3.2.2 DC-DC Converter . . . . .
3.2.3 5 V Regulator . . . . . . .
3.2.4 EM2 and EM3 Power Domains .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
.13
.13
.13
.14
3.3 General Purpose Input/Output (GPIO) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
3.4 Clocking . . . . . . . . . .
3.4.1 Clock Management Unit (CMU) .
3.4.2 Internal and External Oscillators.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
.14
.15
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.15
.15
.15
.15
.15
.15
.16
.16
3.6 Communications and Other Digital Peripherals . . . . . . . . . .
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) .
3.6.2 Universal Asynchronous Receiver/Transmitter (UART) . . . . . .
3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) .
3.6.4 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . .
3.6.5 External Bus Interface (EBI) . . . . . . . . . . . . . . .
3.6.6 Quad-SPI Flash Controller (QSPI) . . . . . . . . . . . . .
3.6.7 SDIO Host Controller (SDIO) . . . . . . . . . . . . . . .
3.6.8 Universal Serial Bus (USB) . . . . . . . . . . . . . . .
3.6.9 Ethernet (ETH) . . . . . . . . . . . . . . . . . . .
3.6.10 Controller Area Network (CAN) . . . . . . . . . . . . .
3.6.11 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
3.6.12 Low Energy Sensor Interface (LESENSE) . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.16
.16
.16
.16
.16
.16
.17
.17
.17
.17
.17
.17
.17
3.7 Security Features . . . . . . . . . . . . . .
3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)
3.7.2 Crypto Accelerator (CRYPTO) . . . . . . . .
3.7.3 True Random Number Generator (TRNG) . . . .
3.7.4 Security Management Unit (SMU) . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.17
.18
.18
.18
.18
3.8 Analog. . . . . . . . . . .
3.8.1 Analog Port (APORT) . . . .
3.8.2 Analog Comparator (ACMP) . .
3.8.3 Analog to Digital Converter (ADC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.18
.18
.18
.18
.
.
.
3.5 Counters/Timers and PWM . . . . . . . . .
3.5.1 Timer/Counter (TIMER) . . . . . . . .
3.5.2 Wide Timer/Counter (WTIMER) . . . . . .
3.5.3 Real Time Counter and Calendar (RTCC) . .
3.5.4 Low Energy Timer (LETIMER) . . . . . .
3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.5.6 Pulse Counter (PCNT) . . . . . . . . .
3.5.7 Watchdog Timer (WDOG) . . . . . . . .
silabs.com | Building a more connected world.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Rev. 1.0 | 7
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8
Capacitive Sense (CSEN) . . . . . .
Digital to Analog Current Converter (IDAC)
Digital to Analog Converter (VDAC) . .
Operational Amplifiers . . . . . . .
Liquid Crystal Display Driver (LCD). . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.18
.19
.19
.19
.19
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.19
3.10 Core and Memory . . . . . . . . . . . .
3.10.1 Processor Core . . . . . . . . . . . .
3.10.2 Memory System Controller (MSC) . . . . .
3.10.3 Linked Direct Memory Access Controller (LDMA)
3.10.4 Bootloader . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.19
.19
.19
.20
.20
3.11 Memory Map .
3.9 Reset Management Unit (RMU) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.21
3.12 Configuration Summary
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.23
4. Electrical Specifications
. . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .24
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .25
4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .26
4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .29
4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .30
4.1.5 5V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
4.1.6 Backup Supply Domain . . . . . . . . . . . . . . . . . . . . . . . . .33
4.1.7 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . .34
4.1.8 Wake Up Times . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
4.1.9 Brown Out Detector (BOD) . . . . . . . . . . . . . . . . . . . . . . . .43
4.1.10 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
4.1.11 Flash Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .51
4.1.12 General-Purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . .52
4.1.13 Voltage Monitor (VMON) . . . . . . . . . . . . . . . . . . . . . . . . .54
4.1.14 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . .55
4.1.15 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . .57
4.1.16 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . .60
4.1.17 Current Digital to Analog Converter (IDAC) . . . . . . . . . . . . . . . . . .63
4.1.18 Capacitive Sense (CSEN) . . . . . . . . . . . . . . . . . . . . . . . .65
4.1.19 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . .67
4.1.20 LCD Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
4.1.21 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . .71
4.1.22 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . . .71
4.1.23 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
4.1.24 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
4.1.25 External Bus Interface (EBI) . . . . . . . . . . . . . . . . . . . . . . .78
4.1.26 Ethernet (ETH) . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
4.1.27 Serial Data I/O Host Controller (SDIO) . . . . . . . . . . . . . . . . . . . .90
4.1.28 Quad SPI (QSPI)
. . . . . . . . . . . . . . . . . . . . . . . . . .108
4.2 Typical Performance Curves
. . . . . . . . . . . . . . . . . . . . . . . .112
4.2.1 Supply Current
. . . . . . . . . . . . . . . . . . . . . . . . . . 1. 13
4.2.2 DC-DC Converter
. . . . . . . . . . . . . . . . . . . . . . . . . 119
.
silabs.com | Building a more connected world.
Rev. 1.0 | 8
5. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1 EFM32GG11B8xx in BGA192 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 121
5.2 EFM32GG11B8xx in BGA152 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 125
5.3 EFM32GG11B8xx in BGA120 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 129
5.4 EFM32GG11B5xx in BGA120 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 132
5.5 EFM32GG11B4xx in BGA120 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 135
5.6 EFM32GG11B4xx in BGA112 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 138
5.7 EFM32GG11B3xx in BGA112 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 141
5.8 EFM32GG11B8xx in QFP100 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 144
5.9 EFM32GG11B5xx in QFP100 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 147
5.10 EFM32GG11B4xx in QFP100 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 50
5.11 EFM32GG11B3xx in QFP100 Device Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1
. 53
5.12 EFM32GG11B8xx in QFP64 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 156
5.13 EFM32GG11B5xx in QFP64 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 158
5.14 EFM32GG11B4xx in QFP64 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 160
5.15 EFM32GG11B1xx in QFP64 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 162
5.16 EFM32GG11B8xx in QFN64 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 164
5.17 EFM32GG11B5xx in QFN64 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 166
5.18 EFM32GG11B4xx in QFN64 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 168
5.19 EFM32GG11B1xx in QFN64 Device Pinout .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 170
5.20 GPIO Functionality Table
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 172
.
.
.
.
5.21 Alternate Functionality Overview
.
.
5.22 Analog Port (APORT) Client Maps .
6. BGA192 Package Specifications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 184
.
.
. 217
. . . . . . . . . . . . . . . . . . . . . . .230
6.1 BGA192 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 230
6.2 BGA192 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 232
.
6.3 BGA192 Package Marking .
.
.
7. BGA152 Package Specifications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 234
. . . . . . . . . . . . . . . . . . . . . . .235
7.1 BGA152 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 235
7.2 BGA152 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 237
.
7.3 BGA152 Package Marking .
.
.
8. BGA120 Package Specifications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 239
. . . . . . . . . . . . . . . . . . . . . . .240
8.1 BGA120 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 240
8.2 BGA120 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 242
.
8.3 BGA120 Package Marking .
.
.
9. BGA112 Package Specifications
9.1 BGA112 Package Dimensions .
silabs.com | Building a more connected world.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 244
. . . . . . . . . . . . . . . . . . . . . . .245
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 245
Rev. 1.0 | 9
9.2 BGA112 PCB Land Pattern .
.
9.3 BGA112 Package Marking .
.
.
.
.
.
.
.
.
10. TQFP100 Package Specifications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 247
.
. 249
. . . . . . . . . . . . . . . . . . . . . .250
10.1 TQFP100 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 250
10.2 TQFP100 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 252
10.3 TQFP100 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 253
11. TQFP64 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 254
11.1 TQFP64 Package Dimensions
11.2 TQFP64 PCB Land Pattern
.
11.3 TQFP64 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.254
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.256
.
12. QFN64 Package Specifications
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2. 57
. . . . . . . . . . . . . . . . . . . . . . .258
12.1 QFN64 Package Dimensions.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 258
12.2 QFN64 PCB Land Pattern.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 260
12.3 QFN64 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 262
13. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
silabs.com | Building a more connected world.
Rev. 1.0 | 10
EFM32GG11 Family Data Sheet
System Overview
3. System Overview
3.1 Introduction
The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high
performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Giant Gecko Series 1 Reference Manual.
A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG11 Block Diagram on page 11. The
diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features,
consult Ordering Information.
Backup
Domain
IOVDDn
Port I/O Configuration
BU_VIN
To
BU_STAT
BU_VOUT GPIO
Digital Peripherals
Voltage
Monitor
AVDD
DVDD
bypass
VREGVDD
VREGSW
DC-DC
Converter
Voltage
Regulator
DECOUPLE
LETIMER
USB
TIMER / WTIMER
CAN
CRYOTIMER
Ethernet
PCNT
EBI
RTC / RTCC
TFT
USART / UART
SDIO
LEUART
QSPI
Brown Out /
Power-On
Reset
ARM Cortex-M4 Core
I2C
CRC
Up to 2048 KB ISP Flash
Program Memory
CRYPTO
LESENSE
Up to 512 KB RAM
RESETn
Reset
Management
Unit
Debug Signals
(shared w/GPIO)
Serial Wire
and ETM
Debug /
Programming
ULFRCO
AUXHFRCO
LFRCO
HFXTAL_N
USHFRCO
LFXO
HFRCO + DPLL
HFXO
VDAC
Internal
Reference
12-bit ADC
Mux & FB
LDMA Controller
Clock Management
LFXTAL_N
HFXTAL_P
IDAC
Floating Point Unit
Watchdog
Timers
LFXTAL_P
Analog Peripherals
Input Mux
Security Management
Port A
Drivers
PA0-15
Port B
Drivers
PB0-15
Port C
Drivers
PC0-15
Port D
Drivers
PD0-15
Port E
Drivers
PE0-15
Port F
Drivers
PF0-15
Port G
Drivers
PG0-15
Port H
Drivers
PH0-15
Port I
Drivers
PI0-15
TRNG
A A
H P
B B
+
-
Memory Protection Unit
IOVDDn
n=2: PA0-6, PA15,
PE14-15
n=1: PD9-12,
PE8-13,
PF6-9
n=0: All other GPIO
Op-Amp
VDD
Temp
Sense
Capacitive
Touch
+
Analog Comparator
Digital Port Mapper
VBUS
VREGO
5V
Regulator
Analog Port (APORT)
Energy Management
VREGI
Low-Energy LCD, up to 8x36
configuration
Figure 3.1. Detailed EFM32GG11 Block Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 11
EFM32GG11 Family Data Sheet
System Overview
3.2 Power
silabs.com | Building a more connected world.
Rev. 1.0 | 12
EFM32GG11 Family Data Sheet
System Overview
The EFM32GG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only
a single external supply voltage is required, from which all internal voltages are created. A 5 V regulator is available on some OPNs,
allowing the device to be powered directly from 5 V power sources, such as USB. An optional integrated DC-DC buck regulator can be
utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.
The EFM32GG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for
peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.
AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB
components, supplying up to a total of 200 mA.
3.2.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has
fallen below a chosen threshold.
3.2.2 DC-DC Converter
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable
current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input
voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a
low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.
3.2.3 5 V Regulator
A 5 V input regulator is available, allowing the device to be powered directly from 5 V power sources such as the USB VBUS line. The
regulator is available in all energy modes, and outputs 3.3 V to be used to power the USB PHY and other 3.3 V systems. Two inputs to
the regulator allow for seamless switching between local and external power sources.
silabs.com | Building a more connected world.
Rev. 1.0 | 13
EFM32GG11 Family Data Sheet
System Overview
3.2.4 EM2 and EM3 Power Domains
The EFM32GG11 has three independent peripheral power domains for use in EM2 and EM3. Two of these domains are dynamic and
can be shut down to save energy. Peripherals associated with the two dynamic power domains are listed in Table 3.1 EM2 and EM3
Peripheral Power Subdomains on page 14. If all of the peripherals in a peripheral power domain are unused, the power domain for
that group will be powered off in EM2 and EM3, reducing the overall current consumption of the device. Other EM2, EM3, and EM4capable peripherals and functions not listed in the table below reside on the primary power domain, which is always on in EM2 and
EM3.
Table 3.1. EM2 and EM3 Peripheral Power Subdomains
Peripheral Power Domain 1
Peripheral Power Domain 2
ACMP0
ACMP1
PCNT0
PCNT1
ADC0
PCNT2
LETIMER0
CSEN
LESENSE
VDAC0
APORT
LEUART0
-
LEUART1
-
LETIMER1
-
I2C0
-
I2C1
-
I2C2
-
IDAC
-
ADC1
-
ACMP2
-
ACMP3
-
LCD
-
RTC
3.3 General Purpose Input/Output (GPIO)
EFM32GG11 has up to 144 General Purpose Input/Output pins. GPIO are organized on three independent supply rails, allowing for
interface to multiple logic levels in the system simultaneously. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.4 Clocking
3.4.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFM32GG11. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals
and oscillators.
silabs.com | Building a more connected world.
Rev. 1.0 | 14
EFM32GG11 Family Data Sheet
System Overview
3.4.2 Internal and External Oscillators
The EFM32GG11 supports two crystal oscillators and fully integrates five RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 4 to 50 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal
energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve
higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire Viewer port with a wide frequency range.
• An integrated universal high frequency RC oscillator (USHFRCO) is available for timing the USB, SDIO and QSPI peripherals. The
USHFRCO can be syncronized to the host's USB clock to allow the USB to operate in device mode without the additional cost of an
external crystal.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
3.5 Counters/Timers and PWM
3.5.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.5.2 Wide Timer/Counter (WTIMER)
WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM
outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to
4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a
buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by
the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.
3.5.3 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.
3.5.4 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
silabs.com | Building a more connected world.
Rev. 1.0 | 15
EFM32GG11 Family Data Sheet
System Overview
3.5.6 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2
Deep Sleep, and EM3 Stop.
3.5.7 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.6 Communications and Other Digital Peripherals
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
• I2S
3.6.2 Universal Asynchronous Receiver/Transmitter (UART)
The Universal Asynchronous Receiver/Transmitter is a subset of the USART module, supporting full duplex asynchronous UART communication with hardware flow control and RS-485.
3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
3.6.4 Inter-Integrated Circuit Interface (I2C)
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.6.5 External Bus Interface (EBI)
The External Bus Interface provides access to external parallel interface devices. The interface is memory mapped into the address bus
of the Cortex-M4. This enables seamless access from software without manually manipulating the I/O settings each time a read or write
is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface to external devices.
Timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.
The EBI contains a TFT controller which can drive a TFT via an RGB interface. The TFT controller supports programmable display and
port sizes and offers accurate control of frequency and setup and hold timing. Direct Drive is supported for TFT displays which do not
have their own frame buffer. In that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory
device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers through the EBI interface.
silabs.com | Building a more connected world.
Rev. 1.0 | 16
EFM32GG11 Family Data Sheet
System Overview
3.6.6 Quad-SPI Flash Controller (QSPI)
The QSPI provides access to to a wide range of flash devices with wide I/O busses. The I/O and clocking configuration is flexible and
supports many types of devices. Up to 8-bit wide interfaces are supported. The QSPI handles opcodes, status flag polling, and timing
configuration automatically.
The external flash memory is mapped directly to internal memory to allow random access to any word in the flash and direct code execution. An integrated instruction cache minimizes latency and allows efficient code execution. Execute in Place (XIP) is supported for
devices with this feature.
Large data chunks can be transferred with DMA as efficiently as possible with high throughput and minimimal bus load, utilizing an
integrated 1 kB SRAM FIFO.
3.6.7 SDIO Host Controller (SDIO)
The SDIO is an SD3.01 / SDIO3.0 / eMMC4.51-compliant Host Controller interface for transferring data to and from SD/MMC/SDIO
devices. The module conforms to the SD Host Controller Standard Specification Version 3.00. The Host Controller handles
SDIO/SD/MMC Protocol at the transmission level, packing data, adding cyclic redundancy check (CRC), Start/End bits, and checking
for transaction format correctness.
3.6.8 Universal Serial Bus (USB)
The USB is a full-speed/low-speed USB 2.0 compliant host/device controller. The USB can be used in device and host-only configurations, while a clock recovery mechanism allows crystal-less operation in device mode. The USB block supports both full speed (12
MBit/s) and low speed (1.5 MBit/s) operation. When operating as a device, a special Low Energy Mode ensures the current consumption is optimized, enabling USB communications on a strict power budget. The USB device includes an internal dedicated DescriptorBased Scatter/Gather DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes internal pull-up and pull-down resistors, as well as voltage comparators for monitoring the VBUS voltage and A/B device identification using the ID line.
3.6.9 Ethernet (ETH)
The Ethernet peripheral is compliant with IEEE 802.3-2002 for Ethernet MAC. It supports 802.1AS and IEEE 1588 precision clock synchronization protocol, as well as 802.3az Energy Efficient Ethernet. The ETH supports a wide variety of frame formats and standard
operating modes such as MII/RMII. Direct Memory Access (DMA) support makes it possible to transmit and receive large frames at
high data rates with minimal CPU overhead. The Ethernet peripheral supports 10 Mbps and 100 Mbps operation, and includes a total of
8 kB of dedicated dual-port RAM FIFO (4 kB for TX and 4 kB for RX).
3.6.10 Controller Area Network (CAN)
The CAN peripheral provides support for communication at up to 1 Mbps over CAN protocol version 2.0 part A and B. It includes 32
message objects with independent identifier masks and retains message RAM in EM2. Automatic retransmittion may be disabled in
order to support Time Triggered CAN applications.
3.6.11 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT)
can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.6.12 Low Energy Sensor Interface (LESENSE)
The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and
measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a
programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy
budget.
3.7 Security Features
silabs.com | Building a more connected world.
Rev. 1.0 | 17
EFM32GG11 Family Data Sheet
System Overview
3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.7.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Giant Gecko Series
1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2
(SHA-224 and SHA-256).
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO module allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger
signals for DMA read and write operations.
3.7.3 True Random Number Generator (TRNG)
The TRNG module is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with
NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).
3.7.4 Security Management Unit (SMU)
The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the
Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to
the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and
can optionally generate an interrupt.
3.8 Analog
3.8.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins.
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are
grouped by X/Y pairs.
3.8.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
3.8.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of
sources, including pins configurable as either single-ended or differential.
3.8.4 Capacitive Sense (CSEN)
The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches
and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through
multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter,
as well as digital threshold comparators to reduce software overhead.
silabs.com | Building a more connected world.
Rev. 1.0 | 18
EFM32GG11 Family Data Sheet
System Overview
3.8.5 Digital to Analog Current Converter (IDAC)
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin
or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with
several ranges consisting of various step sizes.
3.8.6 Digital to Analog Converter (VDAC)
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500
ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications
such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low
frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any
CPU intervention. The VDAC is available in all energy modes down to and including EM3.
3.8.7 Operational Amplifiers
The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and
are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple
common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to
rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB
space, and cost as compared with standalone opamps because they are integrated on-chip.
3.8.8 Liquid Crystal Display Driver (LCD)
The LCD driver is capable of driving a segmented LCD display with up to 8x36 segments. A voltage boost function enables it to provide
the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD
module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU
intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up
the device on a regular basis for updating data.
3.9 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFM32GG11. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.
3.10 Core and Memory
3.10.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M4 RISC processor with FPU achieving 1.25 Dhrystone MIPS/MHz
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Embedded Trace Macrocell (ETM) for real-time trace and debug
• Up to 2048 kB flash program memory
• Dual-bank memory with read-while-write support
• Up to 512 kB RAM data memory
• Configuration and event handling of all modules
• 2-pin Serial-Wire or 4-pin JTAG debug interface
3.10.2 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
silabs.com | Building a more connected world.
Rev. 1.0 | 19
EFM32GG11 Family Data Sheet
System Overview
3.10.3 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
3.10.4 Bootloader
All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More
information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the
Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area.
silabs.com | Building a more connected world.
Rev. 1.0 | 20
EFM32GG11 Family Data Sheet
System Overview
3.11 Memory Map
The EFM32GG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.2. EFM32GG11 Memory Map — Core Peripherals and Code Space
silabs.com | Building a more connected world.
Rev. 1.0 | 21
EFM32GG11 Family Data Sheet
System Overview
Figure 3.3. EFM32GG11 Memory Map — Peripherals
silabs.com | Building a more connected world.
Rev. 1.0 | 22
EFM32GG11 Family Data Sheet
System Overview
3.12 Configuration Summary
The features of the EFM32GG11 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining modules support full configuration.
Table 3.2. Configuration Summary
Module
Configuration
Pin Connections
USART0
IrDA, SmartCard
US0_TX, US0_RX, US0_CLK, US0_CS
USART1
I2S, SmartCard
US1_TX, US1_RX, US1_CLK, US1_CS
USART2
IrDA, SmartCard, High-Speed
US2_TX, US2_RX, US2_CLK, US2_CS
USART3
I2S, SmartCard
US3_TX, US3_RX, US3_CLK, US3_CS
USART4
I2S, SmartCard
US4_TX, US4_RX, US4_CLK, US4_CS
USART5
SmartCard
US5_TX, US5_RX, US5_CLK, US5_CS
TIMER0
with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
-
TIM1_CC[3:0]
TIMER2
with DTI
TIM2_CC[2:0], TIM2_CDTI[2:0]
TIMER3
-
TIM3_CC[2:0]
TIMER4
with DTI
TIM4_CC[2:0], TIM4_CDTI[2:0]
TIMER5
-
TIM5_CC[2:0]
TIMER6
with DTI
TIM6_CC[2:0], TIM6_CDTI[2:0]
WTIMER0
with DTI
WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1
-
WTIM1_CC[3:0]
WTIMER2
-
WTIM2_CC[2:0]
WTIMER3
-
WTIM3_CC[2:0]
silabs.com | Building a more connected world.
Rev. 1.0 | 23
EFM32GG11 Family Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.
silabs.com | Building a more connected world.
Rev. 1.0 | 24
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
Test Condition
Min
Typ
Max
Unit
TSTG
-50
—
150
°C
Voltage on supply pins other
than VREGI and VBUS
VDDMAX
-0.3
—
3.8
V
Voltage ramp rate on any
supply pin
VDDRAMPMAX
—
—
1
V / µs
DC voltage on any GPIO pin
VDIGPIN
5V tolerant GPIO pins1 2 3
-0.3
—
Min of 5.25
and IOVDD
+2
V
LCD pins3
-0.3
—
Min of 3.8
and IOVDD
+2
V
Standard GPIO pins
-0.3
—
IOVDD+0.3
V
Total current into VDD power IVDDMAX
lines
Source
—
—
200
mA
Total current into VSS
ground lines
IVSSMAX
Sink
—
—
200
mA
Current per I/O pin
IIOMAX
Sink
—
—
50
mA
Source
—
—
50
mA
Sink
—
—
200
mA
Source
—
—
200
mA
-G grade devices
-40
—
105
°C
-I grade devices
-40
—
125
°C
-0.3
—
5.5
V
Current for all I/O pins
Junction temperature
Voltage on regulator supply
pins VREGI and VBUS
IIOALLMAX
TJ
VVREGI
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source
below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the
maximum IO current specifications.
3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register.
Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.
silabs.com | Building a more connected world.
Rev. 1.0 | 25
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
silabs.com | Building a more connected world.
Rev. 1.0 | 26
EFM32GG11 Family Data Sheet
Electrical Specifications
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies.
• VREGVDD = AVDD
• DVDD ≤ AVDD
• IOVDD ≤ AVDD
silabs.com | Building a more connected world.
Rev. 1.0 | 27
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Operating ambient temperature range6
TA
-G temperature grade
-40
25
85
°C
-I temperature grade
-40
25
125
°C
AVDD supply voltage2
VAVDD
1.8
3.3
3.8
V
VREGVDD operating supply
voltage2 1
VVREGVDD
DCDC in regulation
2.4
3.3
3.8
V
DCDC in bypass, 50mA load
1.8
3.3
3.8
V
DCDC not in use. DVDD externally shorted to VREGVDD
1.8
3.3
3.8
V
DCDC in bypass, T ≤ 85 °C
—
—
200
mA
DCDC in bypass, T > 85 °C
—
—
100
mA
1.62
—
VVREGVDD
V
1.62
—
VVREGVDD
V
0.75
1.0
2.75
µF
VSCALE2, MODE = WS3
—
—
72
MHz
VSCALE2, MODE = WS2
—
—
54
MHz
VSCALE2, MODE = WS1
—
—
36
MHz
VSCALE2, MODE = WS0
—
—
18
MHz
VSCALE0, MODE = WS2
—
—
20
MHz
VSCALE0, MODE = WS1
—
—
14
MHz
VSCALE0, MODE = WS0
—
—
7
MHz
VSCALE2
—
—
72
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
72
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
50
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
50
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
72
MHz
VSCALE0
—
—
20
MHz
VSCALE2
—
—
50
MHz
VSCALE0
—
—
20
MHz
VREGVDD current
DVDD operating supply voltage
IVREGVDD
VDVDD
IOVDD operating supply volt- VIOVDD
age
DECOUPLE output capacitor3 4
CDECOUPLE
HFCORECLK frequency
fCORE
HFCLK frequency
HFSRCCLK frequency
HFBUSCLK frequency
HFPERCLK frequency
HFPERBCLK frequency
HFPERCCLK frequency
fHFCLK
fHFSRCCLK
fHFBUSCLK
fHFPERCLK
fHFPERBCLK
fHFPERCCLK
silabs.com | Building a more connected world.
All IOVDD pins5
Rev. 1.0 | 28
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max.
2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
3. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias.
4. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70
mA (with a 2.7 µF capacitor).
5. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD.
6. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific application. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal
Characteristics table for TJ and THETAJA.
4.1.3 Thermal Characteristics
Table 4.3. Thermal Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Thermal resistance, QFN64
Package
THETAJA_QFN64 4-Layer PCB, Air velocity = 0 m/s
—
17.8
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
15.4
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
13.8
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
33.9
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
32.1
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
30.1
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
44.1
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
37.7
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
35.5
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
42.0
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
37.0
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
35.3
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
47.9
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
41.8
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
39.6
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
35.7
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
31.0
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
29.5
—
°C/W
4-Layer PCB, Air velocity = 0 m/s
—
47.9
—
°C/W
4-Layer PCB, Air velocity = 1 m/s
—
41.8
—
°C/W
4-Layer PCB, Air velocity = 2 m/s
—
39.6
—
°C/W
Thermal resistance, TQFP64 THEPackage
TAJA_TQFP64
Thermal resistance,
TQFP100 Package
THETAJA_TQFP100
Thermal resistance, BGA112 THEPackage
TAJA_BGA112
Thermal resistance, BGA120 THEPackage
TAJA_BGA120
Thermal resistance, BGA152 THEPackage
TAJA_BGA152
Thermal resistance, BGA192 THEPackage
TAJA_BGA192
silabs.com | Building a more connected world.
Rev. 1.0 | 29
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.4 DC-DC Converter
Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3
V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.
Table 4.4. DC-DC Converter
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, IDCDC_LOAD = 50
mA
1.8
—
VVREGVDD_
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA
2.6
Output voltage programmable range1
VDCDC_O
Regulation DC accuracy
ACCDC
Regulation window4
WINREG
Steady-state output ripple
VR
Output voltage under/overshoot
VOV
MAX
—
VVREGVDD_
V
MAX
—
VVREGVDD_
V
MAX
1.8
—
VVREGVDD
V
Low Noise (LN) mode, 1.8 V target output
1.7
—
1.9
V
Low Power (LP) mode,
LPCMPBIASEMxx3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 µA
1.63
—
2.2
V
Low Power (LP) mode,
LPCMPBIASEMxx3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA
1.63
—
2.1
V
—
3
—
mVpp
CCM Mode (LNFORCECCM3 =
1), Load changes between 0 mA
and 100 mA
—
25
60
mV
DCM Mode (LNFORCECCM3 =
0), Load changes between 0 mA
and 10 mA
—
45
90
mV
Overshoot during LP to LN
CCM/DCM mode transitions compared to DC level in LN mode
—
200
—
mV
Undershoot during BYP/LP to LN
CCM (LNFORCECCM3 = 1) mode
transitions compared to DC level
in LN mode
—
40
—
mV
Undershoot during BYP/LP to LN
DCM (LNFORCECCM3 = 0) mode
transitions compared to DC level
in LN mode
—
100
—
mV
DC line regulation
VREG
Input changes between
VVREGVDD_MAX and 2.4 V
—
0.1
—
%
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
—
0.1
—
%
silabs.com | Building a more connected world.
Rev. 1.0 | 30
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max load current
ILOAD_MAX
Low noise (LN) mode, Heavy
Drive2, T ≤ 85 °C
—
—
200
mA
Low noise (LN) mode, Heavy
Drive2, T > 85 °C
—
—
100
mA
Low noise (LN) mode, Medium
Drive2
—
—
100
mA
Low noise (LN) mode, Light
Drive2
—
—
50
mA
Low power (LP) mode,
LPCMPBIASEMxx3 = 0
—
—
75
µA
Low power (LP) mode,
LPCMPBIASEMxx3 = 3
—
—
10
mA
CDCDC
25% tolerance
1
4.7
4.7
µF
DCDC nominal output induc- LDCDC
tor
20% tolerance
4.7
4.7
4.7
µH
—
1.2
2.5
Ω
DCDC nominal output capacitor5
Resistance in Bypass mode
RBYP
Note:
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD.
2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the
EMU_DCDCLOEM01CFG register, depending on the energy mode.
4. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.
5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL
must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details.
silabs.com | Building a more connected world.
Rev. 1.0 | 31
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.5 5V Regulator
VVREGI = 5 V, VVREGO = 3.3 V, CVREGI = 10 µF, CVREGO = 4.7 µF, unless otherwise specified.
Table 4.5. 5V Regulator
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VREGI or VBUS input voltage range
VVREGI
Regulating output
2.7
—
5.5
V
Bypass mode enabled
2.7
—
3.8
V
VREGO output voltage
VVREGO
Regulating output, 3.3 V setting
3.1
3.3
3.5
V
EM4S open-loop output, IOUT <
100 µA
1.8
—
3.8
V
—
0.1
—
V
Voltage output step size
VVREGO_SS
Resistance in Bypass Mode
RBYP
Bypass mode enabled
—
1.2
2.5
Ω
Output current
IOUT
EM0 or EM1, VVREGI > VVREGO +
0.6 V
—
—
200
mA
EM0 or EM1, VVREGI > VVREGO +
0.3 V
—
—
100
mA
EM2, EM3, or EM4H, VVREGI >
VVREGO + 0.6 V
—
—
2
mA
EM2, EM3, or EM4H, VVREGI >
VVREGO + 0.3 V
—
—
0.5
mA
EM4S
—
—
20
µA
EM0 or EM1
—
0.10
—
mV/mA
EM2, EM3, or EM4H
—
2.5
—
mV/mA
Load regulation
LRVREGO
DC power supply rejection
PSRDC
—
40
—
dB
VREGI or VBUS bypass capacitance
CVREGI
—
10
—
µF
1
4.7
10
µF
EM0 or EM1, No load
—
29
—
µA
EM2, EM3, or EM4H, No load
—
270
—
nA
EM4S, No load
—
70
—
nA
VREGO bypass capacitance CVREGO
Supply current consumption
IVREGI
VREGI and VBUS detection
high threshold
VDET_H
0.9
1.15
—
V
VREGI and VBUS detection
low threshold
VDET_L
—
1.07
1.45
V
—
0.35
—
mA/mV
Current monitor transfer ratio IMONXF
silabs.com | Building a more connected world.
Translation of current through
VREGO path to voltage at ADC
input
Rev. 1.0 | 32
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.6 Backup Supply Domain
Table 4.6. Backup Supply Domain
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
1.8
—
3.8
V
EMU_BUCTRL_PWRRES =
RES0
3400
3900
4400
Ω
EMU_BUCTRL_PWRRES =
RES1
1450
1800
2150
Ω
EMU_BUCTRL_PWRRES =
RES2
1000
1350
1700
Ω
EMU_BUCTRL_PWRRES =
RES3
525
815
1100
Ω
EMU_BUCTRL_VOUTRES =
STRONG
35
110
185
Ω
EMU_BUCTRL_VOUTRES =
MED
475
775
1075
Ω
EMU_BUCTRL_VOUTRES =
WEAK
5600
6500
7400
Ω
BU_VIN not powering backup domain, 25 °C
—
11
100
nA
BU_VIN powering backup domain, 25 °C 1
—
550
2500
nA
Backup supply voltage range VBU_VIN
PWRRES resistor
Output impedance between
BU_VIN and BU_VOUT 2
Supply current
RPWRRES
RBU_VOUT
IBU_VIN
Note:
1. Additional current required by backup circuitry when backup is active. Includes supply current of backup switches and backup
regulator. Does not include supply current required for backed-up circuitry.
2. BU_VOUT and BU_STAT signals are not available in all package configurations. Check the device pinout for availability.
silabs.com | Building a more connected world.
Rev. 1.0 | 33
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.7 Current Consumption
silabs.com | Building a more connected world.
Rev. 1.0 | 34
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.7.1 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.
Table 4.7. Current Consumption 3.3 V without DC-DC Converter
Parameter
Symbol
Min
Typ
Max
Unit
72 MHz HFRCO, CPU running
Prime from flash
—
120
—
µA/MHz
72 MHz HFRCO, CPU running
while loop from flash
—
120
130
µA/MHz
72 MHz HFRCO, CPU running
CoreMark loop from flash
—
140
—
µA/MHz
50 MHz crystal, CPU running
while loop from flash
—
123
—
µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
—
122
135
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
124
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
126
140
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
131
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
319
470
µA/MHz
Current consumption in EM0 IACTIVE_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO, CPU running
while loop from flash
—
107
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
262
—
µA/MHz
Current consumption in EM1 IEM1
mode with all peripherals disabled
72 MHz HFRCO
—
57
67
µA/MHz
50 MHz crystal
—
60
—
µA/MHz
48 MHz HFRCO
—
59
70
µA/MHz
32 MHz HFRCO
—
61
—
µA/MHz
26 MHz HFRCO
—
63
75
µA/MHz
16 MHz HFRCO
—
68
—
µA/MHz
1 MHz HFRCO
—
255
420
µA/MHz
Current consumption in EM1 IEM1_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO
—
55
—
µA/MHz
1 MHz HFRCO
—
210
—
µA/MHz
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled
Full 512 kB RAM retention and
RTCC running from LFXO
—
3.9
—
µA
Full 512 kB RAM retention and
RTCC running from LFRCO
—
4.3
—
µA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO2
—
2.8
5.5
µA
Current consumption in EM0 IACTIVE
mode with all peripherals disabled
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 35
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
Current consumption in
EM4H mode, with voltage
scaling enabled
IEM4H_VS
Test Condition
Min
Typ
Max
Unit
Full 512 kB RAM retention and
CRYOTIMER running from ULFRCO
—
3.6
7
µA
128 byte RAM retention, RTCC
running from LFXO
—
1.08
—
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.69
—
µA
128 byte RAM retention, no RTCC
—
0.6
1
µA
Current consumption in
EM4S mode
IEM4S
No RAM retention, no RTCC
—
0.06
0.2
µA
Current consumption of peripheral power domain 1,
with voltage scaling enabled
IPD1_VS
Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled1
—
0.68
—
µA
Current consumption of peripheral power domain 2,
with voltage scaling enabled
IPD2_VS
Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled1
—
0.28
—
µA
Note:
1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
silabs.com | Building a more connected world.
Rev. 1.0 | 36
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.7.2 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C.
Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.
Table 4.8. Current Consumption 3.3 V using DC-DC Converter
Parameter
Symbol
Current consumption in EM0 IACTIVE_DCM
mode with all peripherals disabled, DCDC in Low Noise
DCM mode2
Current consumption in EM0 IACTIVE_CCM
mode with all peripherals disabled, DCDC in Low Noise
CCM mode1
silabs.com | Building a more connected world.
Test Condition
Min
Typ
Max
Unit
72 MHz HFRCO, CPU running
Prime from flash
—
80
—
µA/MHz
72 MHz HFRCO, CPU running
while loop from flash
—
80
—
µA/MHz
72 MHz HFRCO, CPU running
CoreMark loop from flash
—
92
—
µA/MHz
50 MHz crystal, CPU running
while loop from flash
—
84
—
µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
—
84
—
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
90
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
94
—
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
109
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
698
—
µA/MHz
72 MHz HFRCO, CPU running
Prime from flash
—
84
—
µA/MHz
72 MHz HFRCO, CPU running
while loop from flash
—
84
—
µA/MHz
72 MHz HFRCO, CPU running
CoreMark loop from flash
—
95
—
µA/MHz
50 MHz crystal, CPU running
while loop from flash
—
91
—
µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
—
92
—
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
104
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
113
—
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
142
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
1264
—
µA/MHz
Rev. 1.0 | 37
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
32 MHz HFRCO, CPU running
while loop from flash
—
82
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
83
—
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
88
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
257
—
µA/MHz
Current consumption in EM0 IACTIVE_CCM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in Low
Noise CCM mode1
19 MHz HFRCO, CPU running
while loop from flash
—
117
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
1231
—
µA/MHz
Current consumption in EM0 IACTIVE_LPM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in LP mode3
19 MHz HFRCO, CPU running
while loop from flash
—
72
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
219
—
µA/MHz
Current consumption in EM1 IEM1_DCM
mode with all peripherals disabled, DCDC in Low Noise
DCM mode2
72 MHz HFRCO
—
42
—
µA/MHz
50 MHz crystal
—
46
—
µA/MHz
48 MHz HFRCO
—
46
—
µA/MHz
32 MHz HFRCO
—
53
—
µA/MHz
26 MHz HFRCO
—
57
—
µA/MHz
16 MHz HFRCO
—
72
—
µA/MHz
1 MHz HFRCO
—
663
—
µA/MHz
32 MHz HFRCO
—
42
—
µA/MHz
26 MHz HFRCO
—
43
—
µA/MHz
16 MHz HFRCO
—
48
—
µA/MHz
1 MHz HFRCO
—
219
—
µA/MHz
Current consumption in EM1 IEM1_DCM_VS
mode with all peripherals disabled and voltage scaling
enabled, DCDC in Low
Noise DCM mode2
19 MHz HFRCO
—
60
—
µA/MHz
1 MHz HFRCO
—
637
—
µA/MHz
Current consumption in EM1 IEM1_LPM_VS
mode with all peripherals disabled and voltage scaling
enabled. DCDC in LP mode3
19 MHz HFRCO
—
39
—
µA/MHz
1 MHz HFRCO
—
190
—
µA/MHz
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled, DCDC in LP mode3
Full 512 kB RAM retention and
RTCC running from LFXO
—
2.8
—
µA
Full 512 kB RAM retention and
RTCC running from LFRCO
—
3.1
—
µA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO5
—
2.1
—
µA
Full 512 kB RAM retention and
CRYOTIMER running from ULFRCO
—
2.4
—
µA
Current consumption in EM0 IACTIVE_LPM
mode with all peripherals disabled, DCDC in LP mode3
Current consumption in EM1 IEM1_LPM
mode with all peripherals disabled, DCDC in Low Power
mode3
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 38
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Current consumption in
EM4H mode, with voltage
scaling enabled
IEM4H_VS
128 byte RAM retention, RTCC
running from LFXO
—
0.94
—
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.62
—
µA
128 byte RAM retention, no RTCC
—
0.62
—
µA
No RAM retention, no RTCC
—
0.13
—
µA
IPD1_VS
Current consumption of peripheral power domain 1,
with voltage scaling enabled,
DCDC in LP mode3
Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled4
—
0.68
—
µA
IPD2_VS
Current consumption of peripheral power domain 2,
with voltage scaling enabled,
DCDC in LP mode3
Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled4
—
0.28
—
µA
Current consumption in
EM4S mode
IEM4S
Note:
1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.
