0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EFM32GG11B420F2048IL120-B

EFM32GG11B420F2048IL120-B

  • 厂商:

    SILABS(芯科科技)

  • 封装:

    BGA-120

  • 描述:

    IC MCU 32BIT 2MB FLASH 120BGA

  • 数据手册
  • 价格&库存
EFM32GG11B420F2048IL120-B 数据手册
EFM32 Giant Gecko Series 1 Family EFM32GG11 Family Data Sheet The EFM32 Giant Gecko Series 1 MCUs are the world’s most energy-friendly microcontrollers, featuring new connectivity interfaces and user interface features. • ARM Cortex-M4 at 72 MHz • Ultra low energy operation • 80 µA/MHz in Energy Mode 0 (EM0) • 2.1 μA EM2 Deep Sleep current (RTCC running with state and RAM retention) EFM32GG11 includes a powerful 32-bit ARM® Cortex®-M4 and provides robust security via a unique cryptographic hardware engine supporting AES, ECC, SHA, and True Random Number Generator (TRNG). New features include an SD/MMC/SDIO controller, Octal/Quad-SPI memory controller, 10/100 Ethernet MAC, CAN bus controller, highly robust capacitive sensing, enhanced alpha blending graphics engine, and LESENSE/PCNT enhancements for smart energy meters. These features, combined with ultra-low current active mode and short wake-up time from energy-saving modes, make EFM32GG11 microcontrollers well suited for any battery-powered application, as well as other systems requiring high performance and low-energy consumption. • Octal/Quad-SPI memory interface w/ XIP • SD/MMC/SDIO Host Controller • 10/100 Ethernet MAC with 802.3az EEE, IEEE1588 • Dual CAN 2.0 Bus Controller • Crystal-free low-energy USB • Hardware cryptographic engine supports AES, ECC, SHA, and TRNG Example applications: • Robust capacitive touch sense • Smart energy meters • Industrial and factory automation • Home automation and security • Mid- and high-tier wearables • IoT devices • 5 V tolerant I/O Core / Memory Clock Management TM ARM Cortex M4 processor with FPU and MPU • Footprint compatible with select EFM32 packages ETM High Frequency Crystal Oscillator High Frequency RC Oscillator PLL Universal HF RC Oscillator Flash Program Memory Debug Interface Auxiliary High Freq. RC Osc. Ultra Low Freq. RC Oscillator RAM Memory LDMA Controller Low Frequency Crystal Oscillator Low Frequency RC Oscillator Energy Management Voltage Regulator Voltage/Temp Monitor DC-DC Converter Power-On Reset Brown-Out Detector Backup Domain Other CRYPTO CRC True Random Number Generator SMU 32-bit bus Peripheral Reflex System Serial Interfaces I/O Ports USART UART 10/100 Ethernet SD / MMC / SDIO CAN Quad-SPI LEUSB (crystal free) Low Energy UARTTM EBI + pixel-alpha TFT Driver External Interrupts General Purpose I/O Pin Reset Pin Wakeup I2C Timers and Triggers Analog Interfaces Timer/Counter Low Energy Sensor IF Low Energy LCD Controller ADC Low Energy Timer Real Time Counter VDAC Operational Amplifier Pulse Counter Watchdog Timer Analog Comparator IDAC CRYOTIMER Capacitive Sensing Real Time Counter and Calendar Lowest power mode with peripheral operational: EM0 - Active EM1 - Sleep silabs.com | Building a more connected world. EM2 – Deep Sleep EM3 - Stop Copyright © 2023 by Silicon Laboratories EM4H - Hibernate EM4S - Shutoff Rev. 1.2 EFM32GG11 Family Data Sheet Feature List 1. Feature List The EFM32GG11 highlighted features are listed below. • ARM Cortex-M4 CPU platform • High performance 32-bit processor @ up to 72 MHz • DSP instruction support and Floating Point Unit • Memory Protection Unit • Wake-up Interrupt Controller • Flexible Energy Management System • 80 μA/MHz in Active Mode (EM0) • 2.1 μA EM2 Deep Sleep current (16 kB RAM retention and RTCC running from LFRCO) • Integrated DC-DC buck converter • Up to 2048 kB flash program memory • Dual-bank with read-while-write support • Up to 512 kB RAM data memory • 256 kB with ECC (SEC-DED) • Octal/Quad-SPI Flash Memory Interface • Supports 3 V and 1.8 V memories • 1/2/4/8-bit data bus • Quad-SPI Execute In Place (XIP) • Communication Interfaces • Low-energy Universal Serial Bus (USB) with Device and Host support • Fully USB 2.0 compliant • On-chip PHY and embedded 5V to 3.3V regulator • Crystal-free Device mode operation • Patent-pending Low-Energy Mode (LEM) • SD/MMC/SDIO Host Controller • SD v3.01, SDIO v3.0 and MMC v4.51 • 1/4/8-bit bus width • 10/100 Ethernet MAC with MII/RMII interface • IEEE1588-2008 precision time stamping • Energy Efficient Ethernet (802.3az) • Up to 2× CAN Bus Controller • Version 2.0A and 2.0B up to 1 Mbps • 6× Universal Synchronous/Asynchronous Receiver/ Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN • Triple buffered full/half-duplex operation with flow control • Ultra high speed (36 MHz) operation on one instance • 2× Universal Asynchronous Receiver/ Transmitter • 2× Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode • 3× I2C Interface with SMBus support • Address recognition in EM3 Stop Mode silabs.com | Building a more connected world. • Up to 144 General Purpose I/O Pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 5 V tolerance on select pins • Asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • Up to 24 Channel DMA Controller • Up to 24 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • External Bus Interface for up to 4x256 MB of external memory mapped space • TFT Controller with Direct Drive • Per-pixel alpha-blending engine • Hardware Cryptography • AES 128/256-bit keys • ECC B/K163, B/K233, P192, P224, P256 • SHA-1 and SHA-2 (SHA-224 and SHA-256) • True Random Number Generator (TRNG) • Hardware CRC engine • Single-cycle computation with 8/16/32-bit data and 16-bit (programmable)/32-bit (fixed) polynomial • Security Management Unit (SMU) • Fine-grained access control for on-chip peripherals • Integrated Low-energy LCD Controller with up to 8×36 segments • Voltage boost, contrast and autonomous animation • Patented low-energy LCD driver • Backup Power Domain • RTCC and retention registers in a separate power domain, available down to energy mode EM4H • Operation from backup battery when main power absent/ insufficient • Ultra Low-Power Precision Analog Peripherals • 2× 12-bit 1 Msamples/s Analog to Digital Converter (ADC) • On-chip temperature sensor • 2× 12-bit 500 ksamples/s Digital to Analog Converter (VDAC) • Digital to Analog Current Converter (IDAC) • Up to 4× Analog Comparator (ACMP) • Up to 4× Operational Amplifier (OPAMP) • Robust current-based capacitive sensing with up to 64 inputs and wake-on-touch (CSEN) • Up to 108 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT) • Supply Voltage Monitor Rev. 1.2 | 2 EFM32GG11 Family Data Sheet Feature List • Timers/Counters • 7× 16-bit Timer/Counter • 3 + 4 Compare/Capture/PWM channels (4 + 4 on one timer instance) • Dead-Time Insertion on several timer instances • 4× 32-bit Timer/Counter • 32-bit Real Time Counter and Calendar (RTCC) • 24-bit Real Time Counter (RTC) • 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode • 2× 16-bit Low Energy Timer for waveform generation • 3× 16-bit Pulse Counter with asynchronous operation • 2× Watchdog Timer with dedicated RC oscillator • Low Energy Sensor Interface (LESENSE) • Autonomous sensor monitoring in Deep Sleep Mode • Wide range of sensors supported, including LC sensors and capacitive buttons • Up to 16 inputs • Ultra efficient Power-on Reset and Brown-Out Detector • Debug Interface • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • 4-pin JTAG interface • Embedded Trace Macrocell (ETM) silabs.com | Building a more connected world. • Pre-Programmed Bootloader • Wide Operating Range • 1.8 V to 3.8 V single power supply • Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system • Standard (-40 °C to 85 °C TAMB) and Extended (-40 °C to 125 °C TJ) temperature grades available • Packages • QFN64 (9x9 mm) • TQFP64 (10x10 mm) • TQFP100 (14x14 mm) • BGA112 (10x10 mm) • BGA120 (7x7 mm) • BGA152 (8x8 mm) • BGA192 (7x7mm) Rev. 1.2 | 3 EFM32GG11 Family Data Sheet Ordering Information 2. Ordering Information RAM (kB) USB Ethernet QSPI EFM32GG11B820F2048GL192-B 2048 512 Yes Yes Yes Yes EFM32GG11B840F1024GL192-B 1024 512 Yes Yes Yes Yes EFM32GG11B820F2048GL152-B 2048 512 Yes Yes Yes EFM32GG11B820F2048IL152-B 2048 512 Yes Yes EFM32GG11B840F1024GL152-B 1024 512 Yes EFM32GG11B840F1024IL152-B 1024 512 EFM32GG11B820F2048GL120-B 2048 EFM32GG11B820F2048IL120-B LCD Flash (kB) SDIO Ordering Code DC-DC Converter Table 2.1. Ordering Information GPIO Package Temp Range Yes Yes 144 BGA192 -40 to +85°C Yes Yes 144 BGA192 -40 to +85°C Yes Yes Yes 121 BGA152 -40 to +85°C Yes Yes Yes Yes 121 BGA152 -40 to +125°C Yes Yes Yes Yes Yes 121 BGA152 -40 to +85°C Yes Yes Yes Yes Yes Yes 121 BGA152 -40 to +125°C 512 Yes Yes Yes Yes Yes Yes 95 BGA120 -40 to +85°C 2048 512 Yes Yes Yes Yes Yes Yes 95 BGA120 -40 to +125°C EFM32GG11B840F1024GL120-B 1024 512 Yes Yes Yes Yes Yes Yes 95 BGA120 -40 to +85°C EFM32GG11B840F1024IL120-B 1024 512 Yes Yes Yes Yes Yes Yes 95 BGA120 -40 to +125°C EFM32GG11B820F2048GQ100-B 2048 512 Yes Yes Yes Yes Yes Yes 80 QFP100 -40 to +85°C EFM32GG11B820F2048IQ100-B 2048 512 Yes Yes Yes Yes Yes Yes 80 QFP100 -40 to +125°C EFM32GG11B840F1024GQ100-B 1024 512 Yes Yes Yes Yes Yes Yes 80 QFP100 -40 to +85°C EFM32GG11B840F1024IQ100-B 1024 512 Yes Yes Yes Yes Yes Yes 80 QFP100 -40 to +125°C EFM32GG11B820F2048GQ64-B 2048 512 Yes Yes Yes Yes Yes Yes 47 QFP64 -40 to +85°C EFM32GG11B820F2048GM64-B 2048 512 Yes Yes Yes Yes Yes Yes 50 QFN64 -40 to +85°C EFM32GG11B820F2048IQ64-B 2048 512 Yes Yes Yes Yes Yes Yes 47 QFP64 -40 to +125°C EFM32GG11B820F2048IM64-B 2048 512 Yes Yes Yes Yes Yes Yes 50 QFN64 -40 to +125°C EFM32GG11B840F1024GQ64-B 1024 512 Yes Yes Yes Yes Yes Yes 47 QFP64 -40 to +85°C EFM32GG11B840F1024GM64-B 1024 512 Yes Yes Yes Yes Yes Yes 50 QFN64 -40 to +85°C EFM32GG11B840F1024IQ64-B 1024 512 Yes Yes Yes Yes Yes Yes 47 QFP64 -40 to +125°C EFM32GG11B840F1024IM64-B 1024 512 Yes Yes Yes Yes Yes Yes 50 QFN64 -40 to +125°C EFM32GG11B520F2048GL120-B 2048 512 Yes No No No No Yes 95 BGA120 -40 to +85°C EFM32GG11B510F2048GL120-B 2048 384 Yes No No No No Yes 95 BGA120 -40 to +85°C EFM32GG11B520F2048IL120-B 2048 512 Yes No No No No Yes 95 BGA120 -40 to +125°C EFM32GG11B510F2048IL120-B 2048 384 Yes No No No No Yes 95 BGA120 -40 to +125°C EFM32GG11B520F2048GQ100-B 2048 512 Yes No No No No Yes 83 QFP100 -40 to +85°C EFM32GG11B510F2048GQ100-B 2048 384 Yes No No No No Yes 83 QFP100 -40 to +85°C EFM32GG11B520F2048IQ100-B 2048 512 Yes No No No No Yes 83 QFP100 -40 to +125°C EFM32GG11B510F2048IQ100-B 2048 384 Yes No No No No Yes 83 QFP100 -40 to +125°C silabs.com | Building a more connected world. Rev. 1.2 | 4 EFM32GG11 Family Data Sheet RAM (kB) USB Ethernet QSPI EFM32GG11B520F2048GQ64-B 2048 512 Yes No No No EFM32GG11B510F2048GQ64-B 2048 384 Yes No No No EFM32GG11B520F2048GM64-B 2048 512 Yes No No EFM32GG11B510F2048GM64-B 2048 384 Yes No EFM32GG11B520F2048IQ64-B 2048 512 Yes EFM32GG11B510F2048IQ64-B 2048 384 EFM32GG11B520F2048IM64-B 2048 EFM32GG11B510F2048IM64-B LCD Flash (kB) SDIO Ordering Code DC-DC Converter Ordering Information GPIO Package Temp Range No Yes 50 QFP64 -40 to +85°C No Yes 50 QFP64 -40 to +85°C No No Yes 53 QFN64 -40 to +85°C No No No Yes 53 QFN64 -40 to +85°C No No No No Yes 50 QFP64 -40 to +125°C Yes No No No No Yes 50 QFP64 -40 to +125°C 512 Yes No No No No Yes 53 QFN64 -40 to +125°C 2048 384 Yes No No No No Yes 53 QFN64 -40 to +125°C EFM32GG11B420F2048GL120-B 2048 512 No Yes Yes Yes Yes Yes 93 BGA120 -40 to +85°C EFM32GG11B420F2048IL120-B 2048 512 No Yes Yes Yes Yes