2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.
3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD.
4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
silabs.com | Building a more connected world.
Rev. 1.0 | 39
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.7.3 Current Consumption 1.8 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.
Table 4.9. Current Consumption 1.8 V without DC-DC Converter
Parameter
Symbol
Min
Typ
Max
Unit
72 MHz HFRCO, CPU running
Prime from flash
—
120
—
µA/MHz
72 MHz HFRCO, CPU running
while loop from flash
—
120
—
µA/MHz
72 MHz HFRCO, CPU running
CoreMark loop from flash
—
140
—
µA/MHz
50 MHz crystal, CPU running
while loop from flash
—
122
—
µA/MHz
48 MHz HFRCO, CPU running
while loop from flash
—
122
—
µA/MHz
32 MHz HFRCO, CPU running
while loop from flash
—
124
—
µA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
126
—
µA/MHz
16 MHz HFRCO, CPU running
while loop from flash
—
131
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
315
—
µA/MHz
Current consumption in EM0 IACTIVE_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO, CPU running
while loop from flash
—
107
—
µA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
259
—
µA/MHz
Current consumption in EM1 IEM1
mode with all peripherals disabled
72 MHz HFRCO
—
57
—
µA/MHz
50 MHz crystal
—
59
—
µA/MHz
48 MHz HFRCO
—
59
—
µA/MHz
32 MHz HFRCO
—
61
—
µA/MHz
26 MHz HFRCO
—
63
—
µA/MHz
16 MHz HFRCO
—
68
—
µA/MHz
1 MHz HFRCO
—
252
—
µA/MHz
Current consumption in EM1 IEM1_VS
mode with all peripherals disabled and voltage scaling
enabled
19 MHz HFRCO
—
55
—
µA/MHz
1 MHz HFRCO
—
207
—
µA/MHz
Current consumption in EM2 IEM2_VS
mode, with voltage scaling
enabled
Full 512 kB RAM retention and
RTCC running from LFXO
—
3.7
—
µA
Full 512 kB RAM retention and
RTCC running from LFRCO
—
4.0
—
µA
16 kB (1 bank) RAM retention and
RTCC running from LFRCO2
—
2.5
—
µA
Current consumption in EM0 IACTIVE
mode with all peripherals disabled
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 40
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Current consumption in EM3 IEM3_VS
mode, with voltage scaling
enabled
Current consumption in
EM4H mode, with voltage
scaling enabled
IEM4H_VS
Test Condition
Min
Typ
Max
Unit
Full 512 kB RAM retention and
CRYOTIMER running from ULFRCO
—
3.4
—
µA
128 byte RAM retention, RTCC
running from LFXO
—
0.94
—
µA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
0.56
—
µA
128 byte RAM retention, no RTCC
—
0.56
—
µA
Current consumption in
EM4S mode
IEM4S
No RAM retention, no RTCC
—
0.1
—
µA
Current consumption of peripheral power domain 1,
with voltage scaling enabled
IPD1_VS
Additional current consumption in
EM2/3 when any peripherals on
power domain 1 are enabled1
—
0.68
—
µA
Current consumption of peripheral power domain 2,
with voltage scaling enabled
IPD2_VS
Additional current consumption in
EM2/3 when any peripherals on
power domain 2 are enabled1
—
0.28
—
µA
Note:
1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and
EM3 Power Domains for a list of the peripherals in each power domain.
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1
silabs.com | Building a more connected world.
Rev. 1.0 | 41
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.8 Wake Up Times
Table 4.10. Wake Up Times
Parameter
Symbol
Wake up time from EM1
tEM1_WU
Wake up from EM2
tEM2_WU
Wake up from EM3
tEM3_WU
Test Condition
Min
Typ
Max
Unit
—
3
—
AHB
Clocks
Code execution from flash
—
11.8
—
µs
Code execution from RAM
—
4.1
—
µs
Code execution from flash
—
11.8
—
µs
Code execution from RAM
—
4.1
—
µs
Wake up from EM4H1
tEM4H_WU
Executing from flash
—
94
—
µs
Wake up from EM4S1
tEM4S_WU
Executing from flash
—
294
—
µs
Time from release of reset
source to first instruction execution
tRESET
Soft Pin Reset released
—
55
—
µs
Any other reset released
—
359
—
µs
Power mode scaling time
tSCALE
VSCALE0 to VSCALE2, HFCLK =
19 MHz4 2
—
31.8
—
µs
VSCALE2 to VSCALE0, HFCLK =
19 MHz3
—
4.3
—
µs
Note:
1. Time from wake up request until first instruction is executed. Wakeup results in device reset.
2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition,
peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA
(with a 2.7 µF capacitor).
3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.
4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.
silabs.com | Building a more connected world.
Rev. 1.0 | 42
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.9 Brown Out Detector (BOD)
Table 4.11. Brown Out Detector (BOD)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
DVDD BOD threshold
VDVDDBOD
DVDD rising
—
—
1.62
V
DVDD falling (EM0/EM1)
1.35
—
—
V
DVDD falling (EM2/EM3)
1.3
—
—
V
DVDD BOD hysteresis
VDVDDBOD_HYST
—
18
—
mV
DVDD BOD response time
tDVDDBOD_DELAY Supply drops at 0.1V/µs rate
—
2.4
—
µs
AVDD BOD threshold
VAVDDBOD
—
—
1.8
V
AVDD falling (EM0/EM1)
1.62
—
—
V
AVDD falling (EM2/EM3)
1.53
—
—
V
AVDD rising
AVDD BOD hysteresis
VAVDDBOD_HYST
—
20
—
mV
AVDD BOD response time
tAVDDBOD_DELAY Supply drops at 0.1V/µs rate
—
2.4
—
µs
EM4 BOD threshold
VEM4DBOD
AVDD rising
—
—
1.7
V
AVDD falling
1.45
—
—
V
—
25
—
mV
—
300
—
µs
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 BOD response time
tEM4BOD_DELAY
silabs.com | Building a more connected world.
Supply drops at 0.1V/µs rate
Rev. 1.0 | 43
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.10 Oscillators
4.1.10.1 Low-Frequency Crystal Oscillator (LFXO)
Table 4.12. Low-Frequency Crystal Oscillator (LFXO)
Parameter
Symbol
Crystal frequency
Test Condition
Min
Typ
Max
Unit
fLFXO
—
32.768
—
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
—
—
70
kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL
6
—
18
pF
On-chip tuning cap range 2
CLFXO_T
8
—
40
pF
On-chip tuning cap step size
SSLFXO
—
0.25
—
pF
Current consumption after
startup 3
ILFXO
ESR = 70 kOhm, CL = 7 pF,
GAIN4 = 2, AGC4 = 1
—
273
—
nA
Start- up time
tLFXO
ESR = 70 kOhm, CL = 7 pF,
GAIN4 = 2
—
308
—
ms
On each of LFXTAL_N and
LFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal.
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
4. In CMU_LFXOCTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 44
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.10.2 High-Frequency Crystal Oscillator (HFXO)
Table 4.13. High-Frequency Crystal Oscillator (HFXO)
Parameter
Symbol
Test Condition
Crystal frequency
fHFXO
Supported crystal equivalent
series resistance (ESR)
ESRHFXO
Nominal on-chip tuning cap
range1
CHFXO_T
On-chip tuning capacitance
step
SSHFXO
Startup time
tHFXO
Current consumption after
startup
IHFXO
Min
Typ
Max
Unit
No clock doubling
4
—
50
MHz
Clock doubler enabled
4
—
25
MHz
50 MHz crystal
—
—
50
Ω
24 MHz crystal
—
—
150
Ω
4 MHz crystal
—
—
180
Ω
On each of HFXTAL_N and
HFXTAL_P pins
8.7
—
51.7
pF
—
0.084
—
pF
50 MHz crystal, ESR = 50 Ohm,
CL = 8 pF
—
350
—
µs
24 MHz crystal, ESR = 150 Ohm,
CL = 6 pF
—
700
—
µs
4 MHz crystal, ESR = 180 Ohm,
CL = 18 pF
—
3
—
ms
50 MHz crystal
—
880
—
µA
24 MHz crystal
—
420
—
µA
4 MHz crystal
—
80
—
µA
Note:
1. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
silabs.com | Building a more connected world.
Rev. 1.0 | 45
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.10.3 Low-Frequency RC Oscillator (LFRCO)
Table 4.14. Low-Frequency RC Oscillator (LFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Oscillation frequency
fLFRCO
ENVREF2 = 1, T ≤ 85 °C
31.3
32.768
33.6
kHz
ENVREF2 = 1, T > 85 °C
31
32.768
36.8
kHz
ENVREF2 = 0, T ≤ 85 °C
31.3
32.768
33.4
kHz
ENVREF2 = 0, T > 85 °C
30
32.768
33.6
kHz
—
500
—
µs
ENVREF = 1 in
CMU_LFRCOCTRL
—
370
—
nA
ENVREF = 0 in
CMU_LFRCOCTRL
—
520
—
nA
Startup time
tLFRCO
Current consumption 1
ILFRCO
Note:
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
2. In CMU_LFRCOCTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 46
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.10.4 High-Frequency RC Oscillator (HFRCO)
Table 4.15. High-Frequency RC Oscillator (HFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency accuracy
fHFRCO_ACC
At production calibrated frequencies, across supply voltage and
temperature
-2.5
—
2.5
%
Start-up time
tHFRCO
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
µs
fHFRCO ≤ 4 MHz
—
2.5
—
µs
Maximum DPLL lock time1
tDPLL_LOCK
fREF = 32.768 kHz, fHFRCO =
39.98 MHz, N = 1219, M = 0
—
183
—
µs
Current consumption on all
supplies
IHFRCO
fHFRCO = 72 MHz
—
610
690
µA
fHFRCO = 64 MHz
—
550
615
µA
fHFRCO = 56 MHz
—
482
535
µA
fHFRCO = 48 MHz
—
413
470
µA
fHFRCO = 38 MHz
—
341
390
µA
fHFRCO = 32 MHz
—
286
330
µA
fHFRCO = 26 MHz
—
240
275
µA
fHFRCO = 19 MHz
—
191
220
µA
fHFRCO = 16 MHz
—
164
200
µA
fHFRCO = 13 MHz
—
144
180
µA
fHFRCO = 7 MHz
—
103
130
µA
fHFRCO = 4 MHz
—
42
60
µA
fHFRCO = 2 MHz
—
33
43
µA
fHFRCO = 1 MHz
—
28
38
µA
fHFRCO = 72 MHz, DPLL enabled
—
930
1200
µA
fHFRCO = 40 MHz, DPLL enabled
—
526
700
µA
fHFRCO = 32 MHz, DPLL enabled
—
419
520
µA
fHFRCO = 16 MHz, DPLL enabled
—
233
280
µA
fHFRCO = 4 MHz, DPLL enabled
—
60
100
µA
fHFRCO = 1 MHz, DPLL enabled
—
36
60
µA
—
0.8
—
%
Coarse trim step size (% of
period)
SSHFRCO_COARS
E
Fine trim step size (% of period)
SSHFRCO_FINE
—
0.1
—
%
Period jitter
PJHFRCO
—
0.2
—
% RMS
silabs.com | Building a more connected world.
Rev. 1.0 | 47
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency limits
fHFRCO_BAND
FREQRANGE = 0, FINETUNINGEN = 0
1
—
10
MHz
FREQRANGE = 3, FINETUNINGEN = 0
2
—
17
MHz
FREQRANGE = 6, FINETUNINGEN = 0
4
—
30
MHz
FREQRANGE = 7, FINETUNINGEN = 0
5
—
34
MHz
FREQRANGE = 8, FINETUNINGEN = 0
7
—
42
MHz
FREQRANGE = 10, FINETUNINGEN = 0
12
—
58
MHz
FREQRANGE = 11, FINETUNINGEN = 0
15
—
68
MHz
FREQRANGE = 12, FINETUNINGEN = 0
18
—
83
MHz
FREQRANGE = 13, FINETUNINGEN = 0
24
—
100
MHz
FREQRANGE = 14, FINETUNINGEN = 0
28
—
119
MHz
FREQRANGE = 15, FINETUNINGEN = 0
33
—
138
MHz
FREQRANGE = 16, FINETUNINGEN = 0
43
—
163
MHz
Note:
1. Maximum DPLL lock time ~= 6 x (M+1) x tREF, where tREF is the reference clock period.
silabs.com | Building a more connected world.
Rev. 1.0 | 48
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.10.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)
Table 4.16. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)
Parameter
Symbol
Test Condition
Frequency accuracy
fAUXHFRCO_ACC
Start-up time
tAUXHFRCO
Current consumption on all
supplies
Coarse trim step size (% of
period)
IAUXHFRCO
SSAUXHFR-
Min
Typ
Max
Unit
At production calibrated frequencies, across supply voltage and
temperature
-3
—
3
%
fAUXHFRCO ≥ 19 MHz
—
400
—
ns
4 < fAUXHFRCO < 19 MHz
—
1.4
—
µs
fAUXHFRCO ≤ 4 MHz
—
2.5
—
µs
fAUXHFRCO = 50 MHz
—
289
335
µA
fAUXHFRCO = 48 MHz
—
276
320
µA
fAUXHFRCO = 38 MHz
—
227
265
µA
fAUXHFRCO = 32 MHz
—
186
220
µA
fAUXHFRCO = 26 MHz
—
158
190
µA
fAUXHFRCO = 19 MHz
—
126
160
µA
fAUXHFRCO = 16 MHz
—
114
140
µA
fAUXHFRCO = 13 MHz
—
88
112
µA
fAUXHFRCO = 7 MHz
—
59
72
µA
fAUXHFRCO = 4 MHz
—
33
42
µA
fAUXHFRCO = 2 MHz
—
28
37
µA
fAUXHFRCO = 1 MHz
—
26
33
µA
—
0.8
—
%
—
0.1
—
%
—
0.2
—
% RMS
CO_COARSE
Fine trim step size (% of period)
SSAUXHFRCO_FINE
Period jitter
PJAUXHFRCO
silabs.com | Building a more connected world.
Rev. 1.0 | 49
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.10.6 Universal High-Frequency RC Oscillator (USHFRCO)
Table 4.17. Universal High-Frequency RC Oscillator (USHFRCO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency accuracy
fUSHFRCO_ACC
At production calibrated frequencies, across supply voltage and
temperature
-2.5
—
2.5
%
USB clock recovery enabled, Active connection as device, FINETUNINGEN1 = 1
-0.25
—
0.25
%
—
300
—
ns
fUSHFRCO = 48 MHz, FINETUNINGEN1 = 1
—
340
400
µA
fUSHFRCO = 50 MHz, FINETUNINGEN1 = 0
—
320
380
µA
fUSHFRCO = 48 MHz, FINETUNINGEN1 = 0
—
300
370
µA
fUSHFRCO = 32 MHz, FINETUNINGEN1 = 0
—
200
240
µA
fUSHFRCO = 16 MHz, FINETUNINGEN1 = 0
—
120
160
µA
—
0.2
—
% RMS
Min
Typ
Max
Unit
0.88
1
1.12
kHz
Start-up time
tUSHFRCO
Current consumption on all
supplies
IUSHFRCO
Period jitter
PJUSHFRCO
Note:
1. In the CMU_USHFRCOCTRL register.
4.1.10.7 Ultra-low Frequency RC Oscillator (ULFRCO)
Table 4.18. Ultra-low Frequency RC Oscillator (ULFRCO)
Parameter
Symbol
Oscillation frequency
fULFRCO
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 50
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.11 Flash Memory Characteristics5
Table 4.19. Flash Memory Characteristics5
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
RETFLASH
Word (32-bit) programming
time
tW_PROG
Test Condition
Min
Typ
Max
Unit
10000
—
—
cycles
T ≤ 85 °C
10
—
—
years
T ≤ 125 °C
10
—
—
years
Burst write, 128 words, average
time per word
20
26.2
32
µs
Single word
59
68.7
83
µs
Page erase time4
tPERASE
20
26.8
35
ms
Mass erase time1
tMERASE
20
26.9
35
ms
Device erase time2 3
tDERASE
T ≤ 85 °C
—
80.7
95
ms
T ≤ 125 °C
—
80.7
100
ms
Page Erase
—
—
1.7
mA
Mass or Device Erase
—
—
2.1
mA
Erase current6
IERASE
Write current6
IWRITE
—
—
3.9
mA
Supply voltage during flash
erase and write
VFLASH
1.62
—
3.6
V
Note:
1. Mass erase is issued by the CPU and erases all flash.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW).
3. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup
and hold times for flash control signals are included.
4. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup
and hold times for flash control signals are included.
5. Flash data retention information is published in the Quarterly Quality and Reliability Report.
6. Measured at 25 °C.
silabs.com | Building a more connected world.
Rev. 1.0 | 51
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.12 General-Purpose I/O (GPIO)
Table 4.20. General-Purpose I/O (GPIO)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input low voltage
VIL
GPIO pins
—
—
IOVDD*0.3
V
Input high voltage
VIH
GPIO pins
IOVDD*0.7
—
—
V
Output high voltage relative
to IOVDD
VOH
Sourcing 3 mA, IOVDD ≥ 3 V,
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
All GPIO except BUVIN, LFXO,
and USB pins, GPIO ≤ IOVDD, T
≤ 85 °C
—
0.1
40
nA
BUVIN, LFXO, and USB pins,
GPIO ≤ IOVDD, T ≤ 85 °C
—
0.1
60
nA
All GPIO except BUVIN, LFXO,
and USB pins, GPIO ≤ IOVDD, T
> 85 °C
—
—
150
nA
BUVIN, LFXO, and USB pins,
GPIO ≤ IOVDD, T > 85 °C
—
—
300
nA
IOVDD < GPIO ≤ IOVDD + 2 V
—
3.3
15
µA
30
40
65
kΩ
15
25
35
ns
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, IOVDD ≥ 1.62
V,
DRIVESTRENGTH1 = WEAK
Sourcing 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Output low voltage relative to VOL
IOVDD
Sinking 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sinking 8 mA, IOVDD ≥ 1.62 V,
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK
I/O pin pull-up/pull-down resistor
RPUD
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
silabs.com | Building a more connected world.
Rev. 1.0 | 52
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output fall time, From 70%
to 30% of VIO
tIOOF
CL = 50 pF,
Min
Typ
Max
Unit
—
1.8
—
ns
—
4.5
—
ns
—
2.2
—
ns
—
7.4
—
ns
—
33 +/-10%
—
Ω
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Output rise time, From 30%
to 70% of VIO
tIOOR
CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Required external series resistor on USB D+ and D-
RUSB
Note:
1. In GPIO_Pn_CTRL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 53
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.13 Voltage Monitor (VMON)
Table 4.21. Voltage Monitor (VMON)
Parameter
Symbol
Test Condition
Supply current (including
I_SENSE)
IVMON
Loading of monitored supply
ISENSE
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
tVMON_RES
Hysteresis
VVMON_HYST
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
In EM0 or EM1, 1 supply monitored, T ≤ 85 °C
—
6
11
µA
In EM0 or EM1, 1 supply monitored, T > 85 °C
—
—
21
µA
In EM0 or EM1, 4 supplies monitored, T ≤ 85 °C
—
15
20
µA
In EM0 or EM1, 4 supplies monitored, T > 85 °C
—
—
32
µA
In EM2, EM3 or EM4, 1 supply
monitored and above threshold
—
62
—
nA
In EM2, EM3 or EM4, 1 supply
monitored and below threshold
—
62
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored and all above threshold
—
99
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored and all below threshold
—
99
—
nA
In EM0 or EM1
—
2
—
µA
In EM2, EM3 or EM4
—
2
—
nA
1.62
—
3.4
V
Coarse
—
200
—
mV
Fine
—
20
—
mV
Supply drops at 1V/µs rate
—
460
—
ns
—
26
—
mV
Rev. 1.0 | 54
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.14 Analog to Digital Converter (ADC)
Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.
Table 4.22. Analog to Digital Converter (ADC)
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range5
VADCIN
Test Condition
Single ended
Differential
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
—
—
VFS
V
-VFS/2
—
VFS/2
V
1
—
VAVDD
V
Power supply rejection2
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3
—
270
350
µA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3
—
125
—
µA
62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 3
—
80
—
µA
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer.
SPROG = 0, GPBIASACC = 1 3
Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE4 = NORMAL
SPROG = 0, GPBIASACC = 1 3
—
45
—
µA
—
8
—
µA
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP
Duty-cycled operation.
AWARMUPMODE4 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3
—
105
—
µA
35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3
—
70
—
µA
1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3
—
325
—
µA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3
—
175
—
µA
62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 3
—
125
—
µA
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer.
SPROG = 0, GPBIASACC = 0 3
Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE4 = NORMAL
SPROG = 0, GPBIASACC = 0 3
—
85
—
µA
—
16
—
µA
Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP
Continuous operation. WARMUPMODE4 = KEEPADCWARM
Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP
Continuous operation. WARMUPMODE4 = KEEPADCWARM
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP
Duty-cycled operation.
AWARMUPMODE4 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3
—
160
—
µA
35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3
—
125
—
µA
Current from HFPERCLK
HFPERCLK = 16 MHz
—
180
—
µA
IADC_CLK
silabs.com | Building a more connected world.
Rev. 1.0 | 55
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
ADC clock frequency
Min
Typ
Max
Unit
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time1
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE4 = NORMAL
—
—
5
µs
WARMUPMODE4 = KEEPINSTANDBY
—
—
2
µs
WARMUPMODE4 = KEEPINSLOWACC
—
—
1
µs
Internal reference7, differential
measurement
58
67
—
dB
External reference6, differential
measurement
—
68
—
dB
Spurious-free dynamic range SFDRADC
(SFDR)
1 MSamples/s, 10 kHz full-scale
sine wave
—
75
—
dB
Differential non-linearity
(DNL)
DNLADC
12 bit resolution, No missing codes
-1
—
2
LSB
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
-6
—
6
LSB
Offset error
VADCOFFSETERR
-3
0
3
LSB
Gain error in ADC
VADCGAIN
Using internal reference
—
-0.2
3.5
%
Using external reference
—
-1
—
%
—
-1.84
—
mV/°C
Startup time of reference
generator and ADC core
SNDR at 1Msps and fIN =
10kHz
Temperature sensor slope
tADCSTART
SNDRADC
VTS_SLOPE
Test Condition
Note:
1. Derived from ADCCLK.
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.
3. In ADCn_BIASPROG register.
4. In ADCn_CNTL register.
5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than
the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on
EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.
6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or
SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential
input range with this configuration is ± 1.25 V.
7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The
differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum
value is production-tested using sine wave input at 1.5 dB lower than full scale.
silabs.com | Building a more connected world.
Rev. 1.0 | 56
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.15 Analog Comparator (ACMP)
Table 4.23. Analog Comparator (ACMP)
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
Supply voltage
VACMPVDD
Active current not including
voltage reference2
IACMP
Current consumption of inter- IACMPREF
nal voltage reference2
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
ACMPVDD =
ACMPn_CTRL_PWRSEL 1
—
—
VACMPVDD
V
BIASPROG4 ≤ 0x10 or FULLBIAS4 = 0
1.8
—
VVREGVDD_
V
0x10 < BIASPROG4 ≤ 0x20 and
FULLBIAS4 = 1
2.1
BIASPROG4 = 1, FULLBIAS4 = 0
—
50
—
nA
BIASPROG4 = 0x10, FULLBIAS4
=0
—
306
—
nA
BIASPROG4 = 0x02, FULLBIAS4
=1
—
6.5
—
µA
BIASPROG4 = 0x20, FULLBIAS4
=1
—
74
100
µA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
µA
VADIV selected as input using
VDD/1
—
2.4
—
µA
MAX
—
VVREGVDD_
V
MAX
Rev. 1.0 | 57
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Hysteresis (VCM = 1.25 V,
BIASPROG4 = 0x10, FULLBIAS4 = 1)
VACMPHYST
Comparator delay3
tACMPDELAY
Min
Typ
Max
Unit
HYSTSEL5 = HYST0
-3
0
3
mV
HYSTSEL5 = HYST1
5
18
27
mV
HYSTSEL5 = HYST2
12
33
50
mV
HYSTSEL5 = HYST3
17
46
67
mV
HYSTSEL5 = HYST4
23
57
92
mV
HYSTSEL5 = HYST5
26
68
108
mV
HYSTSEL5 = HYST6
30
79
140
mV
HYSTSEL5 = HYST7
34
90
160
mV
HYSTSEL5 = HYST8
-3
0
3
mV
HYSTSEL5 = HYST9
-27
-18
-5
mV
HYSTSEL5 = HYST10
-50
-33
-12
mV
HYSTSEL5 = HYST11
-67
-45
-17
mV
HYSTSEL5 = HYST12
-92
-57
-23
mV
HYSTSEL5 = HYST13
-108
-67
-26
mV
HYSTSEL5 = HYST14
-140
-78
-30
mV
HYSTSEL5 = HYST15
-160
-88
-34
mV
BIASPROG4 = 1, FULLBIAS4 = 0
—
30
—
µs
BIASPROG4 = 0x10, FULLBIAS4
=0
—
3.7
—
µs
BIASPROG4 = 0x02, FULLBIAS4
=1
—
360
—
ns
BIASPROG4 = 0x20, FULLBIAS4
=1
—
35
—
ns
-35
—
35
mV
Offset voltage
VACMPOFFSET
BIASPROG4 =0x10, FULLBIAS4
=1
Reference voltage
VACMPREF
Internal 1.25 V reference
1
1.25
1.47
V
Internal 2.5 V reference
1.98
2.5
2.8
V
CSRESSEL6 = 0
—
infinite
—
kΩ
CSRESSEL6 = 1
—
15
—
kΩ
CSRESSEL6 = 2
—
27
—
kΩ
CSRESSEL6 = 3
—
39
—
kΩ
CSRESSEL6 = 4
—
51
—
kΩ
CSRESSEL6 = 5
—
100
—
kΩ
CSRESSEL6 = 6
—
162
—
kΩ
CSRESSEL6 = 7
—
235
—
kΩ
Capacitive sense internal re- RCSRES
sistance
silabs.com | Building a more connected world.
Rev. 1.0 | 58
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.
2. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP +
IACMPREF.
3. ± 100 mV differential drive.
4. In ACMPn_CTRL register.
5. In ACMPn_HYSTERESIS registers.
6. In ACMPn_INPUTSEL register.
silabs.com | Building a more connected world.
Rev. 1.0 | 59
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.16 Digital to Analog Converter (VDAC)
DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.
Table 4.24. Digital to Analog Converter (VDAC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output voltage
VDACOUT
Single-Ended
0
—
VVREF
V
-VVREF
—
VVREF
V
500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4
—
402
—
µA
44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4
—
88
—
µA
200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, BGRREQTIME =
1, EM2REFENTIME = 9, REFSEL
= 4, SETTLETIME = 0x0A, WARMUPTIME = 0x02
—
2
—
µA
Differential2
Current consumption including references (2 channels)1
IDAC
Current from HFPERCLK4
IDAC_CLK
—
5.25
—
µA/MHz
Sample rate
SRDAC
—
—
500
ksps
DAC clock frequency
fDAC
—
—
1
MHz
Conversion time
tDACCONV
fDAC = 1MHz
2
—
—
µs
Settling time
tDACSETTLE
50% fs step settling to 5 LSB
—
2.5
—
µs
Startup time
tDACSTARTUP
Enable to 90% fs output, settling
to 10 LSB
—
—
12
µs
Output impedance
ROUT
DRIVESTRENGTH = 2, 0.4 V ≤
VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <
IOUT < 400 µA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 2, 0.1 V ≤
VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Full supply range
—
2
—
Ω
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <
IOUT < 100 µA, Full supply range
—
2
—
Ω
Vout = 50% fs. DC
—
65.5
—
dB
Power supply rejection ratio6 PSRR
silabs.com | Building a more connected world.
Rev. 1.0 | 60
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
500 ksps, single-ended, internal
1.25V reference
—
60.4
—
dB
500 ksps, single-ended, internal
2.5V reference
—
61.6
—
dB
500 ksps, single-ended, 3.3V
VDD reference
—
64.0
—
dB
500 ksps, differential, internal
1.25V reference
—
63.3
—
dB
500 ksps, differential, internal
2.5V reference
—
64.4
—
dB
500 ksps, differential, 3.3V VDD
reference
—
65.8
—
dB
Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal
1.25V reference
ratio (1 kHz sine wave),
Noise band limited to 22 kHz
500 ksps, single-ended, internal
2.5V reference
—
65.3
—
dB
—
66.7
—
dB
500 ksps, differential, 3.3V VDD
reference
—
68.5
—
dB
500 ksps, differential, internal
1.25V reference
—
67.8
—
dB
500 ksps, differential, internal
2.5V reference
—
69.0
—
dB
500 ksps, single-ended, 3.3V
VDD reference
—
70.0
—
dB
—
70.2
—
dB
Signal to noise and distortion SNDRDAC
ratio (1 kHz sine wave),
Noise band limited to 250
kHz
Test Condition
Total harmonic distortion
THD
Differential non-linearity3
DNLDAC
-1.25
—
1.25
LSB
Intergral non-linearity
INLDAC
-4
—
4
LSB
Offset error5
VOFFSET
T = 25 °C
-8
—
8
mV
Across operating temperature
range
-25
—
25
mV
T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or
2V5LN)
-2.5
—
2.5
%
Across operating temperature
range, Low-noise internal reference (REFSEL = 1V25LN or
2V5LN)
-3.5
—
3.5
%
—
—
75
pF
Gain error5
External load capactiance,
OUTSCALE=0
VGAIN
CLOAD
silabs.com | Building a more connected world.
Rev. 1.0 | 61
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive
the load.
2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is
limited to the single-ended range.
3. Entire range is monotonic and has no missing codes.
4. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when
the clock to the DAC module is enabled in the CMU.
5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.
6. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale
silabs.com | Building a more connected world.
Rev. 1.0 | 62
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.17 Current Digital to Analog Converter (IDAC)
Table 4.25. Current Digital to Analog Converter (IDAC)
Parameter
Symbol
Number of ranges
NIDAC_RANGES
Output current
IIDAC_OUT
Linear steps within each
range
NIDAC_STEPS
Step size
SSIDAC
Total accuracy, STEPSEL1 = ACCIDAC
0x10
silabs.com | Building a more connected world.
Test Condition
Min
Typ
Max
Unit
—
4
—
ranges
RANGSEL1 = RANGE0
0.05
—
1.6
µA
RANGSEL1 = RANGE1
1.6
—
4.7
µA
RANGSEL1 = RANGE2
0.5
—
16
µA
RANGSEL1 = RANGE3
2
—
64
µA
—
32
—
steps
RANGSEL1 = RANGE0
—
50
—
nA
RANGSEL1 = RANGE1
—
100
—
nA
RANGSEL1 = RANGE2
—
500
—
nA
RANGSEL1 = RANGE3
—
2
—
µA
EM0 or EM1, AVDD=3.3 V, T = 25
°C
-3
—
3
%
EM0 or EM1, Across operating
temperature range
-18
—
22
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE0,
AVDD=3.3 V, T = 25 °C
—
-2.7
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE1,
AVDD=3.3 V, T = 25 °C
—
-2.5
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE2,
AVDD=3.3 V, T = 25 °C
—
-1.5
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE3,
AVDD=3.3 V, T = 25 °C
—
-1.0
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T
= 25 °C
—
-1.1
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T
= 25 °C
—
-1.1
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T
= 25 °C
—
-0.9
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T
= 25 °C
—
-0.9
—
%
Rev. 1.0 | 63
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Start up time
tIDAC_SU
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value),
Current consumption2
IIDAC
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
Output voltage compliance in ICOMP_SINK
sink mode, sink current
change relative to current
sunk at IOVDD
Min
Typ
Max
Unit
Output within 1% of steady state
value
—
5
—
µs
Range setting is changed
—
5
—
µs
Step value is changed
—
1
—
µs
EM0 or EM1 Source mode, excluding output current, Across operating temperature range
—
11
28
µA
EM0 or EM1 Sink mode, excluding output current, Across operating temperature range
—
13
30
µA
EM2 or EM3 Source mode, excluding output current, T = 25 °C
—
0.05
—
µA
EM2 or EM3 Sink mode, excluding output current, T = 25 °C
—
0.07
—
µA
EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C
—
11
—
µA
EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C
—
13
—
µA
RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.11
—
%
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.06
—
%
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
—
0.04
—
%
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
—
0.03
—
%
RANGESEL1=0, output voltage =
100 mV
—
0.29
—
%
RANGESEL1=1, output voltage =
100 mV
—
0.27
—
%
RANGESEL1=2, output voltage =
150 mV
—
0.12
—
%
RANGESEL1=3, output voltage =
250 mV
—
0.03
—
%
Note:
1. In IDAC_CURPROG register.
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).
silabs.com | Building a more connected world.
Rev. 1.0 | 64
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.18 Capacitive Sense (CSEN)
Table 4.26. Capacitive Sense (CSEN)
Parameter
Symbol
Test Condition
Single conversion time (1x
accumulation)
tCNV
Maximum external capacitive CEXTMAX
load
Min
Typ
Max
Unit
12-bit SAR Conversions
—
20.2
—
µs
16-bit SAR Conversions
—
26.4
—
µs
Delta Modulation Conversion (single comparison)
—
1.55
—
µs
CS0CG=7 (Gain = 1x), including
routing parasitics
—
68
—
pF
CS0CG=0 (Gain = 10x), including
routing parasitics
—
680
—
pF
—
1
—
kΩ
12-bit SAR conversions, 20 ms
conversion rate, CS0CG=7 (Gain
= 1x), 10 channels bonded (total
capacitance of 330 pF)1
—
326
—
nA
Delta Modulation conversions, 20
ms conversion rate, CS0CG=7
(Gain = 1x), 10 channels bonded
(total capacitance of 330 pF)1
—
226
—
nA
12-bit SAR conversions, 200 ms
conversion rate, CS0CG=7 (Gain
= 1x), 10 channels bonded (total
capacitance of 330 pF)1
—
33
—
nA
Delta Modulation conversions,
200 ms conversion rate,
CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of
330 pF)1
—
25
—
nA
12-bit SAR conversions, 20 ms
scan rate, CS0CG=0 (Gain =
10x), 8 samples per scan1
—
690
—
nA
Delta Modulation conversions, 20
ms scan rate, 8 comparisons per
sample (DMCR = 1, DMR = 2),
CS0CG=0 (Gain = 10x), 8 samples per scan1
—
515
—
nA
12-bit SAR conversions, 200 ms
scan rate, CS0CG=0 (Gain =
10x), 8 samples per scan1
—
79
—
nA
Delta Modulation conversions,
200 ms scan rate, 8 comparisons
per sample (DMCR = 1, DMR =
2), CS0CG=0 (Gain = 10x), 8
samples per scan1
—
57
—
nA
Maximum external series im- REXTMAX
pedance
Supply current, EM2 bonded ICSEN_BOND
conversions, WARMUPMODE=NORMAL, WARMUPCNT=0
Supply current, EM2 scan
conversions, WARMUPMODE=NORMAL, WARMUPCNT=0
ICSEN_EM2
silabs.com | Building a more connected world.
Rev. 1.0 | 65
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Supply current, continuous
conversions, WARMUPMODE=KEEPCSENWARM
ICSEN_ACTIVE
SAR or Delta Modulation conversions of 33 pF capacitor,
CS0CG=0 (Gain = 10x), always
on
—
90.5
—
µA
HFPERCLK supply current
ICSEN_HFPERCLK Current contribution from
HFPERCLK when clock to CSEN
block is enabled.
—
2.25
—
µA/MHz
Note:
1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the module
is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current =
single_sample_current * (number_of_channels * accumulation)).
silabs.com | Building a more connected world.
Rev. 1.0 | 66
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.19 Operational Amplifier (OPAMP)
Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as
specified in table footnotes8 1.
Table 4.27. Operational Amplifier (OPAMP)
Parameter
Symbol
Test Condition
Supply voltage (from AVDD)
VOPA
HCMDIS = 0, Rail-to-rail input
range
Input voltage
VIN
Min
Typ
Max
Unit
2
—
3.8
V
HCMDIS = 1
1.62
—
3.8
V
HCMDIS = 0, Rail-to-rail input
range
VVSS
—
VOPA
V
HCMDIS = 1
VVSS
—
VOPA-1.2
V
Input impedance
RIN
100
—
—
MΩ
Output voltage
VOUT
VVSS
—
VOPA
V
Load capacitance2
CLOAD
OUTSCALE = 0
—
—
75
pF
OUTSCALE = 1
—
—
37.5
pF
DRIVESTRENGTH = 2 or 3, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -8 mA <
IOUT < 8 mA, Buffer connection,
Full supply range
—
0.25
—
Ω
DRIVESTRENGTH = 0 or 1, 0.4 V
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <
IOUT < 400 µA, Buffer connection,
Full supply range
—
0.6
—
Ω
DRIVESTRENGTH = 2 or 3, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -2 mA <
IOUT < 2 mA, Buffer connection,
Full supply range
—
0.4
—
Ω
DRIVESTRENGTH = 0 or 1, 0.1 V
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <
IOUT < 100 µA, Buffer connection,
Full supply range
—
1
—
Ω
Buffer connection
0.99
1
1.01
-
3x Gain connection
2.93
2.99
3.05
-
16x Gain connection
15.07
15.7
16.33
-
DRIVESTRENGTH = 3, OUTSCALE = 0
—
580
—
µA
DRIVESTRENGTH = 2, OUTSCALE = 0
—
176
—
µA
DRIVESTRENGTH = 1, OUTSCALE = 0
—
13
—
µA
DRIVESTRENGTH = 0, OUTSCALE = 0
—
4.7
—
µA
Output impedance
Internal closed-loop gain
Active current4
ROUT
GCL
IOPA
silabs.com | Building a more connected world.
Rev. 1.0 | 67
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Open-loop gain
GOL
Loop unit-gain frequency7
Phase margin
Output voltage noise
UGF
PM
NOUT
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
DRIVESTRENGTH = 3
—
135
—
dB
DRIVESTRENGTH = 2
—
137
—
dB
DRIVESTRENGTH = 1
—
121
—
dB
DRIVESTRENGTH = 0
—
109
—
dB
DRIVESTRENGTH = 3, Buffer
connection
—
3.38
—
MHz
DRIVESTRENGTH = 2, Buffer
connection
—
0.9
—
MHz
DRIVESTRENGTH = 1, Buffer
connection
—
132
—
kHz
DRIVESTRENGTH = 0, Buffer
connection
—
34
—
kHz
DRIVESTRENGTH = 3, 3x Gain
connection
—
2.57
—
MHz
DRIVESTRENGTH = 2, 3x Gain
connection
—
0.71
—
MHz
DRIVESTRENGTH = 1, 3x Gain
connection
—
113
—
kHz
DRIVESTRENGTH = 0, 3x Gain
connection
—
28
—
kHz
DRIVESTRENGTH = 3, Buffer
connection
—
67
—
°
DRIVESTRENGTH = 2, Buffer
connection
—
69
—
°
DRIVESTRENGTH = 1, Buffer
connection
—
63
—
°
DRIVESTRENGTH = 0, Buffer
connection
—
68
—
°
DRIVESTRENGTH = 3, Buffer
connection, 10 Hz - 10 MHz
—
146
—
µVrms
DRIVESTRENGTH = 2, Buffer
connection, 10 Hz - 10 MHz
—
163
—
µVrms
DRIVESTRENGTH = 1, Buffer
connection, 10 Hz - 1 MHz
—
170
—
µVrms
DRIVESTRENGTH = 0, Buffer
connection, 10 Hz - 1 MHz
—
176
—
µVrms
DRIVESTRENGTH = 3, 3x Gain
connection, 10 Hz - 10 MHz
—
313
—
µVrms
DRIVESTRENGTH = 2, 3x Gain
connection, 10 Hz - 10 MHz
—
271
—
µVrms
DRIVESTRENGTH = 1, 3x Gain
connection, 10 Hz - 1 MHz
—
247
—
µVrms
DRIVESTRENGTH = 0, 3x Gain
connection, 10 Hz - 1 MHz
—
245
—
µVrms
Rev. 1.0 | 68
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Slew rate5
SR
DRIVESTRENGTH = 3,
INCBW=13
—
4.7
—
V/µs
DRIVESTRENGTH = 3,
INCBW=0
—
1.5
—
V/µs
DRIVESTRENGTH = 2,
INCBW=13
—
1.27
—
V/µs
DRIVESTRENGTH = 2,
INCBW=0
—
0.42
—
V/µs
DRIVESTRENGTH = 1,
INCBW=13
—
0.17
—
V/µs
DRIVESTRENGTH = 1,
INCBW=0
—
0.058
—
V/µs
DRIVESTRENGTH = 0,
INCBW=13
—
0.044
—
V/µs
DRIVESTRENGTH = 0,
INCBW=0
—
0.015
—
V/µs
Startup time6
TSTART
DRIVESTRENGTH = 2
—
—
12
µs
Input offset voltage
VOSI
DRIVESTRENGTH = 2 or 3, T =
25 °C
-3
—
3
mV
DRIVESTRENGTH = 1 or 0, T =
25 °C
-3
—
3
mV
DRIVESTRENGTH = 2 or 3,
across operating temperature
range
-12
—
12
mV
DRIVESTRENGTH = 1 or 0,
across operating temperature
range
-30
—
30
mV
DC power supply rejection
ratio9
PSRRDC
Input referred
—
70
—
dB
DC common-mode rejection
ratio9
CMRRDC
Input referred
—
70
—
dB
Total harmonic distortion
THDOPA
DRIVESTRENGTH = 2, 3x Gain
connection, 1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
—
90
—
dB
DRIVESTRENGTH = 0, 3x Gain
connection, 0.1 kHz, VOUT = 0.1 V
to VOPA - 0.1 V
—
90
—
dB
silabs.com | Building a more connected world.
Rev. 1.0 | 69
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5
V. Nominal voltage gain is 3.
2. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.
3. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3,
or the OPAMP may not be stable.
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to
drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause
another ~10 µA current when the OPAMP drives 1.5 V between output and ground.
5. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range.
6. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV.
7. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth
product of the OPAMP and 1/3 attenuation of the feedback network.
8. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V,
VOUTPUT = 0.5 V.
9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR
and CMRR specifications do not apply to this transition region.
4.1.20 LCD Driver
Table 4.28. LCD Driver
Parameter
Symbol
Frame rate
Min
Typ
Max
Unit
fLCDFR
30
—
100
Hz
LCD supply range2
VLCDIN
1.8
—
3.8
V
LCD output voltage range
VLCD
Current source mode, No external
LCD capacitor
2.0
—
VLCDIN-0.4
V
Step-down mode with external
LCD capacitor
2.0
—
VLCDIN
V
Charge pump mode with external
LCD capacitor
2.0
—
1.9 *
VLCDIN
V
Current source mode
—
64
—
mV
Charge pump or Step-down mode
—
43
—
mV
—
+/-4
—
%
Contrast control step size
STEPCONTRAST
Contrast control step accura- ACCCONTRAST
cy1
Test Condition
Note:
1. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation.
2. VLCDIN is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW.
silabs.com | Building a more connected world.
Rev. 1.0 | 70
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.21 Pulse Counter (PCNT)
Table 4.29. Pulse Counter (PCNT)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input frequency
FIN
Asynchronous Single and Quadrature Modes
—
—
20
MHz
Sampled Modes with Debounce
filter set to 0.
—
—
8
kHz
Min
Typ
Max
Unit
4.1.22 Analog Port (APORT)
Table 4.30. Analog Port (APORT)
Parameter
Symbol
Test Condition
Supply current2 1
IAPORT
Operation in EM0/EM1
—
7
—
µA
Operation in EM2/EM3
—
63
—
nA
Note:
1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of
the requests by the specified continuous current number.
2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported module currents. Additional peripherals requesting access to APORT do not incur further current.
4.1.23 I2C
silabs.com | Building a more connected world.
Rev. 1.0 | 71
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.23.1 I2C Standard-mode (Sm)1
Table 4.31. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
µs
SCL clock high time
tHIGH
4
—
—
µs
SDA set-up time
tSU_DAT
250
—
—
ns
SDA hold time3
tHD_DAT
100
—
3450
ns
Repeated START condition
set-up time
tSU_STA
4.7
—
—
µs
(Repeated) START condition tHD_STA
hold time
4
—
—
µs
STOP condition set-up time
tSU_STO
4
—
—
µs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
µs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
silabs.com | Building a more connected world.
Rev. 1.0 | 72
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.23.2 I2C Fast-mode (Fm)1
Table 4.32. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
µs
SCL clock high time
tHIGH
0.6
—
—
µs
SDA set-up time
tSU_DAT
100
—
—
ns
SDA hold time3
tHD_DAT
100
—
900
ns
Repeated START condition
set-up time
tSU_STA
0.6
—
—
µs
(Repeated) START condition tHD_STA
hold time
0.6
—
—
µs
STOP condition set-up time
tSU_STO
0.6
—
—
µs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
µs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).
silabs.com | Building a more connected world.
Rev. 1.0 | 73
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.23.3 I2C Fast-mode Plus (Fm+)1
Table 4.33. I2C Fast-mode Plus (Fm+)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
1000
kHz
SCL clock low time
tLOW
0.5
—
—
µs
SCL clock high time
tHIGH
0.26
—
—
µs
SDA set-up time
tSU_DAT
50
—
—
ns
SDA hold time
tHD_DAT
100
—
—
ns
Repeated START condition
set-up time
tSU_STA
0.26
—
—
µs
(Repeated) START condition tHD_STA
hold time
0.26
—
—
µs
STOP condition set-up time
tSU_STO
0.26
—
—
µs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
µs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.
silabs.com | Building a more connected world.
Rev. 1.0 | 74
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.24 USART SPI
SPI Master Timing
Table 4.34. SPI Master Timing
Parameter
Symbol
Test Condition
SCLK period 1 3 2
tSCLK
CS to MOSI 1 3
SCLK to MOSI 1 3
MISO setup time 1 3
tCS_MO
tSCLK_MO
tSU_MI
silabs.com | Building a more connected world.
Min
Typ
Max
Unit
All USARTs except USART2
2*
tHFPERCLK
—
—
ns
USART2
2*
tHFPERBCLK
—
—
ns
USART2, location 4, IOVDD = 1.8
V
-3.2
—
6.8
ns
USART2, location 4, IOVDD = 3.0
V
-2.3
—
6.0
ns
USART2, location 5, IOVDD = 1.8
V
-8.1
—
6.3
ns
USART2, location 5, IOVDD = 3.0
V
-7.3
—
4.4
ns
All other USARTs and locations,
IOVDD = 1.8 V
-15
—
13
ns
All other USARTs and locations,
IOVDD = 3.0 V
-13
—
11
ns
USART2, location 4, IOVDD = 1.8
V
-0.3
—
9.2
ns
USART2, location 4, IOVDD = 3.0
V
-0.3
—
8.6
ns
USART2, location 5, IOVDD = 1.8
V
-3.6
—
5.0
ns
USART2, location 5, IOVDD = 3.0
V
-3.4
—
3.2
ns
All other USARTs and locations,
IOVDD = 1.8 V
-10
—
11
ns
All other USARTs and locations,
IOVDD = 3.0 V
-9
—
11
ns
USART2, location 4, IOVDD = 1.8
V
39.7
—
—
ns
USART2, location 4, IOVDD = 3.0
V
22.4
—
—
ns
USART2, location 5, IOVDD = 1.8
V
49.2
—
—
ns
USART2, location 5, IOVDD = 3.0
V
30.0
—
—
ns
All other USARTs and locations,
IOVDD = 1.8 V
55
—
—
ns
All other USARTs and locations,
IOVDD = 3.0 V
36
—
—
ns
Rev. 1.0 | 75
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
MISO hold time 1 3
tH_MI
USART2, location 4, IOVDD = 1.8
V
-11.6
—
—
ns
USART2, location 4, IOVDD = 3.0
V
-11.6
—
—
ns
USART2, location 5, IOVDD = 1.8
V
-9.1
—
—
ns
USART2, location 5, IOVDD = 3.0
V
-9.1
—
—
ns
All other USARTs and locations,
IOVDD = 1.8 V
-8
—
—
ns
All other USARTs and locations,
IOVDD = 3.0 V
-8
—
—
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. tHFPERCLK is one period of the selected HFPERCLK.
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.1. SPI Master Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 76
EFM32GG11 Family Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.35. SPI Slave Timing
Parameter
Symbol
SCLK period 1 3 2
Test Condition
Min
Typ
Max
Unit
tSCLK
6*
tHFPERCLK
—
—
ns
SCLK high time1 3 2
tSCLK_HI
2.5 *
tHFPERCLK
—
—
ns
SCLK low time1 3 2
tSCLK_LO
2.5 *
tHFPERCLK
—
—
ns
CS active to MISO 1 3
tCS_ACT_MI
24
—
69
ns
CS disable to MISO 1 3
tCS_DIS_MI
19
—
175
ns
MOSI setup time 1 3
tSU_MO
7
—
—
ns
MOSI hold time 1 3 2
tH_MO
6
—
—
ns
SCLK to MISO 1 3 2
tSCLK_MI
16 + 1.5 *
tHFPERCLK
—
43 + 2.5 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).
2. tHFPERCLK is one period of the selected HFPERCLK.
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).
CS
tCS_ACT_MI
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
tSCLK_LO
tSCLK
tH_MO
MOSI
tSCLK_MI
MISO
Figure 4.2. SPI Slave Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 77
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.25 External Bus Interface (EBI)
EBI Write Enable Output Timing
Timing applies to both EBI_WEn and EBI_NANDWEn for all addressing modes and both polarities. All numbers are based on route
locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of
IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.
Table 4.36. EBI Write Enable Timing
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output hold time, from trailing EBI_WEn / EBI_NANDWEn edge to EBI_AD,
EBI_A, EBI_CSn, EBI_BLn
invalid
tOH_WEn
IOVDD ≥ 1.62 V
-22 +
(WRHOLD
* t{}HFCORECLK{})
—
—
ns
IOVDD ≥ 3.0 V
-13 +
(WRHOLD
* tHFCORECLK)
—
—
ns
IOVDD ≥ 1.62 V
-12 +
(WRSETUP *
tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
-10 +
(WRSETUP *
tHFCORECLK)
—
—
ns
IOVDD ≥ 1.62 V
-6 +
(MAX(1,
WRSTRB)
* tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
-5 +
(MAX(1,
WRSTRB)
* tHFCORECLK)
—
—
ns
Output setup time, from
EBI_AD, EBI_A, EBI_CSn,
EBI_BLn valid to leading
EBI_WEn / EBI_NANDWEn
edge1
EBI_WEn / EBI_NANDWEn
pulse width1
tOSU_WEn
tWIDTH_WEn
Note:
1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of
EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of tWIDTH_WEn and increases the length of
tOSU_WEn by 1/2 * tHFCLKNODIV.
silabs.com | Building a more connected world.
Rev. 1.0 | 78
EFM32GG11 Family Data Sheet
Electrical Specifications
WRSETUP
(0, 1, 2, ...)
EBI_BL[N-1:0]
WRSTRB
(1, 2, 3, ...)
Z
EBI_BL
tOSU_WEn
EBI_A[N-1:0]
tOH_WEn
Z
EBI_A
tOSU_WEn
EBI_AD[15:0]
WRHOLD
(0, 1, 2, ...)
tOH_WEn
Z
DATA[15:0]
tOSU_WEn
tOH_WEn
tOSU_WEn
tOH_WEn
EBI_CSn
EBI_WEn
tWIDTH_WEn
Figure 4.3. EBI Write Enable Output Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 79
EFM32GG11 Family Data Sheet
Electrical Specifications
EBI Address Latch Enable Output Timing
Timing applies to multiplexed addressing modes D8A24ALE and D16A16ALE for both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of
IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.
Table 4.37. EBI Address Latch Enable Output Timing
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output hold time, from trailing EBI_ALE edge to
EBI_AD invalid1 2
tOH_ALEn
IOVDD ≥ 1.62 V
-22 +
(ADDRHOLD *
tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
-11 +
(ADDRHOLD *
tHFCORECLK)
—
—
ns
IOVDD ≥ 1.62 V
-12
—
—
ns
IOVDD ≥ 3.0 V
-9
—
—
ns
IOVDD ≥ 1.62 V
-4 +
((ADDRSETUP +
1) *
t{}HFCORECLK{})
—
—
ns
IOVDD ≥ 3.0 V
-3 +
((ADDRSETUP +
1) *
t{}HFCORECLK{})
—
—
ns
Output setup time, from
EBI_AD valid to leading
EBI_ALE edge
tOSU_ALEn
EBI_ALEn pulse width1
tWIDTH_ALEn
Note:
1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of
EBI_ALEn can be moved to the left by setting HALFALE=1. This decreases the length of tWIDTH_ALEn and increases the length of
tOSU_ALEn by tHFCORECLK - 1/2 * tHFCLKNODIV.
2. The figure shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state
instead of via the ADDRHOLD state.
silabs.com | Building a more connected world.
Rev. 1.0 | 80
EFM32GG11 Family Data Sheet
Electrical Specifications
ADDRSETUP
(1, 2, 3, ...)
EBI_AD[15:0]
ADDRHOLD
(0, 1, 2, ...)
ADDR[16:1]
WRSETUP
(0, 1, 2, ...)
WRSTRB
(1, 2, 3, ...)
DATA[15:0]
WRHOLD
(0, 1, 2, ...)
Z
tWIDTH_ALEn
EBI_ALE
tWIDTH_ALEn
tOSU_ALEn
EBI_CSn
EBI_WEn
Figure 4.4. EBI Address Latch Enable Output Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 81
EFM32GG11 Family Data Sheet
Electrical Specifications
EBI Read Enable Output Timing
Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. Output timing for EBI_AD applies
only to multiplexed addressing modes D8A24ALE and D16A16ALE. All numbers are based on route locations 0,1,2 only (with all EBI
alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading,
and slew rate for all GPIO set to 6.
Table 4.38. EBI Read Enable Output Timing
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output hold time, from trailing EBI_REn / EBI_NANDREn edge to EBI_AD,
EBI_A, EBI_CSn, EBI_BLn
invalid
tOH_REn
IOVDD ≥ 1.62 V
-23 +
(RDHOLD *
tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
-13 +
(RDHOLD *
tHFCORECLK)
—
—
ns
IOVDD ≥ 1.62 V
-12 +
(RDSETUP
* tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
-11 +
(RDSETUP
* tHFCORECLK)
—
—
ns
IOVDD ≥ 1.62 V
-6 +
(MAX(1,
RDSTRB) *
tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
-4 +
(MAX(1,
RDSTRB) *
tHFCORECLK)
—
—
ns
Output setup time, from
EBI_AD, EBI_A, EBI_CSn,
EBI_BLn valid to leading
EBI_REn / EBI_NANDREn
edge 1
tOSU_REn
EBI_REn pulse width1 2
tWIDTH_REn
Note:
1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of
EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of tWIDTH_REn and increases the length of
tOSU_REn by 1/2 * tHFCLKNODIV.
2. When page mode is used, RDSTRB is replaced by RDPA for page hits.
silabs.com | Building a more connected world.
Rev. 1.0 | 82
EFM32GG11 Family Data Sheet
Electrical Specifications
RDSETUP
(0, 1, 2, ...)
EBI_BL[1:0]
RDSTRB
(1, 2, 3, ...)
EBI_BL
Z
tSU_REn
EBI_A[27:0]
tH_REn
EBI_A
Z
tH_REn
tSU_REn
EBI_AD[15:8]
RDHOLD
(0, 1, 2, ...)
ADDR[7:0]
Z
tSU_REn
tH_REn
tSU_REn
tH_REn
EBI_CSn
EBI_AD[7:0]
EBI_REn
Z
DATA[7:0]
Z
tWIDTH_REn
Figure 4.5. EBI Read Enable Output Timing Diagram
silabs.com | Building a more connected world.
Rev. 1.0 | 83
EFM32GG11 Family Data Sheet
Electrical Specifications
EBI TFT Output Timing
All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing
is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.
Table 4.39. EBI TFT Output Timing
Parameter
Symbol
Output hold time, EBI_DCLK tOH_DCLK
to EBI_AD invalid
Output setup time, EBI_AD
valid to EBI_DCLK
tOSU_DCLK
Test Condition
Min
Typ
Max
Unit
IOVDD ≥ 1.62 V
-23 +
(TFTHOLD
* tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
-12 +
(TFTHOLD
* tHFCORECLK)
—
—
ns
IOVDD ≥ 1.62 V
-11 +
(TFTSETUP *
tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
-9 +
(TFTSETUP *
tHFCORECLK)
—
—
ns
EBI_DCLK
tOSU_DCLK
EBI_AD
DATA[15:0]
tOH_DCLK
DATA[15:0]
DATA[15:0]
Figure 4.6. EBI TFT Output Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 84
EFM32GG11 Family Data Sheet
Electrical Specifications
EBI Read Enable Timing Requirements
Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of
IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6.
Table 4.40. EBI Read Enable Timing Requirements
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Setup time, from EBI_AD
valid to trailing EBI_REn
edge
tSU_REn
IOVDD ≥ 1.62 V
55
—
—
ns
IOVDD ≥ 3.0 V
36
—
—
ns
IOVDD ≥ 1.62 V
-9
—
—
ns
tH_REn
Hold time, from trailing
EBI_REn edge to EBI_AD invalid
RDSETUP
(0, 1, 2, ...)
EBI_A[N-1:0]
ADDR[N:1]
EBI_AD[15:0]
Z
RDSTRB
(1, 2, 3, ...)
RDHOLD
(0, 1, 2, ...)
Z
DATA[15:0]
Z
EBI_CSn
EBI_REn
tSU_REn
tH_REn
Figure 4.7. EBI Read Enable Timing Requirements
silabs.com | Building a more connected world.
Rev. 1.0 | 85
EFM32GG11 Family Data Sheet
Electrical Specifications
EBI Ready/Wait Timing Requirements
Timing applies to both EBI_REn and EBI_WEn for all addressing modes and both polarities. All numbers are based on route locations
0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25
pF external loading, and slew rate for all GPIO set to 6.
Table 4.41. EBI Ready/Wait Timing Requirements
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Setup time, from EBI_ARDY
valid to trailing EBI_REn,
EBI_WEn edge
tSU_ARDY
IOVDD ≥ 1.62 V
55 + (3 *
tHFCORECLK)
—
—
ns
IOVDD ≥ 3.0 V
36 + (3 *
tHFCORECLK)
—
—
ns
IOVDD ≥ 1.62 V
-9
—
—
ns
Hold time, from trailing
EBI_REn, EBI_WEn edge to
EBI_ARDY invalid
tH_ARDY
RDSETUP
(0, 1, 2, ...)
RDSTRB
(1, 2, 3, ...)
SYNC
(3)
RDHOLD
(0, 1, 2, ...)
EBI_RDY
EBI_AD[15:0]
Z
DATA[15:0]
EBI_CSn
tSU_ARDY
EBI_REn
tH_ARDY
Figure 4.8. EBI Ready/Wait Timing Requirements
silabs.com | Building a more connected world.
Rev. 1.0 | 86
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.26 Ethernet (ETH)
MII Transmit Timing
Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.
Table 4.42. Ethernet MII Transmit Timing
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
TX_CLK frequency
FTX_CLK
Output slew rate set to 7
—
25
—
MHz
TX_CLK duty cycle
DCTX_CLK
35
—
65
%
Output delay, TX_CLK to
TXD[3:0], TX_EN, TX_ER
tOUT
0
—
25
ns
TX_CLK
TXD[3:0],
TX_EN, TX_ER
tOUT
Figure 4.9. Ethernet MII Transmit Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 87
EFM32GG11 Family Data Sheet
Electrical Specifications
MII Receive Timing
Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.
Table 4.43. Ethernet MII Receive Timing
Parameter
Symbol
RX_CLK frequency
Test Condition
Min
Typ
Max
Unit
FRX_CLK
—
25
—
MHz
RX_CLK duty cycle
DCRX_CLK
35
—
65
%
Setup time, RXD[3:0],
RX_DV, RX_ER valid to
RX_CLK
tSU
6
—
—
ns
Hold time, RX_CLK to
RXD[3:0], RX_DV, RX_ER
change
tHD
5
—
—
ns
RX_CLK
RXD[3:0],
RX_DV, RX_ER
tSU
tHD
Figure 4.10. Ethernet MII Receive Timing
RMII Transmit Timing
Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.
Table 4.44. Ethernet RMII Transmit Timing
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
REF_CLK frequency
FREF_CLK
Output slew rate set to 7
—
50
—
MHz
REF_CLK duty cycle
DCREF_CLK
35
—
65
%
Output delay, REF_CLK to
TXD[1:0], TX_EN
tOUT
2.3
—
14.1
ns
REF_CLK
TXD[1:0], TX_EN
tOUT
Figure 4.11. Ethernet RMII Transmit Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 88
EFM32GG11 Family Data Sheet
Electrical Specifications
RMII Receive Timing
Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated.
Table 4.45. Ethernet RMII Receive Timing
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
REF_CLK frequency
FREF_CLK
Output slew rate set to 7
—
50
—
MHz
REF_CLK duty cycle
DCREF_CLK
35
—
65
%
Setup time, RXD[1:0],
CRS_DV, RX_ER valid to
REF_CLK
tSU
4
—
—
ns
Hold time, REF_CLK to
RXD[1:0], CRS_DV, RX_ER
change
tHD
2
—
—
ns
REF_CLK
RXD[1:0],
CRS_DV, RX_ER
tSU
tHD
Figure 4.12. Ethernet RMII Receive Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 89
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.27 Serial Data I/O Host Controller (SDIO)
SDIO DS Mode Timing
Timing is specified at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 40
pF on all pins.
Table 4.46. SDIO DS Mode Timing (Location 0)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
Clock high time
tWL
tWH
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
23
MHz
Using HFXO
—
—
20.5
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
19.6
—
—
ns
Using HFXO
19.1
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
19.6
—
—
ns
Using HFXO
19.1
—
—
ns
Clock rise time
tR
1.4
—
4.9
ns
Clock fall time
tF
1.2
—
4.0
ns
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
tISU
7
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH
0
—
—
ns
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY
—
—
18.6
ns
5
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH
CMD, DAT[0:3] change
Table 4.47. SDIO DS Mode Timing (Location 1)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
14
MHz
Using HFXO
—
—
13.5
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
32.3
—
—
ns
Using HFXO
29.2
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
32.3
—
—
ns
Using HFXO
29.2
—
—
ns
Clock low time
Clock high time
tWL
tWH
Clock rise time
tR
1.4
—
4.9
ns
Clock fall time
tF
1.2
—
4.0
ns
silabs.com | Building a more connected world.
Rev. 1.0 | 90
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
Test Condition
Min
Typ
Max
Unit
tISU
11.6
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH
0
—
—
ns
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY
—
—
29.5
ns
5
—
—
ns
Output hold time, SD_CLK to tOH
CMD, DAT[0:3] change
tWH
tWL
SD_CLK
tIH
tISU
CMD,
DAT[0:3]
Not Valid
Valid
Not Valid
Input Timing
SD_CLK
tODLY (max)
CMD,
DAT[0:3]
Not Valid
tOH (min)
Valid
Not Valid
Output Timing
Figure 4.13. SDIO DS Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 91
EFM32GG11 Family Data Sheet
Electrical Specifications
SDIO HS Mode Timing
Timing is specified at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30
pF on all pins.
Table 4.48. SDIO HS Mode Timing (Location 0)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
Clock high time
tWL
tWH
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
46
MHz
Using HFXO
—
—
46
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
9.8
—
—
ns
Using HFXO
8.2
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
9.8
—
—
ns
Using HFXO
8.2
—
—
ns
Clock rise time
tR
0.8
—
3.0
ns
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
tISU
3.4
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY
—
—
14.4
ns
2
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH
CMD, DAT[0:3] change
Table 4.49. SDIO HS Mode Timing (Location 1)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
30
MHz
Using HFXO
—
—
30
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
15
—
—
ns
12.9
—
—
ns
15
—
—
ns
12.9
—
—
ns
Clock low time
tWL
Using HFXO
Clock high time
tWH
Using HFRCO, AUXHFRCO, or
USHFRCO
Using HFXO
Clock rise time
tR
0.8
—
3.0
ns
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
tISU
3.3
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH
2.5
—
—
ns
silabs.com | Building a more connected world.
Rev. 1.0 | 92
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY
Test Condition
Output hold time, SD_CLK to tOH
CMD, DAT[0:3] change
Min
Typ
Max
Unit
—
—
22.9
ns
2
—
—
ns
tWH
tWL
SD_CLK
tIH
tISU
CMD,
DAT[0:7]
Not Valid
Valid
Not Valid
Input Timing
SD_CLK
tODLY (max)
CMD,
DAT[0:7]
Not Valid
tOH (min)
Valid
Not Valid
Output Timing
Figure 4.14. SDIO HS Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 93
EFM32GG11 Family Data Sheet
Electrical Specifications
SDIO SDR Mode Timing
Timing is specified at 1.62 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or between 10 and 40
pF on all pins.
Table 4.50. SDIO SDR Mode Timing (Location 0)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
Clock high time
tWL
tWH
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
26
MHz
Using HFXO
—
—
26
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
17.3
—
—
ns
Using HFXO
14.9
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
17.3
—
—
ns
Using HFXO
14.9
—
—
ns
Clock rise time
tR
0.8
—
7.6
ns
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
tISU
5.1
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH
1.5
—
—
ns
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY
—
—
19.5
ns
0.8
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH
CMD, DAT[0:3] change
Table 4.51. SDIO SDR Mode Timing (Location 1)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
23
MHz
Using HFXO
—
—
23
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
19.6
—
—
ns
Using HFXO
16.9
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
19.6
—
—
ns
Using HFXO
16.9
—
—
ns
Clock low time
Clock high time
tWL
tWH
Clock rise time
tR
0.8
—
7.6
ns
Input setup time, CMD,
DAT[0:3] valid to SD_CLK
tISU
5.0
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:3] change
tIH
1.5
—
—
ns
silabs.com | Building a more connected world.
Rev. 1.0 | 94
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Output delay time, SD_CLK
to CMD, DAT[0:3] valid
tODLY
Test Condition
Output hold time, SD_CLK to tOH
CMD, DAT[0:3] change
Min
Typ
Max
Unit
—
—
27.0
ns
0.8
—
—
ns
tWH
tWL
SD_CLK
tIH
tISU
CMD,
DAT[0:7]
Not Valid
Valid
Not Valid
Input Timing
SD_CLK
tODLY (max)
CMD,
DAT[0:7]
Not Valid
tOH (min)
Valid
Not Valid
Output Timing
Figure 4.15. SDIO SDR Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 95
EFM32GG11 Family Data Sheet
Electrical Specifications
SDIO DDR Mode Timing
Timing is specified at 1.62 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30
pF on all pins.
Table 4.52. SDIO DDR Mode Timing (Location 0)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
Clock high time
tWL
tWH
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
20
MHz
Using HFXO
—
—
17.5
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
22.6
—
—
ns
Using HFXO
22.4
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
22.6
—
—
ns
Using HFXO
22.4
—
—
ns
Clock rise time
tR
1.4
—
8.7
ns
Clock fall time
tF
1.2
—
6.4
ns
Input setup time, CMD valid
to SD_CLK
tISU
7.4
—
—
ns
Input hold time, SD_CLK to
CMD change
tIH
1.5
—
—
ns
Output delay time, SD_CLK
to CMD valid
tODLY
—
—
22.0
ns
Output hold time, SD_CLK to tOH
CMD change
2.0
—
—
ns
Input setup time, DAT[0:3]
valid to SD_CLK
tISU2X
9.5
—
—
ns
Input hold time, SD_CLK to
DAT[0:3] change
tIH2X
1.5
—
—
ns
Output delay time, SD_CLK
to DAT[0:3] valid
tODLY2X
—
—
24.4
ns
2.0
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH2X
DAT[0:3] change
Table 4.53. SDIO DDR Mode Timing (Location 1)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
12.5
MHz
Using HFXO
—
—
12.5
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
36.1
—
—
ns
Using HFXO
31.6
—
—
ns
Clock low time
tWL
silabs.com | Building a more connected world.
Rev. 1.0 | 96
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Clock high time
tWH
Using HFRCO, AUXHFRCO, or
USHFRCO
36.1
—
—
ns
Using HFXO
31.6
—
—
ns
Clock rise time
tR
1.4
—
8.7
ns
Clock fall time
tF
1.2
—
6.4
ns
Input setup time, CMD valid
to SD_CLK
tISU
11.9
—
—
ns
Input hold time, SD_CLK to
CMD change
tIH
1.5
—
—
ns
Output delay time, SD_CLK
to CMD valid
tODLY
—
—
29.6
ns
Output hold time, SD_CLK to tOH
CMD change
2.0
—
—
ns
Input setup time, DAT[0:3]
valid to SD_CLK
tISU2X
14.1
—
—
ns
Input hold time, SD_CLK to
DAT[0:3] change
tIH2X
1.5
—
—
ns
Output delay time, SD_CLK
to DAT[0:3] valid
tODLY2X
—
—
36.2
ns
2.0
—
—
ns
Output hold time, SD_CLK to tOH2X
DAT[0:3] change
tWL
tWH
SD_CLK
tISU2X tIH2X
DAT[0:3]
xxxx
Valid
tISU2X tIH2X
xxxx
Valid
xxxx
Valid
xxxx
Not Valid
xxxx
tIH
tISU
CMD
Valid
Valid
Not Valid
Input Timing
tWL
tWH
SD_CLK
DAT[0:3]
xxxx
tODLY2X (max)
tODLY2X (max)
tODLY2X (min)
tODLY2X (min)
Valid
xxxx
Valid
xxxx
Valid
Not Valid
Valid
xxxx
tOH (min)
tODLY (max)
CMD
xxxx
Valid
Not Valid
Output Timing
Figure 4.16. SDIO DDR Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 97
EFM32GG11 Family Data Sheet
Electrical Specifications
SDIO MMC Legacy Mode Timing
Timing is specified with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH =
STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins.
Table 4.54. SDIO MMC Legacy Mode Timing (Location 0)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
Clock high time
tWL
tWH
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
26
MHz
Using HFXO
—
—
26
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
17.3
—
—
ns
Using HFXO
14.9
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
17.3
—
—
ns
Using HFXO
14.9
—
—
ns
Clock rise time
tR
0.8
—
6.6
ns
Input setup time, CMD,
DAT[0:7] valid to SD_CLK
tISU
5.1
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:7] change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD, DAT[0:7] valid
tODLY
—
—
17.7
ns
3
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH
CMD, DAT[0:7] change
Table 4.55. SDIO MMC Legacy Mode Timing (Location 1)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
23
MHz
Using HFXO
—
—
23
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
19.6
—
—
ns
Using HFXO
16.9
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
19.6
—
—
ns
Using HFXO
16.9
—
—
ns
Clock low time
Clock high time
tWL
tWH
Clock rise time
tR
0.8
—
6.6
ns
Input setup time, CMD,
DAT[0:7] valid to SD_CLK
tISU
6.1
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:7] change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD, DAT[0:7] valid
tODLY
—
—
29.7
ns
silabs.com | Building a more connected world.
Rev. 1.0 | 98
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output hold time, SD_CLK to tOH
CMD, DAT[0:7] change
Min
Typ
Max
Unit
3
—
—
ns
tWH
tWL
SD_CLK
tIH
tISU
CMD,
DAT[0:7]
Not Valid
Valid
Not Valid
Input Timing
SD_CLK
tODLY (max)
CMD,
DAT[0:7]
Not Valid
tOH (min)
Valid
Not Valid
Output Timing
Figure 4.17. SDIO MMC Legacy Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 99
EFM32GG11 Family Data Sheet
Electrical Specifications
SDIO MMC SDR Mode Timing at 1.8 V
Timing is specified at 1.62 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF, between 10 and 20 pF, or between 20 and 30 pF on all pins.
Table 4.56. SDIO MMC SDR Mode Timing (Location 0, 1.62 V I/O)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
Clock high time
tWL
tWH
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
26
MHz
Using HFXO
—
—
26
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
17.3
—
—
ns
Using HFXO
14.9
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
17.3
—
—
ns
Using HFXO
14.9
—
—
ns
Clock rise time
tR
1.1
—
6.6
ns
Input setup time, CMD,
DAT[0:7] valid to SD_CLK
tISU
5.1
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:7] change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD, DAT[0:7] valid
tODLY
—
—
17.7
ns
3
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH
CMD, DAT[0:7] change
Table 4.57. SDIO MMC SDR Mode Timing (Location 1, 1.62 V I/O)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
23
MHz
Using HFXO
—
—
23
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
19.6
—
—
ns
Using HFXO
16.9
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
19.6
—
—
ns
Using HFXO
16.9
—
—
ns
Clock low time
Clock high time
tWL
tWH
Clock rise time
tR
1.1
—
6.6
ns
Input setup time, CMD,
DAT[0:7] valid to SD_CLK
tISU
6.1
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:7] change
tIH
2.5
—
—
ns
silabs.com | Building a more connected world.
Rev. 1.0 | 100
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Output delay time, SD_CLK
to CMD, DAT[0:7] valid
tODLY
Test Condition
Min
Typ
Max
Unit
—
—
29.7
ns
3
—
—
ns
Output hold time, SD_CLK to tOH
CMD, DAT[0:7] change
tWH
tWL
SD_CLK
tIH
tISU
CMD,
DAT[0:7]
Not Valid
Valid
Not Valid
Input Timing
SD_CLK
tODLY (max)
CMD,
DAT[0:7]
Not Valid
tOH (min)
Valid
Not Valid
Output Timing
Figure 4.18. SDIO MMC SDR Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 101
EFM32GG11 Family Data Sheet
Electrical Specifications
SDIO MMC SDR Mode Timing at 3.0 V
Timing is specified at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20
pF on all pins.
Table 4.58. SDIO MMC SDR Mode Timing (Location 0, 3 V I/O)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
tWL
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
50
MHz
Using HFXO
—
—
50
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
9
—
—
ns
7.6
—
—
ns
9
—
—
ns
7.6
—
—
ns
Using HFXO
Clock high time
tWH
Using HFRCO, AUXHFRCO, or
USHFRCO
Using HFXO
Clock rise time
tR
0.8
—
2.5
ns
Input setup time, CMD,
DAT[0:7] valid to SD_CLK
tISU
3.4
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:7] change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD, DAT[0:7] valid
tODLY
—
—
14
ns
3
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH
CMD, DAT[0:7] change
Table 4.59. SDIO MMC SDR Mode Timing (Location 1, 3 V I/O)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
32
MHz
Using HFXO
—
—
32
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
14.1
—
—
ns
Using HFXO
12.1
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
14.1
—
—
ns
Using HFXO
12.1
—
—
ns
Clock low time
Clock high time
tWL
tWH
Clock rise time
tR
0.8
—
2.5
ns
Input setup time, CMD,
DAT[0:7] valid to SD_CLK
tISU
5.2
—
—
ns
Input hold time, SD_CLK to
CMD, DAT[0:7] change
tIH
2.5
—
—
ns
silabs.com | Building a more connected world.