Yes 93 BGA120 -40 to +125°C EFM32GG11B420F2048GL112-B 2048 512 No Yes Yes Yes Yes Yes 87 BGA112 -40 to +85°C EFM32GG11B420F2048IL112-B 2048 512 No Yes Yes Yes Yes Yes 87 BGA112 -40 to +125°C EFM32GG11B420F2048GQ100-B 2048 512 No Yes Yes Yes Yes Yes 83 QFP100 -40 to +85°C EFM32GG11B420F2048IQ100-B 2048 512 No Yes Yes Yes Yes Yes 83 QFP100 -40 to +125°C EFM32GG11B420F2048GQ64-B 2048 512 No Yes Yes Yes Yes Yes 50 QFP64 -40 to +85°C EFM32GG11B420F2048GM64-B 2048 512 No Yes Yes Yes Yes Yes 53 QFN64 -40 to +85°C EFM32GG11B420F2048IQ64-B 2048 512 No Yes Yes Yes Yes Yes 50 QFP64 -40 to +125°C EFM32GG11B420F2048IM64-B 2048 512 No Yes Yes Yes Yes Yes 53 QFN64 -40 to +125°C EFM32GG11B320F2048GL112-B 2048 512 No No No No No Yes 90 BGA112 -40 to +85°C EFM32GG11B310F2048GL112-B 2048 384 No No No No No Yes 90 BGA112 -40 to +85°C EFM32GG11B320F2048GQ100-B 2048 512 No No No No No Yes 86 QFP100 -40 to +85°C EFM32GG11B310F2048GQ100-B 2048 384 No No No No No Yes 86 QFP100 -40 to +85°C EFM32GG11B120F2048GQ64-B 2048 512 No No No No No No 53 QFP64 -40 to +85°C EFM32GG11B110F2048GQ64-B 2048 384 No No No No No No 53 QFP64 -40 to +85°C EFM32GG11B120F2048GM64-B 2048 512 No No No No No No 56 QFN64 -40 to +85°C EFM32GG11B110F2048GM64-B 2048 384 No No No No No No 56 QFN64 -40 to +85°C EFM32GG11B120F2048IQ64-B 2048 512 No No No No No No 53 QFP64 -40 to +125°C EFM32GG11B110F2048IQ64-B 2048 384 No No No No No No 53 QFP64 -40 to +125°C EFM32GG11B120F2048IM64-B 2048 512 No No No No No No 56 QFN64 -40 to +125°C EFM32GG11B110F2048IM64-B 2048 384 No No No No No No 56 QFN64 -40 to +125°C silabs.com | Building a more connected world. Rev. 1.2 | 5 EFM32GG11 Family Data Sheet Ordering Information EFM32 G G 1 1 B 820 F 2048 G L 192 – A R Tape and Reel (Optional) Revision Pin Count Package – M (QFN), L (BGA), Q (QFP) Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) Feature Set Code Performance Grade – B (Basic) Device Configuration Series Gecko Family – G (Giant) Energy Friendly Microcontroller 32-bit Figure 2.1. Ordering Code Key silabs.com | Building a more connected world. Rev. 1.2 | 6 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Introduction . . . . . . . . 11 . . . . . . . . . . . . . . . . . . . . . . .11 3.2 Power . . . . . . . . . . . 3.2.1 Energy Management Unit (EMU) 3.2.2 DC-DC Converter . . . . . 3.2.3 5 V Regulator . . . . . . . 3.2.4 EM2 and EM3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 .12 .12 .13 3.3 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . .13 3.4 Clocking . . . . . . . . . . 3.4.1 Clock Management Unit (CMU) . 3.4.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 .14 .14 .14 .14 .15 .15 3.6 Communications and Other Digital Peripherals . . . . . . . . . . 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.6.2 Universal Asynchronous Receiver/Transmitter (UART) . . . . . . 3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.6.4 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.6.5 External Bus Interface (EBI) . . . . . . . . . . . . . . . 3.6.6 Quad-SPI Flash Controller (QSPI) . . . . . . . . . . . . . 3.6.7 SDIO Host Controller (SDIO) . . . . . . . . . . . . . . . 3.6.8 Universal Serial Bus (USB) . . . . . . . . . . . . . . . 3.6.9 Ethernet (ETH) . . . . . . . . . . . . . . . . . . . 3.6.10 Controller Area Network (CAN) . . . . . . . . . . . . . 3.6.11 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.6.12 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 .15 .15 .15 .15 .15 .16 .16 .16 .16 .16 .16 .16 3.7 Security Features . . . . . . . . . . . . . . 3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) 3.7.2 Crypto Accelerator (CRYPTO) . . . . . . . . 3.7.3 True Random Number Generator (TRNG) . . . . 3.7.4 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 .17 .17 .17 .17 3.8 Analog. . . . . . . . . . . 3.8.1 Analog Port (APORT) . . . . 3.8.2 Analog Comparator (ACMP) . . 3.8.3 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 .17 .17 .17 . . . 3.5 Counters/Timers and PWM . . . . . . . . . 3.5.1 Timer/Counter (TIMER) . . . . . . . . 3.5.2 Wide Timer/Counter (WTIMER) . . . . . . 3.5.3 Real Time Counter and Calendar (RTCC) . . 3.5.4 Low Energy Timer (LETIMER) . . . . . . 3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.5.6 Pulse Counter (PCNT) . . . . . . . . . 3.5.7 Watchdog Timer (WDOG) . . . . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 1.2 | 7 3.8.4 3.8.5 3.8.6 3.8.7 3.8.8 Capacitive Sense (CSEN) . . . . . . Digital to Analog Current Converter (IDAC) Digital to Analog Converter (VDAC) . . Operational Amplifiers . . . . . . . Liquid Crystal Display Driver (LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 .18 .18 .18 .18 . . . . . . . . . . . . . . . . . . .18 3.10 Core and Memory . . . . . . . . . . . . 3.10.1 Processor Core . . . . . . . . . . . . 3.10.2 Memory System Controller (MSC) . . . . . 3.10.3 Linked Direct Memory Access Controller (LDMA) 3.10.4 Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 .18 .19 .19 .19 3.11 Memory Map . 3.9 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 3.12 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .22 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .23 4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .24 4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .25 4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .27 4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .28 4.1.5 5V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 4.1.6 Backup Supply Domain . . . . . . . . . . . . . . . . . . . . . . . . .31 4.1.7 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . .32 4.1.8 Wake Up Times . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 4.1.9 Brown Out Detector (BOD) . . . . . . . . . . . . . . . . . . . . . . . .40 4.1.10 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 4.1.11 Flash Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .48 4.1.12 General-Purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . .49 4.1.13 Voltage Monitor (VMON) . . . . . . . . . . . . . . . . . . . . . . . . .51 4.1.14 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . .52 4.1.15 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . .54 4.1.16 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . .57 4.1.17 Current Digital to Analog Converter (IDAC) . . . . . . . . . . . . . . . . . .60 4.1.18 Capacitive Sense (CSEN) . . . . . . . . . . . . . . . . . . . . . . . .62 4.1.19 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . .64 4.1.20 LCD Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 4.1.21 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . .68 4.1.22 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . . .68 4.1.23 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 4.1.24 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 4.1.25 External Bus Interface (EBI) . . . . . . . . . . . . . . . . . . . . . . .75 4.1.26 Ethernet (ETH) . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 4.1.27 Serial Data I/O Host Controller (SDIO) . . . . . . . . . . . . . . . . . . . .87 4.1.28 Quad SPI (QSPI) . . . . . . . . . . . . . . . . . . . . . . . . . .105 4.2 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . .109 4.2.1 Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 10 4.2.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . 116 . silabs.com | Building a more connected world. Rev. 1.2 | 8 5. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.1 EFM32GG11B8xx in BGA192 Device Pinout . . . . . . . . . . . . . . . . . . . 118 5.2 EFM32GG11B8xx in BGA152 Device Pinout . . . . . . . . . . . . . . . . . . . 122 5.3 EFM32GG11B8xx in BGA120 Device Pinout . . . . . . . . . . . . . . . . . . . 126 5.4 EFM32GG11B5xx in BGA120 Device Pinout . . . . . . . . . . . . . . . . . . . 129 5.5 EFM32GG11B4xx in BGA120 Device Pinout . . . . . . . . . . . . . . . . . . . 132 5.6 EFM32GG11B4xx in BGA112 Device Pinout . . . . . . . . . . . . . . . . . . . 135 5.7 EFM32GG11B3xx in BGA112 Device Pinout . . . . . . . . . . . . . . . . . . . 138 5.8 EFM32GG11B8xx in QFP100 Device Pinout . . . . . . . . . . . . . . . . . . . 141 5.9 EFM32GG11B5xx in QFP100 Device Pinout . . . . . . . . . . . . . . . . . . . 144 5.10 EFM32GG11B4xx in QFP100 Device Pinout . . . . . . . . . . . . . . . . . 1 . 47 5.11 EFM32GG11B3xx in QFP100 Device Pinout . . . . . . . . . . . . . . . . . 1 . 50 5.12 EFM32GG11B8xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . 153 5.13 EFM32GG11B5xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . 155 5.14 EFM32GG11B4xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . 157 5.15 EFM32GG11B1xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . 159 5.16 EFM32GG11B8xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . 161 5.17 EFM32GG11B5xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . 163 5.18 EFM32GG11B4xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . 165 5.19 EFM32GG11B1xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . 167 5.20 GPIO Functionality Table . . . . . . . . . . . . . . . . . . 169 . . . . 5.21 Alternate Functionality Overview . . 5.22 Analog Port (APORT) Client Maps . 6. BGA192 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 . . . 214 . . . . . . . . . . . . . . . . . . . . . . .227 6.1 BGA192 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 227 6.2 BGA192 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 229 . 6.3 BGA192 Package Marking . . . 7. BGA152 Package Specifications . . . . . . . . . . . . . . . . . . . . . . 231 . . . . . . . . . . . . . . . . . . . . . . .232 7.1 BGA152 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 232 7.2 BGA152 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 234 . 7.3 BGA152 Package Marking . . . 8. BGA120 Package Specifications . . . . . . . . . . . . . . . . . . . . . . 236 . . . . . . . . . . . . . . . . . . . . . . .237 8.1 BGA120 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 237 8.2 BGA120 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 239 . 8.3 BGA120 Package Marking . . . 9. BGA112 Package Specifications 9.1 BGA112 Package Dimensions . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . 241 . . . . . . . . . . . . . . . . . . . . . . .242 . . . . . . . . . . . . . . . . . . . . . . . 242 Rev. 1.2 | 9 9.2 BGA112 PCB Land Pattern . . 9.3 BGA112 Package Marking . . . . . . . . . 10. TQFP100 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 . . 246 . . . . . . . . . . . . . . . . . . . . . .247 10.1 TQFP100 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . 247 10.2 TQFP100 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . 249 10.3 TQFP100 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . 250 11. TQFP64 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 251 11.1 TQFP64 Package Dimensions 11.2 TQFP64 PCB Land Pattern . 11.3 TQFP64 Package Marking . . . . . . . . . . . . . . . . . . . . . . . .251 . . . . . . . . . . . . . . . . . . . . . . .253 . 12. QFN64 Package Specifications . . . . . . . . . . . . . . . . . . . . . 2. 54 . . . . . . . . . . . . . . . . . . . . . . .255 12.1 QFN64 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 255 12.2 QFN64 PCB Land Pattern. . . . . . . . . . . . . . . . . . . . . . . . 257 12.3 QFN64 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . 259 13. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 silabs.com | Building a more connected world. Rev. 1.2 | 10 EFM32GG11 Family Data Sheet System Overview 3. System Overview 3.1 Introduction The Giant Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Giant Gecko Series 1 Reference Manual. A block diagram of the Giant Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32GG11 Block Diagram on page 11. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information. Backup Domain IOVDDn Port I/O Configuration BU_VIN To BU_STAT BU_VOUT GPIO Digital Peripherals Voltage Monitor AVDD DVDD bypass VREGVDD VREGSW DC-DC Converter Voltage Regulator DECOUPLE LETIMER USB TIMER / WTIMER CAN CRYOTIMER Ethernet PCNT EBI RTC / RTCC TFT USART / UART SDIO LEUART QSPI Brown Out / Power-On Reset ARM Cortex-M4 Core I2C CRC Up to 2048 KB ISP Flash Program Memory CRYPTO LESENSE Up to 512 KB RAM RESETn Reset Management Unit Debug Signals (shared w/GPIO) Serial Wire and ETM Debug / Programming ULFRCO AUXHFRCO LFRCO HFXTAL_N USHFRCO LFXO HFRCO + DPLL HFXO VDAC Internal Reference 12-bit ADC Mux & FB LDMA Controller Clock Management LFXTAL_N HFXTAL_P IDAC Floating Point Unit Watchdog Timers LFXTAL_P Analog Peripherals Input Mux Security Management Port A Drivers PA0-15 Port B Drivers PB0-15 Port C Drivers PC0-15 Port D Drivers PD0-15 Port E Drivers PE0-15 Port F Drivers PF0-15 Port G Drivers PG0-15 Port H Drivers PH0-15 Port I Drivers PI0-15 TRNG A A H P B B + - Memory Protection Unit IOVDDn n=2: PA0-6, PA15, PE14-15 n=1: PD9-12, PE8-13, PF6-9 n=0: All other GPIO Op-Amp VDD Temp Sense Capacitive Touch + Analog Comparator Digital Port Mapper VBUS VREGO 5V Regulator Analog Port (APORT) Energy Management VREGI Low-Energy LCD, up to 8x36 configuration Figure 3.1. Detailed EFM32GG11 Block Diagram silabs.com | Building a more connected world. Rev. 1.2 | 11 EFM32GG11 Family Data Sheet System Overview 3.2 Power The EFM32GG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. A 5 V regulator is available on some OPNs, allowing the device to be powered directly from 5 V power sources, such as USB. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor. The EFM32GG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption. AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA. 3.2.1 Energy Management Unit (EMU) The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. 3.2.2 DC-DC Converter The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. 3.2.3 5 V Regulator A 5 V input regulator is available, allowing the device to be powered directly from 5 V power sources such as the USB VBUS line. The regulator is available in all energy modes, and outputs 3.3 V to be used to power the USB PHY and other 3.3 V systems. Two inputs to the regulator allow for seamless switching between local and external power sources. silabs.com | Building a more connected world. Rev. 1.2 | 12 EFM32GG11 Family Data Sheet System Overview 3.2.4 EM2 and EM3 Power Domains The EFM32GG11 has three independent peripheral power domains for use in EM2 and EM3. Two of these domains are dynamic and can be shut down to save energy. Peripherals associated with the two dynamic power domains are listed in Table 3.1 EM2 and EM3 Peripheral Power Subdomains on page 13. If all of the peripherals in a peripheral power domain are unused, the power domain for that group will be powered off in EM2 and EM3, reducing the overall current consumption of the device. Other EM2, EM3, and EM4capable peripherals and functions not listed in the table below reside on the primary power domain, which is always on in EM2 and EM3. Table 3.1. EM2 and EM3 Peripheral Power Subdomains Peripheral Power Domain 1 Peripheral Power Domain 2 ACMP0 ACMP1 PCNT0 PCNT1 ADC0 PCNT2 LETIMER0 CSEN LESENSE VDAC0 APORT LEUART0 - LEUART1 - LETIMER1 - I2C0 - I2C1 - I2C2 - IDAC - ADC1 - ACMP2 - ACMP3 - LCD - RTC 3.3 General Purpose Input/Output (GPIO) EFM32GG11 has up to 144 General Purpose Input/Output pins. GPIO are organized on three independent supply rails, allowing for interface to multiple logic levels in the system simultaneously. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.4 Clocking 3.4.1 Clock Management Unit (CMU) The Clock Management Unit controls oscillators and clocks in the EFM32GG11. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. silabs.com | Building a more connected world. Rev. 1.2 | 13 EFM32GG11 Family Data Sheet System Overview 3.4.2 Internal and External Oscillators The EFM32GG11 supports two crystal oscillators and fully integrates five RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 4 to 50 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range. • An integrated universal high frequency RC oscillator (USHFRCO) is available for timing the USB, SDIO and QSPI peripherals. The USHFRCO can be syncronized to the host's USB clock to allow the USB to operate in device mode without the additional cost of an external crystal. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. 3.5 Counters/Timers and PWM 3.5.1 Timer/Counter (TIMER) TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.5.2 Wide Timer/Counter (WTIMER) WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only. 3.5.3 Real Time Counter and Calendar (RTCC) The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board lowfrequency oscillators, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H. 3.5.4 Low Energy Timer (LETIMER) The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. silabs.com | Building a more connected world. Rev. 1.2 | 14 EFM32GG11 Family Data Sheet System Overview 3.5.6 Pulse Counter (PCNT) The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. 3.5.7 Watchdog Timer (WDOG) The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. 3.6 Communications and Other Digital Peripherals 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S 3.6.2 Universal Asynchronous Receiver/Transmitter (UART) The Universal Asynchronous Receiver/Transmitter is a subset of the USART peripheral, supporting full duplex asynchronous UART communication with hardware flow control and RS-485. 3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.6.4 Inter-Integrated Circuit Interface (I2C) The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.6.5 External Bus Interface (EBI) The External Bus Interface provides access to external parallel interface devices. The interface is memory mapped into the address bus of the Cortex-M4. This enables seamless access from software without manually manipulating the I/O settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface to external devices. Timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices. The EBI contains a TFT controller which can drive a TFT via an RGB interface. The TFT controller supports programmable display and port sizes and offers accurate control of frequency and setup and hold timing. Direct Drive is supported for TFT displays which do not have their own frame buffer. In that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers through the EBI interface. silabs.com | Building a more connected world. Rev. 1.2 | 15 EFM32GG11 Family Data Sheet System Overview 3.6.6 Quad-SPI Flash Controller (QSPI) The QSPI provides access to to a wide range of flash devices with wide I/O busses. The I/O and clocking configuration is flexible and supports many types of devices. Up to 8-bit wide interfaces are supported. The QSPI handles opcodes, status flag polling, and timing configuration automatically. The external flash memory is mapped directly to internal memory to allow random access to any word in the flash and direct code execution. An integrated instruction cache minimizes latency and allows efficient code execution. Execute in Place (XIP) is supported for devices with this feature. Large data chunks can be transferred with DMA as efficiently as possible with high throughput and minimimal bus load, utilizing an integrated 1 kB SRAM FIFO. 3.6.7 SDIO Host Controller (SDIO) The SDIO is an SD3.01 / SDIO3.0 / eMMC4.51-compliant Host Controller interface for transferring data to and from SD/MMC/SDIO devices. The module conforms to the SD Host Controller Standard Specification Version 3.00. The Host Controller handles SDIO/SD/MMC Protocol at the transmission level, packing data, adding cyclic redundancy check (CRC), Start/End bits, and checking for transaction format correctness. 3.6.8 Universal Serial Bus (USB) The USB is a full-speed/low-speed USB 2.0 compliant host/device controller. The USB can be used in device and host-only configurations, while a clock recovery mechanism allows crystal-less operation in device mode. The USB block supports both full speed (12 MBit/s) and low speed (1.5 MBit/s) operation. When operating as a device, a special Low Energy Mode ensures the current consumption is optimized, enabling USB communications on a strict power budget. The USB device includes an internal dedicated DescriptorBased Scatter/Gather DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes internal pull-up and pull-down resistors, as well as voltage comparators for monitoring the VBUS voltage and A/B device identification using the ID line. 3.6.9 Ethernet (ETH) The Ethernet peripheral is compliant with IEEE 802.3-2002 for Ethernet MAC. It supports 802.1AS and IEEE 1588 precision clock synchronization protocol, as well as 802.3az Energy Efficient Ethernet. The ETH supports a wide variety of frame formats and standard operating modes such as MII/RMII. Direct Memory Access (DMA) support makes it possible to transmit and receive large frames at high data rates with minimal CPU overhead. The Ethernet peripheral supports 10 Mbps and 100 Mbps operation, and includes a total of 8 kB of dedicated dual-port RAM FIFO (4 kB for TX and 4 kB for RX). 3.6.10 Controller Area Network (CAN) The CAN peripheral provides support for communication at up to 1 Mbps over CAN protocol version 2.0 part A and B. It includes 32 message objects with independent identifier masks and retains message RAM in EM2. Automatic retransmittion may be disabled in order to support Time Triggered CAN applications. 3.6.11 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. 3.6.12 Low Energy Sensor Interface (LESENSE) The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. silabs.com | Building a more connected world. Rev. 1.2 | 16 EFM32GG11 Family Data Sheet System Overview 3.7 Security Features 3.7.1 General Purpose Cyclic Redundancy Check (GPCRC) The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.7.2 Crypto Accelerator (CRYPTO) The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Giant Gecko Series 1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO peripheral allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. 3.7.3 True Random Number Generator (TRNG) The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation). 3.7.4 Security Management Unit (SMU) The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt. 3.8 Analog 3.8.1 Analog Port (APORT) The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. 3.8.2 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. 3.8.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. silabs.com | Building a more connected world. Rev. 1.2 | 17 EFM32GG11 Family Data Sheet System Overview 3.8.4 Capacitive Sense (CSEN) The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead. 3.8.5 Digital to Analog Current Converter (IDAC) The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of various step sizes. 3.8.6 Digital to Analog Converter (VDAC) The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3. 