Rev. 1.0 | 102
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Output delay time, SD_CLK
to CMD, DAT[0:7] valid
tODLY
Test Condition
Min
Typ
Max
Unit
—
—
24.9
ns
3
—
—
ns
Output hold time, SD_CLK to tOH
CMD, DAT[0:7] change
tWH
tWL
SD_CLK
tIH
tISU
CMD,
DAT[0:7]
Not Valid
Valid
Not Valid
Input Timing
SD_CLK
tODLY (max)
CMD,
DAT[0:7]
Not Valid
tOH (min)
Valid
Not Valid
Output Timing
Figure 4.19. SDIO MMC SDR Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 103
EFM32GG11 Family Data Sheet
Electrical Specifications
SDIO MMC DDR Mode Timing at 1.8 V
Timing is specified at 1.62 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25
pF on all pins.
Table 4.60. SDIO MMC DDR Mode Timing (Location 0, 1.62 V I/O)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
Clock high time
tWL
tWH
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
18
MHz
Using HFXO
—
—
15.5
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
25.1
—
—
ns
Using HFXO
25.4
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
25.1
—
—
ns
Using HFXO
25.4
—
—
ns
Clock rise time
tR
0.8
—
6.1
ns
Clock fall time
tF
0.7
—
4.7
ns
Input setup time, CMD valid
to SD_CLK
tISU
3.8
—
—
ns
Input hold time, SD_CLK to
CMD change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD valid
tODLY
—
—
20.1
ns
3
—
—
ns
Output hold time, SD_CLK to tOH
CMD change
Input setup time, DAT[0:7]
valid to SD_CLK
tISU2X
7.4
—
—
ns
Input hold time, SD_CLK to
DAT[0:7] change
tIH2X
2.5
—
—
ns
Output delay time, SD_CLK
to DAT[0:7] valid
tODLY2X
—
—
22.7
ns
3
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH2X
DAT[0:7] change
Table 4.61. SDIO MMC DDR Mode Timing (Location 1, 1.62 V I/O)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
12.5
MHz
Using HFXO
—
—
11
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
36.1
—
—
ns
Using HFXO
35.9
—
—
ns
Clock low time
tWL
silabs.com | Building a more connected world.
Rev. 1.0 | 104
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Clock high time
tWH
Using HFRCO, AUXHFRCO, or
USHFRCO
36.1
—
—
ns
Using HFXO
35.9
—
—
ns
Clock rise time
tR
0.8
—
6.1
ns
Clock fall time
tF
0.7
—
4.7
ns
Input setup time, CMD valid
to SD_CLK
tISU
13.7
—
—
ns
Input hold time, SD_CLK to
CMD change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD valid
tODLY
—
—
33.1
ns
3
—
—
ns
Output hold time, SD_CLK to tOH
CMD change
Input setup time, DAT[0:7]
valid to SD_CLK
tISU2X
16.4
—
—
ns
Input hold time, SD_CLK to
DAT[0:7] change
tIH2X
2.5
—
—
ns
Output delay time, SD_CLK
to DAT[0:7] valid
tODLY2X
—
—
40.4
ns
3
—
—
ns
Output hold time, SD_CLK to tOH2X
DAT[0:7] change
tWL
tWH
SD_CLK
tISU2X tIH2X
DAT[0:7]
xxxx
Valid
tISU2X tIH2X
xxxx
Valid
xxxx
Valid
xxxx
Not Valid
xxxx
tIH
tISU
CMD
Valid
Valid
Not Valid
Input Timing
tWL
tWH
SD_CLK
DAT[0:7]
xxxx
tODLY2X (max)
tODLY2X (max)
tODLY2X (min)
tODLY2X (min)
Valid
xxxx
Valid
xxxx
Valid
Not Valid
Valid
xxxx
tOH (min)
tODLY (max)
CMD
xxxx
Valid
Not Valid
Output Timing
Figure 4.20. SDIO MMC DDR Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 105
EFM32GG11 Family Data Sheet
Electrical Specifications
SDIO MMC DDR Mode Timing at 3.0 V
Timing is specified at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25
pF on all pins.
Table 4.62. SDIO MMC DDR Mode Timing (Location 0, 3 V I/O)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Clock low time
Clock high time
tWL
tWH
Min
Typ
Max
Unit
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
20
MHz
Using HFXO
—
—
17.5
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
22.6
—
—
ns
Using HFXO
22.4
—
—
ns
Using HFRCO, AUXHFRCO, or
USHFRCO
22.6
—
—
ns
Using HFXO
22.4
—
—
ns
Clock rise time
tR
0.8
—
2.8
ns
Clock fall time
tF
0.7
—
2.4
ns
Input setup time, CMD valid
to SD_CLK
tISU
7.1
—
—
ns
Input hold time, SD_CLK to
CMD change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD valid
tODLY
—
—
20.7
ns
3
—
—
ns
Output hold time, SD_CLK to tOH
CMD change
Input setup time, DAT[0:7]
valid to SD_CLK
tISU2X
10.1
—
—
ns
Input hold time, SD_CLK to
DAT[0:7] change
tIH2X
2.5
—
—
ns
Output delay time, SD_CLK
to DAT[0:7] valid
tODLY2X
—
—
23.7
ns
3
—
—
ns
Min
Typ
Max
Unit
Output hold time, SD_CLK to tOH2X
DAT[0:7] change
Table 4.63. SDIO MMC DDR Mode Timing (Location 1, 3 V I/O)
Parameter
Symbol
Test Condition
Clock frequency during data
transfer
FSD_CLK
Using HFRCO, AUXHFRCO, or
USHFRCO
—
—
12.5
MHz
Using HFXO
—
—
11.5
MHz
Using HFRCO, AUXHFRCO, or
USHFRCO
36.1
—
—
ns
Using HFXO
34.3
—
—
ns
Clock low time
tWL
silabs.com | Building a more connected world.
Rev. 1.0 | 106
EFM32GG11 Family Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Clock high time
tWH
Using HFRCO, AUXHFRCO, or
USHFRCO
36.1
—
—
ns
Using HFXO
34.3
—
—
ns
Clock rise time
tR
0.8
—
2.8
ns
Clock fall time
tF
0.7
—
2.4
ns
Input setup time, CMD valid
to SD_CLK
tISU
11.6
—
—
ns
Input hold time, SD_CLK to
CMD change
tIH
2.5
—
—
ns
Output delay time, SD_CLK
to CMD valid
tODLY
—
—
29.3
ns
3
—
—
ns
Output hold time, SD_CLK to tOH
CMD change
Input setup time, DAT[0:7]
valid to SD_CLK
tISU2X
14.7
—
—
ns
Input hold time, SD_CLK to
DAT[0:7] change
tIH2X
2.5
—
—
ns
Output delay time, SD_CLK
to DAT[0:7] valid
tODLY2X
—
—
38.6
ns
3
—
—
ns
Output hold time, SD_CLK to tOH2X
DAT[0:7] change
tWL
tWH
SD_CLK
tISU2X tIH2X
DAT[0:7]
xxxx
Valid
tISU2X tIH2X
xxxx
Valid
xxxx
Valid
xxxx
Not Valid
xxxx
tIH
tISU
CMD
Valid
Valid
Not Valid
Input Timing
tWL
tWH
SD_CLK
DAT[0:7]
xxxx
tODLY2X (max)
tODLY2X (max)
tODLY2X (min)
tODLY2X (min)
Valid
xxxx
Valid
xxxx
Valid
Not Valid
Valid
xxxx
tOH (min)
tODLY (max)
CMD
xxxx
Valid
Not Valid
Output Timing
Figure 4.21. SDIO MMC DDR Mode Timing
silabs.com | Building a more connected world.
Rev. 1.0 | 107
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.28 Quad SPI (QSPI)
4.1.28.1 QSPI SDR Mode
QSPI SDR Mode Timing (Location 0)
Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 25, RX DLL = 61, 5-25 pF loading per
GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.64. QSPI SDR Mode Timing (Location 0)
Parameter
Symbol
Full SCLK period
T
Output valid
Test Condition
Min
Typ
Max
Unit
(1/FSCLK) *
0.95
—
—
ns
tOV
—
—
T/2 - 2.3
ns
Output hold
tOH
T/2 - 34.1
—
—
ns
Input setup
tSU
29.8 - T/2
—
—
ns
Input hold
tH
T/2 - 0.5
—
—
ns
QSPI SDR Mode Timing (Optimal Conditions)
Timing is specified at IOVDD ≥ 3.0V, using internal HFRCO oscillator and with voltage scaling disabled, PHY-mode, route location 0
only, TX DLL = 25, RX DLL = 43, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.65. QSPI SDR Mode Timing (Optimized at 3.0V, Location 0)
Parameter
Symbol
Full SCLK period
T
Output valid
Min
Typ
Max
Unit
(1/FSCLK) *
0.95
—
—
ns
tOV
—
—
T/2 - 2.4
ns
Output hold
tOH
T/2 - 24.7
—
—
ns
Input setup
tSU
21.9 - T/2
—
—
ns
Input hold
tH
T/2 - 4.6
—
—
ns
silabs.com | Building a more connected world.
Test Condition
Rev. 1.0 | 108
EFM32GG11 Family Data Sheet
Electrical Specifications
QSPI SDR Mode Timing (Locations 1, 2)
Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 37, RX DLL = 79, 5-25 pF loading
per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.66. QSPI SDR Mode Timing (Locations 1, 2)
Parameter
Symbol
Full SCLK period
T
Output valid
Test Condition
Min
Typ
Max
Unit
(1/FSCLK) *
0.95
—
—
ns
tOV
—
—
T/2 - 2.0
ns
Output hold
tOH
T/2 - 44.1
—
—
ns
Input setup
tSU
38.2 - T/2
—
—
ns
Input hold
tH
T/2 - 0.8
—
—
ns
DQx Output Timing
tOV
SCLK
tOH
DQx
DQx Input Timing
SCLK
tSU
tH
DQx
Figure 4.22. QSPI SDR Timing Diagrams
QSPI SDR Flash Timing Example
This example uses timing values from SDR Mode Timing (Optimal Conditions) to demonstrate the calculation of allowable flash timing
using the QSPI in SDR mode.
• Using a configured SCLK frequency (FSCLK) of 33 MHz:
• The resulting minimum period, T(min) = (1/FSCLK) * 0.95 = 28.8 ns.
• Flash will see a minimum setup time of T/2 – tOV = T/2 – (T/2 – 2.4) = 2.4 ns.
• Flash will see a minimum hold time of T/2 + tOH = T/2 + (T/2 – 24.7) = T – 24.7 = 28.8 – 24.7 = 4.1 ns.
• Flash can have a maximum output valid time of T/2 – tSU = T/2 – (21.9 – T/2) = T – 21.9 = 28.8 – 21.9 = 6.9 ns.
• Flash can have a minimum output hold time of tH – T/2 = (T/2 – 4.6) – T/2 = - 4.6 ns.
silabs.com | Building a more connected world.
Rev. 1.0 | 109
EFM32GG11 Family Data Sheet
Electrical Specifications
4.1.28.2 QSPI DDR Mode
QSPI DDR Mode Timing (Location 0)
Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 35, RX DLL = 69, 5-25 pF loading per
GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.67. QSPI DDR Mode Timing (Location 0)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Half SCLK period
T/2
HFXO
(1/FSCLK) *
0.4 - 0.4
—
—
ns
HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) *
0.44
—
—
ns
Output valid
tOV
—
—
T/2 - 4.5
ns
Output hold
tOH
T/2 - 39.4
—
—
ns
Input setup
tSU
33.7
—
—
ns
Input hold
tH
-0.8
—
—
ns
QSPI DDR Mode Timing (Optimal Conditions)
Timing is specified at IOVDD ≥ 3.0V, using internal HFRCO oscillator and with voltage scaling disabled, PHY-mode, route location 0
only, TX DLL = 26, RX DLL = 60, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.68. QSPI DDR Mode Timing (Optimized at 3.0V, Location 0)
Parameter
Symbol
Test Condition
Typ
Max
Unit
Half SCLK period
T/2
HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) *
0.44
—
—
ns
Output valid
tOV
—
—
T/2 - 2.5
ns
Output hold
tOH
T/2 - 24.3
—
—
ns
Input setup
tSU
14.4
—
—
ns
Input hold
tH
-0.9
—
—
ns
silabs.com | Building a more connected world.
Min
Rev. 1.0 | 110
EFM32GG11 Family Data Sheet
Electrical Specifications
QSPI DDR Mode Timing (Locations 1, 2)
Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 39, RX DLL = 84, 5-25 pF loading
per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG.
Table 4.69. QSPI DDR Mode Timing (Locations 1, 2)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Half SCLK period
T/2
HFXO
(1/FSCLK) *
0.4 - 0.4
—
—
ns
HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) *
0.44
—
—
ns
Output valid
tOV
—
—
T/2 - 3.0
ns
Output hold
tOH
T/2 - 43.5
—
—
ns
Input setup
tSU
38.4
—
—
ns
Input hold
tH
0.0
—
—
ns
DQx Output Timing
tOV
tOV
SCLK
tOH
tOH
DQx
DQx Input Timing
SCLK
tSU
tH
tSU
tH
DQx
Figure 4.23. QSPI DDR Timing Diagrams
QSPI DDR Flash Timing Example
This example uses timing values for DDR Mode Timing (Optimal Conditions) to demonstrate the calculation of allowable flash timing
using the QSPI in DDR mode.
• Using a configured SCLK frequency (FSCLK) of 17 MHz from the HFXO clock source:
• The resulting minimum half-period, T/2(min) = (1/FSCLK) * 0.44 = 25.9 ns.
• Flash will see a minimum setup time of T/2 – tOV = T/2 – (T/2 – 2.5) = 2.5 ns.
• Flash will see a minimum hold time of tOH = T/2 – 24.3 = 25.9 – 24.3 = 1.6 ns.
• Flash can have a maximum output valid time of T/2 – tSU = T/2 – 14.4 = 25.9 – 14.4 = 11.5 ns.
• Flash can have a minimum output hold time of tH = - 0.9 ns.
silabs.com | Building a more connected world.
Rev. 1.0 | 111
EFM32GG11 Family Data Sheet
Electrical Specifications
4.2 Typical Performance Curves
Typical performance curves indicate typical characterized performance under the stated conditions.
silabs.com | Building a more connected world.
Rev. 1.0 | 112
EFM32GG11 Family Data Sheet
Electrical Specifications
4.2.1 Supply Current
Figure 4.24. EM0 Full Speed Active Mode Typical Supply Current vs. Temperature
silabs.com | Building a more connected world.
Rev. 1.0 | 113
EFM32GG11 Family Data Sheet
Electrical Specifications
Figure 4.25. EM0 Active Mode Typical Supply Current vs. Temperature
silabs.com | Building a more connected world.
Rev. 1.0 | 114
EFM32GG11 Family Data Sheet
Electrical Specifications
Figure 4.26. EM1 Sleep Mode Typical Supply Current vs. Temperature
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Building a more connected world.
Rev. 1.0 | 115
EFM32GG11 Family Data Sheet
Electrical Specifications
Figure 4.27. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature
silabs.com | Building a more connected world.
Rev. 1.0 | 116
EFM32GG11 Family Data Sheet
Electrical Specifications
Figure 4.28. EM0 and EM1 Mode Typical Supply Current vs. Supply
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Building a more connected world.
Rev. 1.0 | 117
EFM32GG11 Family Data Sheet
Electrical Specifications
Figure 4.29. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply
silabs.com | Building a more connected world.
Rev. 1.0 | 118
EFM32GG11 Family Data Sheet
Electrical Specifications
4.2.2 DC-DC Converter
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz
Figure 4.30. DC-DC Converter Typical Performance Characteristics
silabs.com | Building a more connected world.
Rev. 1.0 | 119
EFM32GG11 Family Data Sheet
Electrical Specifications
Load Step Response in LN (CCM) mode
(Heavy Drive)
LN (CCM) and LP mode transition (load: 5mA)
DVDD
DVDD
60mV/div
offset:1.8V
20mV/div
offset:1.8V
100mA
VSW
ILOAD
1mA
2V/div
offset:1.8V
100μs/div
10μs/div
Figure 4.31. DC-DC Converter Transition Waveforms
silabs.com | Building a more connected world.
Rev. 1.0 | 120
EFM32GG11 Family Data Sheet
Pin Definitions
5. Pin Definitions
5.1 EFM32GG11B8xx in BGA192 Device Pinout
Figure 5.1. EFM32GG11B8xx in BGA192 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.1. EFM32GG11B8xx in BGA192 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA15
A1
GPIO
PE15
A2
GPIO
PE14
A3
GPIO
PE13
A4
GPIO
PE12
A5
GPIO
PE11
A6
GPIO
PE10
A7
GPIO
PE9
A8
GPIO
PE8
A9
GPIO
PI9
A10
GPIO (5V)
PI6
A11
GPIO (5V)
PF14
A12
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 121
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VBUS
A13
USB VBUS signal and auxiliary input to
5 V regulator.
PF11
A14
GPIO (5V)
PF10
A15
GPIO (5V)
PF0
A16
GPIO (5V)
PA0
B1
GPIO
PD11
B2
GPIO
PD10
B3
GPIO
PD9
B4
GPIO
PF9
B5
GPIO
PF8
B6
GPIO
PF7
B7
GPIO
PF6
B8
GPIO
PI11
B9
GPIO (5V)
PI8
B10
GPIO (5V)
PF5
B11
GPIO
PF13
B12
GPIO (5V)
PF3
B13
GPIO
PF2
B14
GPIO
PF1
B15
GPIO (5V)
VREGO
B16
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PA1
C1
GPIO
PD12
C2
GPIO
PD14
C3
GPIO (5V)
PD13
C4
GPIO (5V)
PI15
C5
GPIO (5V)
PI14
C6
GPIO (5V)
PI13
C7
GPIO (5V)
PI12
C8
GPIO (5V)
PI10
C9
GPIO (5V)
PI7
C10
GPIO (5V)
PF15
C11
GPIO (5V)
PF12
C12
GPIO
PF4
C13
GPIO
PC15
C14
GPIO (5V)
PC14
C15
GPIO (5V)
VREGI
C16
Input to 5 V regulator.
PA2
D1
GPIO
PG0
D2
GPIO (5V)
PD15
D3
GPIO (5V)
PC13
D14
GPIO (5V)
PC12
D15
GPIO (5V)
PC11
D16
GPIO (5V)
PA3
E1
GPIO
PG2
E2
GPIO (5V)
PG1
E3
GPIO (5V)
PC10
E14
GPIO (5V)
PC9
E15
GPIO (5V)
PC8
E16
GPIO (5V)
PA4
F1
GPIO
PG4
F2
GPIO (5V)
PG3
F3
GPIO (5V)
IOVDD2
F6
G6
Digital IO power supply 2.
silabs.com | Building a more connected world.
Rev. 1.0 | 122
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
IOVDD1
Pin(s)
F7
G7
Description
Digital IO power supply 1.
Pin Name
Pin(s)
Description
VSS
F8
G8
G9
H6
H7
H8
H9
H10
H11
J6
J7
J8
J9
J10
J11
K8
K9
L8
L9
Ground
IOVDD0
F10
F11
G10
G11
K6
K7
K10
K11
L6
L7
L10
L11
Digital IO power supply 0.
NC
F9
No Connect.
PI5
F14
GPIO (5V)
PI4
F15
GPIO (5V)
PI3
F16
GPIO (5V)
PA5
G1
GPIO
PG6
G2
GPIO (5V)
PG5
G3
GPIO (5V)
PI2
G14
GPIO (5V)
PI1
G15
GPIO (5V)
PI0
G16
GPIO (5V)
PA6
H1
GPIO
PG8
H2
GPIO (5V)
PG7
H3
GPIO (5V)
PE5
H14
GPIO
PE6
H15
GPIO
PE7
H16
GPIO
PG11
J1
GPIO (5V)
PG10
J2
GPIO (5V)
PG9
J3
GPIO (5V)
PE3
J14
GPIO
PE4
J15
GPIO
DECOUPLE
J16
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PG14
K1
GPIO
PG13
K2
GPIO
PG12
K3
GPIO
PE1
K14
GPIO (5V)
PE2
K15
GPIO
DVDD
K16
Digital power supply.
PG15
L1
GPIO (5V)
PB15
L2
GPIO (5V)
PB0
L3
GPIO
PE0
L14
GPIO (5V)
PC7
L15
GPIO
VREGVDD
L16
Voltage regulator VDD input
PB1
M1
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 123
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB2
M2
GPIO
PB3
M3
GPIO
PC6
M14
GPIO
VREGVSS
M15
N16
Voltage regulator VSS
VREGSW
M16
DCDC regulator switching node
PB4
N1
GPIO
PB5
N2
GPIO
PB6
N3
GPIO
PD5
N14
GPIO
PD4
N15
GPIO
PC0
P1
GPIO (5V)
PC1
P2
GPIO (5V)
PC2
P3
GPIO (5V)
PA8
P4
GPIO
PA11
P5
GPIO
PA13
P6
GPIO (5V)
PB9
P7
GPIO (5V)
PB12
P8
GPIO
PH2
P9
GPIO (5V)
PH5
P10
GPIO
PH8
P11
GPIO (5V)
PH11
P12
GPIO (5V)
PH13
P13
GPIO (5V)
PD0
P14
GPIO (5V)
PD3
P15
GPIO
PD8
P16
GPIO
PB7
R1
GPIO
PC3
R2
GPIO (5V)
PC5
R3
GPIO
PA9
R4
GPIO
BODEN
R5
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
RESETn
R6
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB10
R7
GPIO (5V)
PH0
R8
GPIO (5V)
PH3
R9
GPIO (5V)
PH6
R10
GPIO
PH9
R11
GPIO (5V)
PH12
R12
GPIO (5V)
PH14
R13
GPIO (5V)
PH15
R14
GPIO (5V)
PD2
R15
GPIO (5V)
PD7
R16
GPIO
PB8
T1
GPIO
PC4
T2
GPIO
PA7
T3
GPIO
PA10
T4
GPIO
PA12
T5
GPIO (5V)
PA14
T6
GPIO
PB11
T7
GPIO
PH1
T8
GPIO (5V)
PH4
T9
GPIO
PH7
T10
GPIO (5V)
PH10
T11
GPIO (5V)
PB13
T12
GPIO
PB14
T13
GPIO
AVDD
T14
Analog power supply.
PD1
T15
GPIO
PD6
T16
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.0 | 124
EFM32GG11 Family Data Sheet
Pin Definitions
5.2 EFM32GG11B8xx in BGA152 Device Pinout
Figure 5.2. EFM32GG11B8xx in BGA152 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.2. EFM32GG11B8xx in BGA152 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE15
A1
GPIO
PE13
A2
GPIO
PE11
A3
GPIO
PE9
A4
GPIO
PD12
A5
GPIO
PD10
A6
GPIO
PF9
A7
GPIO
PF7
A8
GPIO
PF13
A9
GPIO (5V)
VBUS
A10
USB VBUS signal and auxiliary input to
5 V regulator.
PF1
A11
GPIO (5V)
PC15
A12
GPIO (5V)
PF11
A13
GPIO (5V)
PF10
A14
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 125
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA15
B1
GPIO
PE14
B2
GPIO
PE12
B3
GPIO
PE8
B4
GPIO
PD11
B5
GPIO
PD9
B6
GPIO
PF8
B7
GPIO
PF6
B8
GPIO
PF14
B9
GPIO (5V)
PF12
B10
GPIO
PF2
B11
GPIO
PF0
B12
GPIO (5V)
PC14
B13
GPIO (5V)
VREGO
B14
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PA1
C1
GPIO
PA0
C2
GPIO
PD13
C3
GPIO (5V)
PE10
C4
GPIO
PI8
C5
GPIO (5V)
PI7
C6
GPIO (5V)
PI6
C7
GPIO (5V)
PF5
C8
GPIO
PF15
C9
GPIO (5V)
PF4
C10
GPIO
PF3
C11
GPIO
PC13
C12
GPIO (5V)
PC12
C13
GPIO (5V)
VREGI
C14
Input to 5 V regulator.
PA3
D1
GPIO
PA2
D2
GPIO
PD14
D3
GPIO (5V)
PC11
D12
GPIO (5V)
PC10
D13
GPIO (5V)
PC9
D14
GPIO (5V)
PA5
E1
GPIO
PA4
E2
GPIO
PD15
E3
GPIO (5V)
IOVDD1
E6
Digital IO power supply 1.
VSS
E7
E8
G5
G7
G8
G10
H5
H7
H8
H10
K7
K8
Ground
IOVDD0
E9
F10
J5
J10
K6
K9
Digital IO power supply 0.
PC8
E12
GPIO (5V)
PI5
E13
GPIO (5V)
PI4
E14
GPIO (5V)
PG0
F1
GPIO (5V)
PA6
F2
GPIO
PG1
F3
GPIO (5V)
IOVDD2
F5
Digital IO power supply 2.
PI3
F12
GPIO (5V)
PI2
F13
GPIO (5V)
PI1
F14
GPIO (5V)
PG3
G1
GPIO (5V)
PG4
G2
GPIO (5V)
PG2
G3
GPIO (5V)
PE7
G12
GPIO
PI0
G13
GPIO (5V)
DECOUPLE
G14
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
silabs.com | Building a more connected world.
Rev. 1.0 | 126
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PG6
H1
GPIO (5V)
PG7
H2
GPIO (5V)
PG5
H3
GPIO (5V)
PE6
H12
GPIO
PE5
H13
GPIO
DVDD
H14
Digital power supply.
PG9
J1
GPIO (5V)
PG10
J2
GPIO (5V)
PG8
J3
GPIO (5V)
PE3
J12
GPIO
PE4
J13
GPIO
VREGVDD
J14
Voltage regulator VDD input
PG12
K1
GPIO
PG13
K2
GPIO
PG11
K3
GPIO (5V)
PE2
K12
GPIO
PE1
K13
GPIO (5V)
VREGSW
K14
DCDC regulator switching node
PG15
L1
GPIO (5V)
PB15
L2
GPIO (5V)
PG14
L3
GPIO
PC7
L12
GPIO
PE0
L13
GPIO (5V)
VREGVSS
L14
Voltage regulator VSS
PB0
M1
GPIO
PB1
M2
GPIO
PB4
M3
GPIO
PC0
M4
GPIO (5V)
PC3
M5
GPIO (5V)
PA9
M6
GPIO
BODEN
M7
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
PA12
M8
GPIO (5V)
RESETn
M9
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB10
M10
GPIO (5V)
PD1
M11
GPIO
PC6
M12
GPIO
PD5
M13
GPIO
PD8
M14
GPIO
PB7
N1
GPIO
PB2
N2
GPIO
PB5
N3
GPIO
PC2
N4
GPIO (5V)
PC5
N5
GPIO
PA8
N6
GPIO
PA11
N7
GPIO
PA14
N8
GPIO
PB11
N9
GPIO
PB12
N10
GPIO
PD0
N11
GPIO (5V)
PD2
N12
GPIO (5V)
PD4
N13
GPIO
PD7
N14
GPIO
PB8
P1
GPIO
PB3
P2
GPIO
PB6
P3
GPIO
PC1
P4
GPIO (5V)
PC4
P5
GPIO
PA7
P6
GPIO
PA10
P7
GPIO
PA13
P8
GPIO (5V)
PB9
P9
GPIO (5V)
PB13
P10
GPIO
PB14
P11
GPIO
AVDD
P12
Analog power supply.
PD3
P13
GPIO
PD6
P14
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 127
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.0 | 128
EFM32GG11 Family Data Sheet
Pin Definitions
5.3 EFM32GG11B8xx in BGA120 Device Pinout
Figure 5.3. EFM32GG11B8xx in BGA120 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.3. EFM32GG11B8xx in BGA120 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE15
A1
GPIO
PE14
A2
GPIO
PE12
A3
GPIO
PE9
A4
GPIO
PD11
A5
GPIO
PD9
A6
GPIO
PF7
A7
GPIO
PF5
A8
GPIO
PF14
A9
GPIO (5V)
PF12
A10
GPIO
VREGI
A11
Input to 5 V regulator.
VREGO
A12
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
silabs.com | Building a more connected world.
Rev. 1.0 | 129
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PF11
A13
GPIO (5V)
PA15
B1
GPIO
PE13
B2
GPIO
PE11
B3
GPIO
PE8
B4
GPIO
PD12
B5
GPIO
PD10
B6
GPIO
PF8
B7
GPIO
PF6
B8
GPIO
PF13
B9
GPIO (5V)
PF4
B10
GPIO
PF3
B11
GPIO
VBUS
B12
USB VBUS signal and auxiliary input to
5 V regulator.
PF10
B13
GPIO (5V)
PA1
C1
GPIO
PA0
C2
GPIO
PE10
C3
GPIO
PD13
C4
GPIO (5V)
VSS
C5
C8
H3
J3
K11
L5
L8
Ground
IOVDD1
C6
Digital IO power supply 1.
Digital IO power supply 0.
PF9
C7
GPIO
IOVDD0
C9
J11
K3
L4
L9
PF2
C10
GPIO
PF1
C11
GPIO (5V)
PC14
C12
GPIO (5V)
PC15
C13
GPIO (5V)
PA3
D1
GPIO
PA2
D2
GPIO
PB15
D3
GPIO (5V)
PF0
D11
GPIO (5V)
PC12
D12
GPIO (5V)
PC13
D13
GPIO (5V)
PA6
E1
GPIO
PA5
E2
GPIO
PA4
E3
GPIO
PC9
E11
GPIO (5V)
PC10
E12
GPIO (5V)
PC11
E13
GPIO (5V)
PB0
F1
GPIO
PB1
F2
GPIO
PB2
F3
GPIO
PE6
F11
GPIO
PE7
F12
GPIO
PC8
F13
GPIO (5V)
PB3
G1
GPIO
PB4
G2
GPIO
IOVDD2
G3
Digital IO power supply 2.
PE3
G11
GPIO
PE4
G12
GPIO
PE5
G13
GPIO
PB5
H1
GPIO
PB6
H2
GPIO
DVDD
H11
Digital power supply.
PE2
H12
GPIO
DECOUPLE
H13
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PD14
J1
GPIO (5V)
PD15
J2
PE1
J12
GPIO (5V)
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 130
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VREGVDD
J13
Voltage regulator VDD input
PC0
K1
GPIO (5V)
PC1
K2
GPIO (5V)
PE0
K12
GPIO (5V)
VREGSW
K13
DCDC regulator switching node
PC2
L1
GPIO (5V)
PC3
L2
GPIO (5V)
PA7
L3
GPIO
PB9
L6
GPIO (5V)
PB10
L7
GPIO (5V)
PD1
L10
GPIO
PC6
L11
GPIO
PC7
L12
GPIO
VREGVSS
L13
Voltage regulator VSS
PB7
M1
GPIO
PC4
M2
GPIO
PA8
M3
GPIO
PA10
M4
GPIO
PA13
M5
GPIO (5V)
PA14
M6
GPIO
RESETn
M7
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB12
M8
GPIO
PD0
M9
GPIO (5V)
PD2
M10
GPIO (5V)
PD3
M11
GPIO
PD4
M12
GPIO
PD8
M13
GPIO
PB8
N1
GPIO
PC5
N2
GPIO
PA9
N3
GPIO
PA11
N4
GPIO
PA12
N5
GPIO (5V)
PB11
N6
GPIO
BODEN
N7
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
PB13
N8
GPIO
PB14
N9
GPIO
AVDD
N10
Analog power supply.
PD5
N11
GPIO
PD6
N12
GPIO
PD7
N13
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.0 | 131
EFM32GG11 Family Data Sheet
Pin Definitions
5.4 EFM32GG11B5xx in BGA120 Device Pinout
Figure 5.4. EFM32GG11B5xx in BGA120 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.4. EFM32GG11B5xx in BGA120 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE15
A1
GPIO
PE14
A2
GPIO
PE12
A3
GPIO
PE9
A4
GPIO
PD11
A5
GPIO
PD9
A6
GPIO
PF7
A7
GPIO
PF5
A8
GPIO
PF14
A9
GPIO (5V)
PF12
A10
GPIO
VREGI
A11
Input to 5 V regulator.
VREGO
A12
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
silabs.com | Building a more connected world.
Rev. 1.0 | 132
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PF11
A13
GPIO (5V)
PA15
B1
GPIO
PE13
B2
GPIO
PE11
B3
GPIO
PE8
B4
GPIO
PD12
B5
GPIO
PD10
B6
GPIO
PF8
B7
GPIO
PF6
B8
GPIO
PF13
B9
GPIO (5V)
PF4
B10
GPIO
PF3
B11
GPIO
NC
B12
No Connect.
PF10
B13
GPIO (5V)
PA1
C1
GPIO
PA0
C2
GPIO
PE10
C3
GPIO
PD13
C4
GPIO (5V)
VSS
C5
C8
H3
J3
K11
L5
L8
Ground
IOVDD1
C6
Digital IO power supply 1.
Digital IO power supply 0.
PF9
C7
GPIO
IOVDD0
C9
J11
K3
L4
L9
PF2
C10
GPIO
PF1
C11
GPIO (5V)
PC14
C12
GPIO (5V)
PC15
C13
GPIO (5V)
PA3
D1
GPIO
PA2
D2
GPIO
PB15
D3
GPIO (5V)
PF0
D11
GPIO (5V)
PC12
D12
GPIO (5V)
PC13
D13
GPIO (5V)
PA6
E1
GPIO
PA5
E2
GPIO
PA4
E3
GPIO
PC9
E11
GPIO (5V)
PC10
E12
GPIO (5V)
PC11
E13
GPIO (5V)
PB0
F1
GPIO
PB1
F2
GPIO
PB2
F3
GPIO
PE6
F11
GPIO
PE7
F12
GPIO
PC8
F13
GPIO (5V)
PB3
G1
GPIO
PB4
G2
GPIO
IOVDD2
G3
Digital IO power supply 2.
PE3
G11
GPIO
PE4
G12
GPIO
PE5
G13
GPIO
PB5
H1
GPIO
PB6
H2
GPIO
DVDD
H11
Digital power supply.
PE2
H12
GPIO
DECOUPLE
H13
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PD14
J1
GPIO (5V)
PD15
J2
GPIO (5V)
PE1
J12
GPIO (5V)
VREGVDD
J13
Voltage regulator VDD input
PC0
K1
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 133
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC1
K2
GPIO (5V)
PE0
K12
GPIO (5V)
VREGSW
K13
DCDC regulator switching node
PC2
L1
GPIO (5V)
PC3
L2
GPIO (5V)
PA7
L3
GPIO
PB9
L6
GPIO (5V)
PB10
L7
GPIO (5V)
PD1
L10
GPIO
PC6
L11
GPIO
PC7
L12
GPIO
VREGVSS
L13
Voltage regulator VSS
PB7
M1
GPIO
PC4
M2
GPIO
PA8
M3
GPIO
PA10
M4
GPIO
PA13
M5
GPIO (5V)
PA14
M6
GPIO
RESETn
M7
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB12
M8
GPIO
PD0
M9
GPIO (5V)
PD2
M10
GPIO (5V)
PD3
M11
GPIO
PD4
M12
GPIO
PD8
M13
GPIO
PB8
N1
GPIO
PC5
N2
GPIO
PA9
N3
GPIO
PA11
N4
GPIO
PA12
N5
GPIO (5V)
PB11
N6
GPIO
BODEN
N7
Brown-Out Detector Enable. This pin
may be left disconnected or tied to
AVDD.
PB13
N8
GPIO
PB14
N9
GPIO
AVDD
N10
Analog power supply.
PD5
N11
GPIO
PD6
N12
GPIO
PD7
N13
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.0 | 134
EFM32GG11 Family Data Sheet
Pin Definitions
5.5 EFM32GG11B4xx in BGA120 Device Pinout
Figure 5.5. EFM32GG11B4xx in BGA120 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.5. EFM32GG11B4xx in BGA120 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE15
A1
GPIO
PE14
A2
GPIO
PE12
A3
GPIO
PE9
A4
GPIO
PD11
A5
GPIO
PD9
A6
GPIO
PF7
A7
GPIO
PF5
A8
GPIO
PF4
A9
GPIO
PF2
A10
GPIO
VREGI
A11
Input to 5 V regulator.
VREGO
A12
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
silabs.com | Building a more connected world.
Rev. 1.0 | 135
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PF11
A13
GPIO (5V)
PA15
B1
GPIO
PE13
B2
GPIO
PE11
B3
GPIO
PE8
B4
GPIO
PD12
B5
GPIO
PD10
B6
GPIO
PF8
B7
GPIO
PF6
B8
GPIO
PF3
B9
GPIO
PF1
B10
GPIO (5V)
PF12
B11
GPIO
VBUS
B12
USB VBUS signal and auxiliary input to
5 V regulator.
PF10
B13
GPIO (5V)
PA1
C1
GPIO
PA0
C2
GPIO
PE10
C3
GPIO
PD13
C4
GPIO (5V)
VSS
C5
C8
H3
J3
K11
K12
L5
L6
M8
M11
N8
IOVDD1
C6
Digital IO power supply 1.
IOVDD0
C9
J11
K3
L4
L7
Digital IO power supply 0.
Ground
PF9
C7
GPIO
PF0
C10
GPIO (5V)
PE4
C11
GPIO
PC14
C12
GPIO (5V)
PC15
C13
GPIO (5V)
PA3
D1
GPIO
PA2
D2
GPIO
PB15
D3
GPIO (5V)
PE5
D11
GPIO
PC12
D12
GPIO (5V)
PC13
D13
GPIO (5V)
PA6
E1
GPIO
PA5
E2
GPIO
PA4
E3
GPIO
PE6
E11
GPIO
PC10
E12
GPIO (5V)
PC11
E13
GPIO (5V)
PB0
F1
GPIO
PB1
F2
GPIO
PB2
F3
GPIO
PE7
F11
GPIO
PC8
F12
GPIO (5V)
PC9
F13
GPIO (5V)
PB3
G1
GPIO
PB4
G2
GPIO
IOVDD2
G3
Digital IO power supply 2.
PE0
G11
GPIO (5V)
PE1
G12
GPIO (5V)
PE3
G13
GPIO
PB5
H1
GPIO
PB6
H2
GPIO
DVDD
H11
Digital power supply.
PE2
H12
GPIO
PC7
H13
GPIO
PD14
J1
silabs.com | Building a more connected world.
GPIO (5V)
Rev. 1.0 | 136
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PD15
J2
GPIO (5V)
PC6
J12
GPIO
DECOUPLE
J13
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PC0
K1
GPIO (5V)
PC1
K2
GPIO (5V)
PD8
K13
GPIO
PC2
L1
GPIO (5V)
PC3
L2
GPIO (5V)
PA7
L3
GPIO
PB9
L8
GPIO (5V)
PB10
L9
GPIO (5V)
PD0
L10
GPIO (5V)
PD1
L11
GPIO
PD4
L12
GPIO
PD7
L13
GPIO
PB7
M1
GPIO
PC4
M2
GPIO
PA8
M3
GPIO
PA10
M4
GPIO
PA13
M5
GPIO (5V)
RESETn
M7
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PA14
M6
GPIO
AVDD
M9
M10
N11
Analog power supply.
PD3
M12
GPIO
PD6
M13
GPIO
PB8
N1
GPIO
PC5
N2
GPIO
PA9
N3
GPIO
PA11
N4
GPIO
PA12
N5
GPIO (5V)
PB11
N6
GPIO
PB12
N7
GPIO
PB13
N9
GPIO
PB14
N10
GPIO
PD2
N12
GPIO (5V)
PD5
N13
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.0 | 137
EFM32GG11 Family Data Sheet
Pin Definitions
5.6 EFM32GG11B4xx in BGA112 Device Pinout
Figure 5.6. EFM32GG11B4xx in BGA112 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.6. EFM32GG11B4xx in BGA112 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE15
A1
GPIO
PE14
A2
GPIO
PE12
A3
GPIO
PE9
A4
GPIO
PD10
A5
GPIO
PF7
A6
GPIO
PF5
A7
GPIO
PF12
A8
GPIO
PE4
A9
GPIO
PF10
A10
GPIO (5V)
PF11
A11
GPIO (5V)
PA15
B1
GPIO
PE13
B2
GPIO
PE11
B3
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 138
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE8
B4
GPIO
PD11
B5
GPIO
PF8
B6
GPIO
PF6
B7
GPIO
VBUS
B8
USB VBUS signal and auxiliary input to
5 V regulator.
PE5
B9
GPIO
VREGI
B10
Input to 5 V regulator.
VREGO
B11
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PA1
C1
GPIO
PA0
C2
GPIO
PE10
C3
GPIO
PD13
C4
GPIO (5V)
PD12
C5
GPIO
PF9
C6
GPIO
VSS
C7
D4
F9
G3
G9
H6
K4
K7
K10
L7
Ground
PF2
C8
GPIO
PE6
C9
GPIO
PC10
C10
GPIO (5V)
PC11
C11
GPIO (5V)
PA3
D1
GPIO
PA2
D2
GPIO
PB15
D3
GPIO (5V)
IOVDD1
D5
Digital IO power supply 1.
PD9
D6
GPIO
IOVDD0
D7
G8
H7
L4
Digital IO power supply 0.
PF1
D8
GPIO (5V)
PE7
D9
GPIO
PC8
D10
GPIO (5V)
PC9
D11
GPIO (5V)
PA6
E1
GPIO
PA5
E2
GPIO
PA4
E3
GPIO
PB0
E4
GPIO
PF0
E8
GPIO (5V)
PE0
E9
GPIO (5V)
PE1
E10
GPIO (5V)
PE3
E11
GPIO
PB1
F1
GPIO
PB2
F2
GPIO
PB3
F3
GPIO
PB4
F4
GPIO
DVDD
F8
Digital power supply.
PE2
F10
GPIO
DECOUPLE
F11
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PB5
G1
GPIO
PB6
G2
GPIO
IOVDD2
G4
Digital IO power supply 2.
PC6
G10
GPIO
PC7
G11
GPIO
PC0
H1
GPIO (5V)
PC2
H2
GPIO (5V)
PD14
H3
GPIO (5V)
PA7
H4
GPIO
PA8
H5
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 139
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PD8
H8
GPIO
PD5
H9
GPIO
PD6
H10
GPIO
PD7
H11
GPIO
PC1
J1
GPIO (5V)
PC3
J2
GPIO (5V)
PD15
J3
GPIO (5V)
PA12
J4
GPIO (5V)
PA9
J5
GPIO
PA10
J6
GPIO
PB9
J7
GPIO (5V)
PB10
J8
GPIO (5V)
PD2
J9
GPIO (5V)
PD3
J10
GPIO
PD4
J11
GPIO
PB7
K1
GPIO
PC4
K2
GPIO
PA13
K3
GPIO (5V)
RESETn
K6
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PA11
K5
GPIO
AVDD
K8
K9
L10
Analog power supply.
PD1
K11
GPIO
PB8
L1
GPIO
PC5
L2
GPIO
PA14
L3
GPIO
PB11
L5
GPIO
PB12
L6
GPIO
PB13
L8
GPIO
PB14
L9
GPIO
PD0
L11
GPIO (5V)
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.0 | 140
EFM32GG11 Family Data Sheet
Pin Definitions
5.7 EFM32GG11B3xx in BGA112 Device Pinout
Figure 5.7. EFM32GG11B3xx in BGA112 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.7. EFM32GG11B3xx in BGA112 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE15
A1
GPIO
PE14
A2
GPIO
PE12
A3
GPIO
PE9
A4
GPIO
PD10
A5
GPIO
PF7
A6
GPIO
PF5
A7
GPIO
PF4
A8
GPIO
PE4
A9
GPIO
PC14
A10
GPIO (5V)
PC15
A11
GPIO (5V)
PA15
B1
GPIO
PE13
B2
GPIO
PE11
B3
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 141
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PE8
B4
GPIO
PD11
B5
GPIO
PF8
B6
GPIO
PF6
B7
GPIO
PF3
B8
GPIO
PE5
B9
GPIO
PC12
B10
GPIO (5V)
PC13
B11
GPIO (5V)
PA1
C1
GPIO
PA0
C2
GPIO
PE10
C3
GPIO
PD13
C4
GPIO (5V)
PD12
C5
GPIO
PF9
C6
GPIO
VSS
C7
D4
F9
G3
G9
H6
K4
K7
K10
L7
Ground
PF2
C8
GPIO
PE6
C9
GPIO
PC10
C10
GPIO (5V)
PC11
C11
GPIO (5V)
PA3
D1
GPIO
PA2
D2
GPIO
PB15
D3
GPIO (5V)
IOVDD1
D5
Digital IO power supply 1.
PD9
D6
GPIO
IOVDD0
D7
G8
H7
L4
Digital IO power supply 0.
PF1
D8
GPIO (5V)
PE7
D9
GPIO
PC8
D10
GPIO (5V)
PC9
D11
GPIO (5V)
PA6
E1
GPIO
PA5
E2
GPIO
PA4
E3
GPIO
PB0
E4
GPIO
PF0
E8
GPIO (5V)
PE0
E9
GPIO (5V)
PE1
E10
GPIO (5V)
PE3
E11
GPIO
PB1
F1
GPIO
PB2
F2
GPIO
PB3
F3
GPIO
PB4
F4
GPIO
DVDD
F8
Digital power supply.
PE2
F10
GPIO
DECOUPLE
F11
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PB5
G1
GPIO
PB6
G2
GPIO
IOVDD2
G4
Digital IO power supply 2.
PC6
G10
GPIO
PC7
G11
GPIO
PC0
H1
GPIO (5V)
PC2
H2
GPIO (5V)
PD14
H3
GPIO (5V)
PA7
H4
GPIO
PA8
H5
GPIO
PD8
H8
GPIO
PD5
H9
GPIO
PD6
H10
GPIO
PD7
H11
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 142
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC1
J1
GPIO (5V)
PC3
J2
GPIO (5V)
PD15
J3
GPIO (5V)
PA12
J4
GPIO (5V)
PA9
J5
GPIO
PA10
J6
GPIO
PB9
J7
GPIO (5V)
PB10
J8
GPIO (5V)
PD2
J9
GPIO (5V)
PD3
J10
GPIO
PD4
J11
GPIO
PB7
K1
GPIO
PC4
K2
GPIO
PA13
K3
GPIO (5V)
RESETn
K6
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PA11
K5
GPIO
AVDD
K8
K9
L10
Analog power supply.
PD1
K11
GPIO
PB8
L1
GPIO
PC5
L2
GPIO
PA14
L3
GPIO
PB11
L5
GPIO
PB12
L6
GPIO
PB13
L8
GPIO
PB14
L9
GPIO
PD0
L11
GPIO (5V)
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Building a more connected world.
Rev. 1.0 | 143
EFM32GG11 Family Data Sheet
Pin Definitions
5.8 EFM32GG11B8xx in QFP100 Device Pinout
Figure 5.8. EFM32GG11B8xx in QFP100 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.8. EFM32GG11B8xx in QFP100 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
Digital IO power supply 0.
GPIO
PA6
7
GPIO
IOVDD0
8
17
31
44
82
PB0
9
GPIO
PB1
10
silabs.com | Building a more connected world.
Rev. 1.0 | 144
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB2
11
GPIO
PB3
12
GPIO
PB4
13
GPIO
PB5
14
GPIO
Ground
PB6
15
GPIO
VSS
16
32
59
83
PC0
18
GPIO (5V)
PC1
19
GPIO (5V)
PC2
20
GPIO (5V)
PC3
21
GPIO (5V)
PC4
22
GPIO
PC5
23
GPIO
PB7
24
GPIO
PB8
25
GPIO
PA7
26
GPIO
PA8
27
GPIO
PA9
28
GPIO
PA10
29
GPIO
PA11
30
GPIO
PA12
33
GPIO (5V)
PA13
34
GPIO (5V)
PA14
35
GPIO
RESETn
36
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB9
37
GPIO (5V)
PB10
38
GPIO (5V)
PB11
39
GPIO
PB12
40
GPIO
AVDD
41
Analog power supply.
PB13
42
GPIO
PB14
43
GPIO
PD0
45
GPIO (5V)
PD1
46
GPIO
PD2
47
GPIO (5V)
PD3
48
GPIO
PD4
49
GPIO
PD5
50
GPIO
PD6
51
GPIO
PD7
52
GPIO
PD8
53
GPIO
PC7
54
GPIO
VREGVSS
55
Voltage regulator VSS
VREGSW
56
DCDC regulator switching node
VREGVDD
57
Voltage regulator VDD input
DVDD
58
Digital power supply.
DECOUPLE
60
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE1
61
GPIO (5V)
PE2
62
GPIO
PE3
63
GPIO
PE4
64
GPIO
PE5
65
GPIO
PE6
66
GPIO
PE7
67
GPIO
PC8
68
GPIO (5V)
PC9
69
GPIO (5V)
PC10
70
GPIO (5V)
PC11
71
GPIO (5V)
VREGI
72
Input to 5 V regulator.
VREGO
73
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PF10
74
GPIO (5V)
PF11
75
GPIO (5V)
PF0
76
GPIO (5V)
PF1
77
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 145
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PF2
78
GPIO
VBUS
79
USB VBUS signal and auxiliary input to
5 V regulator.
PF12
80
GPIO
PF5
81
GPIO
PF6
84
GPIO
PF7
85
GPIO
PF8
86
GPIO
PF9
87
GPIO
PD9
88
GPIO
PD10
89
GPIO
PD11
90
GPIO
PD12
91
GPIO
PE8
92
GPIO
PE9
93
GPIO
PE10
94
GPIO
PE11
95
GPIO
PE12
96
GPIO
PE13
97
GPIO
PE14
98
GPIO
PE15
99
GPIO
PA15
100
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 146
EFM32GG11 Family Data Sheet
Pin Definitions
5.9 EFM32GG11B5xx in QFP100 Device Pinout
Figure 5.9. EFM32GG11B5xx in QFP100 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.9. EFM32GG11B5xx in QFP100 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
Digital IO power supply 0.
GPIO
PA6
7
GPIO
IOVDD0
8
17
31
44
82
PB0
9
GPIO
PB1
10
silabs.com | Building a more connected world.
Rev. 1.0 | 147
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB2
11
GPIO
PB3
12
GPIO
PB4
13
GPIO
PB5
14
GPIO
Ground
PB6
15
GPIO
VSS
16
32
59
83
PC0
18
GPIO (5V)
PC1
19
GPIO (5V)
PC2
20
GPIO (5V)
PC3
21
GPIO (5V)
PC4
22
GPIO
PC5
23
GPIO
PB7
24
GPIO
PB8
25
GPIO
PA7
26
GPIO
PA8
27
GPIO
PA9
28
GPIO
PA10
29
GPIO
PA11
30
GPIO
PA12
33
GPIO (5V)
PA13
34
GPIO (5V)
PA14
35
GPIO
RESETn
36
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB9
37
GPIO (5V)
PB10
38
GPIO (5V)
PB11
39
GPIO
PB12
40
GPIO
AVDD
41
Analog power supply.
PB13
42
GPIO
PB14
43
GPIO
PD0
45
GPIO (5V)
PD1
46
GPIO
PD2
47
GPIO (5V)
PD3
48
GPIO
PD4
49
GPIO
PD5
50
GPIO
PD6
51
GPIO
PD7
52
GPIO
PD8
53
GPIO
PC7
54
GPIO
VREGVSS
55
Voltage regulator VSS
VREGSW
56
DCDC regulator switching node
VREGVDD
57
Voltage regulator VDD input
DVDD
58
Digital power supply.
DECOUPLE
60
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE1
61
GPIO (5V)
PE2
62
GPIO
PE3
63
GPIO
PE4
64
GPIO
PE5
65
GPIO
PE6
66
GPIO
PE7
67
GPIO
PC8
68
GPIO (5V)
PC9
69
GPIO (5V)
PC10
70
GPIO (5V)
PC11
71
GPIO (5V)
VREGI
72
Input to 5 V regulator.
VREGO
73
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PF10
74
GPIO (5V)
PF11
75
GPIO (5V)
PF0
76
GPIO (5V)
PF1
77
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 148
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PF2
78
GPIO
NC
79
No Connect.
PF12
80
GPIO
PF5
81
GPIO
PF6
84
GPIO
PF7
85
GPIO
PF8
86
GPIO
PF9
87
GPIO
PD9
88
GPIO
PD10
89
GPIO
PD11
90
GPIO
PD12
91
GPIO
PE8
92
GPIO
PE9
93
GPIO
PE10
94
GPIO
PE11
95
GPIO
PE12
96
GPIO
PE13
97
GPIO
PE14
98
GPIO
PE15
99
GPIO
PA15
100
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 149
EFM32GG11 Family Data Sheet
Pin Definitions
5.10 EFM32GG11B4xx in QFP100 Device Pinout
Figure 5.10. EFM32GG11B4xx in QFP100 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.10. EFM32GG11B4xx in QFP100 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
Digital IO power supply 0.
GPIO
PA6
7
GPIO
IOVDD0
8
17
31
44
82
PB0
9
GPIO
PB1
10
silabs.com | Building a more connected world.
Rev. 1.0 | 150
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB2
11
GPIO
PB3
12
GPIO
PB4
13
GPIO
PB5
14
GPIO
Ground
PB6
15
GPIO
VSS
16
32
58
83
PC0
18
GPIO (5V)
PC1
19
GPIO (5V)
PC2
20
GPIO (5V)
PC3
21
GPIO (5V)
PC4
22
GPIO
PC5
23
GPIO
PB7
24
GPIO
PB8
25
GPIO
PA7
26
GPIO
PA8
27
GPIO
PA9
28
GPIO
PA10
29
GPIO
PA11
30
GPIO
PA12
33
GPIO (5V)
PA13
34
GPIO (5V)
PA14
35
GPIO
RESETn
36
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB9
37
GPIO (5V)
PB10
38
GPIO (5V)
PB11
39
GPIO
PB12
40
GPIO
AVDD
41
45
Analog power supply.
PB13
42
GPIO
PB14
43
GPIO
PD0
46
GPIO (5V)
PD1
47
GPIO
PD2
48
GPIO (5V)
PD3
49
GPIO
PD4
50
GPIO
PD5
51
GPIO
PD6
52
GPIO
PD7
53
GPIO
PD8
54
GPIO
PC6
55
GPIO
PC7
56
GPIO
DVDD
57
Digital power supply.
DECOUPLE
59
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE0
60
GPIO (5V)
PE1
61
GPIO (5V)
PE2
62
GPIO
PE3
63
GPIO
PE4
64
GPIO
PE5
65
GPIO
PE6
66
GPIO
PE7
67
GPIO
PC8
68
GPIO (5V)
PC9
69
GPIO (5V)
PC10
70
GPIO (5V)
PC11
71
GPIO (5V)
VREGI
72
Input to 5 V regulator.
VREGO
73
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PF10
74
GPIO (5V)
PF11
75
GPIO (5V)
PF0
76
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 151
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PF1
77
GPIO (5V)
PF2
78
GPIO
VBUS
79
USB VBUS signal and auxiliary input to
5 V regulator.
PF12
80
GPIO
PF5
81
GPIO
PF6
84
GPIO
PF7
85
GPIO
PF8
86
GPIO
PF9
87
GPIO
PD9
88
GPIO
PD10
89
GPIO
PD11
90
GPIO
PD12
91
GPIO
PE8
92
GPIO
PE9
93
GPIO
PE10
94
GPIO
PE11
95
GPIO
PE12
96
GPIO
PE13
97
GPIO
PE14
98
GPIO
PE15
99
GPIO
PA15
100
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 152
EFM32GG11 Family Data Sheet
Pin Definitions
5.11 EFM32GG11B3xx in QFP100 Device Pinout
Figure 5.11. EFM32GG11B3xx in QFP100 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.11. EFM32GG11B3xx in QFP100 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
Digital IO power supply 0.
GPIO
PA6
7
GPIO
IOVDD0
8
17
31
44
82
PB0
9
GPIO
PB1
10
silabs.com | Building a more connected world.
Rev. 1.0 | 153
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB2
11
GPIO
PB3
12
GPIO
PB4
13
GPIO
PB5
14
GPIO
Ground
PB6
15
GPIO
VSS
16
32
58
83
PC0
18
GPIO (5V)
PC1
19
GPIO (5V)
PC2
20
GPIO (5V)
PC3
21
GPIO (5V)
PC4
22
GPIO
PC5
23
GPIO
PB7
24
GPIO
PB8
25
GPIO
PA7
26
GPIO
PA8
27
GPIO
PA9
28
GPIO
PA10
29
GPIO
PA11
30
GPIO
PA12
33
GPIO (5V)
PA13
34
GPIO (5V)
PA14
35
GPIO
RESETn
36
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB9
37
GPIO (5V)
PB10
38
GPIO (5V)
PB11
39
GPIO
PB12
40
GPIO
AVDD
41
45
Analog power supply.
PB13
42
GPIO
PB14
43
GPIO
PD0
46
GPIO (5V)
PD1
47
GPIO
PD2
48
GPIO (5V)
PD3
49
GPIO
PD4
50
GPIO
PD5
51
GPIO
PD6
52
GPIO
PD7
53
GPIO
PD8
54
GPIO
PC6
55
GPIO
PC7
56
GPIO
DVDD
57
Digital power supply.
DECOUPLE
59
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE0
60
GPIO (5V)
PE1
61
GPIO (5V)
PE2
62
GPIO
PE3
63
GPIO
PE4
64
GPIO
PE5
65
GPIO
PE6
66
GPIO
PE7
67
GPIO
PC8
68
GPIO (5V)
PC9
69
GPIO (5V)
PC10
70
GPIO (5V)
PC11
71
GPIO (5V)
PC12
72
GPIO (5V)
PC13
73
GPIO (5V)
PC14
74
GPIO (5V)
PC15
75
GPIO (5V)
PF0
76
GPIO (5V)
PF1
77
GPIO (5V)
PF2
78
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 154
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PF3
79
GPIO
PF4
80
GPIO
PF5
81
GPIO
PF6
84
GPIO
PF7
85
GPIO
PF8
86
GPIO
PF9
87
GPIO
PD9
88
GPIO
PD10
89
GPIO
PD11
90
GPIO
PD12
91
GPIO
PE8
92
GPIO
PE9
93
GPIO
PE10
94
GPIO
PE11
95
GPIO
PE12
96
GPIO
PE13
97
GPIO
PE14
98
GPIO
PE15
99
GPIO
PA15
100
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 155
EFM32GG11 Family Data Sheet
Pin Definitions
5.12 EFM32GG11B8xx in QFP64 Device Pinout
Figure 5.12. EFM32GG11B8xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.12. EFM32GG11B8xx in QFP64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
IOVDD0
7
27
55
Digital IO power supply 0.
VSS
8
23
56
Ground
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
PB6
12
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 156
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA12
18
GPIO (5V)
PA14
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
PB12
22
GPIO
AVDD
24
Analog power supply.
PB13
25
GPIO
PB14
26
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD8
35
GPIO
VREGVSS
36
Voltage regulator VSS
VREGSW
37
DCDC regulator switching node
VREGVDD
38
Voltage regulator VDD input
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
41
GPIO
PE5
42
GPIO
PE6
43
GPIO
PE7
44
GPIO
VREGI
45
Input to 5 V regulator.
VREGO
46
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PF10
47
GPIO (5V)
PF11
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
VBUS
52
USB VBUS signal and auxiliary input to
5 V regulator.
PF12
53
GPIO
PF5
54
GPIO
PE8
57
GPIO
PE9
58
GPIO
PE10
59
GPIO
PE11
60
GPIO
PE12
61
GPIO
PE13
62
GPIO
PE14
63
GPIO
PE15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 157
EFM32GG11 Family Data Sheet
Pin Definitions
5.13 EFM32GG11B5xx in QFP64 Device Pinout
Figure 5.13. EFM32GG11B5xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.13. EFM32GG11B5xx in QFP64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
IOVDD0
7
27
55
Digital IO power supply 0.
VSS
8
23
56
Ground
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
PB6
12
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 158
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA12
18
GPIO (5V)
PA14
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
PB12
22
GPIO
AVDD
24
Analog power supply.
PB13
25
GPIO
PB14
26
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC7
37
GPIO
VREGVSS
38
Voltage regulator VSS
VREGSW
39
DCDC regulator switching node
VREGVDD
40
Voltage regulator VDD input
DVDD
41
Digital power supply.
DECOUPLE
42
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
43
GPIO
PE5
44
GPIO
PE6
45
GPIO
PE7
46
GPIO
PC12
47
GPIO (5V)
PC13
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
57
GPIO
PE9
58
GPIO
PE10
59
GPIO
PE11
60
GPIO
PE12
61
GPIO
PE13
62
GPIO
PE14
63
GPIO
PE15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 159
EFM32GG11 Family Data Sheet
Pin Definitions
5.14 EFM32GG11B4xx in QFP64 Device Pinout
Figure 5.14. EFM32GG11B4xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.14. EFM32GG11B4xx in QFP64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
IOVDD0
7
26
55
Digital IO power supply 0.
VSS
8
22
56
Ground
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
PB6
12
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 160
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA12
17
GPIO (5V)
PA13
18
GPIO (5V)
PA14
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
AVDD
23
27
Analog power supply.
PB13
24
GPIO
PB14
25
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC6
37
GPIO
PC7
38
GPIO
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
41
GPIO
PE5
42
GPIO
PE6
43
GPIO
PE7
44
GPIO
VREGI
45
Input to 5 V regulator.
VREGO
46
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PF10
47
GPIO (5V)
PF11
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
VBUS
52
USB VBUS signal and auxiliary input to
5 V regulator.
PF12
53
GPIO
PF5
54
GPIO
PE8
57
GPIO
PE9
58
GPIO
PE10
59
GPIO
PE11
60
GPIO
PE12
61
GPIO
PE13
62
GPIO
PE14
63
GPIO
PE15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 161
EFM32GG11 Family Data Sheet
Pin Definitions
5.15 EFM32GG11B1xx in QFP64 Device Pinout
Figure 5.15. EFM32GG11B1xx in QFP64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.15. EFM32GG11B1xx in QFP64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
IOVDD0
7
26
55
Digital IO power supply 0.
VSS
8
22
56
Ground
PC0
9
GPIO (5V)
PC1
10
GPIO (5V)
PC2
11
GPIO (5V)
PC3
12
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 162
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA9
18
GPIO
PA10
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
AVDD
23
27
Analog power supply.
PB13
24
GPIO
PB14
25
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC6
37
GPIO
PC7
38
GPIO
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PC8
41
GPIO (5V)
PC9
42
GPIO (5V)
PC10
43
GPIO (5V)
PC11
44
GPIO (5V)
PC12
45
GPIO (5V)
PC13
46
GPIO (5V)
PC14
47
GPIO (5V)
PC15
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
57
GPIO
PE9
58
GPIO
PE10
59
GPIO
PE11
60
GPIO
PE12
61
GPIO
PE13
62
GPIO
PE14
63
GPIO
PE15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 163
EFM32GG11 Family Data Sheet
Pin Definitions
5.16 EFM32GG11B8xx in QFN64 Device Pinout
Figure 5.16. EFM32GG11B8xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.16. EFM32GG11B8xx in QFN64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
PA6
7
GPIO
IOVDD0
8
27
55
Digital IO power supply 0.
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 164
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB6
12
GPIO
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA12
18
GPIO (5V)
PA13
19
GPIO (5V)
PA14
20
GPIO
RESETn
21
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
22
GPIO
PB12
23
GPIO
AVDD
24
Analog power supply.
PB13
25
GPIO
PB14
26
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD8
35
GPIO
VREGVSS
36
Voltage regulator VSS
VREGSW
37
DCDC regulator switching node
VREGVDD
38
Voltage regulator VDD input
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
41
GPIO
PE5
42
GPIO
PE6
43
GPIO
PE7
44
GPIO
VREGI
45
Input to 5 V regulator.
VREGO
46
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PF10
47
GPIO (5V)
PF11
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
VBUS
52
USB VBUS signal and auxiliary input to
5 V regulator.
PF12
53
GPIO
PF5
54
GPIO
PE8
56
GPIO
PE9
57
GPIO
PE10
58
GPIO
PE11
59
GPIO
PE12
60
GPIO
PE13
61
GPIO
PE14
62
GPIO
PE15
63
GPIO
PA15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 165
EFM32GG11 Family Data Sheet
Pin Definitions
5.17 EFM32GG11B5xx in QFN64 Device Pinout
Figure 5.17. EFM32GG11B5xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.17. EFM32GG11B5xx in QFN64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
PA6
7
GPIO
IOVDD0
8
27
55
Digital IO power supply 0.
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 166
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB6
12
GPIO
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA12
18
GPIO (5V)
PA13
19
GPIO (5V)
PA14
20
GPIO
RESETn
21
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
22
GPIO
PB12
23
GPIO
AVDD
24
Analog power supply.
PB13
25
GPIO
PB14
26
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC7
37
GPIO
VREGVSS
38
Voltage regulator VSS
VREGSW
39
DCDC regulator switching node
VREGVDD
40
Voltage regulator VDD input
DVDD
41
Digital power supply.
DECOUPLE
42
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
43
GPIO
PE5
44
GPIO
PE6
45
GPIO
PE7
46
GPIO
PC12
47
GPIO (5V)
PC13
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
56
GPIO
PE9
57
GPIO
PE10
58
GPIO
PE11
59
GPIO
PE12
60
GPIO
PE13
61
GPIO
PE14
62
GPIO
PE15
63
GPIO
PA15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 167
EFM32GG11 Family Data Sheet
Pin Definitions
5.18 EFM32GG11B4xx in QFN64 Device Pinout
Figure 5.18. EFM32GG11B4xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.18. EFM32GG11B4xx in QFN64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
PA6
7
GPIO
IOVDD0
8
26
55
Digital IO power supply 0.
PB3
9
GPIO
PB4
10
GPIO
PB5
11
GPIO
silabs.com | Building a more connected world.
Rev. 1.0 | 168
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PB6
12
GPIO
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA12
17
GPIO (5V)
PA13
18
GPIO (5V)
PA14
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
PB12
22
GPIO
AVDD
23
27
Analog power supply.
PB13
24
GPIO
PB14
25
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC6
37
GPIO
PC7
38
GPIO
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PE4
41
GPIO
PE5
42
GPIO
PE6
43
GPIO
PE7
44
GPIO
VREGI
45
Input to 5 V regulator.
VREGO
46
Decoupling for 5 V regulator and regulator output. Power for USB PHY in
USB-enabled OPNs
PF10
47
GPIO (5V)
PF11
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
VBUS
52
USB VBUS signal and auxiliary input to
5 V regulator.
PF12
53
GPIO
PF5
54
GPIO
PE8
56
GPIO
PE9
57
GPIO
PE10
58
GPIO
PE11
59
GPIO
PE12
60
GPIO
PE13
61
GPIO
PE14
62
GPIO
PE15
63
GPIO
PA15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 169
EFM32GG11 Family Data Sheet
Pin Definitions
5.19 EFM32GG11B1xx in QFN64 Device Pinout
Figure 5.19. EFM32GG11B1xx in QFN64 Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview.
Table 5.19. EFM32GG11B1xx in QFN64 Device Pinout
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
VSS
0
Ground
PA0
1
GPIO
PA1
2
GPIO
PA2
3
GPIO
PA3
4
GPIO
PA4
5
GPIO
PA5
6
GPIO
PA6
7
GPIO
IOVDD0
8
26
55
Digital IO power supply 0.
PC0
9
GPIO (5V)
PC1
10
GPIO (5V)
PC2
11
GPIO (5V)
silabs.com | Building a more connected world.
Rev. 1.0 | 170
EFM32GG11 Family Data Sheet
Pin Definitions
Pin Name
Pin(s)
Description
Pin Name
Pin(s)
Description
PC3
12
GPIO (5V)
PC4
13
GPIO
PC5
14
GPIO
PB7
15
GPIO
PB8
16
GPIO
PA8
17
GPIO
PA9
18
GPIO
PA10
19
GPIO
RESETn
20
Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during
reset, and let the internal pull-up ensure
that reset is released.
PB11
21
GPIO
PB12
22
GPIO
AVDD
23
27
Analog power supply.
PB13
24
GPIO
PB14
25
GPIO
PD0
28
GPIO (5V)
PD1
29
GPIO
PD2
30
GPIO (5V)
PD3
31
GPIO
PD4
32
GPIO
PD5
33
GPIO
PD6
34
GPIO
PD7
35
GPIO
PD8
36
GPIO
PC6
37
GPIO
PC7
38
GPIO
DVDD
39
Digital power supply.
DECOUPLE
40
Decouple output for on-chip voltage
regulator. An external decoupling capacitor is required at this pin.
PC8
41
GPIO (5V)
PC9
42
GPIO (5V)
PC10
43
GPIO (5V)
PC11
44
GPIO (5V)
PC12
45
GPIO (5V)
PC13
46
GPIO (5V)
PC14
47
GPIO (5V)
PC15
48
GPIO (5V)
PF0
49
GPIO (5V)
PF1
50
GPIO (5V)
PF2
51
GPIO
PF3
52
GPIO
PF4
53
GPIO
PF5
54
GPIO
PE8
56
GPIO
PE9
57
GPIO
PE10
58
GPIO
PE11
59
GPIO
PE12
60
GPIO
PE13
61
GPIO
PE14
62
GPIO
PE15
63
GPIO
PA15
64
GPIO
Note:
1. GPIO with 5V tolerance are indicated by (5V).
silabs.com | Building a more connected world.
Rev. 1.0 | 171
EFM32GG11 Family Data Sheet
Pin Definitions
5.20 GPIO Functionality Table
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO
pin, followed by the functionality available on that pin. Refer to 5.21 Alternate Functionality Overview for a list of GPIO locations available for each function.
Table 5.20. GPIO Functionality Table
GPIO Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
Other
EBI_AD09 #0
EBI_CSTFT #3
TIM0_CC0 #0
TIM0_CC1 #7
TIM3_CC0 #4
PCNT0_S0IN #4
ETH_RMIITXEN #0
ETH_MIITXCLK #0
SDIO_DAT0 #1
US1_RX #5 US3_TX
#0 QSPI0_CS0 #1
LEU0_RX #4
I2C0_SDA #0
CMU_CLK2 #0
PRS_CH0 #0
PRS_CH3 #3
GPIO_EM4WU0
EBI_AD10 #0
EBI_DCLK #3
TIM0_CC0 #7
TIM0_CC1 #0
TIM3_CC1 #4
PCNT0_S1IN #4
ETH_RMIIRXD1 #0
ETH_MIITXD3 #0
SDIO_DAT1 #1
US3_RX #0
QSPI0_CS1 #1
I2C0_SCL #0
CMU_CLK1 #0
PRS_CH1 #0
TIM0_CC2 #0
TIM3_CC2 #4
ETH_RMIIRXD0 #0
ETH_MIITXD2 #0
SDIO_DAT2 #1
US1_RX #6
US3_CLK #0
QSPI0_DQ0 #1
CMU_CLK0 #0
PRS_CH8 #1
ETM_TD0 #3
TIM0_CDTI0 #0
TIM3_CC0 #5
ETH_RMIIREFCLK
#0 ETH_MIITXD1 #0
SDIO_DAT3 #1
US3_CS #0 U0_TX
#2 QSPI0_DQ1 #1
CMU_CLK2 #1
CMU_CLKI0 #1
CMU_CLK2 #4
LES_ALTEX2
PRS_CH9 #1
ETM_TD1 #3
TIM0_CDTI1 #0
TIM3_CC1 #5
ETH_RMIICRSDV #0
ETH_MIITXD0 #0
SDIO_DAT4 #1
US3_CTS #0 U0_RX
#2 QSPI0_DQ2 #1
LES_ALTEX3
PRS_CH16 #0
ETM_TD2 #3
EBI_AD14 #0
TIM0_CDTI2 #0
TIM3_CC2 #5
PCNT1_S0IN #0
ETH_RMIIRXER #0
ETH_MIITXEN #0
SDIO_DAT5 #1
US3_RTS #0
U0_CTS #2
QSPI0_DQ3 #1
LEU1_TX #1
LES_ALTEX4
PRS_CH17 #0
ACMP1_O #7
ETM_TD3 #3
PA6
BUSBY BUSAX
LCD_SEG19
EBI_AD15 #0
TIM3_CC0 #6
WTIM0_CC0 #1 LETIM1_OUT1 #0
PCNT1_S1IN #0
ETH_MIITXER #0
ETH_MDC #3
SDIO_CD #2
US5_TX #1 U0_RTS
#2 LEU1_RX #1
PRS_CH6 #0
ACMP0_O #4
ETM_TCLK #3
GPIO_EM4WU1
PA7
BUSAY BUSBX
LCD_SEG35
EBI_AD13 #1
EBI_A01 #3
EBI_CSTFT #0
TIM0_CC2 #5 LETIM1_OUT0 #0
PCNT1_S0IN #4
US2_TX #2
US4_CTS #0
US5_RX #1
PRS_CH7 #1
PA0
PA1
PA2
PA3
PA4
PA5
BUSBY BUSAX
LCD_SEG13
BUSAY BUSBX
LCD_SEG14
BUSBY BUSAX
LCD_SEG15
BUSAY BUSBX
LCD_SEG16
BUSBY BUSAX
LCD_SEG17
BUSAY BUSBX
LCD_SEG18
silabs.com | Building a more connected world.
EBI
EBI_AD11 #0
EBI_DTEN #3
EBI_AD12 #0
EBI_VSNC #3
EBI_AD13 #0
EBI_HSNC #3
Rev. 1.0 | 172
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
EBI
Timers
Communication
Other
PA8
BUSBY BUSAX
LCD_SEG36
EBI_AD14 #1
EBI_A02 #3
EBI_DCLK #0
TIM2_CC0 #0
TIM0_CC0 #6 LETIM0_OUT0 #6
PCNT1_S1IN #4
US2_RX #2
US4_RTS #0
PRS_CH8 #0
PA9
BUSAY BUSBX
LCD_SEG37
EBI_AD15 #1
EBI_A03 #3
EBI_DTEN #0
TIM2_CC1 #0
TIM0_CC1 #6
WTIM2_CC0 #0 LETIM0_OUT1 #6
US2_CLK #2
PRS_CH9 #0
PA10
BUSBY BUSAX
LCD_SEG38
EBI_CS0 #1
EBI_A04 #3
EBI_VSNC #0
TIM2_CC2 #0
TIM0_CC2 #6
WTIM2_CC1 #0
US2_CS #2
PRS_CH10 #0
PA11
BUSAY BUSBX
LCD_SEG39
EBI_CS1 #1
EBI_A05 #3
EBI_HSNC #0
WTIM2_CC2 #0 LETIM1_OUT0 #1
US2_CTS #2
PRS_CH11 #0
BUSBY BUSAX
EBI_CS2 #1
EBI_REn #2
EBI_A00 #0 EBI_A06
#3
TIM2_CC0 #1
WTIM0_CDTI0 #2
WTIM2_CC0 #1 LETIM1_OUT0 #2
PCNT1_S0IN #5
CAN1_RX #5
US0_CLK #5
US2_RTS #2
CMU_CLK0 #5
PRS_CH12 #0
ACMP1_O #3
PA13
BUSAY BUSBX
EBI_WEn #1
EBI_NANDWEn #2
EBI_A01 #0 EBI_A07
#3
TIM0_CC2 #7
TIM2_CC1 #1
WTIM0_CDTI1 #2
WTIM2_CC1 #1 LETIM1_OUT1 #1
PCNT1_S1IN #5
CAN1_TX #5
US0_CS #5 US2_TX
#3
PRS_CH13 #0
PA14
BUSBY BUSAX
LCD_BEXT
EBI_REn #1
EBI_A02 #0 EBI_A08
#3
TIM2_CC2 #1
WTIM0_CDTI2 #2
WTIM2_CC2 #1 LETIM1_OUT1 #2
US1_TX #6 US2_RX
#3 US3_RTS #2
PRS_CH14 #0
ACMP1_O #4
PA15
BUSAY BUSBX
LCD_SEG12
EBI_AD08 #0
TIM3_CC2 #0
ETH_MIIRXCLK #0
ETH_MDIO #3
US2_CLK #3
PRS_CH15 #0
BUSBY BUSAX
LCD_SEG32
EBI_AD00 #1
EBI_CS0 #3
EBI_A16 #0
TIM2_CDTI0 #0
TIM1_CC0 #2
TIM3_CC2 #7
WTIM0_CC0 #5
PCNT0_S0IN #5
PCNT1_S1IN #2
LEU1_TX #3
PRS_CH4 #1
ACMP0_O #5
PB1
BUSAY BUSBX
LCD_SEG33
EBI_AD01 #1
EBI_CS1 #3
EBI_A17 #0
TIM2_CDTI1 #0
TIM1_CC1 #2
WTIM0_CC1 #5 LETIM1_OUT1 #5
PCNT0_S1IN #5
ETH_MIICRS #0
US5_RX #2
LEU1_RX #3
PRS_CH5 #1
PB2
BUSBY BUSAX
LCD_SEG34
EBI_AD02 #1
EBI_CS2 #3
EBI_A18 #0
TIM2_CDTI2 #0
TIM1_CC2 #2
WTIM0_CC2 #5 LETIM1_OUT0 #5
ETH_MIICOL #0
US1_CS #6
PRS_CH18 #0
ACMP0_O #6
PB3
BUSAY BUSBX
LCD_SEG20 /
LCD_COM4
EBI_AD03 #1
EBI_CS3 #3
EBI_A19 #0
TIM1_CC3 #2
WTIM0_CC0 #6
PCNT1_S0IN #1
ETH_MIICRS #2
ETH_MDIO #0
SDIO_DAT6 #1
US2_TX #1 US3_TX
#2 QSPI0_DQ4 #1
PRS_CH19 #0
ACMP0_O #7
PA12
PB0
silabs.com | Building a more connected world.