3.8.7 Operational Amplifiers The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip. 3.8.8 Liquid Crystal Display Driver (LCD) The LCD driver is capable of driving a segmented LCD display with up to 8x36 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data. 3.9 Reset Management Unit (RMU) The RMU is responsible for handling reset of the EFM32GG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. 3.10 Core and Memory 3.10.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M4 RISC processor with FPU achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Embedded Trace Macrocell (ETM) for real-time trace and debug • Up to 2048 kB flash program memory • Dual-bank memory with read-while-write support • Up to 512 kB RAM data memory • Configuration and event handling of all modules • 2-pin Serial-Wire or 4-pin JTAG debug interface silabs.com | Building a more connected world. Rev. 1.2 | 18 EFM32GG11 Family Data Sheet System Overview 3.10.2 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.10.3 Linked Direct Memory Access Controller (LDMA) The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. 3.10.4 Bootloader All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area. silabs.com | Building a more connected world. Rev. 1.2 | 19 EFM32GG11 Family Data Sheet System Overview 3.11 Memory Map The EFM32GG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. Figure 3.2. EFM32GG11 Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.2 | 20 EFM32GG11 Family Data Sheet System Overview Figure 3.3. EFM32GG11 Memory Map — Peripherals silabs.com | Building a more connected world. Rev. 1.2 | 21 EFM32GG11 Family Data Sheet System Overview 3.12 Configuration Summary The features of the EFM32GG11 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration. Table 3.2. Configuration Summary Module Configuration Pin Connections USART0 IrDA, SmartCard US0_TX, US0_RX, US0_CLK, US0_CS USART1 I2S, SmartCard US1_TX, US1_RX, US1_CLK, US1_CS USART2 IrDA, SmartCard, High-Speed US2_TX, US2_RX, US2_CLK, US2_CS USART3 I2S, SmartCard US3_TX, US3_RX, US3_CLK, US3_CS USART4 I2S, SmartCard US4_TX, US4_RX, US4_CLK, US4_CS USART5 SmartCard US5_TX, US5_RX, US5_CLK, US5_CS TIMER0 with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 - TIM1_CC[3:0] TIMER2 with DTI TIM2_CC[2:0], TIM2_CDTI[2:0] TIMER3 - TIM3_CC[2:0] TIMER4 with DTI TIM4_CC[2:0], TIM4_CDTI[2:0] TIMER5 - TIM5_CC[2:0] TIMER6 with DTI TIM6_CC[2:0], TIM6_CDTI[2:0] WTIMER0 with DTI WTIM0_CC[2:0], WTIM0_CDTI[2:0] WTIMER1 - WTIM1_CC[3:0] WTIMER2 - WTIM2_CC[2:0] WTIMER3 - WTIM3_CC[2:0] ADC0 with temperature sensor See 5.22 Analog Port (APORT) Client Maps ADC1 - See 5.22 Analog Port (APORT) Client Maps silabs.com | Building a more connected world. Rev. 1.2 | 22 EFM32GG11 Family Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits. silabs.com | Building a more connected world. Rev. 1.2 | 23 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.1 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Table 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature range Test Condition Min Typ Max Unit TSTG -50 — 150 °C Voltage on supply pins other than VREGI and VBUS VDDMAX -0.3 — 3.8 V Voltage ramp rate on any supply pin VDDRAMPMAX — — 1 V / µs DC voltage on any GPIO pin VDIGPIN 5V tolerant GPIO pins1 2 3 -0.3 — Min of 5.25 and IOVDD +2 V LCD pins3 -0.3 — Min of 3.8 and IOVDD +2 V Standard GPIO pins -0.3 — IOVDD+0.3 V Total current into VDD power IVDDMAX lines Source — — 200 mA Total current into VSS ground lines IVSSMAX Sink — — 200 mA Current per I/O pin IIOMAX Sink — — 50 mA Source — — 50 mA Sink — — 200 mA Source — — 200 mA -G grade devices -40 — 105 °C -I grade devices -40 — 125 °C -0.3 — 5.5 V Current for all I/O pins Junction temperature Voltage on regulator supply pins VREGI and VBUS IIOALLMAX TJ VVREGI Note: 1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD. 2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications. 3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO. silabs.com | Building a more connected world. Rev. 1.2 | 24 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.2 Operating Conditions When assigning supply sources, the following requirements must be observed: • VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies. • VREGVDD = AVDD • DVDD ≤ AVDD • IOVDD ≤ AVDD silabs.com | Building a more connected world. Rev. 1.2 | 25 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Parameter Symbol Test Condition Min Typ Max Unit Operating ambient temperature range6 TA -G temperature grade -40 25 85 °C -I temperature grade -40 25 125 °C AVDD supply voltage2 VAVDD 1.8 3.3 3.8 V VREGVDD operating supply voltage2 1 VVREGVDD DCDC in regulation 2.4 3.3 3.8 V DCDC in bypass, 50mA load 1.8 3.3 3.8 V DCDC not in use. DVDD externally shorted to VREGVDD 1.8 3.3 3.8 V DCDC in bypass, T ≤ 85 °C — — 200 mA DCDC in bypass, T > 85 °C — — 100 mA 1.62 — VVREGVDD V 1.62 — VVREGVDD V 0.75 1.0 2.75 µF VSCALE2, MODE = WS3 — — 72 MHz VSCALE2, MODE = WS2 — — 54 MHz VSCALE2, MODE = WS1 — — 36 MHz VSCALE2, MODE = WS0 — — 18 MHz VSCALE0, MODE = WS2 — — 20 MHz VSCALE0, MODE = WS1 — — 14 MHz VSCALE0, MODE = WS0 — — 7 MHz VSCALE2 — — 72 MHz VSCALE0 — — 20 MHz VSCALE2 — — 72 MHz VSCALE0 — — 20 MHz VSCALE2 — — 50 MHz VSCALE0 — — 20 MHz VSCALE2 — — 50 MHz VSCALE0 — — 20 MHz VSCALE2 — — 72 MHz VSCALE0 — — 20 MHz VSCALE2 — — 50 MHz VSCALE0 — — 20 MHz VREGVDD current DVDD operating supply voltage IVREGVDD VDVDD IOVDD operating supply volt- VIOVDD age DECOUPLE output capacitor3 4 CDECOUPLE HFCORECLK frequency fCORE HFCLK frequency HFSRCCLK frequency HFBUSCLK frequency HFPERCLK frequency HFPERBCLK frequency HFPERCCLK frequency fHFCLK fHFSRCCLK fHFBUSCLK fHFPERCLK fHFPERBCLK fHFPERCCLK silabs.com | Building a more connected world. All IOVDD pins5 Rev. 1.2 | 26 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for other loads can be calculated as VDVDD_min+ILOAD * RBYP_max. 2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. 3. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias. 4. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 5. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD. 6. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific application. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for TJ and THETAJA. 4.1.3 Thermal Characteristics Table 4.3. Thermal Characteristics Parameter Symbol Test Condition Min Typ Max Unit Thermal resistance, QFN64 Package THETAJA_QFN64 4-Layer PCB, Air velocity = 0 m/s — 17.8 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 15.4 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 13.8 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 33.9 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 32.1 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 30.1 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 44.1 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 37.7 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 35.5 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 42.0 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 37.0 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 35.3 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 47.9 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 41.8 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 39.6 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 35.7 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 31.0 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 29.5 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 47.9 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 41.8 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 39.6 — °C/W Thermal resistance, TQFP64 THEPackage TAJA_TQFP64 Thermal resistance, TQFP100 Package THETAJA_TQFP100 Thermal resistance, BGA112 THEPackage TAJA_BGA112 Thermal resistance, BGA120 THEPackage TAJA_BGA120 Thermal resistance, BGA152 THEPackage TAJA_BGA152 Thermal resistance, BGA192 THEPackage TAJA_BGA192 silabs.com | Building a more connected world. Rev. 1.2 | 27 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.4 DC-DC Converter Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated. Table 4.4. DC-DC Converter Parameter Symbol Test Condition Min Typ Max Unit Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.8 — VVREGVDD_ V Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA 2.6 Output voltage programmable range1 VDCDC_O Regulation DC accuracy ACCDC Regulation window4 WINREG Steady-state output ripple VR Output voltage under/overshoot VOV MAX — VVREGVDD_ V MAX — VVREGVDD_ V MAX 1.8 — VVREGVDD V Low Noise (LN) mode, 1.8 V target output 1.7 — 1.9 V Low Power (LP) mode, LPCMPBIASEMxx3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 µA 1.63 — 2.2 V Low Power (LP) mode, LPCMPBIASEMxx3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA 1.63 — 2.1 V — 3 — mVpp CCM Mode (LNFORCECCM3 = 1), Load changes between 0 mA and 100 mA — 25 60 mV DCM Mode (LNFORCECCM3 = 0), Load changes between 0 mA and 10 mA — 45 90 mV Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode — 200 — mV Undershoot during BYP/LP to LN CCM (LNFORCECCM3 = 1) mode transitions compared to DC level in LN mode — 40 — mV Undershoot during BYP/LP to LN DCM (LNFORCECCM3 = 0) mode transitions compared to DC level in LN mode — 100 — mV DC line regulation VREG Input changes between VVREGVDD_MAX and 2.4 V — 0.1 — % DC load regulation IREG Load changes between 0 mA and 100 mA in CCM mode — 0.1 — % silabs.com | Building a more connected world. Rev. 1.2 | 28 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Max load current ILOAD_MAX Low noise (LN) mode, Heavy Drive2, T ≤ 85 °C — — 200 mA Low noise (LN) mode, Heavy Drive2, T > 85 °C — — 100 mA Low noise (LN) mode, Medium Drive2 — — 100 mA Low noise (LN) mode, Light Drive2 — — 50 mA Low power (LP) mode, LPCMPBIASEMxx3 = 0 — — 75 µA Low power (LP) mode, LPCMPBIASEMxx3 = 3 — — 10 mA CDCDC 25% tolerance 1 4.7 4.7 µF DCDC nominal output induc- LDCDC tor 20% tolerance 4.7 4.7 4.7 µH — 1.2 2.5 Ω DCDC nominal output capacitor5 Resistance in Bypass mode RBYP Note: 1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD. 2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode. 4. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits. 5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details. silabs.com | Building a more connected world. Rev. 1.2 | 29 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.5 5V Regulator VVREGI = 5 V, VVREGO = 3.3 V, CVREGI = 10 µF, CVREGO = 4.7 µF, unless otherwise specified. Table 4.5. 