Rev. 1.0 | 173
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
EBI
Timers
Communication
Other
PRS_CH20 #0
PB4
BUSBY BUSAX
LCD_SEG21 /
LCD_COM5
EBI_AD04 #1
EBI_ARDY #3
EBI_A20 #0
WTIM0_CC1 #6
PCNT1_S1IN #1
ETH_MIICOL #2
ETH_MDC #0
SDIO_DAT7 #1
US2_RX #1
QSPI0_DQ5 #1
LEU1_TX #4
PB5
BUSAY BUSBX
LCD_SEG22 /
LCD_COM6
EBI_AD05 #1
EBI_ALE #3 EBI_A21
#0
WTIM0_CC2 #6 LETIM1_OUT0 #4
PCNT0_S0IN #6
ETH_TSUEXTCLK
#0 US0_RTS #4
US2_CLK #1
QSPI0_DQ6 #1
LEU1_RX #4
PRS_CH21 #0
PB6
BUSBY BUSAX
LCD_SEG23 /
LCD_COM7
EBI_AD06 #1
EBI_WEn #3
EBI_A22 #0
TIM0_CC0 #3
TIM2_CC0 #4
WTIM3_CC0 #6 LETIM1_OUT1 #4
PCNT0_S1IN #6
ETH_TSUTMRTOG
#0 US0_CTS #4
US2_CS #1
QSPI0_DQ7 #1
PRS_CH12 #1
US0_TX #4
US1_CLK #0
US3_RX #2 US4_TX
#0 U0_CTS #4
PRS_CH22 #0
PB7
LFXTAL_P
TIM0_CDTI0 #4
TIM1_CC0 #3
PB8
LFXTAL_N
TIM0_CDTI1 #4
TIM1_CC1 #3
US0_RX #4 US1_CS
#0 US4_RX #0
U0_RTS #4
CMU_CLKI0 #2
PRS_CH23 #0
WTIM2_CC0 #2 LETIM0_OUT0 #7
SDIO_WP #3
CAN0_RX #3
US1_CTS #0 U1_TX
#2
PRS_CH13 #1
ACMP1_O #5
PRS_CH9 #2
ACMP1_O #6
BUSAY BUSBX
EBI_ALE #1
EBI_NANDREn #2
EBI_A00 #1 EBI_A03
#0 EBI_A09 #3
PB10
BUSBY BUSAX
EBI_BL0 #2 EBI_A01
#1 EBI_A04 #0
EBI_A10 #3
WTIM2_CC1 #2 LETIM0_OUT1 #7
SDIO_CD #3
CAN0_TX #3
US1_RTS #0
US2_CTS #3 U1_RX
#2
PB11
BUSAY BUSBX
VDAC0_OUT0 /
OPA0_OUT
IDAC0_OUT
EBI_BL1 #2 EBI_A02
#1 EBI_A11 #3
TIM0_CDTI2 #4
TIM1_CC2 #3
WTIM2_CC2 #2 LETIM0_OUT0 #1
PCNT0_S1IN #7
PCNT1_S0IN #6
US0_CTS #5
US1_CLK #5
US2_CS #3
US5_CLK #0
U1_CTS #2
I2C1_SDA #1
CMU_CLK1 #5
CMU_CLKI0 #7
PRS_CH21 #2
ACMP0_O #3
GPIO_EM4WU7
PB12
BUSBY BUSAX
VDAC0_OUT1 /
OPA1_OUT
EBI_A03 #1 EBI_A12
#3 EBI_CSTFT #2
TIM1_CC3 #3
WTIM2_CC0 #3 LETIM0_OUT1 #1
PCNT0_S0IN #7
PCNT1_S1IN #6
US2_CTS #1
US5_RTS #0
U1_RTS #2
I2C1_SCL #1
PRS_CH16 #1
PB13
BUSAY BUSBX
HFXTAL_P
TIM6_CC0 #5
WTIM1_CC0 #0
PCNT2_S0IN #2
US0_CLK #4
US1_CTS #5
US5_CS #0
LEU0_TX #1
CMU_CLKI0 #3
PRS_CH7 #0
PB14
BUSBY BUSAX
HFXTAL_N
TIM6_CC1 #5
WTIM1_CC1 #0
PCNT2_S1IN #2
US0_CS #4
US1_RTS #5
US5_CTS #0
LEU0_RX #1
PRS_CH6 #1
PB9
silabs.com | Building a more connected world.
Rev. 1.0 | 174
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
PB15
PC0
Pin Alternate Functionality / Description
Analog
EBI
BUSAY BUSBX
EBI_CS3 #1 EBI_ARDY #2
VDAC0_OUT0ALT /
OPA0_OUTALT #0
BUSACMP0Y BUSACMP0X
EBI_AD07 #1
EBI_CS0 #2
EBI_REn #3
EBI_A23 #0
Timers
Communication
Other
TIM3_CC1 #7
ETH_TSUTMRTOG
#1 SDIO_WP #2
US2_RTS #1
US5_RTS #1
PRS_CH17 #1
ETM_TD2 #1
TIM0_CC1 #3
TIM2_CC1 #4
PCNT0_S0IN #2
ETH_MDIO #2
CAN0_RX #0
US0_TX #5 US1_TX
#0 US1_CS #4
US2_RTS #0
US3_CS #3
I2C0_SDA #4
LES_CH0 PRS_CH2
#0
LES_CH1 PRS_CH3
#0
PC1
VDAC0_OUT0ALT /
OPA0_OUTALT #1
BUSACMP0Y BUSACMP0X
EBI_AD08 #1
EBI_CS1 #2
EBI_BL0 #3 EBI_A24
#0
TIM0_CC2 #3
TIM2_CC2 #4
WTIM0_CC0 #7
PCNT0_S1IN #2
ETH_MDC #2
CAN0_TX #0
US0_RX #5 US1_TX
#4 US1_RX #0
US2_CTS #0
US3_RTS #1
I2C0_SCL #4
PC2
VDAC0_OUT0ALT /
OPA0_OUTALT #2
BUSACMP0Y BUSACMP0X
EBI_AD09 #1
EBI_CS2 #2
EBI_NANDWEn #3
EBI_A25 #0
TIM0_CDTI0 #3
TIM2_CC0 #5
WTIM0_CC1 #7 LETIM1_OUT0 #3
ETH_TSUEXTCLK
#2 CAN1_RX #0
US1_RX #4 US2_TX
#0
LES_CH2
PRS_CH10 #1
PC3
VDAC0_OUT0ALT /
OPA0_OUTALT #3
BUSACMP0Y BUSACMP0X
EBI_AD10 #1
EBI_CS3 #2
EBI_BL1 #3
EBI_NANDREn #0
TIM0_CDTI1 #3
TIM2_CC1 #5
WTIM0_CC2 #7 LETIM1_OUT1 #3
ETH_TSUTMRTOG
#2 CAN1_TX #0
US1_CLK #4
US2_RX #0
LES_CH3
PRS_CH11 #1
BUSACMP0Y BUSACMP0X OPA0_P
EBI_AD11 #1
EBI_ALE #2
EBI_NANDREn #3
EBI_A26 #0
TIM0_CC0 #5
TIM0_CDTI2 #3
TIM2_CC2 #5 LETIM0_OUT0 #3
PCNT1_S0IN #3
SDIO_CD #1
US2_CLK #0
US4_CLK #0 U0_TX
#4 U1_CTS #4
I2C1_SDA #0
LES_CH4
PRS_CH18 #2
GPIO_EM4WU6
PC5
BUSACMP0Y BUSACMP0X OPA0_N
EBI_AD12 #1
EBI_WEn #2
EBI_NANDWEn #0
EBI_A00 #3
TIM0_CC1 #5 LETIM0_OUT1 #3
PCNT1_S1IN #3
SDIO_WP #1
US2_CS #0 US4_CS
#0 U0_RX #4
U1_RTS #4
I2C1_SCL #0
LES_CH5
PRS_CH19 #2
PC6
BUSACMP0Y BUSACMP0X OPA3_P
EBI_A05 #0
WTIM1_CC3 #2
US0_RTS #2
US1_CTS #3
LEU1_TX #0
I2C0_SDA #2
LES_CH6
PRS_CH14 #1
ETM_TCLK #2
PC7
BUSACMP0Y BUSACMP0X OPA3_N
EBI_A06 #0 EBI_A13
#1 EBI_A21 #3
WTIM1_CC0 #3
US0_CTS #2
US1_RTS #3
LEU1_RX #0
I2C0_SCL #2
LES_CH7
PRS_CH15 #1
ETM_TD0 #2
PC8
BUSACMP1Y BUSACMP1X
EBI_A08 #2 EBI_A15
#0 EBI_A20 #1
EBI_A26 #3
TIM2_CC0 #2
TIM5_CC0 #4
WTIM3_CC0 #1
US0_CS #2
LES_CH8 PRS_CH4
#0
PC9
BUSACMP1Y BUSACMP1X
EBI_A09 #2 EBI_A21
#1 EBI_A27 #3
TIM2_CC1 #2
TIM5_CC1 #4
WTIM3_CC1 #1
CAN1_RX #3
US0_CLK #2
LES_CH9 PRS_CH5
#0 GPIO_EM4WU2
PC10
BUSACMP1Y BUSACMP1X
EBI_A10 #2 EBI_A22
#1
TIM2_CC2 #2
TIM5_CC2 #4
WTIM3_CC2 #1
CAN1_TX #3
US0_RX #2
LES_CH10
PRS_CH18 #1
PC4
silabs.com | Building a more connected world.
Rev. 1.0 | 175
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
EBI
Timers
Communication
Other
PC11
BUSACMP1Y BUSACMP1X
EBI_ALE #4
EBI_ALE #5 EBI_A23
#1
TIM5_CC0 #5
WTIM3_CC0 #2
CAN1_TX #4
US0_TX #2
I2C1_SDA #4
LES_CH11
PRS_CH19 #1
PC12
VDAC0_OUT1ALT /
OPA1_OUTALT #0
BUSACMP1Y BUSACMP1X
TIM1_CC3 #0
TIM5_CC1 #5
WTIM3_CC1 #2
PCNT2_S0IN #4
CAN1_RX #4
US0_RTS #3
US1_CTS #4
US2_CTS #4
U0_RTS #3 U1_TX
#0 I2C2_SDA #6
CMU_CLK0 #1
LES_CH12
PRS_CH20 #1
VDAC0_OUT1ALT /
OPA1_OUTALT #1
BUSACMP1Y BUSACMP1X
EBI_ARDY #4
TIM0_CDTI0 #1
TIM1_CC0 #0
TIM1_CC2 #4
TIM5_CC2 #5
WTIM3_CC2 #2
PCNT0_S0IN #0
PCNT2_S1IN #4
US0_CTS #3
US1_RTS #4
US2_RTS #4
U0_CTS #3 U1_RX
#0 I2C2_SCL #6
LES_CH13
PRS_CH21 #1
ACMP3_O #3
EBI_NANDWEn #4
TIM0_CDTI1 #1
TIM1_CC1 #0
TIM1_CC3 #4
TIM5_CC0 #6
WTIM3_CC0 #3 LETIM0_OUT0 #5
PCNT0_S1IN #0
US0_CS #3 US1_CS
#3 US2_RTS #3
US3_CS #2 U0_TX
#3 U1_CTS #0
LEU0_TX #5
I2C2_SDA #1
LES_CH14
PRS_CH0 #2
ACMP3_O #2
EBI_NANDREn #4
TIM0_CDTI2 #1
TIM1_CC2 #0
WTIM0_CC0 #4 LETIM0_OUT1 #5
US0_CLK #3
US1_CLK #3
US3_RTS #3 U0_RX
#3 U1_RTS #0
LEU0_RX #5
I2C2_SCL #1
LES_CH15
PRS_CH1 #2
ACMP3_O #1
DBG_SWO #1
PD0
VDAC0_OUT0ALT /
OPA0_OUTALT #4 EBI_A04 #1 EBI_A13
OPA2_OUTALT BU#3
SADC0Y BUSADC0X
TIM4_CDTI0
TIM6_CC2 #5
WTIM1_CC2 #0
PCNT2_S0IN #0
CAN0_RX #2
US1_TX #1
PD1
VDAC0_OUT1ALT /
OPA1_OUTALT #4 EBI_A05 #1 EBI_A14
BUSADC0Y BU#3
SADC0X OPA3_OUT
TIM4_CDTI1
TIM0_CC0 #2
TIM6_CC0 #6
WTIM1_CC3 #0
PCNT2_S1IN #0
CAN0_TX #2
US1_RX #1
DBG_SWO #2
EBI_A06 #1 EBI_A15
#3 EBI_A27 #0
TIM0_CC1 #2
TIM6_CC1 #6
WTIM1_CC0 #1
US1_CLK #1
LEU1_TX #2
DBG_SWO #3
EBI_A07 #1 EBI_A16
#3
TIM4_CDTI2
TIM0_CC2 #2
TIM6_CC2 #6
WTIM1_CC1 #1
WTIM2_CC0 #5
CAN1_RX #2
US1_CS #1
LEU1_RX #2
ETM_TD1 #0
ETM_TD1 #2
EBI_A08 #1 EBI_A17
#3
TIM6_CC0 #7
WTIM0_CDTI0 #4
WTIM1_CC2 #1
WTIM2_CC1 #5
CAN1_TX #2
US1_CTS #1
US3_CLK #2
LEU0_TX #0
I2C1_SDA #3
CMU_CLKI0 #0
PRS_CH10 #2
ETM_TD2 #0
ETM_TD2 #2
PC13
PC14
VDAC0_OUT1ALT /
OPA1_OUTALT #2
BUSACMP1Y BUSACMP1X
PC15
VDAC0_OUT1ALT /
OPA1_OUTALT #3
BUSACMP1Y BUSACMP1X
PD2
PD3
PD4
BUSADC0Y BUSADC0X
BUSADC0Y BUSADC0X OPA2_N
BUSADC0Y BUSADC0X OPA2_P
silabs.com | Building a more connected world.
Rev. 1.0 | 176
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PD5
EBI
BUSADC0Y BUEBI_A09 #1 EBI_A18
SADC0X OPA2_OUT
#3
Timers
Communication
Other
TIM6_CC1 #7
WTIM0_CDTI1 #4
WTIM1_CC3 #1
WTIM2_CC2 #5
US1_RTS #1
U0_CTS #5
LEU0_RX #0
I2C1_SCL #3
PRS_CH11 #2
ETM_TD3 #0
ETM_TD3 #2
US0_RTS #5
US1_RX #2
US2_CTS #5
US3_CTS #2
U0_RTS #5
I2C0_SDA #1
CMU_CLK2 #2
LES_ALTEX0
PRS_CH5 #2
ACMP0_O #2
ETM_TD0 #0
PD6
BUSADC0Y BUSADC0X
ADC0_EXTP
VDAC0_EXT
ADC1_EXTP
OPA1_P
EBI_A10 #1 EBI_A19
#3
TIM1_CC0 #4
TIM6_CC2 #7
WTIM0_CDTI2 #4
WTIM1_CC0 #2 LETIM0_OUT0 #0
PCNT0_S0IN #3
PD7
BUSADC0Y BUSADC0X
ADC0_EXTN
ADC1_EXTN
OPA1_N
EBI_A11 #1 EBI_A20
#3
TIM1_CC1 #4
WTIM1_CC1 #2 LETIM0_OUT1 #0
PCNT0_S1IN #3
US1_TX #2
US3_CLK #1 U0_TX
#6 I2C0_SCL #1
CMU_CLK0 #2
LES_ALTEX1
ACMP1_O #2
ETM_TCLK #0
PD8
BU_VIN
EBI_A12 #1
WTIM1_CC2 #2
US2_RTS #5
CMU_CLK1 #1
PRS_CH12 #2
ACMP2_O #0
TIM4_CC1 #5
WTIM3_CC0 #0
ETH_RMIIRXD0 #1
SDIO_DAT7 #0
QSPI0_DQ0 #0
ETH_MIIRXD1 #2
US4_TX #1
TIM4_CC2 #5
WTIM3_CC1 #0
ETH_RMIIREFCLK
#1 SDIO_DAT6 #0
QSPI0_DQ1 #0
ETH_MIIRXD2 #2
US4_RX #1
TIM4_CC0 #6
WTIM3_CC2 #0
ETH_RMIICRSDV #1
SDIO_DAT5 #0
QSPI0_DQ2 #0
ETH_MIIRXD3 #2
US4_CLK #1
EBI_CS3 #0
TIM4_CC1 #6
ETH_RMIIRXER #1
SDIO_DAT4 #0
QSPI0_DQ3 #0
ETH_MIIRXCLK #2
US4_CS #1
EBI_ARDY #1
TIM2_CDTI0 #1
TIM3_CC1 #6
WTIM0_CC1 #1
ETH_MDIO #1
US4_CTS #1
US5_CLK #1
EBI_NANDWEn #1
TIM2_CDTI1 #1
TIM3_CC2 #6
WTIM0_CC2 #1
ETH_MDC #1
CAN0_RX #5
US4_RTS #1
US5_CS #1
I2C0_SDA #3
EBI_NANDREn #1
TIM2_CDTI2 #1
TIM3_CC0 #7
WTIM0_CDTI0 #1
PCNT1_S0IN #2
ETH_TSUEXTCLK
#1 CAN0_TX #5
US5_CTS #1
I2C0_SCL #3
EBI_A00 #2 EBI_A07
#0
TIM3_CC0 #1
WTIM1_CC1 #3
PCNT0_S0IN #1
CAN0_RX #6 U0_TX
#1 I2C1_SDA #2
PD9
PD10
PD11
PD12
LCD_SEG28
LCD_SEG29
LCD_SEG30
LCD_SEG31
PD13
PD14
PD15
PE0
BUSDY BUSCX
silabs.com | Building a more connected world.
EBI_CS0 #0
EBI_DTEN #1
EBI_CS1 #0
EBI_VSNC #1
EBI_CS2 #0
EBI_HSNC #1
CMU_CLK2 #5
CMU_CLKI0 #5
ETM_TD1 #1
PRS_CH22 #1
ACMP2_O #1
Rev. 1.0 | 177
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
EBI
Timers
Communication
Other
PE1
BUSCY BUSDX
EBI_A01 #2 EBI_A08
#0
TIM3_CC1 #1
WTIM1_CC2 #3
PCNT0_S1IN #1
CAN0_TX #6 U0_RX
#1 I2C1_SCL #2
CMU_CLKI0 #4
PRS_CH23 #1
ACMP2_O #2
PE2
BU_VOUT
EBI_A09 #0 EBI_A14
#1
TIM3_CC2 #1
WTIM1_CC3 #3
US0_RTS #1
U0_CTS #1 U1_TX
#3
PRS_CH20 #2
ACMP0_O #1
PE3
BU_STAT
EBI_A10 #0 EBI_A15
#1
TIM3_CC0 #2
WTIM1_CC0 #4
US0_CTS #1
U0_RTS #1 U1_RX
#3
ACMP1_O #1
EBI_A11 #0 EBI_A16
#1 EBI_A22 #3
TIM3_CC1 #2
TIM5_CC0 #0
TIM6_CDTI0 #2
WTIM0_CC0 #0
WTIM1_CC1 #4
US0_CS #1 US1_CS
#5 US3_CS #1
U0_RX #6 U1_CTS
#3 I2C0_SDA #7
PRS_CH16 #2
EBI_A12 #0 EBI_A17
#1 EBI_A23 #3
TIM3_CC0 #3
TIM3_CC2 #2
TIM5_CC1 #0
TIM6_CDTI1 #2
WTIM0_CC1 #0
WTIM1_CC2 #4
US0_CLK #1
US1_CLK #6
US3_CTS #1
U1_RTS #3
I2C0_SCL #7
PRS_CH17 #2
US0_RX #1 US3_TX
#1
PRS_CH6 #2
PE4
PE5
BUSDY BUSCX
LCD_COM0
BUSCY BUSDX
LCD_COM1
PE6
BUSDY BUSCX
LCD_COM2
EBI_A13 #0 EBI_A18
#1 EBI_A24 #3
TIM3_CC1 #3
TIM5_CC2 #0
TIM6_CDTI2 #2
WTIM0_CC2 #0
WTIM1_CC3 #4
PE7
BUSCY BUSDX
LCD_COM3
EBI_A14 #0 EBI_A19
#1 EBI_A25 #3
TIM3_CC2 #3
TIM5_CC0 #1
WTIM1_CC0 #5
US0_TX #1 US3_RX
#1
PRS_CH7 #2
PE8
BUSDY BUSCX
LCD_SEG4
EBI_AD00 #0
EBI_CS0 #4
TIM2_CDTI0 #2
TIM4_CC2 #6
PCNT2_S0IN #1
SDIO_DAT3 #0
QSPI0_DQ4 #0
US5_TX #0
I2C2_SDA #0
PRS_CH3 #1
PE9
BUSCY BUSDX
LCD_SEG5
EBI_AD01 #0
EBI_CS1 #4
TIM4_CC0 #7
PCNT2_S1IN #1
SDIO_DAT2 #0
QSPI0_DQ5 #0
US5_RX #0
PRS_CH8 #2
PE10
BUSDY BUSCX
LCD_SEG6
EBI_AD02 #0
EBI_CS2 #4
TIM1_CC0 #1
TIM4_CC1 #7
WTIM0_CDTI0 #0
SDIO_DAT1 #0
QSPI0_DQ6 #0
ETH_MIIRXER #0
US0_TX #0
PRS_CH2 #2
GPIO_EM4WU9
PE11
BUSCY BUSDX
LCD_SEG7
EBI_AD03 #0
EBI_CS3 #4
TIM1_CC1 #1
TIM4_CC2 #7
WTIM0_CDTI1 #0
SDIO_DAT0 #0
QSPI0_DQ7 #0
ETH_MIIRXDV #0
US0_RX #0
LES_ALTEX5
PRS_CH3 #2
ETM_TCLK #4
EBI_AD04 #0
TIM1_CC2 #1
TIM2_CC1 #3
WTIM0_CDTI2 #0
LETIM0_OUT0 #4
SDIO_CMD #0
ETH_MIIRXD0 #0
US0_RX #3
US0_CLK #0 U1_TX
#4 I2C0_SDA #6
CMU_CLK1 #2
CMU_CLKI0 #6
LES_ALTEX6
PRS_CH1 #3
ETM_TD0 #4
EBI_AD05 #0
TIM1_CC3 #1
TIM2_CC2 #3 LETIM0_OUT1 #4
SDIO_CLK #0
ETH_MIIRXD1 #0
US0_TX #3 US0_CS
#0 U1_RX #4
I2C0_SCL #6
LES_ALTEX7
PRS_CH2 #3
ACMP0_O #0
ETM_TD1 #4
GPIO_EM4WU5
PE12
PE13
BUSDY BUSCX
LCD_SEG8
BUSCY BUSDX
LCD_SEG9
silabs.com | Building a more connected world.
Rev. 1.0 | 178
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PE14
PE15
PF0
PF1
BUSDY BUSCX
LCD_SEG10
BUSCY BUSDX
LCD_SEG11
BUSDY BUSCX
BUSCY BUSDX
EBI
Timers
Communication
Other
TIM2_CDTI1 #2
TIM3_CC0 #0
ETH_RMIITXD1 #0
ETH_MIIRXD2 #0
SDIO_CLK #1
US0_CTS #0
QSPI0_SCLK #1
LEU0_TX #2
PRS_CH13 #2
ETM_TD2 #4
EBI_AD07 #0
TIM2_CDTI2 #2
TIM3_CC1 #0
ETH_RMIITXD0 #0
ETH_MIIRXD3 #0
SDIO_CMD #1
US0_RTS #0
QSPI0_DQS #1
LEU0_RX #2
PRS_CH14 #2
ETM_TD3 #4
EBI_A24 #1
TIM0_CC0 #4
WTIM0_CC1 #4 LETIM0_OUT0 #2
US2_TX #5
CAN0_RX #1
US1_CLK #2
LEU0_TX #3
I2C0_SDA #5
PRS_CH15 #2
ACMP3_O #0
DBG_SWCLKTCK
BOOT_TX
EBI_A25 #1
TIM0_CC1 #4
WTIM0_CC2 #4 LETIM0_OUT1 #2
US2_RX #5
CAN1_RX #1
US1_CS #2 U0_TX
#5 LEU0_RX #3
I2C0_SCL #5
PRS_CH4 #2
DBG_SWDIOTMS
GPIO_EM4WU3
BOOT_RX
CMU_CLK0 #4
PRS_CH0 #3
ACMP1_O #0
DBG_TDO
DBG_SWO #0
GPIO_EM4WU4
EBI_AD06 #0
PF2
BUSDY BUSCX
LCD_SEG0
EBI_ARDY #0
EBI_A26 #1
TIM0_CC2 #4
TIM1_CC0 #5
TIM2_CC0 #3
US2_CLK #5
CAN0_TX #1
US1_TX #5 U0_RX
#5 LEU0_TX #4
I2C1_SCL #4
PF3
BUSCY BUSDX
LCD_SEG1
EBI_ALE #0
TIM4_CC0 #0
TIM0_CDTI0 #2
TIM1_CC1 #5
CAN1_TX #1
US1_CTS #2
I2C2_SCL #5
CMU_CLK1 #4
PRS_CH0 #1
ETM_TD3 #1
PF4
BUSDY BUSCX
LCD_SEG2
EBI_WEn #0
EBI_WEn #5
TIM4_CC1 #0
TIM0_CDTI1 #2
TIM1_CC2 #5
WTIM3_CC1 #6
US1_RTS #2
I2C2_SDA #3
PRS_CH1 #1
PF5
BUSCY BUSDX
LCD_SEG3
EBI_REn #0
EBI_REn #5
EBI_A27 #1
TIM0_CDTI2 #2
TIM1_CC3 #6
TIM4_CC0 #2
US2_CS #5
I2C2_SCL #0
USB_VBUSEN
PRS_CH2 #1
DBG_TDI
BUSDY BUSCX
LCD_SEG24
EBI_BL0 #0 EBI_BL0
#4 EBI_BL0 #5
EBI_CSTFT #1
TIM0_CC0 #1
TIM4_CC0 #4
WTIM3_CC2 #5
ETH_RMIITXD1 #1
US2_TX #4
QSPI0_SCLK #0
US1_TX #3 U0_TX
#0
PRS_CH22 #2
TIM0_CC1 #1
TIM4_CC1 #4
ETH_RMIITXD0 #1
US2_RX #4
QSPI0_CS0 #0
ETH_MIIRXER #2
US1_RX #3 U0_RX
#0
PRS_CH23 #2
PF6
PF7
BUSCY BUSDX
LCD_SEG25
silabs.com | Building a more connected world.
EBI_BL1 #0 EBI_BL1
#4 EBI_BL1 #5
EBI_DCLK #1
Rev. 1.0 | 179
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
PF8
BUSDY BUSCX
LCD_SEG26
EBI
EBI_WEn #4
EBI_BL0 #1
Timers
Communication
Other
TIM0_CC2 #1
TIM4_CC2 #4
ETH_RMIITXEN #1
US2_CLK #4
QSPI0_CS1 #0
ETH_MIIRXDV #2
ETH_TSUEXTCLK
#3 SDIO_CD #0
U0_CTS #0 U1_RTS
#1
ETM_TCLK #1
GPIO_EM4WU8
ETM_TD0 #1
PF9
BUSCY BUSDX
LCD_SEG27
EBI_REn #4
EBI_BL1 #1
TIM4_CC0 #5
ETH_RMIIRXD1 #1
US2_CS #4
QSPI0_DQS #0
ETH_MIIRXD0 #2
ETH_TSUTMRTOG
#3 SDIO_WP #0
U0_RTS #0 U1_CTS
#1
PF10
BUSDY BUSCX
EBI_ARDY #5
TIM5_CC1 #6
WTIM3_CC1 #3
PCNT2_S0IN #3
US5_RTS #2 U1_TX
#1 I2C2_SDA #2
USB_DM
PF11
BUSCY BUSDX
EBI_NANDWEn #5
TIM5_CC2 #6
WTIM3_CC2 #3
PCNT2_S1IN #3
US5_CTS #2 U1_RX
#1 I2C2_SCL #2
USB_DP
EBI_NANDREn #5
TIM4_CC2 #0
TIM1_CC3 #5
TIM5_CC0 #7
WTIM3_CC2 #6
US5_CS #2
I2C2_SCL #3
USB_ID
BUSCY BUSDX
TIM1_CC0 #6
TIM4_CC0 #1
TIM5_CC1 #7
WTIM3_CC0 #7
US5_CLK #2
I2C2_SDA #4
PF14
BUSDY BUSCX
TIM1_CC1 #6
TIM4_CC1 #1
TIM5_CC2 #7
WTIM3_CC1 #7
I2C2_SCL #4
PF15
BUSCY BUSDX
TIM1_CC2 #6
TIM4_CC2 #1
WTIM3_CC2 #7
US5_TX #2
I2C2_SDA #5
PG0
BUSACMP2Y BUSACMP2X
EBI_AD00 #2
TIM6_CC0 #0
TIM2_CDTI0 #3
WTIM0_CDTI1 #1
LETIM1_OUT0 #6
ETH_MIITXCLK #1
US3_TX #4
QSPI0_SCLK #2
CMU_CLK2 #3
PG1
BUSACMP2Y BUSACMP2X
EBI_AD01 #2
TIM6_CC1 #0
TIM2_CDTI1 #3
WTIM0_CDTI2 #1
LETIM1_OUT1 #6
ETH_MIITXD3 #1
US3_RX #4
QSPI0_DQ0 #2
CMU_CLK1 #3
PG2
BUSACMP2Y BUSACMP2X
EBI_AD02 #2
TIM6_CC2 #0
TIM2_CDTI2 #3
WTIM0_CC0 #2 LETIM1_OUT0 #7
ETH_MIITXD2 #1
US3_CLK #4
QSPI0_DQ1 #2
CMU_CLK0 #3
PG3
BUSACMP2Y BUSACMP2X
EBI_AD03 #2
TIM6_CDTI0 #0
WTIM0_CC1 #2 LETIM1_OUT1 #7
ETH_MIITXD1 #1
US3_CS #4
QSPI0_DQ2 #2
PF12
PF13
BUSDY BUSCX
silabs.com | Building a more connected world.
Rev. 1.0 | 180
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
EBI
Timers
Communication
PG4
BUSACMP2Y BUSACMP2X
EBI_AD04 #2
TIM6_CDTI1 #0
WTIM0_CC2 #2
ETH_MIITXD0 #1
US3_CTS #4
QSPI0_DQ3 #2
PG5
BUSACMP2Y BUSACMP2X
EBI_AD05 #2
TIM6_CDTI2 #0
TIM2_CC0 #7
ETH_MIITXEN #1
US3_RTS #4
QSPI0_DQ4 #2
PG6
BUSACMP2Y BUSACMP2X
EBI_AD06 #2
TIM2_CC1 #7
TIM6_CC0 #1
ETH_MIITXER #1
US3_TX #3
QSPI0_DQ5 #2
PG7
BUSACMP2Y BUSACMP2X
EBI_AD07 #2
TIM2_CC2 #7
TIM6_CC1 #1
ETH_MIIRXCLK #1
US3_RX #3
QSPI0_DQ6 #2
EBI_AD08 #2
TIM2_CC0 #6
TIM6_CC2 #1
WTIM0_CC0 #3
ETH_MIIRXD3 #1
CAN0_RX #4
US3_CLK #3
QSPI0_DQ7 #2
EBI_AD09 #2
TIM2_CC1 #6
TIM6_CDTI0 #1
WTIM0_CC1 #3
ETH_MIIRXD2 #1
CAN0_TX #4
US3_CTS #5
QSPI0_CS0 #2
EBI_AD10 #2
TIM2_CC2 #6
TIM6_CDTI1 #1
WTIM0_CC2 #3
ETH_MIIRXD1 #1
CAN1_RX #6
US3_CTS #3
QSPI0_CS1 #2
PG11
EBI_AD11 #2
TIM6_CDTI2 #1
WTIM0_CDTI0 #3
ETH_MIIRXD0 #1
CAN1_TX #6
US3_RTS #5
QSPI0_DQS #2
ETM_TD3 #5
PG12
EBI_AD12 #2
TIM6_CC0 #2
WTIM0_CDTI1 #3
WTIM2_CC1 #3
ETH_MIIRXDV #1
US0_TX #6
ETM_TD2 #5
PG13
EBI_AD13 #2
TIM6_CC1 #2
WTIM0_CDTI2 #3
WTIM2_CC2 #3
ETH_MIIRXER #1
US0_RX #6
ETM_TD1 #5
PG14
EBI_AD14 #2
TIM6_CC2 #2
WTIM2_CC0 #4
PCNT1_S0IN #7
ETH_MIICRS #1
US0_CLK #6
ETM_TD0 #5
PG15
EBI_AD15 #2
WTIM2_CC1 #4
PCNT1_S1IN #7
ETH_MIICOL #1
US0_CS #6
ETM_TCLK #5
WTIM2_CC2 #4
US0_CTS #6
LEU1_TX #5
PG8
PG9
PG10
PH0
BUSADC1Y BUSADC1X
EBI_DCLK #2
PH1
BUSADC1Y BUSADC1X
EBI_DTEN #2
PH2
BUSADC1Y BUSADC1X
EBI_VSNC #2
TIM6_CC0 #3
US1_CTS #6
PH3
BUSADC1Y BUSADC1X
EBI_HSNC #2
TIM6_CC1 #3
US1_RTS #6
PH4
BUSADC1Y BUSADC1X
EBI_A16 #2
TIM6_CC2 #3
WTIM2_CC0 #6
US4_TX #4
silabs.com | Building a more connected world.
Other
US0_RTS #6
LEU1_RX #5
Rev. 1.0 | 181
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
EBI
Timers
Communication
PH5
BUSADC1Y BUSADC1X
EBI_A17 #2
TIM6_CDTI0 #3
WTIM2_CC1 #6
US4_RX #4
PH6
BUSADC1Y BUSADC1X
EBI_A18 #2
TIM6_CDTI1 #3
WTIM2_CC2 #6
US4_CLK #4
PH7
BUSADC1Y BUSADC1X
EBI_A19 #2
TIM6_CDTI2 #3
WTIM2_CC0 #7
US4_CS #4
PH8
BUSACMP3Y BUSACMP3X
EBI_A20 #2
TIM6_CC0 #4
WTIM1_CC0 #6
WTIM2_CC1 #7
US4_CTS #4
PH9
BUSACMP3Y BUSACMP3X
EBI_A21 #2
TIM6_CC1 #4
WTIM1_CC1 #6
WTIM2_CC2 #7
US4_RTS #4
PH10
BUSACMP3Y BUSACMP3X
EBI_A22 #2
TIM6_CC2 #4
WTIM1_CC2 #6
US5_TX #3
PH11
BUSACMP3Y BUSACMP3X
EBI_A23 #2
TIM5_CC1 #1
WTIM1_CC3 #6
US5_RX #3 U1_TX
#5 I2C1_SDA #5
PH12
BUSACMP3Y BUSACMP3X
EBI_A24 #2
TIM5_CC2 #1
WTIM1_CC0 #7
US5_CLK #3 U1_RX
#5 I2C1_SCL #5
PH13
BUSACMP3Y BUSACMP3X
EBI_A25 #2
TIM5_CC0 #2
WTIM1_CC1 #7
PCNT2_S1IN #7
US5_CS #3 U1_CTS
#5 I2C1_SDA #6
PH14
BUSACMP3Y BUSACMP3X
EBI_A26 #2
TIM5_CC1 #2
WTIM1_CC2 #7
PCNT2_S0IN #7
US5_CTS #3
U1_RTS #5
I2C1_SCL #6
PH15
BUSACMP3Y BUSACMP3X
EBI_A27 #2
TIM5_CC2 #2
WTIM1_CC3 #7
PCNT2_S1IN #6
US5_RTS #3
PI0
EBI_A02 #2
TIM5_CC0 #3
WTIM1_CC1 #5
PCNT2_S0IN #6
US4_TX #2
ACMP2_O #3
PI1
EBI_A03 #2
TIM5_CC1 #3
WTIM1_CC2 #5
PCNT2_S1IN #5
US4_RX #2
ACMP2_O #4
PI2
EBI_A04 #2
TIM5_CC2 #3
WTIM1_CC3 #5
PCNT2_S0IN #5
US4_CLK #2
I2C1_SDA #7
ACMP2_O #5
PI3
EBI_A05 #2
WTIM3_CC0 #4
US4_CS #2
I2C1_SCL #7
PI4
EBI_A06 #2
WTIM3_CC1 #4
US4_CTS #2
I2C2_SDA #7
ACMP3_O #4
PI5
EBI_A07 #2
WTIM3_CC2 #4
US4_RTS #2
I2C2_SCL #7
ACMP3_O #5
PI6
EBI_A11 #2
TIM1_CC0 #7
TIM4_CC1 #2
WTIM3_CC0 #5
US4_TX #3
PI7
EBI_A12 #2
TIM1_CC1 #7
TIM4_CC2 #2
WTIM3_CC1 #5
US4_RX #3
silabs.com | Building a more connected world.
Other
Rev. 1.0 | 182
EFM32GG11 Family Data Sheet
Pin Definitions
GPIO Name
Pin Alternate Functionality / Description
Analog
EBI
Timers
Communication
PI8
EBI_A13 #2
TIM1_CC2 #7
TIM4_CC0 #3
US4_CLK #3
PI9
EBI_A14 #2
TIM1_CC3 #7
TIM4_CC1 #3
US4_CS #3
PI10
EBI_A15 #2
TIM4_CC2 #3
US4_CTS #3
PI11
US4_RTS #3
PI12
CAN0_RX #7
US3_TX #5
PI13
CAN0_TX #7
US3_RX #5
PI14
CAN1_RX #7
US3_CLK #5
PI15
CAN1_TX #7
US3_CS #5
silabs.com | Building a more connected world.
Other
Rev. 1.0 | 183
EFM32GG11 Family Data Sheet
Pin Definitions
5.21 Alternate Functionality Overview
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO
pin. Refer to 5.20 GPIO Functionality Table for a list of functions available on each GPIO pin.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 5.21. Alternate Functionality Overview
Alternate
Functionality
LOCATION
0-3
4-7
Description
ACMP0_O
0: PE13
1: PE2
2: PD6
3: PB11
4: PA6
5: PB0
6: PB2
7: PB3
Analog comparator ACMP0, digital output.
ACMP1_O
0: PF2
1: PE3
2: PD7
3: PA12
4: PA14
5: PB9
6: PB10
7: PA5
Analog comparator ACMP1, digital output.
ACMP2_O
0: PD8
1: PE0
2: PE1
3: PI0
4: PI1
5: PI2
ACMP3_O
0: PF0
1: PC15
2: PC14
3: PC13
4: PI4
5: PI5
Analog comparator ACMP2, digital output.
Analog comparator ACMP3, digital output.
0: PD7
ADC0_EXTN
Analog to digital converter ADC0 external reference input negative pin.
0: PD6
ADC0_EXTP
Analog to digital converter ADC0 external reference input positive pin.
0: PD7
ADC1_EXTN
Analog to digital converter ADC1 external reference input negative pin.
0: PD6
ADC1_EXTP
Analog to digital converter ADC1 external reference input positive pin.
0: PF1
BOOT_RX
Bootloader RX.
0: PF0
BOOT_TX
silabs.com | Building a more connected world.
Bootloader TX.
Rev. 1.0 | 184
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PE3
BU_STAT
Backup Power Domain status, whether or not the system is in backup mode.
0: PD8
BU_VIN
Battery input for Backup Power Domain.
0: PE2
BU_VOUT
Power output for Backup Power Domain.
CAN0_RX
0: PC0
1: PF0
2: PD0
3: PB9
4: PG8
5: PD14
6: PE0
7: PI12
CAN0 RX.
CAN0_TX
0: PC1
1: PF2
2: PD1
3: PB10
4: PG9
5: PD15
6: PE1
7: PI13
CAN0 TX.
CAN1_RX
0: PC2
1: PF1
2: PD3
3: PC9
4: PC12
5: PA12
6: PG10
7: PI14
CAN1 RX.
CAN1_TX
0: PC3
1: PF3
2: PD4
3: PC10
4: PC11
5: PA13
6: PG11
7: PI15
CAN1 TX.
CMU_CLK0
0: PA2
1: PC12
2: PD7
3: PG2
4: PF2
5: PA12
CMU_CLK1
0: PA1
1: PD8
2: PE12
3: PG1
4: PF3
5: PB11
CMU_CLK2
0: PA0
1: PA3
2: PD6
3: PG0
4: PA3
5: PD10
CMU_CLKI0
0: PD4
1: PA3
2: PB8
3: PB13
4: PE1
5: PD10
6: PE12
7: PB11
0: PF0
DBG_SWCLKTCK
Clock Management Unit, clock output number 0.
Clock Management Unit, clock output number 1.
Clock Management Unit, clock output number 2.
Clock Management Unit, clock input number 0.
Debug-interface Serial Wire clock input and JTAG Test Clock.
Note that this function is enabled to the pin out of reset, and has a built-in pull down.
0: PF1
DBG_SWDIOTMS
silabs.com | Building a more connected world.
Debug-interface Serial Wire data input / output and JTAG Test Mode Select.
Note that this function is enabled to the pin out of reset, and has a built-in pull up.
Rev. 1.0 | 185
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
DBG_SWO
LOCATION
0-3
4-7
Description
0: PF2
1: PC15
2: PD1
3: PD2
Debug-interface Serial Wire viewer Output.
0: PF5
Debug-interface JTAG Test Data In.
DBG_TDI
Note that this function is not enabled after reset, and must be enabled by software to be
used.
Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active.
0: PF2
DBG_TDO
Debug-interface JTAG Test Data Out.
Note that this function becomes available after the first valid JTAG command is received.
EBI_A00
0: PA12
1: PB9
2: PE0
3: PC5
External Bus Interface (EBI) address output pin 00.
EBI_A01
0: PA13
1: PB10
2: PE1
3: PA7
External Bus Interface (EBI) address output pin 01.
EBI_A02
0: PA14
1: PB11
2: PI0
3: PA8
External Bus Interface (EBI) address output pin 02.
EBI_A03
0: PB9
1: PB12
2: PI1
3: PA9
External Bus Interface (EBI) address output pin 03.
EBI_A04
0: PB10
1: PD0
2: PI2
3: PA10
External Bus Interface (EBI) address output pin 04.
EBI_A05
0: PC6
1: PD1
2: PI3
3: PA11
External Bus Interface (EBI) address output pin 05.
EBI_A06
0: PC7
1: PD2
2: PI4
3: PA12
External Bus Interface (EBI) address output pin 06.
EBI_A07
0: PE0
1: PD3
2: PI5
3: PA13
External Bus Interface (EBI) address output pin 07.
EBI_A08
0: PE1
1: PD4
2: PC8
3: PA14
External Bus Interface (EBI) address output pin 08.
EBI_A09
0: PE2
1: PD5
2: PC9
3: PB9
External Bus Interface (EBI) address output pin 09.
silabs.com | Building a more connected world.
Rev. 1.0 | 186
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
EBI_A10
0: PE3
1: PD6
2: PC10
3: PB10
External Bus Interface (EBI) address output pin 10.
EBI_A11
0: PE4
1: PD7
2: PI6
3: PB11
External Bus Interface (EBI) address output pin 11.
EBI_A12
0: PE5
1: PD8
2: PI7
3: PB12
External Bus Interface (EBI) address output pin 12.
EBI_A13
0: PE6
1: PC7
2: PI8
3: PD0
External Bus Interface (EBI) address output pin 13.
EBI_A14
0: PE7
1: PE2
2: PI9
3: PD1
External Bus Interface (EBI) address output pin 14.
EBI_A15
0: PC8
1: PE3
2: PI10
3: PD2
External Bus Interface (EBI) address output pin 15.
EBI_A16
0: PB0
1: PE4
2: PH4
3: PD3
External Bus Interface (EBI) address output pin 16.
EBI_A17
0: PB1
1: PE5
2: PH5
3: PD4
External Bus Interface (EBI) address output pin 17.
EBI_A18
0: PB2
1: PE6
2: PH6
3: PD5
External Bus Interface (EBI) address output pin 18.
EBI_A19
0: PB3
1: PE7
2: PH7
3: PD6
External Bus Interface (EBI) address output pin 19.
EBI_A20
0: PB4
1: PC8
2: PH8
3: PD7
External Bus Interface (EBI) address output pin 20.
EBI_A21
0: PB5
1: PC9
2: PH9
3: PC7
External Bus Interface (EBI) address output pin 21.
EBI_A22
0: PB6
1: PC10
2: PH10
3: PE4
External Bus Interface (EBI) address output pin 22.
silabs.com | Building a more connected world.
Rev. 1.0 | 187
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
EBI_A23
0: PC0
1: PC11
2: PH11
3: PE5
External Bus Interface (EBI) address output pin 23.
EBI_A24
0: PC1
1: PF0
2: PH12
3: PE6
External Bus Interface (EBI) address output pin 24.
EBI_A25
0: PC2
1: PF1
2: PH13
3: PE7
External Bus Interface (EBI) address output pin 25.
EBI_A26
0: PC4
1: PF2
2: PH14
3: PC8
External Bus Interface (EBI) address output pin 26.
EBI_A27
0: PD2
1: PF5
2: PH15
3: PC9
External Bus Interface (EBI) address output pin 27.
EBI_AD00
EBI_AD01
EBI_AD02
EBI_AD03
EBI_AD04
EBI_AD05
EBI_AD06
EBI_AD07
0: PE8
1: PB0
2: PG0
0: PE9
1: PB1
2: PG1
0: PE10
1: PB2
2: PG2
0: PE11
1: PB3
2: PG3
0: PE12
1: PB4
2: PG4
0: PE13
1: PB5
2: PG5
0: PE14
1: PB6
2: PG6
0: PE15
1: PC0
2: PG7
silabs.com | Building a more connected world.
External Bus Interface (EBI) address and data input / output pin 00.
External Bus Interface (EBI) address and data input / output pin 01.
External Bus Interface (EBI) address and data input / output pin 02.
External Bus Interface (EBI) address and data input / output pin 03.
External Bus Interface (EBI) address and data input / output pin 04.
External Bus Interface (EBI) address and data input / output pin 05.
External Bus Interface (EBI) address and data input / output pin 06.
External Bus Interface (EBI) address and data input / output pin 07.
Rev. 1.0 | 188
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
EBI_AD08
EBI_AD09
EBI_AD10
EBI_AD11
EBI_AD12
EBI_AD13
EBI_AD14
EBI_AD15
LOCATION
0-3
4-7
0: PA15
1: PC1
2: PG8
Description
External Bus Interface (EBI) address and data input / output pin 08.
0: PA0
1: PC2
2: PG9
External Bus Interface (EBI) address and data input / output pin 09.
0: PA1
1: PC3
2: PG10
External Bus Interface (EBI) address and data input / output pin 10.
0: PA2
1: PC4
2: PG11
External Bus Interface (EBI) address and data input / output pin 11.
0: PA3
1: PC5
2: PG12
External Bus Interface (EBI) address and data input / output pin 12.
0: PA4
1: PA7
2: PG13
External Bus Interface (EBI) address and data input / output pin 13.
0: PA5
1: PA8
2: PG14
External Bus Interface (EBI) address and data input / output pin 14.
0: PA6
1: PA9
2: PG15
External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE
0: PF3
1: PB9
2: PC4
3: PB5
4: PC11
5: PC11
EBI_ARDY
0: PF2
1: PD13
2: PB15
3: PB4
4: PC13
5: PF10
EBI_BL0
0: PF6
1: PF8
2: PB10
3: PC1
4: PF6
5: PF6
EBI_BL1
0: PF7
1: PF9
2: PB11
3: PC3
4: PF7
5: PF7
4: PE8
EBI_CS0
0: PD9
1: PA10
2: PC0
3: PB0
silabs.com | Building a more connected world.
External Bus Interface (EBI) Address Latch Enable output.
External Bus Interface (EBI) Hardware Ready Control input.
External Bus Interface (EBI) Byte Lane/Enable pin 0.
External Bus Interface (EBI) Byte Lane/Enable pin 1.
External Bus Interface (EBI) Chip Select output 0.
Rev. 1.0 | 189
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
4: PE9
EBI_CS1
0: PD10
1: PA11
2: PC1
3: PB1
4: PE10
EBI_CS2
0: PD11
1: PA12
2: PC2
3: PB2
4: PE11
EBI_CS3
0: PD12
1: PB15
2: PC3
3: PB3
EBI_CSTFT
0: PA7
1: PF6
2: PB12
3: PA0
External Bus Interface (EBI) Chip Select output TFT.
EBI_DCLK
0: PA8
1: PF7
2: PH0
3: PA1
External Bus Interface (EBI) TFT Dot Clock pin.
EBI_DTEN
0: PA9
1: PD9
2: PH1
3: PA2
External Bus Interface (EBI) TFT Data Enable pin.
EBI_HSNC
0: PA11
1: PD11
2: PH3
3: PA4
External Bus Interface (EBI) TFT Horizontal Synchronization pin.
EBI_NANDREn
0: PC3
1: PD15
2: PB9
3: PC4
4: PC15
5: PF12
EBI_NANDWEn
0: PC5
1: PD14
2: PA13
3: PC2
4: PC14
5: PF11
EBI_REn
0: PF5
1: PA14
2: PA12
3: PC0
4: PF9
5: PF5
EBI_VSNC
0: PA10
1: PD10
2: PH2
3: PA3
EBI_WEn
0: PF4
1: PA13
2: PC5
3: PB6
ETH_MDC
0: PB4
1: PD14
2: PC1
3: PA6
External Bus Interface (EBI) Chip Select output 1.
External Bus Interface (EBI) Chip Select output 2.
External Bus Interface (EBI) Chip Select output 3.
External Bus Interface (EBI) NAND Read Enable output.
External Bus Interface (EBI) NAND Write Enable output.
External Bus Interface (EBI) Read Enable output.
External Bus Interface (EBI) TFT Vertical Synchronization pin.
4: PF8
5: PF4
silabs.com | Building a more connected world.
External Bus Interface (EBI) Write Enable output.
Ethernet Management Data Clock.
Rev. 1.0 | 190
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
ETH_MDIO
ETH_MIICOL
ETH_MIICRS
ETH_MIIRXCLK
ETH_MIIRXD0
ETH_MIIRXD1
ETH_MIIRXD2
ETH_MIIRXD3
ETH_MIIRXDV
ETH_MIIRXER
ETH_MIITXCLK
ETH_MIITXD0
ETH_MIITXD1
LOCATION
0-3
4-7
0: PB3
1: PD13
2: PC0
3: PA15
0: PB2
1: PG15
2: PB4
0: PB1
1: PG14
2: PB3
0: PA15
1: PG7
2: PD12
0: PE12
1: PG11
2: PF9
0: PE13
1: PG10
2: PD9
0: PE14
1: PG9
2: PD10
0: PE15
1: PG8
2: PD11
0: PE11
1: PG12
2: PF8
0: PE10
1: PG13
2: PF7
0: PA0
1: PG0
0: PA4
1: PG4
0: PA3
1: PG3
silabs.com | Building a more connected world.
Description
Ethernet Management Data I/O.
Ethernet MII Collision Detect.
Ethernet MII Carrier Sense.
Ethernet MII Receive Clock.
Ethernet MII Receive Data Bit 0.
Ethernet MII Receive Data Bit 1.
Ethernet MII Receive Data Bit 2.
Ethernet MII Receive Data Bit 3.
Ethernet MII Receive Data Valid.
Ethernet MII Receive Error.
Ethernet MII Transmit Clock.
Ethernet MII Transmit Data Bit 0.
Ethernet MII Transmit Data Bit 1.
Rev. 1.0 | 191
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
ETH_MIITXD2
ETH_MIITXD3
ETH_MIITXEN
ETH_MIITXER
ETH_RMIICRSDV
ETH_RMIIREFCLK
ETH_RMIIRXD0
ETH_RMIIRXD1
ETH_RMIIRXER
ETH_RMIITXD0
ETH_RMIITXD1
ETH_RMIITXEN
LOCATION
0-3
4-7
0: PA2
1: PG2
0: PA1
1: PG1
0: PA5
1: PG5
0: PA6
1: PG6
0: PA4
1: PD11
0: PA3
1: PD10
0: PA2
1: PD9
0: PA1
1: PF9
0: PA5
1: PD12
0: PE15
1: PF7
0: PE14
1: PF6
0: PA0
1: PF8
0: PB5
1: PD15
ETH_TSUEXTCLK
2: PC2
3: PF8
silabs.com | Building a more connected world.
Description
Ethernet MII Transmit Data Bit 2.
Ethernet MII Transmit Data Bit 3.
Ethernet MII Transmit Enable.
Ethernet MII Transmit Error.
Ethernet RMII Carrier Sense / Data Valid.
Ethernet RMII Reference Clock.
Ethernet RMII Receive Data Bit 0.
Ethernet RMII Receive Data Bit 1.
Ethernet RMII Receive Error.
Ethernet RMII Transmit Data Bit 0.
Ethernet RMII Transmit Data Bit 1.
Ethernet RMII Transmit Enable.
Ethernet IEEE1588 External Reference Clock.
Rev. 1.0 | 192
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
ETH_TSUTMRTOG
0: PB6
1: PB15
2: PC3
3: PF9
ETM_TCLK
0: PD7
1: PF8
2: PC6
3: PA6
4: PE11
5: PG15
ETM_TD0
0: PD6
1: PF9
2: PC7
3: PA2
4: PE12
5: PG14
ETM_TD1
0: PD3
1: PD13
2: PD3
3: PA3
4: PE13
5: PG13
ETM_TD2
0: PD4
1: PB15
2: PD4
3: PA4
4: PE14
5: PG12
ETM_TD3
0: PD5
1: PF3
2: PD5
3: PA5
4: PE15
5: PG11
Description
Ethernet IEEE1588 Timer Toggle.
Embedded Trace Module ETM clock .
Embedded Trace Module ETM data 0.
Embedded Trace Module ETM data 1.
Embedded Trace Module ETM data 2.
Embedded Trace Module ETM data 3.
0: PA0
GPIO_EM4WU0
Pin can be used to wake the system up from EM4
0: PA6
GPIO_EM4WU1
Pin can be used to wake the system up from EM4
0: PC9
GPIO_EM4WU2
Pin can be used to wake the system up from EM4
0: PF1
GPIO_EM4WU3
Pin can be used to wake the system up from EM4
0: PF2
GPIO_EM4WU4
Pin can be used to wake the system up from EM4
0: PE13
GPIO_EM4WU5
Pin can be used to wake the system up from EM4
0: PC4
GPIO_EM4WU6
silabs.com | Building a more connected world.
Pin can be used to wake the system up from EM4
Rev. 1.0 | 193
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PB11
GPIO_EM4WU7
Pin can be used to wake the system up from EM4
0: PF8
GPIO_EM4WU8
Pin can be used to wake the system up from EM4
0: PE10
GPIO_EM4WU9
Pin can be used to wake the system up from EM4
0: PB14
HFXTAL_N
High Frequency Crystal negative pin. Also used as external optional clock input pin.
0: PB13
HFXTAL_P
High Frequency Crystal positive pin.
I2C0_SCL
0: PA1
1: PD7
2: PC7
3: PD15
4: PC1
5: PF1
6: PE13
7: PE5
I2C0 Serial Clock Line input / output.
I2C0_SDA
0: PA0
1: PD6
2: PC6
3: PD14
4: PC0
5: PF0
6: PE12
7: PE4
I2C0 Serial Data input / output.
I2C1_SCL
0: PC5
1: PB12
2: PE1
3: PD5
4: PF2
5: PH12
6: PH14
7: PI3
I2C1 Serial Clock Line input / output.
I2C1_SDA
0: PC4
1: PB11
2: PE0
3: PD4
4: PC11
5: PH11
6: PH13
7: PI2
I2C1 Serial Data input / output.
I2C2_SCL
0: PF5
1: PC15
2: PF11
3: PF12
4: PF14
5: PF3
6: PC13
7: PI5
I2C2 Serial Clock Line input / output.
I2C2_SDA
0: PE8
1: PC14
2: PF10
3: PF4
4: PF13
5: PF15
6: PC12
7: PI4
I2C2 Serial Data input / output.
0: PB11
IDAC0_OUT
silabs.com | Building a more connected world.
IDAC0 output.
Rev. 1.0 | 194
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
0: PA14
Description
LCD external supply bypass in step down or charge pump mode. If using the LCD in
step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and
VSS is required.
To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD
segment capacitance may be used.
LCD_BEXT
If using the LCD with the internal supply source, this pin may be left unconnected or
used as a GPIO.
0: PE4
LCD_COM0
LCD driver common line number 0.
0: PE5
LCD_COM1
LCD driver common line number 1.
0: PE6
LCD_COM2
LCD driver common line number 2.
0: PE7
LCD_COM3
LCD driver common line number 3.
0: PF2
LCD_SEG0
LCD segment line 0.
0: PF3
LCD_SEG1
LCD segment line 1.
0: PF4
LCD_SEG2
LCD segment line 2.
0: PF5
LCD_SEG3
LCD segment line 3.
0: PE8
LCD_SEG4
LCD segment line 4.
0: PE9
LCD_SEG5
LCD segment line 5.
0: PE10
LCD_SEG6
silabs.com | Building a more connected world.
LCD segment line 6.
Rev. 1.0 | 195
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PE11
LCD_SEG7
LCD segment line 7.
0: PE12
LCD_SEG8
LCD segment line 8.
0: PE13
LCD_SEG9
LCD segment line 9.
0: PE14
LCD_SEG10
LCD segment line 10.
0: PE15
LCD_SEG11
LCD segment line 11.
0: PA15
LCD_SEG12
LCD segment line 12.
0: PA0
LCD_SEG13
LCD segment line 13.
0: PA1
LCD_SEG14
LCD segment line 14.
0: PA2
LCD_SEG15
LCD segment line 15.
0: PA3
LCD_SEG16
LCD segment line 16.
0: PA4
LCD_SEG17
LCD segment line 17.
0: PA5
LCD_SEG18
LCD segment line 18.
0: PA6
LCD_SEG19
silabs.com | Building a more connected world.
LCD segment line 19.
Rev. 1.0 | 196
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PB3
LCD_SEG20 /
LCD_COM4
LCD segment line 20. This pin may also be used as LCD COM line 4
0: PB4
LCD_SEG21 /
LCD_COM5
LCD segment line 21. This pin may also be used as LCD COM line 5
0: PB5
LCD_SEG22 /
LCD_COM6
LCD segment line 22. This pin may also be used as LCD COM line 6
0: PB6
LCD_SEG23 /
LCD_COM7
LCD segment line 23. This pin may also be used as LCD COM line 7
0: PF6
LCD_SEG24
LCD segment line 24.
0: PF7
LCD_SEG25
LCD segment line 25.
0: PF8
LCD_SEG26
LCD segment line 26.
0: PF9
LCD_SEG27
LCD segment line 27.
0: PD9
LCD_SEG28
LCD segment line 28.
0: PD10
LCD_SEG29
LCD segment line 29.
0: PD11
LCD_SEG30
LCD segment line 30.
0: PD12
LCD_SEG31
LCD segment line 31.
0: PB0
LCD_SEG32
silabs.com | Building a more connected world.
LCD segment line 32.
Rev. 1.0 | 197
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PB1
LCD_SEG33
LCD segment line 33.
0: PB2
LCD_SEG34
LCD segment line 34.
0: PA7
LCD_SEG35
LCD segment line 35.
0: PA8
LCD_SEG36
LCD segment line 36.
0: PA9
LCD_SEG37
LCD segment line 37.
0: PA10
LCD_SEG38
LCD segment line 38.
0: PA11
LCD_SEG39
LCD segment line 39.
0: PD6
LES_ALTEX0
LESENSE alternate excite output 0.
0: PD7
LES_ALTEX1
LESENSE alternate excite output 1.
0: PA3
LES_ALTEX2
LESENSE alternate excite output 2.
0: PA4
LES_ALTEX3
LESENSE alternate excite output 3.
0: PA5
LES_ALTEX4
LESENSE alternate excite output 4.
0: PE11
LES_ALTEX5
silabs.com | Building a more connected world.
LESENSE alternate excite output 5.
Rev. 1.0 | 198
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PE12
LES_ALTEX6
LESENSE alternate excite output 6.
0: PE13
LES_ALTEX7
LESENSE alternate excite output 7.
0: PC0
LES_CH0
LESENSE channel 0.
0: PC1
LES_CH1
LESENSE channel 1.
0: PC2
LES_CH2
LESENSE channel 2.
0: PC3
LES_CH3
LESENSE channel 3.
0: PC4
LES_CH4
LESENSE channel 4.
0: PC5
LES_CH5
LESENSE channel 5.
0: PC6
LES_CH6
LESENSE channel 6.
0: PC7
LES_CH7
LESENSE channel 7.
0: PC8
LES_CH8
LESENSE channel 8.
0: PC9
LES_CH9
LESENSE channel 9.
0: PC10
LES_CH10
silabs.com | Building a more connected world.
LESENSE channel 10.
Rev. 1.0 | 199
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PC11
LES_CH11
LESENSE channel 11.
0: PC12
LES_CH12
LESENSE channel 12.
0: PC13
LES_CH13
LESENSE channel 13.
0: PC14
LES_CH14
LESENSE channel 14.
0: PC15
LES_CH15
LESENSE channel 15.
LETIM0_OUT0
0: PD6
1: PB11
2: PF0
3: PC4
4: PE12
5: PC14
6: PA8
7: PB9
Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1
0: PD7
1: PB12
2: PF1
3: PC5
4: PE13
5: PC15
6: PA9
7: PB10
Low Energy Timer LETIM0, output channel 1.
LETIM1_OUT0
0: PA7
1: PA11
2: PA12
3: PC2
4: PB5
5: PB2
6: PG0
7: PG2
Low Energy Timer LETIM1, output channel 0.
LETIM1_OUT1
0: PA6
1: PA13
2: PA14
3: PC3
4: PB6
5: PB1
6: PG1
7: PG3
Low Energy Timer LETIM1, output channel 1.
LEU0_RX
0: PD5
1: PB14
2: PE15
3: PF1
4: PA0
5: PC15
LEU0_TX
0: PD4
1: PB13
2: PE14
3: PF0
4: PF2
5: PC14
LEU1_RX
0: PC7
1: PA6
2: PD3
3: PB1
4: PB5
5: PH1
LEU1_TX
0: PC6
1: PA5
2: PD2
3: PB0
4: PB4
5: PH0
silabs.com | Building a more connected world.
LEUART0 Receive input.
LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEUART1 Receive input.
LEUART1 Transmit output. Also used as receive input in half duplex communication.
Rev. 1.0 | 200
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PB8
Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_N
0: PB7
LFXTAL_P
Low Frequency Crystal (typically 32.768 kHz) positive pin.
0: PC5
OPA0_N
Operational Amplifier 0 external negative input.
0: PC4
OPA0_P
Operational Amplifier 0 external positive input.
0: PD7
OPA1_N
Operational Amplifier 1 external negative input.
0: PD6
OPA1_P
Operational Amplifier 1 external positive input.
0: PD3
OPA2_N
Operational Amplifier 2 external negative input.
0: PD5
OPA2_OUT
Operational Amplifier 2 output.
0: PD0
OPA2_OUTALT
Operational Amplifier 2 alternative output.
0: PD4
OPA2_P
Operational Amplifier 2 external positive input.
0: PC7
OPA3_N
Operational Amplifier 3 external negative input.
0: PD1
OPA3_OUT
Operational Amplifier 3 output.
0: PC6
OPA3_P
silabs.com | Building a more connected world.
Operational Amplifier 3 external positive input.
Rev. 1.0 | 201
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
LOCATION
Functionality
0-3
4-7
PCNT0_S0IN
0: PC13
1: PE0
2: PC0
3: PD6
4: PA0
5: PB0
6: PB5
7: PB12
Pulse Counter PCNT0 input number 0.
PCNT0_S1IN
0: PC14
1: PE1
2: PC1
3: PD7
4: PA1
5: PB1
6: PB6
7: PB11
Pulse Counter PCNT0 input number 1.
PCNT1_S0IN
0: PA5
1: PB3
2: PD15
3: PC4
4: PA7
5: PA12
6: PB11
7: PG14
Pulse Counter PCNT1 input number 0.
PCNT1_S1IN
0: PA6
1: PB4
2: PB0
3: PC5
4: PA8
5: PA13
6: PB12
7: PG15
Pulse Counter PCNT1 input number 1.
PCNT2_S0IN
0: PD0
1: PE8
2: PB13
3: PF10
4: PC12
5: PI2
6: PI0
7: PH14
Pulse Counter PCNT2 input number 0.
PCNT2_S1IN
0: PD1
1: PE9
2: PB14
3: PF11
4: PC13
5: PI1
6: PH15
7: PH13
Pulse Counter PCNT2 input number 1.
PRS_CH0
0: PA0
1: PF3
2: PC14
3: PF2
Peripheral Reflex System PRS, channel 0.
PRS_CH1
0: PA1
1: PF4
2: PC15
3: PE12
Peripheral Reflex System PRS, channel 1.
PRS_CH2
0: PC0
1: PF5
2: PE10
3: PE13
Peripheral Reflex System PRS, channel 2.
PRS_CH3
0: PC1
1: PE8
2: PE11
3: PA0
Peripheral Reflex System PRS, channel 3.
PRS_CH4
PRS_CH5
PRS_CH6
0: PC8
1: PB0
2: PF1
0: PC9
1: PB1
2: PD6
0: PA6
1: PB14
2: PE6
silabs.com | Building a more connected world.
Description
Peripheral Reflex System PRS, channel 4.
Peripheral Reflex System PRS, channel 5.
Peripheral Reflex System PRS, channel 6.
Rev. 1.0 | 202
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
PRS_CH7
PRS_CH8
PRS_CH9
PRS_CH10
PRS_CH11
PRS_CH12
PRS_CH13
PRS_CH14
PRS_CH15
PRS_CH16
PRS_CH17
PRS_CH18
PRS_CH19
LOCATION
0-3
4-7
0: PB13
1: PA7
2: PE7
0: PA8
1: PA2
2: PE9
0: PA9
1: PA3
2: PB10
0: PA10
1: PC2
2: PD4
0: PA11
1: PC3
2: PD5
0: PA12
1: PB6
2: PD8
0: PA13
1: PB9
2: PE14
0: PA14
1: PC6
2: PE15
0: PA15
1: PC7
2: PF0
0: PA4
1: PB12
2: PE4
0: PA5
1: PB15
2: PE5
0: PB2
1: PC10
2: PC4
0: PB3
1: PC11
2: PC5
silabs.com | Building a more connected world.
Description
Peripheral Reflex System PRS, channel 7.
Peripheral Reflex System PRS, channel 8.
Peripheral Reflex System PRS, channel 9.
Peripheral Reflex System PRS, channel 10.
Peripheral Reflex System PRS, channel 11.
Peripheral Reflex System PRS, channel 12.
Peripheral Reflex System PRS, channel 13.
Peripheral Reflex System PRS, channel 14.
Peripheral Reflex System PRS, channel 15.
Peripheral Reflex System PRS, channel 16.
Peripheral Reflex System PRS, channel 17.
Peripheral Reflex System PRS, channel 18.
Peripheral Reflex System PRS, channel 19.
Rev. 1.0 | 203
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
PRS_CH20
PRS_CH21
PRS_CH22
PRS_CH23
QSPI0_CS0
QSPI0_CS1
QSPI0_DQ0
QSPI0_DQ1
QSPI0_DQ2
QSPI0_DQ3
QSPI0_DQ4
QSPI0_DQ5
QSPI0_DQ6
LOCATION
0-3
4-7
0: PB4
1: PC12
2: PE2
0: PB5
1: PC13
2: PB11
0: PB7
1: PE0
2: PF6
0: PB8
1: PE1
2: PF7
0: PF7
1: PA0
2: PG9
0: PF8
1: PA1
2: PG10
0: PD9
1: PA2
2: PG1
0: PD10
1: PA3
2: PG2
0: PD11
1: PA4
2: PG3
0: PD12
1: PA5
2: PG4
0: PE8
1: PB3
2: PG5
0: PE9
1: PB4
2: PG6
0: PE10
1: PB5
2: PG7
silabs.com | Building a more connected world.
Description
Peripheral Reflex System PRS, channel 20.
Peripheral Reflex System PRS, channel 21.
Peripheral Reflex System PRS, channel 22.
Peripheral Reflex System PRS, channel 23.
Quad SPI 0 Chip Select 0.
Quad SPI 0 Chip Select 1.
Quad SPI 0 Data 0.
Quad SPI 0 Data 1.
Quad SPI 0 Data 2.
Quad SPI 0 Data 3.
Quad SPI 0 Data 4.
Quad SPI 0 Data 5.
Quad SPI 0 Data 6.
Rev. 1.0 | 204
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
QSPI0_DQ7
QSPI0_DQS
QSPI0_SCLK
SDIO_CD
SDIO_CLK
SDIO_CMD
SDIO_DAT0
SDIO_DAT1
SDIO_DAT2
SDIO_DAT3
SDIO_DAT4
SDIO_DAT5
SDIO_DAT6
LOCATION
0-3
4-7
0: PE11
1: PB6
2: PG8
0: PF9
1: PE15
2: PG11
0: PF6
1: PE14
2: PG0
0: PF8
1: PC4
2: PA6
3: PB10
0: PE13
1: PE14
0: PE12
1: PE15
0: PE11
1: PA0
0: PE10
1: PA1
0: PE9
1: PA2
0: PE8
1: PA3
0: PD12
1: PA4
0: PD11
1: PA5
0: PD10
1: PB3
silabs.com | Building a more connected world.
Description
Quad SPI 0 Data 7.
Quad SPI 0 Data S.
Quad SPI 0 Serial Clock.
SDIO Card Detect.
SDIO Serial Clock.
SDIO Command.
SDIO Data 0.
SDIO Data 1.
SDIO Data 2.
SDIO Data 3.
SDIO Data 4.
SDIO Data 5.
SDIO Data 6.
Rev. 1.0 | 205
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
SDIO_DAT7
LOCATION
0-3
4-7
0: PD9
1: PB4
Description
SDIO Data 7.
SDIO_WP
0: PF9
1: PC5
2: PB15
3: PB9
TIM0_CC0
0: PA0
1: PF6
2: PD1
3: PB6
4: PF0
5: PC4
6: PA8
7: PA1
Timer 0 Capture Compare input / output channel 0.
TIM0_CC1
0: PA1
1: PF7
2: PD2
3: PC0
4: PF1
5: PC5
6: PA9
7: PA0
Timer 0 Capture Compare input / output channel 1.
TIM0_CC2
0: PA2
1: PF8
2: PD3
3: PC1
4: PF2
5: PA7
6: PA10
7: PA13
Timer 0 Capture Compare input / output channel 2.
4: PB7
TIM0_CDTI0
0: PA3
1: PC13
2: PF3
3: PC2
4: PB8
TIM0_CDTI1
0: PA4
1: PC14
2: PF4
3: PC3
4: PB11
TIM0_CDTI2
0: PA5
1: PC15
2: PF5
3: PC4
TIM1_CC0
0: PC13
1: PE10
2: PB0
3: PB7
4: PD6
5: PF2
6: PF13
7: PI6
Timer 1 Capture Compare input / output channel 0.
TIM1_CC1
0: PC14
1: PE11
2: PB1
3: PB8
4: PD7
5: PF3
6: PF14
7: PI7
Timer 1 Capture Compare input / output channel 1.
TIM1_CC2
0: PC15
1: PE12
2: PB2
3: PB11
4: PC13
5: PF4
6: PF15
7: PI8
Timer 1 Capture Compare input / output channel 2.
TIM1_CC3
0: PC12
1: PE13
2: PB3
3: PB12
4: PC14
5: PF12
6: PF5
7: PI9
Timer 1 Capture Compare input / output channel 3.
TIM2_CC0
0: PA8
1: PA12
2: PC8
3: PF2
4: PB6
5: PC2
6: PG8
7: PG5
Timer 2 Capture Compare input / output channel 0.
SDIO Write Protect.
Timer 0 Complimentary Dead Time Insertion channel 0.
Timer 0 Complimentary Dead Time Insertion channel 1.
Timer 0 Complimentary Dead Time Insertion channel 2.
silabs.com | Building a more connected world.
Rev. 1.0 | 206
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
TIM2_CC1
0: PA9
1: PA13
2: PC9
3: PE12
4: PC0
5: PC3
6: PG9
7: PG6
Timer 2 Capture Compare input / output channel 1.
TIM2_CC2
0: PA10
1: PA14
2: PC10
3: PE13
4: PC1
5: PC4
6: PG10
7: PG7
Timer 2 Capture Compare input / output channel 2.
TIM2_CDTI0
0: PB0
1: PD13
2: PE8
3: PG0
Timer 2 Complimentary Dead Time Insertion channel 0.
TIM2_CDTI1
0: PB1
1: PD14
2: PE14
3: PG1
Timer 2 Complimentary Dead Time Insertion channel 1.
TIM2_CDTI2
0: PB2
1: PD15
2: PE15
3: PG2
Timer 2 Complimentary Dead Time Insertion channel 2.
TIM3_CC0
0: PE14
1: PE0
2: PE3
3: PE5
4: PA0
5: PA3
6: PA6
7: PD15
Timer 3 Capture Compare input / output channel 0.
TIM3_CC1
0: PE15
1: PE1
2: PE4
3: PE6
4: PA1
5: PA4
6: PD13
7: PB15
Timer 3 Capture Compare input / output channel 1.
TIM3_CC2
0: PA15
1: PE2
2: PE5
3: PE7
4: PA2
5: PA5
6: PD14
7: PB0
Timer 3 Capture Compare input / output channel 2.
TIM4_CC0
0: PF3
1: PF13
2: PF5
3: PI8
4: PF6
5: PF9
6: PD11
7: PE9
Timer 4 Capture Compare input / output channel 0.
TIM4_CC1
0: PF4
1: PF14
2: PI6
3: PI9
4: PF7
5: PD9
6: PD12
7: PE10
Timer 4 Capture Compare input / output channel 1.
TIM4_CC2
0: PF12
1: PF15
2: PI7
3: PI10
4: PF8
5: PD10
6: PE8
7: PE11
Timer 4 Capture Compare input / output channel 2.
0: PD0
TIM4_CDTI0
Timer 4 Complimentary Dead Time Insertion channel 0.
0: PD1
TIM4_CDTI1
silabs.com | Building a more connected world.
Timer 4 Complimentary Dead Time Insertion channel 1.
Rev. 1.0 | 207
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
0: PD3
TIM4_CDTI2
Timer 4 Complimentary Dead Time Insertion channel 2.
TIM5_CC0
0: PE4
1: PE7
2: PH13
3: PI0
4: PC8
5: PC11
6: PC14
7: PF12
Timer 5 Capture Compare input / output channel 0.
TIM5_CC1
0: PE5
1: PH11
2: PH14
3: PI1
4: PC9
5: PC12
6: PF10
7: PF13
Timer 5 Capture Compare input / output channel 1.
TIM5_CC2
0: PE6
1: PH12
2: PH15
3: PI2
4: PC10
5: PC13
6: PF11
7: PF14
Timer 5 Capture Compare input / output channel 2.
TIM6_CC0
0: PG0
1: PG6
2: PG12
3: PH2
4: PH8
5: PB13
6: PD1
7: PD4
Timer 6 Capture Compare input / output channel 0.
TIM6_CC1
0: PG1
1: PG7
2: PG13
3: PH3
4: PH9
5: PB14
6: PD2
7: PD5
Timer 6 Capture Compare input / output channel 1.
TIM6_CC2
0: PG2
1: PG8
2: PG14
3: PH4
4: PH10
5: PD0
6: PD3
7: PD6
Timer 6 Capture Compare input / output channel 2.