5V Regulator Parameter Symbol Test Condition Min Typ Max Unit VREGI or VBUS input voltage range VVREGI Regulating output 2.7 — 5.5 V Bypass mode enabled 2.7 — 3.8 V VREGO output voltage VVREGO Regulating output, 3.3 V setting 3.1 3.3 3.5 V EM4S open-loop output, IOUT < 100 µA 1.8 — 3.8 V — 0.1 — V Voltage output step size VVREGO_SS Resistance in Bypass Mode RBYP Bypass mode enabled — 1.2 2.5 Ω Output current IOUT EM0 or EM1, VVREGI > VVREGO + 0.6 V — — 200 mA EM0 or EM1, VVREGI > VVREGO + 0.3 V — — 100 mA EM2, EM3, or EM4H, VVREGI > VVREGO + 0.6 V — — 2 mA EM2, EM3, or EM4H, VVREGI > VVREGO + 0.3 V — — 0.5 mA EM4S — — 20 µA EM0 or EM1 — 0.10 — mV/mA EM2, EM3, or EM4H — 2.5 — mV/mA Load regulation LRVREGO DC power supply rejection PSRDC — 40 — dB VREGI or VBUS bypass capacitance CVREGI — 10 — µF 1 4.7 10 µF EM0 or EM1, No load — 29 — µA EM2, EM3, or EM4H, No load — 270 — nA EM4S, No load — 70 — nA VREGO bypass capacitance CVREGO Supply current consumption IVREGI VREGI and VBUS detection high threshold VDET_H 0.9 1.15 — V VREGI and VBUS detection low threshold VDET_L — 1.07 1.45 V — 0.35 — mA/mV Current monitor transfer ratio IMONXF silabs.com | Building a more connected world. Translation of current through VREGO path to voltage at ADC input Rev. 1.2 | 30 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.6 Backup Supply Domain Table 4.6. Backup Supply Domain Parameter Symbol Test Condition Min Typ Max Unit 1.8 — 3.8 V EMU_BUCTRL_PWRRES = RES0 3400 3900 4400 Ω EMU_BUCTRL_PWRRES = RES1 1450 1800 2150 Ω EMU_BUCTRL_PWRRES = RES2 1000 1350 1700 Ω EMU_BUCTRL_PWRRES = RES3 525 815 1100 Ω EMU_BUCTRL_VOUTRES = STRONG 35 110 185 Ω EMU_BUCTRL_VOUTRES = MED 475 775 1075 Ω EMU_BUCTRL_VOUTRES = WEAK 5600 6500 7400 Ω BU_VIN not powering backup domain, 25 °C — 11 100 nA BU_VIN powering backup domain, 25 °C 1 — 550 2500 nA Backup supply voltage range VBU_VIN PWRRES resistor Output impedance between BU_VIN and BU_VOUT 2 Supply current RPWRRES RBU_VOUT IBU_VIN Note: 1. Additional current required by backup circuitry when backup is active. Includes supply current of backup switches and backup regulator. Does not include supply current required for backed-up circuitry. 2. BU_VOUT and BU_STAT signals are not available in all package configurations. Check the device pinout for availability. silabs.com | Building a more connected world. Rev. 1.2 | 31 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.7 Current Consumption 4.1.7.1 Current Consumption 3.3 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.7. Current Consumption 3.3 V without DC-DC Converter Parameter Symbol Min Typ Max Unit 72 MHz HFRCO, CPU running Prime from flash — 120 — µA/MHz 72 MHz HFRCO, CPU running while loop from flash — 120 130 µA/MHz 72 MHz HFRCO, CPU running CoreMark loop from flash — 140 — µA/MHz 50 MHz crystal, CPU running while loop from flash — 123 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 122 135 µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 124 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 126 140 µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 131 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 319 470 µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 107 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 262 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 72 MHz HFRCO — 57 67 µA/MHz 50 MHz crystal — 60 — µA/MHz 48 MHz HFRCO — 59 70 µA/MHz 32 MHz HFRCO — 61 — µA/MHz 26 MHz HFRCO — 63 75 µA/MHz 16 MHz HFRCO — 68 — µA/MHz 1 MHz HFRCO — 255 420 µA/MHz 19 MHz HFRCO — 55 — µA/MHz 1 MHz HFRCO — 210 — µA/MHz Current consumption in EM0 IACTIVE mode with all peripherals disabled Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 32 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit Full 512 kB RAM retention and RTCC running from LFXO — 3.9 — µA Full 512 kB RAM retention and RTCC running from LFRCO — 4.3 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO2 — 2.8 5.5 µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 512 kB RAM retention and CRYOTIMER running from ULFRCO — 3.6 7 µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 1.08 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.69 — µA 128 byte RAM retention, no RTCC — 0.6 1 µA Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled IEM4H_VS Test Condition Current consumption in EM4S mode IEM4S No RAM retention, no RTCC — 0.06 0.2 µA Current consumption of peripheral power domain 1, with voltage scaling enabled IPD1_VS Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled1 — 0.68 — µA Current consumption of peripheral power domain 2, with voltage scaling enabled IPD2_VS Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled1 — 0.28 — µA Note: 1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. 2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.2 | 33 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.7.2 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.8. Current Consumption 3.3 V using DC-DC Converter Parameter Symbol Current consumption in EM0 IACTIVE_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode2 Current consumption in EM0 IACTIVE_CCM mode with all peripherals disabled, DCDC in Low Noise CCM mode1 silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 72 MHz HFRCO, CPU running Prime from flash — 80 — µA/MHz 72 MHz HFRCO, CPU running while loop from flash — 80 — µA/MHz 72 MHz HFRCO, CPU running CoreMark loop from flash — 92 — µA/MHz 50 MHz crystal, CPU running while loop from flash — 84 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 84 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 90 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 94 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 109 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 698 — µA/MHz 72 MHz HFRCO, CPU running Prime from flash — 84 — µA/MHz 72 MHz HFRCO, CPU running while loop from flash — 84 — µA/MHz 72 MHz HFRCO, CPU running CoreMark loop from flash — 95 — µA/MHz 50 MHz crystal, CPU running while loop from flash — 91 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 92 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 104 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 113 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 142 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1264 — µA/MHz Rev. 1.2 | 34 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit 32 MHz HFRCO, CPU running while loop from flash — 82 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 83 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 88 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 257 — µA/MHz Current consumption in EM0 IACTIVE_CCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise CCM mode1 19 MHz HFRCO, CPU running while loop from flash — 117 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1231 — µA/MHz Current consumption in EM0 IACTIVE_LPM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in LP mode3 19 MHz HFRCO, CPU running while loop from flash — 72 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 219 — µA/MHz Current consumption in EM1 IEM1_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode2 72 MHz HFRCO — 42 — µA/MHz 50 MHz crystal — 46 — µA/MHz 48 MHz HFRCO — 46 — µA/MHz 32 MHz HFRCO — 53 — µA/MHz 26 MHz HFRCO — 57 — µA/MHz 16 MHz HFRCO — 72 — µA/MHz 1 MHz HFRCO — 663 — µA/MHz 32 MHz HFRCO — 42 — µA/MHz 26 MHz HFRCO — 43 — µA/MHz 16 MHz HFRCO — 48 — µA/MHz 1 MHz HFRCO — 219 — µA/MHz Current consumption in EM1 IEM1_DCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise DCM mode2 19 MHz HFRCO — 60 — µA/MHz 1 MHz HFRCO — 637 — µA/MHz Current consumption in EM1 IEM1_LPM_VS mode with all peripherals disabled and voltage scaling enabled. DCDC in LP mode3 19 MHz HFRCO — 39 — µA/MHz 1 MHz HFRCO — 190 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled, DCDC in LP mode3 Full 512 kB RAM retention and RTCC running from LFXO — 2.8 — µA Full 512 kB RAM retention and RTCC running from LFRCO — 3.1 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO5 — 2.1 — µA Full 512 kB RAM retention and CRYOTIMER running from ULFRCO — 2.4 — µA Current consumption in EM0 IACTIVE_LPM mode with all peripherals disabled, DCDC in LP mode3 Current consumption in EM1 IEM1_LPM mode with all peripherals disabled, DCDC in Low Power mode3 Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 35 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption in EM4H mode, with voltage scaling enabled IEM4H_VS 128 byte RAM retention, RTCC running from LFXO — 0.94 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.62 — µA 128 byte RAM retention, no RTCC — 0.62 — µA No RAM retention, no RTCC — 0.13 — µA Current consumption of peIPD1_VS ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode3 Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled4 — 0.68 — µA Current consumption of peIPD2_VS ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode3 Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled4 — 0.28 — µA Current consumption in EM4S mode IEM4S Note: 1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD. 2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD. 3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD. 4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. 5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.2 | 36 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.7.3 Current Consumption 1.8 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.9. Current Consumption 1.8 V without DC-DC Converter Parameter Symbol Min Typ Max Unit 72 MHz HFRCO, CPU running Prime from flash — 120 — µA/MHz 72 MHz HFRCO, CPU running while loop from flash — 120 — µA/MHz 72 MHz HFRCO, CPU running CoreMark loop from flash — 140 — µA/MHz 50 MHz crystal, CPU running while loop from flash — 122 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 122 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 124 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 126 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 131 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 315 — µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 107 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 259 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 72 MHz HFRCO — 57 — µA/MHz 50 MHz crystal — 59 — µA/MHz 48 MHz HFRCO — 59 — µA/MHz 32 MHz HFRCO — 61 — µA/MHz 26 MHz HFRCO — 63 — µA/MHz 16 MHz HFRCO — 68 — µA/MHz 1 MHz HFRCO — 252 — µA/MHz Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO — 55 — µA/MHz 1 MHz HFRCO — 207 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled Full 512 kB RAM retention and RTCC running from LFXO — 3.7 — µA Full 512 kB RAM retention and RTCC running from LFRCO — 4.0 — µA 16 kB (1 bank) RAM retention and RTCC running from LFRCO2 — 2.5 — µA Current consumption in EM0 IACTIVE mode with all peripherals disabled silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 37 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 512 kB RAM retention and CRYOTIMER running from ULFRCO — 3.4 — µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.94 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.56 — µA 128 byte RAM retention, no RTCC — 0.56 — µA IEM4H_VS Current consumption in EM4S mode IEM4S No RAM retention, no RTCC — 0.1 — µA Current consumption of peripheral power domain 1, with voltage scaling enabled IPD1_VS Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled1 — 0.68 — µA Current consumption of peripheral power domain 2, with voltage scaling enabled IPD2_VS Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled1 — 0.28 — µA Note: 1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.4 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. 2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.2 | 38 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.8 Wake Up Times Table 4.10. Wake Up Times Parameter Symbol Wake up time from EM1 tEM1_WU Wake up from EM2 tEM2_WU Wake up from EM3 tEM3_WU Test Condition Min Typ Max Unit — 3 — AHB Clocks Code execution from flash — 11.8 — µs Code execution from RAM — 4.1 — µs Code execution from flash — 11.8 — µs Code execution from RAM — 4.1 — µs Wake up from EM4H1 tEM4H_WU Executing from flash — 94 — µs Wake up from EM4S1 tEM4S_WU Executing from flash — 294 — µs Time from release of reset source to first instruction execution tRESET Soft Pin Reset released — 55 — µs Any other reset released — 359 — µs Power mode scaling time tSCALE VSCALE0 to VSCALE2, HFCLK = 19 MHz4 2 — 31.8 — µs VSCALE2 to VSCALE0, HFCLK = 19 MHz3 — 4.3 — µs Note: 1. Time from wake up request until first instruction is executed. Wakeup results in device reset. 