TIM6_CDTI0
0: PG3
1: PG9
2: PE4
3: PH5
Timer 6 Complimentary Dead Time Insertion channel 0.
TIM6_CDTI1
0: PG4
1: PG10
2: PE5
3: PH6
Timer 6 Complimentary Dead Time Insertion channel 1.
TIM6_CDTI2
0: PG5
1: PG11
2: PE6
3: PH7
Timer 6 Complimentary Dead Time Insertion channel 2.
U0_CTS
0: PF8
1: PE2
2: PA5
3: PC13
4: PB7
5: PD5
U0_RTS
0: PF9
1: PE3
2: PA6
3: PC12
4: PB8
5: PD6
U0_RX
0: PF7
1: PE1
2: PA4
3: PC15
4: PC5
5: PF2
6: PE4
silabs.com | Building a more connected world.
UART0 Clear To Send hardware flow control input.
UART0 Request To Send hardware flow control output.
UART0 Receive input.
Rev. 1.0 | 208
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
U0_TX
0: PF6
1: PE0
2: PA3
3: PC14
4: PC4
5: PF1
6: PD7
U1_CTS
0: PC14
1: PF9
2: PB11
3: PE4
4: PC4
5: PH13
U1_RTS
0: PC15
1: PF8
2: PB12
3: PE5
4: PC5
5: PH14
U1_RX
0: PC13
1: PF11
2: PB10
3: PE3
4: PE13
5: PH12
U1_TX
0: PC12
1: PF10
2: PB9
3: PE2
4: PE12
5: PH11
US0_CLK
0: PE12
1: PE5
2: PC9
3: PC15
4: PB13
5: PA12
6: PG14
US0_CS
0: PE13
1: PE4
2: PC8
3: PC14
4: PB14
5: PA13
6: PG15
US0_CTS
0: PE14
1: PE3
2: PC7
3: PC13
4: PB6
5: PB11
6: PH0
US0_RTS
0: PE15
1: PE2
2: PC6
3: PC12
4: PB5
5: PD6
6: PH1
US0_RX
0: PE11
1: PE6
2: PC10
3: PE12
4: PB8
5: PC1
6: PG13
USART0 Asynchronous Receive.
US0_TX
0: PE10
1: PE7
2: PC11
3: PE13
4: PB7
5: PC0
6: PG12
USART0 Asynchronous Transmit. Also used as receive input in half duplex communication.
US1_CLK
0: PB7
1: PD2
2: PF0
3: PC15
4: PC3
5: PB11
6: PE5
US1_CS
0: PB8
1: PD3
2: PF1
3: PC14
4: PC0
5: PE4
6: PB2
silabs.com | Building a more connected world.
UART0 Transmit output. Also used as receive input in half duplex communication.
UART1 Clear To Send hardware flow control input.
UART1 Request To Send hardware flow control output.
UART1 Receive input.
UART1 Transmit output. Also used as receive input in half duplex communication.
USART0 clock input / output.
USART0 chip select input / output.
USART0 Clear To Send hardware flow control input.
USART0 Request To Send hardware flow control output.
USART0 Synchronous mode Master Input / Slave Output (MISO).
USART0 Synchronous mode Master Output / Slave Input (MOSI).
USART1 clock input / output.
USART1 chip select input / output.
Rev. 1.0 | 209
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
US1_CTS
0: PB9
1: PD4
2: PF3
3: PC6
4: PC12
5: PB13
6: PH2
US1_RTS
0: PB10
1: PD5
2: PF4
3: PC7
4: PC13
5: PB14
6: PH3
US1_RX
0: PC1
1: PD1
2: PD6
3: PF7
4: PC2
5: PA0
6: PA2
USART1 Asynchronous Receive.
US1_TX
0: PC0
1: PD0
2: PD7
3: PF6
4: PC1
5: PF2
6: PA14
USART1 Asynchronous Transmit. Also used as receive input in half duplex communication.
US2_CLK
0: PC4
1: PB5
2: PA9
3: PA15
4: PF8
5: PF2
US2_CS
0: PC5
1: PB6
2: PA10
3: PB11
4: PF9
5: PF5
US2_CTS
0: PC1
1: PB12
2: PA11
3: PB10
4: PC12
5: PD6
US2_RTS
0: PC0
1: PB15
2: PA12
3: PC14
4: PC13
5: PD8
US2_RX
0: PC3
1: PB4
2: PA8
3: PA14
4: PF7
5: PF1
US2_TX
0: PC2
1: PB3
2: PA7
3: PA13
4: PF6
5: PF0
US3_CLK
0: PA2
1: PD7
2: PD4
3: PG8
4: PG2
5: PI14
US3_CS
0: PA3
1: PE4
2: PC14
3: PC0
4: PG3
5: PI15
US3_CTS
0: PA4
1: PE5
2: PD6
3: PG10
4: PG4
5: PG9
USART1 Clear To Send hardware flow control input.
USART1 Request To Send hardware flow control output.
USART1 Synchronous mode Master Input / Slave Output (MISO).
USART1 Synchronous mode Master Output / Slave Input (MOSI).
USART2 clock input / output.
USART2 chip select input / output.
USART2 Clear To Send hardware flow control input.
USART2 Request To Send hardware flow control output.
USART2 Asynchronous Receive.
USART2 Synchronous mode Master Input / Slave Output (MISO).
USART2 Asynchronous Transmit. Also used as receive input in half duplex communication.
USART2 Synchronous mode Master Output / Slave Input (MOSI).
silabs.com | Building a more connected world.
USART3 clock input / output.
USART3 chip select input / output.
USART3 Clear To Send hardware flow control input.
Rev. 1.0 | 210
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
US3_RTS
0: PA5
1: PC1
2: PA14
3: PC15
4: PG5
5: PG11
US3_RX
0: PA1
1: PE7
2: PB7
3: PG7
4: PG1
5: PI13
US3_TX
0: PA0
1: PE6
2: PB3
3: PG6
4: PG0
5: PI12
4: PH6
US4_CLK
0: PC4
1: PD11
2: PI2
3: PI8
4: PH7
US4_CS
0: PC5
1: PD12
2: PI3
3: PI9
4: PH8
US4_CTS
0: PA7
1: PD13
2: PI4
3: PI10
4: PH9
US4_RTS
0: PA8
1: PD14
2: PI5
3: PI11
4: PH5
US4_RX
0: PB8
1: PD10
2: PI1
3: PI7
4: PH4
US4_TX
0: PB7
1: PD9
2: PI0
3: PI6
Description
USART3 Request To Send hardware flow control output.
USART3 Asynchronous Receive.
USART3 Synchronous mode Master Input / Slave Output (MISO).
USART3 Asynchronous Transmit. Also used as receive input in half duplex communication.
USART3 Synchronous mode Master Output / Slave Input (MOSI).
USART4 clock input / output.
USART4 chip select input / output.
USART4 Clear To Send hardware flow control input.
USART4 Request To Send hardware flow control output.
USART4 Asynchronous Receive.
USART4 Synchronous mode Master Input / Slave Output (MISO).
USART4 Asynchronous Transmit. Also used as receive input in half duplex communication.
USART4 Synchronous mode Master Output / Slave Input (MOSI).
US5_CLK
0: PB11
1: PD13
2: PF13
3: PH12
USART5 clock input / output.
US5_CS
0: PB13
1: PD14
2: PF12
3: PH13
USART5 chip select input / output.
US5_CTS
0: PB14
1: PD15
2: PF11
3: PH14
USART5 Clear To Send hardware flow control input.
US5_RTS
0: PB12
1: PB15
2: PF10
3: PH15
USART5 Request To Send hardware flow control output.
silabs.com | Building a more connected world.
Rev. 1.0 | 211
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
US5_RX
0: PE9
1: PA7
2: PB1
3: PH11
US5_TX
0: PE8
1: PA6
2: PF15
3: PH10
4-7
Description
USART5 Asynchronous Receive.
USART5 Synchronous mode Master Input / Slave Output (MISO).
USART5 Asynchronous Transmit. Also used as receive input in half duplex communication.
USART5 Synchronous mode Master Output / Slave Input (MOSI).
0: PF10
USB_DM
USB D- pin.
0: PF11
USB_DP
USB D+ pin.
0: PF12
USB_ID
USB ID pin.
0: PF5
USB_VBUSEN
USB 5 V VBUS enable.
0: PD6
VDAC0_EXT
Digital to analog converter VDAC0 external reference input pin.
0: PB11
VDAC0_OUT0 /
OPA0_OUT
VDAC0_OUT0ALT
/ OPA0_OUTALT
Digital to Analog Converter DAC0 output channel number 0.
0: PC0
1: PC1
2: PC2
3: PC3
4: PD0
Digital to Analog Converter DAC0 alternative output for channel 0.
0: PB12
VDAC0_OUT1 /
OPA1_OUT
Digital to Analog Converter DAC0 output channel number 1.
0: PC12
1: PC13
2: PC14
3: PC15
4: PD1
VDAC0_OUT1ALT
/ OPA1_OUTALT
WTIM0_CC0
0: PE4
1: PA6
2: PG2
3: PG8
4: PC15
5: PB0
6: PB3
7: PC1
Wide timer 0 Capture Compare input / output channel 0.
WTIM0_CC1
0: PE5
1: PD13
2: PG3
3: PG9
4: PF0
5: PB1
6: PB4
7: PC2
Wide timer 0 Capture Compare input / output channel 1.
Digital to Analog Converter DAC0 alternative output for channel 1.
silabs.com | Building a more connected world.
Rev. 1.0 | 212
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
Description
WTIM0_CC2
0: PE6
1: PD14
2: PG4
3: PG10
4: PF1
5: PB2
6: PB5
7: PC3
4: PD4
WTIM0_CDTI0
0: PE10
1: PD15
2: PA12
3: PG11
4: PD5
WTIM0_CDTI1
0: PE11
1: PG0
2: PA13
3: PG12
4: PD6
WTIM0_CDTI2
0: PE12
1: PG1
2: PA14
3: PG13
WTIM1_CC0
0: PB13
1: PD2
2: PD6
3: PC7
4: PE3
5: PE7
6: PH8
7: PH12
Wide timer 1 Capture Compare input / output channel 0.
WTIM1_CC1
0: PB14
1: PD3
2: PD7
3: PE0
4: PE4
5: PI0
6: PH9
7: PH13
Wide timer 1 Capture Compare input / output channel 1.
WTIM1_CC2
0: PD0
1: PD4
2: PD8
3: PE1
4: PE5
5: PI1
6: PH10
7: PH14
Wide timer 1 Capture Compare input / output channel 2.
WTIM1_CC3
0: PD1
1: PD5
2: PC6
3: PE2
4: PE6
5: PI2
6: PH11
7: PH15
Wide timer 1 Capture Compare input / output channel 3.
WTIM2_CC0
0: PA9
1: PA12
2: PB9
3: PB12
4: PG14
5: PD3
6: PH4
7: PH7
Wide timer 2 Capture Compare input / output channel 0.
WTIM2_CC1
0: PA10
1: PA13
2: PB10
3: PG12
4: PG15
5: PD4
6: PH5
7: PH8
Wide timer 2 Capture Compare input / output channel 1.
WTIM2_CC2
0: PA11
1: PA14
2: PB11
3: PG13
4: PH0
5: PD5
6: PH6
7: PH9
Wide timer 2 Capture Compare input / output channel 2.
WTIM3_CC0
0: PD9
1: PC8
2: PC11
3: PC14
4: PI3
5: PI6
6: PB6
7: PF13
Wide timer 3 Capture Compare input / output channel 0.
WTIM3_CC1
0: PD10
1: PC9
2: PC12
3: PF10
4: PI4
5: PI7
6: PF4
7: PF14
Wide timer 3 Capture Compare input / output channel 1.
Wide timer 0 Capture Compare input / output channel 2.
Wide timer 0 Complimentary Dead Time Insertion channel 0.
Wide timer 0 Complimentary Dead Time Insertion channel 1.
Wide timer 0 Complimentary Dead Time Insertion channel 2.
silabs.com | Building a more connected world.
Rev. 1.0 | 213
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate
Functionality
WTIM3_CC2
LOCATION
0-3
4-7
0: PD11
1: PC10
2: PC13
3: PF11
4: PI5
5: PF6
6: PF12
7: PF15
Description
Wide timer 3 Capture Compare input / output channel 2.
Certain alternate function locations may have non-interference priority. These locations will take precedence over any other functions
selected on that pin (i.e. another alternate function enabled to the same pin inadvertently).
Some alternate functions may also have high speed priority on certain locations. These locations ensure the fastest possible paths to
the pins for timing-critical signals.
The following table lists the alternate functions and locations with special priority.
Table 5.22. Alternate Functionality Priority
Alternate Functionality
Location
Priority
CMU_CLK2
1: PA3
5: PD10
High Speed
High Speed
CMU_CLKI0
1: PA3
5: PD10
High Speed
High Speed
ETH_RMIICRSDV
0: PA4
1: PD11
High Speed
High Speed
ETH_RMIIREFCLK
0: PA3
1: PD10
High Speed
High Speed
ETH_RMIIRXD0
0: PA2
1: PD9
High Speed
High Speed
ETH_RMIIRXD1
0: PA1
1: PF9
High Speed
High Speed
ETH_RMIIRXER
0: PA5
1: PD12
High Speed
High Speed
ETH_RMIITXD0
0: PE15
1: PF7
High Speed
High Speed
ETH_RMIITXD1
0: PE14
1: PF6
High Speed
High Speed
ETH_RMIITXEN
0: PA0
1: PF8
High Speed
High Speed
QSPI0_CS0
0: PF7
High Speed
QSPI0_CS1
0: PF8
High Speed
QSPI0_DQ0
0: PD9
High Speed
QSPI0_DQ1
0: PD10
High Speed
QSPI0_DQ2
0: PD11
High Speed
QSPI0_DQ3
0: PD12
High Speed
QSPI0_DQ4
0: PE8
High Speed
QSPI0_DQ5
0: PE9
High Speed
QSPI0_DQ6
0: PE10
High Speed
QSPI0_DQ7
0: PE11
High Speed
silabs.com | Building a more connected world.
Rev. 1.0 | 214
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate Functionality
Location
Priority
QSPI0_DQS
0: PF9
High Speed
QSPI0_SCLK
0: PF6
High Speed
SDIO_CLK
0: PE13
High Speed
SDIO_CMD
0: PE12
High Speed
SDIO_DAT0
0: PE11
High Speed
SDIO_DAT1
0: PE10
High Speed
SDIO_DAT2
0: PE9
High Speed
SDIO_DAT3
0: PE8
High Speed
SDIO_DAT4
0: PD12
High Speed
SDIO_DAT5
0: PD11
High Speed
SDIO_DAT6
0: PD10
High Speed
SDIO_DAT7
0: PD9
High Speed
TIM0_CC0
3: PB6
Non-interference
TIM0_CC1
3: PC0
Non-interference
TIM0_CC2
3: PC1
Non-interference
TIM0_CDTI0
1: PC13
Non-interference
TIM0_CDTI1
1: PC14
Non-interference
TIM0_CDTI2
1: PC15
Non-interference
TIM2_CC0
0: PA8
Non-interference
TIM2_CC1
0: PA9
Non-interference
TIM2_CC2
0: PA10
Non-interference
TIM2_CDTI0
0: PB0
Non-interference
TIM2_CDTI1
0: PB1
Non-interference
TIM2_CDTI2
0: PB2
Non-interference
TIM4_CC0
0: PF3
Non-interference
TIM4_CC1
0: PF4
Non-interference
TIM4_CC2
0: PF12
Non-interference
TIM4_CDTI0
0: PD0
Non-interference
TIM4_CDTI1
0: PD1
Non-interference
TIM4_CDTI2
0: PD3
Non-interference
TIM6_CC0
0: PG0
Non-interference
TIM6_CC1
0: PG1
Non-interference
TIM6_CC2
0: PG2
Non-interference
TIM6_CDTI0
0: PG3
Non-interference
TIM6_CDTI1
0: PG4
Non-interference
TIM6_CDTI2
0: PG5
Non-interference
silabs.com | Building a more connected world.
Rev. 1.0 | 215
EFM32GG11 Family Data Sheet
Pin Definitions
Alternate Functionality
Location
Priority
US2_CLK
4: PF8
5: PF2
High Speed
High Speed
US2_CS
4: PF9
5: PF5
High Speed
High Speed
US2_RX
4: PF7
5: PF1
High Speed
High Speed
US2_TX
4: PF6
5: PF0
High Speed
High Speed
silabs.com | Building a more connected world.
Rev. 1.0 | 216
EFM32GG11 Family Data Sheet
Pin Definitions
5.22 Analog Port (APORT) Client Maps
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.20 APORT Connection Diagram on page 217 shows the APORT routing for this device family (note that available features
may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.
AX
AY
BX
BY
CX
CY
DX
DY
ACMP0X
ACMP0Y
PA3
POS
IDAC0_OUTPAD
1X
1Y
IDAC0
ACMP2
NEG
PA4
PA5
PA6
1X
1Y
3X
3Y
PG0
2X
2Y
PG1
4X
4Y
POS
CEXT
CSEN
ACMP0
CEXT_SENSE
NEG
PG2
ADC0X
ADC0Y
AX
AY
BX
BY
CX
CY
DX
DY
ADC1X
ADC1Y
PG3
PG4
PG5
PG6
PG7
POS
PB1
PB2
PB3
ADC0
NEG
PB4
PB5
OUT0
IDAC0_OUTPAD
OUT0ALT
VDAC0_OUT0ALT
OUT0ALT
PC1
VDAC0_OUT0ALT
OUT0ALT
VDAC0_OU0ALTT
OUT0ALT
PC3
OPA0_P
PC4
OPA0_N
OUT
NEG
ADC1
POS
NEG
OPA1_N
1Y
2Y
3Y
4Y
OUT
OUT1
OUT1ALT
OUT1
OUT2
OUT3
OUT4
NEXT1
OUT1ALT
POS
VDAC0_OUT1ALT
PC15
PF11
ACMP1
PF10
NEG
OUT1ALT
VDAC0_OUT1ALT
PC14
POS
OUT1ALT
VDAC0_OUT1ALT
OUT1ALT
VDAC0_OUT1ALT
PC13
PC12
ACMP3
PC11
NEG
PC10
PC9
OPA2_P
1X
2X
3X
4X
POS
OPA2_N
1Y
2Y
3Y
4Y
NEG
OUT2
OUT2ALT
OUT1
OUT2
OUT3
OUT4
NEXT2
OUT0
OUT0ALT
OUT1
OUT2
OUT3
OUT4
NEXT0
OPA1_P
1X
2X
3X
4X
OPA1
OUT1
VDAC0_OUT0ALT
NEG
OPA0_N
1Y
2Y
3Y
4Y
EXTP
EXTN
EXTP
EXTN
PB6
POS
POS
0Y
1Y
2Y
3Y
4Y
NEXT3
NEXT1
0Y
1Y
2Y
3Y
4Y
NEXT3
NEXT1
0X
1X
2X
3X
4X
NEXT1
NEXT0
0Y
1Y
2Y
3Y
4Y
NEXT1
NEXT0
0X
1X
2X
3X
4X
NEXT1
NEXT0
0Y
1Y
2Y
3Y
4Y
NEXT1
NEXT0
OPA0_P
1X
2X
3X
4X
OPA0
0X
1X
2X
3X
4X
NEXT2
NEXT0
0X
1X
2X
3X
4X
NEXT2
NEXT0
PB0
0X
1X
2X
3X
4X
NEXT1
NEXT0
0Y
1Y
2Y
3Y
4Y
NEXT1
NEXT0
0X
1X
2X
3X
4X
NEXT1
NEXT0
0Y
1Y
2Y
3Y
4Y
NEXT1
NEXT0
PC8
PE7
PE6
OPA2
PE5
PE4
OUT
PE1
PE0
OPA3_P
1X
2X
3X
4X
POS
OPA3_N
1Y
2Y
3Y
4Y
NEG
OUT3
OUT3ALT
OUT1
OUT2
OUT3
OUT4
NEXT3
ADC0X
ADC0Y
BX
BY
ACMP2X
ACMP2Y
AX
AY
PA2
ACMP1X
ACMP1Y
PA1
IOVDD_0
PF0
PF1
PF2
PF3
PF4
PF12
PF13
PF14
DX
DY
PA0
PC2
PF5
CX
CY
PA15
PC0
PF15
PF7
PF6
PF8
PF9
PE9
IOVDD_2
IOVDD_0
PE8
PE11
PE10
PE12
PE13
PE14
PE15
IOVDD_1
OPA3
OPA3_P
OPA3_N
OUT
ADC_EXTN
OPA1_N
ADC1X
ADC1Y
ACMP3X
ACMP3Y
ADC_EXTP
OPA1_P
PC5
PC7
PC6
PD7
PD6
PD5
OPA2_P
OPA2_N
OUT3
OUT1ALT
PD4
PD3
PD2
VDAC0_OUT1ALT
PD1
OUT0ALT
VDAC0_OUT0ALT
PD0
PB14
PB13
PH15
PH14
PH13
PH11
PH12
PH9
PH10
PH8
PH7
PH5
PH6
PH3
PH4
PH2
PH1
PH0
PB12
PB11
PB9
PB10
PA14
PA12
PA13
PA11
BUSACMP0X,
BUSACMP3Y, ...
PA9
BUSADC0X,
BUSADC1Y, …
ACMP0X,
ACMP3Y, …
PA10
BUSAX, BUSBY, ...
ADC0X,
ADC1Y, …
PA7
APORTnX, APORTnY
AX, BY, …
PA8
nX, nY
VDAC0_OUT2ALT
OUT2ALT
OUT2
Figure 5.20. APORT Connection Diagram
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin
silabs.com | Building a more connected world.
Rev. 1.0 | 217
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
PF15
PF13
BUSCY
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
PB15
PB13
BUSAY
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PC6
PC5
PC4
PC3
PC2
PC1
PC0
PC5
PC4
PC3
PC2
PC1
PC0
PC7
PC6
PC7
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSACMP0Y BUSACMP0X Bus
APORT0Y
EFM32GG11 Family Data Sheet
Pin Definitions
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared
bus used by this connection is indicated in the Bus column.
Table 5.23. ACMP0 Bus and Pin Mapping
Rev. 1.0 | 218
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
PF15
PF13
BUSCY
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
PB15
PB13
BUSAY
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PC14
PC13
PC12
PC11
PC10
PC9
PC8
PC13
PC12
PC11
PC10
PC9
PC8
PC15
PC14
PC15
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSACMP1Y BUSACMP1X Bus
APORT0Y
EFM32GG11 Family Data Sheet
Pin Definitions
Table 5.24. ACMP1 Bus and Pin Mapping
Rev. 1.0 | 219
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
PF15
PF13
BUSCY
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
PB15
PB13
BUSAY
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PG6
PG5
PG4
PG3
PG2
PG1
PG0
PG5
PG4
PG3
PG2
PG1
PG0
PG7
PG6
PG7
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSACMP2Y BUSACMP2X Bus
APORT0Y
EFM32GG11 Family Data Sheet
Pin Definitions
Table 5.25. ACMP2 Bus and Pin Mapping
Rev. 1.0 | 220
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
PF15
PF13
BUSCY
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
PB15
PB13
BUSAY
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PH14
PH13
PH12
PH11
PH10
PH9
PH8
PH13
PH12
PH11
PH10
PH9
PH8
PH15
PH14
PH15
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSACMP3Y BUSACMP3X Bus
APORT0Y
EFM32GG11 Family Data Sheet
Pin Definitions
Table 5.26. ACMP3 Bus and Pin Mapping
Rev. 1.0 | 221
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
PF15
PF13
BUSCY
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
PB15
PB13
BUSAY
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PD5
PD4
PD3
PD2
PD1
PD0
PD7
PD6
PD7
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSADC0Y BUSADC0X Bus
APORT0Y
EFM32GG11 Family Data Sheet
Pin Definitions
Table 5.27. ADC0 Bus and Pin Mapping
Rev. 1.0 | 222
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
PF15
PF13
BUSCY
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
PB15
PB13
BUSAY
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X
APORT0X
Port
PH6
PH5
PH4
PH3
PH2
PH1
PH0
PH5
PH4
PH3
PH2
PH1
PH0
PH7
PH6
PH7
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
BUSADC1Y BUSADC1X Bus
APORT0Y
EFM32GG11 Family Data Sheet
Pin Definitions
Table 5.28. ADC1 Bus and Pin Mapping
Rev. 1.0 | 223
silabs.com | Building a more connected world.
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
APORT1Y APORT1X Port
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSDX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSBX
APORT4Y APORT4X APORT2Y APORT2X
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT3Y APORT3X APORT1Y APORT1X
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32GG11 Family Data Sheet
Pin Definitions
Table 5.29. CSEN Bus and Pin Mapping
CEXT
CEXT_SENSE
Table 5.30. IDAC0 Bus and Pin Mapping
Rev. 1.0 | 224
silabs.com | Building a more connected world.
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32GG11 Family Data Sheet
Pin Definitions
Table 5.31. VDAC0 / OPA Bus and Pin Mapping
OPA0_N
OPA0_P
Rev. 1.0 | 225
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32GG11 Family Data Sheet
Pin Definitions
OPA1_N
OPA1_P
OPA2_N
Rev. 1.0 | 226
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32GG11 Family Data Sheet
Pin Definitions
OPA2_OUT
OPA2_P
OPA3_N
Rev. 1.0 | 227
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSDX
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSCX
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSBX
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSAX
APORT4X APORT3X APORT2X APORT1X
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32GG11 Family Data Sheet
Pin Definitions
OPA3_OUT
OPA3_P
VDAC0_OUT0 / OPA0_OUT
Rev. 1.0 | 228
silabs.com | Building a more connected world.
PE0
PE4
PE6
PE8
PE10
PE12
PE14
PF0
PF2
PF4
PF6
PF8
PF10
PF12
PF14
BUSDY
PE1
PE5
PE7
PE9
PE11
PE13
PE15
PF1
PF3
PF5
PF7
PF9
PF11
PF13
PF15
BUSCY
PA0
PA2
PA4
PA6
PA8
PA10
PA12
PA14
PB0
PB2
PB4
PB6
PB10
PB12
PB14
BUSBY
PA1
PA3
PA5
PA7
PA9
PA11
PA13
PA15
PB1
PB3
PB5
PB9
PB11
PB13
PB15
BUSAY
APORT4Y APORT3Y APORT2Y APORT1Y
CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8
CH9
CH10
CH11
CH12
CH13
CH14
CH15
CH16
CH17
CH18
CH19
CH20
CH21
CH22
CH23
CH24
CH25
CH26
CH27
CH28
CH29
CH30
CH31
Bus
Port
EFM32GG11 Family Data Sheet
Pin Definitions
VDAC0_OUT1 / OPA1_OUT
Rev. 1.0 | 229
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
6. BGA192 Package Specifications
6.1 BGA192 Package Dimensions
Figure 6.1. BGA192 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 230
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
Table 6.1. BGA192 Package Dimensions
Dimension
Min
Typ
Max
A
0.77
0.83
0.89
A1
0.13
0.18
0.23
A3
0.16
0.20
0.24
A2
0.45 REF
D
7.00 BSC
e
0.40 BSC
E
7.00 BSC
D1
6.00 BSC
E1
6.00 BSC
b
0.20
0.25
aaa
0.10
bbb
0.10
ddd
0.08
eee
0.15
fff
0.05
0.30
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 231
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
6.2 BGA192 PCB Land Pattern
Figure 6.2. BGA192 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 232
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
Table 6.2. BGA192 PCB Land Pattern Dimensions
Dimension
Min
Nom
X
0.20
C1
6.00
C2
6.00
E1
0.4
E2
0.4
Max
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 233
EFM32GG11 Family Data Sheet
BGA192 Package Specifications
6.3 BGA192 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 6.3. BGA192 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 234
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
7. BGA152 Package Specifications
7.1 BGA152 Package Dimensions
A1 BALL CORNER
A
aaa C B (2X)
E
A3
A
aaa C A
(2X)
D
TOP VIEW
14 13 12 11 10 9
8
7
6
5
DETAIL K
SIDE VIEW
B
4
3
2
A1 BALL CORNER
1
A
152X b
B
eee
fff
C
D
2
C A B
C
E
e/2
F
G
D1
H
J
(0.75)
K
L
e
M
N
P
(0.75)
e/2
e
E1
BOTTOM VIEW
4
bbb C
A1
ddd C?
C
SEATING PLANE
3
DETAIL K
ROTATED 90¡Æ CW
Figure 7.1. BGA152 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 235
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
Table 7.1. BGA152 Package Dimensions
Dimension
Min
Typ
Max
A
0.78
0.84
0.90
A1
0.13
0.18
0.23
A3
0.16
0.20
0.24
A2
0.45 REF
D
8.00 BSC
e
0.50 BSC
E
8.00 BSC
D1
6.50 BSC
E1
6.50 BSC
b
0.20
0.25
aaa
0.10
bbb
0.10
ddd
0.08
eee
0.15
fff
0.05
0.30
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 236
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
7.2 BGA152 PCB Land Pattern
Figure 7.2. BGA152 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 237
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
Table 7.2. BGA152 PCB Land Pattern Dimensions
Dimension
Min
Nom
X
0.20
C1
6.50
C2
6.50
E1
0.5
E2
0.5
Max
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 238
EFM32GG11 Family Data Sheet
BGA152 Package Specifications
7.3 BGA152 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 7.3. BGA152 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 239
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
8. BGA120 Package Specifications
8.1 BGA120 Package Dimensions
Figure 8.1. BGA120 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 240
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
Table 8.1. BGA120 Package Dimensions
Dimension
Min
Typ
Max
A
0.78
0.84
0.90
A1
0.13
0.18
0.23
A3
0.17
0.21
0.25
A2
0.45 REF
D
7.00 BSC
e
0.50 BSC
E
7.00 BSC
D1
6.00 BSC
E1
6.00 BSC
b
0.20
0.25
aaa
0.10
bbb
0.10
ddd
0.08
eee
0.15
fff
0.05
0.30
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 241
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
8.2 BGA120 PCB Land Pattern
Figure 8.2. BGA120 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 242
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
Table 8.2. BGA120 PCB Land Pattern Dimensions
Dimension
Min
Nom
X
0.20
C1
6.00
C2
6.00
E1
0.5
E2
0.5
Max
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 243
EFM32GG11 Family Data Sheet
BGA120 Package Specifications
8.3 BGA120 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 8.3. BGA120 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 244
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
9. BGA112 Package Specifications
9.1 BGA112 Package Dimensions
Figure 9.1. BGA112 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 245
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
Table 9.1. BGA112 Package Dimensions
Dimension
Min
Typ
Max
A
-
-
1.30
A1
0.55
0.60
0.65
A2
0.21 BSC
A3
0.30
0.35
0.40
d
0.43
0.48
0.53
D
10.00 BSC
D1
8.00 BSC
E
10.00 BSC
E1
8.00 BSC
e1
0.80 BSC
e2
0.80 BSC
L1
1.00 REF
L2
1.00 REF
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 246
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
9.2 BGA112 PCB Land Pattern
Figure 9.2. BGA112 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 247
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
Table 9.2. BGA112 PCB Land Pattern Dimensions
Dimension
Min
Nom
X
0.45
C1
8.00
C2
8.00
E1
0.8
E2
0.8
Max
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be 1:1.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 248
EFM32GG11 Family Data Sheet
BGA112 Package Specifications
9.3 BGA112 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 9.3. BGA112 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 249
EFM32GG11 Family Data Sheet
TQFP100 Package Specifications
10. TQFP100 Package Specifications
10.1 TQFP100 Package Dimensions
Figure 10.1. TQFP100 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 250
EFM32GG11 Family Data Sheet
TQFP100 Package Specifications
Table 10.1. TQFP100 Package Dimensions
Dimension
Min
Typ
Max
A
-
-
1.20
A1
0.05
-
0.15
A2
0.95
1.00
1.05
b
0.17
0.22
0.27
b1
0.17
0.20
0.23
c
0.09
-
0.20
c1
0.09
-
0.16
D
16.0 BSC
E
16.0 BSC
D1
14.0 BSC
E1
14.0 BSC
e
0.50 BSC
L1
1 REF
L
0.45
0.60
0.75
ϴ
0
3.5
7
ϴ1
0
-
-
ϴ2
11
12
13
ϴ3
11
12
13
R1
0.08
-
-
R2
0.08
-
0.2
S
0.2
-
-
aaa
0.2
bbb
0.2
ccc
0.08
ddd
0.08
eee
0.05
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 251
EFM32GG11 Family Data Sheet
TQFP100 Package Specifications
10.2 TQFP100 PCB Land Pattern
Figure 10.2. TQFP100 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 252
EFM32GG11 Family Data Sheet
TQFP100 Package Specifications
Table 10.2. TQFP100 PCB Land Pattern Dimensions
Dimension
Min
Nom
C1
15.4
C2
15.4
E
0.50 BSC
X
0.30
Y
1.50
Max
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.
10.3 TQFP100 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 10.3. TQFP100 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 253
EFM32GG11 Family Data Sheet
TQFP64 Package Specifications
11. TQFP64 Package Specifications
11.1 TQFP64 Package Dimensions
Figure 11.1. TQFP64 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 254
EFM32GG11 Family Data Sheet
TQFP64 Package Specifications
Table 11.1. TQFP64 Package Dimensions
Dimension
Min
Typ
Max
A
—
1.15
1.20
A1
0.05
—
0.15
A2
0.95
1.00
1.05
b
0.17
0.22
0.27
b1
0.17
0.20
0.23
c
0.09
—
0.20
c1
0.09
—
0.16
D
12.00 BSC
D1
10.00 BSC
e
0.50 BSC
E
12.00 BSC
E1
10.00 BSC
L
0.45
L1
0.60
0.75
1.00 REF
R1
0.08
—
—
R2
0.08
—
0.20
S
0.20
—
—
θ
0
3.5
7
ϴ1
0
—
0.10
ϴ2
11
12
13
ϴ3
11
12
13
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 255
EFM32GG11 Family Data Sheet
TQFP64 Package Specifications
11.2 TQFP64 PCB Land Pattern
Figure 11.2. TQFP64 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 256
EFM32GG11 Family Data Sheet
TQFP64 Package Specifications
Table 11.2. TQFP64 PCB Land Pattern Dimensions
Dimension
Min
Max
C1
11.30
11.40
C2
11.30
11.40
E
0.50 BSC
X
0.20
0.30
Y
1.40
1.50
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
7. A No-Clean, Type-3 solder paste is recommended.
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
11.3 TQFP64 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 11.3. TQFP64 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 257
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
12. QFN64 Package Specifications
12.1 QFN64 Package Dimensions
Figure 12.1. QFN64 Package Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 258
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
Table 12.1. QFN64 Package Dimensions
Dimension
Min
Typ
Max
A
0.70
0.75
0.80
A1
0.00
—
0.05
b
0.20
0.25
0.30
A3
0.203 REF
D
9.00 BSC
e
0.50 BSC
E
9.00 BSC
D2
7.10
7.20
7.30
E2
7.10
7.20
7.30
L
0.40
0.45
0.50
L1
0.00
—
0.10
aaa
0.10
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 259
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
12.2 QFN64 PCB Land Pattern
Figure 12.2. QFN64 PCB Land Pattern Drawing
silabs.com | Building a more connected world.
Rev. 1.0 | 260
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
Table 12.2. QFN64 PCB Land Pattern Dimensions
Dimension
Typ
C1
8.90
C2
8.90
E
0.50
X1
0.30
Y1
0.85
X2
7.30
Y2
7.30
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.
9. A No-Clean, Type-3 solder paste is recommended.
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Building a more connected world.
Rev. 1.0 | 261
EFM32GG11 Family Data Sheet
QFN64 Package Specifications
12.3 QFN64 Package Marking
EFM32
PPPPPPPPPP
TTTTTT
YYWW
Figure 12.3. QFN64 Package Marking
The package marking consists of:
• PPPPPPPPPP – The part number designation.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
silabs.com | Building a more connected world.
Rev. 1.0 | 262
EFM32GG11 Family Data Sheet
Revision History
13. Revision History
Revision 1.0
August, 2018
• Updated Table 2.1 Ordering Information on page 4 with revision B part numbers.
• Updated 4.1 Electrical Characteristics with latest characterization data and production test limits.
• Added RUSB specification to Table 4.20 General-Purpose I/O (GPIO) on page 52.
• Updated 4.1.28 Quad SPI (QSPI) with final TXDLL, RXDLL and timing conditions for revision B, and added optimal timing tables.
• Updated 4.1.27 Serial Data I/O Host Controller (SDIO) with final timing for revision B, added timing tables for location 1 and MMC
legacy mode, and removed tF specification from non-DDR mode tables.
• Corrected ball numbering for row L in BGA120 pinout tables: Table 5.3 EFM32GG11B8xx in BGA120 Device Pinout on page 129,
Table 5.4 EFM32GG11B5xx in BGA120 Device Pinout on page 132, and Table 5.5 EFM32GG11B4xx in BGA120 Device Pinout on
page 135.
• Table 5.20 GPIO Functionality Table on page 172: re-ordered to show pins in alphabetical order by GPIO name.
• 7.2 BGA152 PCB Land Pattern: corrected dimension "X" in figure.
Revision 0.6
March, 2018
• Removed "Confidential" watermark.
• Updated 4.1 Electrical Characteristics and 4.2 Typical Performance Curves with latest characterization data.
Revision 0.2
October, 2017
• Updated memory maps to latest formatting and to include all peripherals.
• Updated all electrical specifications tables with latest characterization results.
• Absolute Maximum Ratings Table:
• Removed redundant IVSSMAX line.
• Added footnote to clarify VDIGPIN specification for 5V tolerant GPIO.
• General Operating Conditions Table:
• Removed dVDD specification and redundant footnote about shorting VREGVDD and AVDD together.
•
•
•
•
• Added footnote about IOVDD voltage restriction when CSEN peripheral is used with chopping enabled.
Flash Memory Characteristics Table: Added timing measurement clarification for Device Erase and Mass Erase.
Analog to Digital Converter (ADC) Table:
• Added header text for general specification conditions.
• Added footnote for clarification of input voltage limits.
Minor typographical corrections, including capitalization, mis-spellings and punctuation marks, throughout document.
Minor formatting and styling updates, including table formats, TOC location, and boilerplate information throughout document.
Revision 0.1
April 27th, 2017
Initial release.
silabs.com | Building a more connected world.
Rev. 1.0 | 263
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or
registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM
Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com