2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs. 4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs. silabs.com | Building a more connected world. Rev. 1.2 | 39 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.9 Brown Out Detector (BOD) Table 4.11. Brown Out Detector (BOD) Parameter Symbol Test Condition Min Typ Max Unit DVDD BOD threshold VDVDDBOD DVDD rising — — 1.62 V DVDD falling (EM0/EM1) 1.35 — — V DVDD falling (EM2/EM3) 1.3 — — V DVDD BOD hysteresis VDVDDBOD_HYST — 18 — mV DVDD BOD response time tDVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs AVDD BOD threshold VAVDDBOD — — 1.8 V AVDD falling (EM0/EM1) 1.62 — — V AVDD falling (EM2/EM3) 1.53 — — V AVDD rising AVDD BOD hysteresis VAVDDBOD_HYST — 20 — mV AVDD BOD response time tAVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs EM4 BOD threshold VEM4DBOD AVDD rising — — 1.7 V AVDD falling 1.45 — — V — 25 — mV — 300 — µs EM4 BOD hysteresis VEM4BOD_HYST EM4 BOD response time tEM4BOD_DELAY silabs.com | Building a more connected world. Supply drops at 0.1V/µs rate Rev. 1.2 | 40 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.10 Oscillators 4.1.10.1 Low-Frequency Crystal Oscillator (LFXO) Table 4.12. Low-Frequency Crystal Oscillator (LFXO) Parameter Symbol Crystal frequency Test Condition Min Typ Max Unit fLFXO — 32.768 — kHz Supported crystal equivalent series resistance (ESR) ESRLFXO — — 70 kΩ Supported range of crystal load capacitance 1 CLFXO_CL 6 — 18 pF On-chip tuning cap range 2 CLFXO_T 8 — 40 pF On-chip tuning cap step size SSLFXO — 0.25 — pF Current consumption after startup 3 ILFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2, AGC4 = 1 — 273 — nA Start- up time tLFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2 — 308 — ms On each of LFXTAL_N and LFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. 4. In CMU_LFXOCTRL register. silabs.com | Building a more connected world. Rev. 1.2 | 41 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.10.2 High-Frequency Crystal Oscillator (HFXO) Table 4.13. High-Frequency Crystal Oscillator (HFXO) Parameter Symbol Test Condition Crystal frequency fHFXO Supported crystal equivalent series resistance (ESR) ESRHFXO Nominal on-chip tuning cap range1 CHFXO_T On-chip tuning capacitance step SSHFXO Startup time tHFXO Current consumption after startup IHFXO Min Typ Max Unit No clock doubling 4 — 50 MHz Clock doubler enabled 4 — 25 MHz 50 MHz crystal — — 50 Ω 24 MHz crystal — — 150 Ω 4 MHz crystal — — 180 Ω On each of HFXTAL_N and HFXTAL_P pins 8.7 — 51.7 pF — 0.084 — pF 50 MHz crystal, ESR = 50 Ohm, CL = 8 pF — 350 — µs 24 MHz crystal, ESR = 150 Ohm, CL = 6 pF — 700 — µs 4 MHz crystal, ESR = 180 Ohm, CL = 18 pF — 3 — ms 50 MHz crystal — 880 — µA 24 MHz crystal — 420 — µA 4 MHz crystal — 80 — µA Note: 1. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. silabs.com | Building a more connected world. Rev. 1.2 | 42 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.10.3 Low-Frequency RC Oscillator (LFRCO) Table 4.14. Low-Frequency RC Oscillator (LFRCO) Parameter Symbol Test Condition Min Typ Max Unit Oscillation frequency fLFRCO ENVREF2 = 1, T ≤ 85 °C 31.3 32.768 33.6 kHz ENVREF2 = 1, T > 85 °C 31 32.768 36.8 kHz ENVREF2 = 0, T ≤ 85 °C 31.3 32.768 33.4 kHz ENVREF2 = 0, T > 85 °C 30 32.768 33.6 kHz — 500 — µs ENVREF = 1 in CMU_LFRCOCTRL — 370 — nA ENVREF = 0 in CMU_LFRCOCTRL — 520 — nA Startup time tLFRCO Current consumption 1 ILFRCO Note: 1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. 2. In CMU_LFRCOCTRL register. silabs.com | Building a more connected world. Rev. 1.2 | 43 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.10.4 High-Frequency RC Oscillator (HFRCO) Table 4.15. High-Frequency RC Oscillator (HFRCO) Parameter Symbol Test Condition Min Typ Max Unit Frequency accuracy fHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 % Start-up time tHFRCO fHFRCO ≥ 19 MHz — 300 — ns 4 < fHFRCO < 19 MHz — 1 — µs fHFRCO ≤ 4 MHz — 2.5 — µs Maximum DPLL lock time1 tDPLL_LOCK fREF = 32.768 kHz, fHFRCO = 39.98 MHz, N = 1219, M = 0 — 183 — µs Current consumption on all supplies IHFRCO fHFRCO = 72 MHz — 610 690 µA fHFRCO = 64 MHz — 550 615 µA fHFRCO = 56 MHz — 482 535 µA fHFRCO = 48 MHz — 413 470 µA fHFRCO = 38 MHz — 341 390 µA fHFRCO = 32 MHz — 286 330 µA fHFRCO = 26 MHz — 240 275 µA fHFRCO = 19 MHz — 191 220 µA fHFRCO = 16 MHz — 164 200 µA fHFRCO = 13 MHz — 144 180 µA fHFRCO = 7 MHz — 103 130 µA fHFRCO = 4 MHz — 42 60 µA fHFRCO = 2 MHz — 33 43 µA fHFRCO = 1 MHz — 28 38 µA fHFRCO = 72 MHz, DPLL enabled — 930 1200 µA fHFRCO = 40 MHz, DPLL enabled — 526 700 µA fHFRCO = 32 MHz, DPLL enabled — 419 520 µA fHFRCO = 16 MHz, DPLL enabled — 233 280 µA fHFRCO = 4 MHz, DPLL enabled — 60 100 µA fHFRCO = 1 MHz, DPLL enabled — 36 60 µA — 0.8 — % Coarse trim step size (% of period) SSHFRCO_COARS E Fine trim step size (% of period) SSHFRCO_FINE — 0.1 — % Period jitter PJHFRCO — 0.2 — % RMS silabs.com | Building a more connected world. Rev. 1.2 | 44 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Frequency limits fHFRCO_BAND FREQRANGE = 0, FINETUNINGEN = 0 1 — 10 MHz FREQRANGE = 3, FINETUNINGEN = 0 2 — 17 MHz FREQRANGE = 6, FINETUNINGEN = 0 4 — 30 MHz FREQRANGE = 7, FINETUNINGEN = 0 5 — 34 MHz FREQRANGE = 8, FINETUNINGEN = 0 7 — 42 MHz FREQRANGE = 10, FINETUNINGEN = 0 12 — 58 MHz FREQRANGE = 11, FINETUNINGEN = 0 15 — 68 MHz FREQRANGE = 12, FINETUNINGEN = 0 18 — 83 MHz FREQRANGE = 13, FINETUNINGEN = 0 24 — 100 MHz FREQRANGE = 14, FINETUNINGEN = 0 28 — 119 MHz FREQRANGE = 15, FINETUNINGEN = 0 33 — 138 MHz FREQRANGE = 16, FINETUNINGEN = 0 43 — 163 MHz Note: 1. Maximum DPLL lock time ~= 6 x (M+1) x tREF, where tREF is the reference clock period. silabs.com | Building a more connected world. Rev. 1.2 | 45 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.10.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Table 4.16. Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Parameter Symbol Test Condition Frequency accuracy fAUXHFRCO_ACC Start-up time tAUXHFRCO Current consumption on all supplies Coarse trim step size (% of period) IAUXHFRCO SSAUXHFR- Min Typ Max Unit At production calibrated frequencies, across supply voltage and temperature -3 — 3 % fAUXHFRCO ≥ 19 MHz — 400 — ns 4 < fAUXHFRCO < 19 MHz — 1.4 — µs fAUXHFRCO ≤ 4 MHz — 2.5 — µs fAUXHFRCO = 50 MHz — 289 335 µA fAUXHFRCO = 48 MHz — 276 320 µA fAUXHFRCO = 38 MHz — 227 265 µA fAUXHFRCO = 32 MHz — 186 220 µA fAUXHFRCO = 26 MHz — 158 190 µA fAUXHFRCO = 19 MHz — 126 160 µA fAUXHFRCO = 16 MHz — 114 140 µA fAUXHFRCO = 13 MHz — 88 112 µA fAUXHFRCO = 7 MHz — 59 72 µA fAUXHFRCO = 4 MHz — 33 42 µA fAUXHFRCO = 2 MHz — 28 37 µA fAUXHFRCO = 1 MHz — 26 33 µA — 0.8 — % — 0.1 — % — 0.2 — % RMS CO_COARSE Fine trim step size (% of period) SSAUXHFRCO_FINE Period jitter PJAUXHFRCO silabs.com | Building a more connected world. Rev. 1.2 | 46 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.10.6 Universal High-Frequency RC Oscillator (USHFRCO) Table 4.17. Universal High-Frequency RC Oscillator (USHFRCO) Parameter Symbol Test Condition Min Typ Max Unit Frequency accuracy fUSHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 % USB clock recovery enabled, Active connection as device, FINETUNINGEN1 = 1 -0.25 — 0.25 % — 300 — ns fUSHFRCO = 48 MHz, FINETUNINGEN1 = 1 — 340 400 µA fUSHFRCO = 50 MHz, FINETUNINGEN1 = 0 — 320 380 µA fUSHFRCO = 48 MHz, FINETUNINGEN1 = 0 — 300 370 µA fUSHFRCO = 32 MHz, FINETUNINGEN1 = 0 — 200 240 µA fUSHFRCO = 16 MHz, FINETUNINGEN1 = 0 — 120 160 µA — 0.2 — % RMS Min Typ Max Unit 0.88 1 1.12 kHz Start-up time tUSHFRCO Current consumption on all supplies IUSHFRCO Period jitter PJUSHFRCO Note: 1. In the CMU_USHFRCOCTRL register. 4.1.10.7 Ultra-low Frequency RC Oscillator (ULFRCO) Table 4.18. Ultra-low Frequency RC Oscillator (ULFRCO) Parameter Symbol Oscillation frequency fULFRCO silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 47 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.11 Flash Memory Characteristics5 Table 4.19. Flash Memory Characteristics5 Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Word (32-bit) programming time tW_PROG Test Condition Min Typ Max Unit 10000 — — cycles T ≤ 85 °C 10 — — years T ≤ 125 °C 10 — — years Burst write, 128 words, average time per word 20 26.2 32 µs Single word 59 68.7 83 µs Page erase time4 tPERASE 20 26.8 35 ms Mass erase time1 tMERASE 20 26.9 35 ms Device erase time2 3 tDERASE T ≤ 85 °C — 80.7 95 ms T ≤ 125 °C — 80.7 100 ms Page Erase — — 1.7 mA Mass or Device Erase — — 2.1 mA Erase current6 IERASE Write current6 IWRITE — — 3.9 mA Supply voltage during flash erase and write VFLASH 1.62 — 3.6 V Note: 1. Mass erase is issued by the CPU and erases all flash. 2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW). 3. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 4. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 5. Flash data retention information is published in the Quarterly Quality and Reliability Report. 6. Measured at 25 °C. silabs.com | Building a more connected world. Rev. 1.2 | 48 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.12 General-Purpose I/O (GPIO) Table 4.20. General-Purpose I/O (GPIO) Parameter Symbol Test Condition Input low voltage1 VIL Input high voltage1 Output high voltage relative to IOVDD VIH VOH Min Typ Max Unit GPIO pins — — IOVDD*0.3 V RESETn — — AVDD*0.3 V GPIO pins IOVDD*0.7 — — V RESETn AVDD*0.7 — — V Sourcing 3 mA, IOVDD ≥ 3 V, IOVDD*0.8 — — V IOVDD*0.6 — — V IOVDD*0.8 — — V IOVDD*0.6 — — V — — IOVDD*0.2 V — — IOVDD*0.4 V — — IOVDD*0.2 V — — IOVDD*0.4 V All GPIO except BUVIN, LFXO, and USB pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 40 nA BUVIN, LFXO, and USB pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 60 nA All GPIO except BUVIN, LFXO, and USB pins, GPIO ≤ IOVDD, T > 85 °C — — 150 nA BUVIN, LFXO, and USB pins, GPIO ≤ IOVDD, T > 85 °C — — 300 nA DRIVESTRENGTH2 = WEAK Sourcing 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = WEAK Sourcing 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH2 = STRONG Sourcing 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = STRONG Output low voltage relative to VOL IOVDD Sinking 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH2 = WEAK Sinking 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = WEAK Sinking 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH2 = STRONG Sinking 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = STRONG Input leakage current IIOLEAK Input leakage current on 5VTOL pads above IOVDD I5VTOLLEAK IOVDD < GPIO ≤ IOVDD + 2 V — 3.3 15 µA Pull-up/down resistance3 RPUD Any GPIO pin 30 40 65 kΩ RESETn pin silabs.com | Building a more connected world. Rev. 1.2 | 49 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Pulse width of pulses retIOGLITCH moved by the glitch suppression filter Output fall time, From 70% to 30% of VIO tIOOF CL = 50 pF, Min Typ Max Unit 15 25 35 ns — 1.8 — ns — 4.5 — ns — 2.2 — ns — 7.4 — ns — 33 +/-10% — Ω 100 — — ns DRIVESTRENGTH2 = STRONG, SLEWRATE2 = 0x6 CL = 50 pF, DRIVESTRENGTH2 = WEAK, SLEWRATE2 = 0x6 Output rise time, From 30% to 70% of VIO tIOOR CL = 50 pF, DRIVESTRENGTH2 = STRONG, SLEWRATE = 0x62 CL = 50 pF, DRIVESTRENGTH2 = WEAK, SLEWRATE2 = 0x6 Required external series resistor on USB D+ and D- RUSB RESETn low time to ensure pin reset TRESET Note: 1. GPIO input thresholds are proportional to the IOVDD supply, except for RESETn, which is proportional to AVDD (or BU_VIN in backup mode). 2. In GPIO_Pn_CTRL register. 3. GPIO pull-ups connect to IOVDD; pull-downs connect to VSS. The RESETn pull-up connects to AVDD (or BU_VIN in backup mode). silabs.com | Building a more connected world. Rev. 1.2 | 50 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.13 Voltage Monitor (VMON) Table 4.21. Voltage Monitor (VMON) Parameter Symbol Test Condition Supply current (including I_SENSE) IVMON Loading of monitored supply ISENSE Threshold range VVMON_RANGE Threshold step size NVMON_STESP Response time tVMON_RES Hysteresis VVMON_HYST silabs.com | Building a more connected world. Min Typ Max Unit In EM0 or EM1, 1 supply monitored, T ≤ 85 °C — 6 11 µA In EM0 or EM1, 1 supply monitored, T > 85 °C — — 21 µA In EM0 or EM1, 4 supplies monitored, T ≤ 85 °C — 15 20 µA In EM0 or EM1, 4 supplies monitored, T > 85 °C — — 32 µA In EM2, EM3 or EM4, 1 supply monitored and above threshold — 62 — nA In EM2, EM3 or EM4, 1 supply monitored and below threshold — 62 — nA In EM2, EM3 or EM4, 4 supplies monitored and all above threshold — 99 — nA In EM2, EM3 or EM4, 4 supplies monitored and all below threshold — 99 — nA In EM0 or EM1 — 2 — µA In EM2, EM3 or EM4 — 2 — nA 1.62 — 3.4 V Coarse — 200 — mV Fine — 20 — mV Supply drops at 1V/µs rate — 460 — ns — 26 — mV Rev. 1.2 | 51 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.14 Analog to Digital Converter (ADC) Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated. Table 4.22. Analog to Digital Converter (ADC) Parameter Symbol Resolution VRESOLUTION Input voltage range5 VADCIN Test Condition Single ended Differential Input range of external refer- VADCREFIN_P ence voltage, single ended and differential Min Typ Max Unit 6 — 12 Bits — — VFS V -VFS/2 — VFS/2 V 1 — VAVDD V Power supply rejection2 PSRRADC At DC — 80 — dB Analog input common mode rejection ratio CMRRADC At DC — 80 — dB 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 — 270 350 µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3 — 125 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 3 — 80 — µA Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 1 3 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE4 = NORMAL SPROG = 0, GPBIASACC = 1 3 — 45 — µA — 8 — µA Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE4 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 — 105 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 3 — 70 — µA Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP Continuous operation. WARMUPMODE4 = KEEPADCWARM 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 — 325 — µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3 — 175 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 3 — 125 — µA Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 0 3 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE4 = NORMAL SPROG = 0, GPBIASACC = 0 3 — 85 — µA — 16 — µA Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP Continuous operation. WARMUPMODE4 = KEEPADCWARM Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE4 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 — 160 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 3 — 125 — µA Current from HFPERCLK HFPERCLK = 16 MHz — 180 — µA IADC_CLK silabs.com | Building a more connected world. Rev. 1.2 | 52 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol ADC clock frequency Min Typ Max Unit fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time1 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — 13 — cycles WARMUPMODE4 = NORMAL — — 5 µs WARMUPMODE4 = KEEPINSTANDBY — — 2 µs WARMUPMODE4 = KEEPINSLOWACC — — 1 µs Internal reference7, differential measurement 58 67 — dB External reference6, differential measurement — 68 — dB Spurious-free dynamic range SFDRADC (SFDR) 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Differential non-linearity (DNL) DNLADC 12 bit resolution, No missing codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Offset error VADCOFFSETERR -3 0 3 LSB Gain error in ADC VADCGAIN Using internal reference — -0.2 3.5 % Using external reference — -1 — % — -1.84 — mV/°C Startup time of reference generator and ADC core SNDR at 1Msps and fIN = 10kHz Temperature sensor slope tADCSTART SNDRADC VTS_SLOPE Test Condition Note: 1. Derived from ADCCLK. 2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL. 3. In ADCn_BIASPROG register. 4. In ADCn_CNTL register. 5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin. 6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V. 7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale. silabs.com | Building a more connected world. Rev. 1.2 | 53 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.15 Analog Comparator (ACMP) Table 4.23. Analog Comparator (ACMP) Parameter Symbol Test Condition Input voltage range VACMPIN Supply voltage VACMPVDD Active current not including voltage reference2 IACMP Current consumption of inter- IACMPREF nal voltage reference2 silabs.com | Building a more connected world. Min Typ Max Unit ACMPVDD = ACMPn_CTRL_PWRSEL 1 — — VACMPVDD V BIASPROG4 ≤ 0x10 or FULLBIAS4 = 0 1.8 — VVREGVDD_ V 0x10 < BIASPROG4 ≤ 0x20 and FULLBIAS4 = 1 2.1 BIASPROG4 = 1, FULLBIAS4 = 0 — 50 — nA BIASPROG4 = 0x10, FULLBIAS4 =0 — 306 — nA BIASPROG4 = 0x02, FULLBIAS4 =1 — 6.5 — µA BIASPROG4 = 0x20, FULLBIAS4 =1 — 74 100 µA VLP selected as input using 2.5 V Reference / 4 (0.625 V) — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — µA VADIV selected as input using VDD/1 — 2.4 — µA MAX — VVREGVDD_ V MAX Rev. 1.2 | 54 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Hysteresis (VCM = 1.25 V, BIASPROG4 = 0x10, FULLBIAS4 = 1) VACMPHYST Comparator delay3 tACMPDELAY Min Typ Max Unit HYSTSEL5 = HYST0 -3 0 3 mV HYSTSEL5 = HYST1 5 18 27 mV HYSTSEL5 = HYST2 12 33 50 mV HYSTSEL5 = HYST3 17 46 67 mV HYSTSEL5 = HYST4 23 57 92 mV HYSTSEL5 = HYST5 26 68 108 mV HYSTSEL5 = HYST6 30 79 140 mV HYSTSEL5 = HYST7 34 90 160 mV HYSTSEL5 = HYST8 -3 0 3 mV HYSTSEL5 = HYST9 -27 -18 -5 mV HYSTSEL5 = HYST10 -50 -33 -12 mV HYSTSEL5 = HYST11 -67 -45 -17 mV HYSTSEL5 = HYST12 -92 -57 -23 mV HYSTSEL5 = HYST13 -108 -67 -26 mV HYSTSEL5 = HYST14 -140 -78 -30 mV HYSTSEL5 = HYST15 -160 -88 -34 mV BIASPROG4 = 1, FULLBIAS4 = 0 — 30 — µs BIASPROG4 = 0x10, FULLBIAS4 =0 — 3.7 — µs BIASPROG4 = 0x02, FULLBIAS4 =1 — 360 — ns BIASPROG4 = 0x20, FULLBIAS4 =1 — 35 — ns -35 — 35 mV Offset voltage VACMPOFFSET BIASPROG4 =0x10, FULLBIAS4 =1 Reference voltage VACMPREF Internal 1.25 V reference 1 1.25 1.47 V Internal 2.5 V reference 1.98 2.5 2.8 V CSRESSEL6 = 0 — infinite — kΩ CSRESSEL6 = 1 — 15 — kΩ CSRESSEL6 = 2 — 27 — kΩ CSRESSEL6 = 3 — 39 — kΩ CSRESSEL6 = 4 — 51 — kΩ CSRESSEL6 = 5 — 100 — kΩ CSRESSEL6 = 6 — 162 — kΩ CSRESSEL6 = 7 — 235 — kΩ Capacitive sense internal re- RCSRES sistance silabs.com | Building a more connected world. Rev. 1.2 | 55 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD. 2. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP + IACMPREF. 3. ± 100 mV differential drive. 4. In ACMPn_CTRL register. 5. In ACMPn_HYSTERESIS registers. 6. In ACMPn_INPUTSEL register. silabs.com | Building a more connected world. Rev. 1.2 | 56 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.16 Digital to Analog Converter (VDAC) DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output. Table 4.24. Digital to Analog Converter (VDAC) Parameter Symbol Test Condition Min Typ Max Unit Output voltage VDACOUT Single-Ended 0 — VVREF V -VVREF — VVREF V 500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4 — 402 — µA 44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4 — 88 — µA 200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, BGRREQTIME = 1, EM2REFENTIME = 9, REFSEL = 4, SETTLETIME = 0x0A, WARMUPTIME = 0x02 — 2 — µA Differential2 Current consumption including references (2 channels)1 IDAC Current from HFPERCLK4 IDAC_CLK — 5.25 — µA/MHz Sample rate SRDAC — — 500 ksps DAC clock frequency fDAC — — 1 MHz Conversion time tDACCONV fDAC = 1MHz 2 — — µs Settling time tDACSETTLE 50% fs step settling to 5 LSB — 2.5 — µs Startup time tDACSTARTUP Enable to 90% fs output, settling to 10 LSB — — 12 µs Output impedance ROUT DRIVESTRENGTH = 2, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Full supply range — 2 — Ω DRIVESTRENGTH = 2, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Full supply range — 2 — Ω Vout = 50% fs. DC — 65.5 — dB Power supply rejection ratio6 PSRR silabs.com | Building a more connected world. Rev. 1.2 | 57 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit 500 ksps, single-ended, internal 1.25V reference — 60.4 — dB 500 ksps, single-ended, internal 2.5V reference — 61.6 — dB 500 ksps, single-ended, 3.3V VDD reference — 64.0 — dB 500 ksps, differential, internal 1.25V reference — 63.3 — dB 500 ksps, differential, internal 2.5V reference — 64.4 — dB 500 ksps, differential, 3.3V VDD reference — 65.8 — dB Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal ratio (1 kHz sine wave), 1.25V reference Noise band limited to 22 kHz 500 ksps, single-ended, internal 2.5V reference — 65.3 — dB — 66.7 — dB 500 ksps, differential, 3.3V VDD reference — 68.5 — dB 500 ksps, differential, internal 1.25V reference — 67.8 — dB 500 ksps, differential, internal 2.5V reference — 69.0 — dB 500 ksps, single-ended, 3.3V VDD reference — 70.0 — dB — 70.2 — dB Signal to noise and distortion SNDRDAC ratio (1 kHz sine wave), Noise band limited to 250 kHz Test Condition Total harmonic distortion THD Differential non-linearity3 DNLDAC -1.25 — 1.25 LSB Intergral non-linearity INLDAC -4 — 4 LSB Offset error5 VOFFSET T = 25 °C -8 — 8 mV Across operating temperature range -25 — 25 mV T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -2.5 — 2.5 % Across operating temperature range, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -3.5 — 3.5 % — — 75 pF Gain error5 External load capactiance, OUTSCALE=0 VGAIN CLOAD silabs.com | Building a more connected world. Rev. 1.2 | 58 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load. 2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range. 3. Entire range is monotonic and has no missing codes. 4. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC module is enabled in the CMU. 5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain. 6. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale silabs.com | Building a more connected world. Rev. 1.2 | 59 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.17 Current Digital to Analog Converter (IDAC) Table 4.25. Current Digital to Analog Converter (IDAC) Parameter Symbol Number of ranges NIDAC_RANGES Output current IIDAC_OUT Linear steps within each range NIDAC_STEPS Step size SSIDAC Total accuracy, STEPSEL1 = ACCIDAC 0x10 silabs.com | Building a more connected world. Test Condition Min Typ Max Unit — 4 — ranges RANGSEL1 = RANGE0 0.05 — 1.6 µA RANGSEL1 = RANGE1 1.6 — 4.7 µA RANGSEL1 = RANGE2 0.5 — 16 µA RANGSEL1 = RANGE3 2 — 64 µA — 32 — steps RANGSEL1 = RANGE0 — 50 — nA RANGSEL1 = RANGE1 — 100 — nA RANGSEL1 = RANGE2 — 500 — nA RANGSEL1 = RANGE3 — 2 — µA EM0 or EM1, AVDD=3.3 V, T = 25 °C -3 — 3 % EM0 or EM1, Across operating temperature range -18 — 22 % EM2 or EM3, Source mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -2.7 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -2.5 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -1.5 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -1.0 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -1.1 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -1.1 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.9 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.9 — % Rev. 1.2 | 60 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Start up time tIDAC_SU Settling time, (output settled tIDAC_SETTLE within 1% of steady state value), Current consumption2 IIDAC Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V Output voltage compliance in ICOMP_SINK sink mode, sink current change relative to current sunk at IOVDD Min Typ Max Unit Output within 1% of steady state value — 5 — µs Range setting is changed — 5 — µs Step value is changed — 1 — µs EM0 or EM1 Source mode, excluding output current, Across operating temperature range — 11 28 µA EM0 or EM1 Sink mode, excluding output current, Across operating temperature range — 13 30 µA EM2 or EM3 Source mode, excluding output current, T = 25 °C — 0.05 — µA EM2 or EM3 Sink mode, excluding output current, T = 25 °C — 0.07 — µA EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C — 11 — µA EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C — 13 — µA RANGESEL1=0, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.11 — % RANGESEL1=1, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.06 — % RANGESEL1=2, output voltage = min(VIOVDD, VAVDD2-150 mV) — 0.04 — % RANGESEL1=3, output voltage = min(VIOVDD, VAVDD2-250 mV) — 0.03 — % RANGESEL1=0, output voltage = 100 mV — 0.29 — % RANGESEL1=1, output voltage = 100 mV — 0.27 — % RANGESEL1=2, output voltage = 150 mV — 0.12 — % RANGESEL1=3, output voltage = 250 mV — 0.03 — % Note: 1. In IDAC_CURPROG register. 2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1). silabs.com | Building a more connected world. Rev. 1.2 | 61 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.18 Capacitive Sense (CSEN) Table 4.26. Capacitive Sense (CSEN) Parameter Symbol Test Condition Single conversion time (1x accumulation) tCNV Maximum external capacitive CEXTMAX load Min Typ Max Unit 12-bit SAR Conversions — 20.2 — µs 16-bit SAR Conversions — 26.4 — µs Delta Modulation Conversion (single comparison) — 1.55 — µs CS0CG=7 (Gain = 1x), including routing parasitics — 68 — pF CS0CG=0 (Gain = 10x), including routing parasitics — 680 — pF — 1 — kΩ 12-bit SAR conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 326 — nA Delta Modulation conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 226 — nA 12-bit SAR conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 33 — nA Delta Modulation conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 25 — nA 12-bit SAR conversions, 20 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan1 — 690 — nA Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 samples per scan1 — 515 — nA 12-bit SAR conversions, 200 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan1 — 79 — nA Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 samples per scan1 — 57 — nA Maximum external series im- REXTMAX pedance Supply current, EM2 bonded ICSEN_BOND conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 Supply current, EM2 scan conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 ICSEN_EM2 silabs.com | Building a more connected world. Rev. 1.2 | 62 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Supply current, continuous conversions, WARMUPMODE=KEEPCSENWARM ICSEN_ACTIVE SAR or Delta Modulation conversions of 33 pF capacitor, CS0CG=0 (Gain = 10x), always on — 90.5 — µA HFPERCLK supply current ICSEN_HFPERCLK Current contribution from HFPERCLK when clock to CSEN block is enabled. — 2.25 — µA/MHz Note: 1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the module is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)). silabs.com | Building a more connected world. Rev. 1.2 | 63 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.19 Operational Amplifier (OPAMP) Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes8 1. Table 4.27. Operational Amplifier (OPAMP) Parameter Symbol Test Condition Supply voltage (from AVDD) VOPA HCMDIS = 0, Rail-to-rail input range Input voltage VIN Min Typ Max Unit 2 — 3.8 V HCMDIS = 1 1.62 — 3.8 V HCMDIS = 0, Rail-to-rail input range VVSS — VOPA V HCMDIS = 1 VVSS — VOPA-1.2 V Input impedance RIN 100 — — MΩ Output voltage VOUT VVSS — VOPA V Load capacitance2 CLOAD OUTSCALE = 0 — — 75 pF OUTSCALE = 1 — — 37.5 pF DRIVESTRENGTH = 2 or 3, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Buffer connection, Full supply range — 0.25 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Buffer connection, Full supply range — 0.6 — Ω DRIVESTRENGTH = 2 or 3, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Buffer connection, Full supply range — 0.4 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Buffer connection, Full supply range — 1 — Ω Buffer connection 0.99 1 1.01 - 3x Gain connection 2.93 2.99 3.05 - 16x Gain connection 15.07 15.7 16.33 - DRIVESTRENGTH = 3, OUTSCALE = 0 — 580 — µA DRIVESTRENGTH = 2, OUTSCALE = 0 — 176 — µA DRIVESTRENGTH = 1, OUTSCALE = 0 — 13 — µA DRIVESTRENGTH = 0, OUTSCALE = 0 — 4.7 — µA Output impedance Internal closed-loop gain Active current4 ROUT GCL IOPA silabs.com | Building a more connected world. Rev. 1.2 | 64 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Open-loop gain GOL Loop unit-gain frequency7 Phase margin Output voltage noise UGF PM NOUT silabs.com | Building a more connected world. Min Typ Max Unit DRIVESTRENGTH = 3 — 135 — dB DRIVESTRENGTH = 2 — 137 — dB DRIVESTRENGTH = 1 — 121 — dB DRIVESTRENGTH = 0 — 109 — dB DRIVESTRENGTH = 3, Buffer connection — 3.38 — MHz DRIVESTRENGTH = 2, Buffer connection — 0.9 — MHz DRIVESTRENGTH = 1, Buffer connection — 132 — kHz DRIVESTRENGTH = 0, Buffer connection — 34 — kHz DRIVESTRENGTH = 3, 3x Gain connection — 2.57 — MHz DRIVESTRENGTH = 2, 3x Gain connection — 0.71 — MHz DRIVESTRENGTH = 1, 3x Gain connection — 113 — kHz DRIVESTRENGTH = 0, 3x Gain connection — 28 — kHz DRIVESTRENGTH = 3, Buffer connection — 67 — ° DRIVESTRENGTH = 2, Buffer connection — 69 — ° DRIVESTRENGTH = 1, Buffer connection — 63 — ° DRIVESTRENGTH = 0, Buffer connection — 68 — ° DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz — 146 — µVrms DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz — 163 — µVrms DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz — 170 — µVrms DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz — 176 — µVrms DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz — 313 — µVrms DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz — 271 — µVrms DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz — 247 — µVrms DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz — 245 — µVrms Rev. 1.2 | 65 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Slew rate5 SR DRIVESTRENGTH = 3, INCBW=13 — 4.7 — V/µs DRIVESTRENGTH = 3, INCBW=0 — 1.5 — V/µs DRIVESTRENGTH = 2, INCBW=13 — 1.27 — V/µs DRIVESTRENGTH = 2, INCBW=0 — 0.42 — V/µs DRIVESTRENGTH = 1, INCBW=13 — 0.17 — V/µs DRIVESTRENGTH = 1, INCBW=0 — 0.058 — V/µs DRIVESTRENGTH = 0, INCBW=13 — 0.044 — V/µs DRIVESTRENGTH = 0, INCBW=0 — 0.015 — V/µs Startup time6 TSTART DRIVESTRENGTH = 2 — — 12 µs Input offset voltage VOSI DRIVESTRENGTH = 2 or 3, T = 25 °C -3 — 3 mV DRIVESTRENGTH = 1 or 0, T = 25 °C -3 — 3 mV DRIVESTRENGTH = 2 or 3, across operating temperature range -12 — 12 mV DRIVESTRENGTH = 1 or 0, across operating temperature range -30 — 30 mV DC power supply rejection ratio9 PSRRDC Input referred — 70 — dB DC common-mode rejection ratio9 CMRRDC Input referred — 70 — dB Total harmonic distortion THDOPA DRIVESTRENGTH = 2, 3x Gain connection, 1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB DRIVESTRENGTH = 0, 3x Gain connection, 0.1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB silabs.com | Building a more connected world. Rev. 1.2 | 66 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5 V. Nominal voltage gain is 3. 2. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information. 3. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3, or the OPAMP may not be stable. 4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause another ~10 µA current when the OPAMP drives 1.5 V between output and ground. 5. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range. 6. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV. 7. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth product of the OPAMP and 1/3 attenuation of the feedback network. 8. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V, VOUTPUT = 0.5 V. 9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR and CMRR specifications do not apply to this transition region. 4.1.20 LCD Driver Table 4.28. LCD Driver Parameter Symbol Frame rate Min Typ Max Unit fLCDFR 30 — 100 Hz LCD supply range2 VLCDIN 1.8 — 3.8 V LCD output voltage range VLCD Current source mode, No external LCD capacitor 2.0 — VLCDIN-0.4 V Step-down mode with external LCD capacitor 2.0 — VLCDIN V Charge pump mode with external LCD capacitor 2.0 — 1.9 * VLCDIN V Current source mode — 64 — mV Charge pump or Step-down mode — 43 — mV — +/-4 — % Contrast control step size STEPCONTRAST Contrast control step accura- ACCCONTRAST cy1 Test Condition Note: 1. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation. 2. VLCDIN is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW. silabs.com | Building a more connected world. Rev. 1.2 | 67 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.21 Pulse Counter (PCNT) Table 4.29. Pulse Counter (PCNT) Parameter Symbol Test Condition Min Typ Max Unit Input frequency FIN Asynchronous Single and Quadrature Modes — — 20 MHz Sampled Modes with Debounce filter set to 0. — — 8 kHz Min Typ Max Unit 4.1.22 Analog Port (APORT) Table 4.30. Analog Port (APORT) Parameter Symbol Test Condition Supply current2 1 IAPORT Operation in EM0/EM1 — 7 — µA Operation in EM2/EM3 — 63 — nA Note: 1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number. 2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported module currents. Additional peripherals requesting access to APORT do not incur further current. silabs.com | Building a more connected world. Rev. 1.2 | 68 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.23 I2C 4.1.23.1 I2C Standard-mode (Sm)1 Table 4.31. I2C Standard-mode (Sm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 100 kHz SCL clock low time tLOW 4.7 — — µs SCL clock high time tHIGH 4 — — µs SDA set-up time tSU_DAT 250 — — ns SDA hold time3 tHD_DAT 100 — 3450 ns Repeated START condition set-up time tSU_STA 4.7 — — µs (Repeated) START condition tHD_STA hold time 4 — — µs STOP condition set-up time tSU_STO 4 — — µs Bus free time between a STOP and START condition tBUF 4.7 — — µs Note: 1. For CLHR set to 0 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.2 | 69 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.23.2 I2C Fast-mode (Fm)1 Table 4.32. I2C Fast-mode (Fm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 400 kHz SCL clock low time tLOW 1.3 — — µs SCL clock high time tHIGH 0.6 — — µs SDA set-up time tSU_DAT 100 — — ns SDA hold time3 tHD_DAT 100 — 900 ns Repeated START condition set-up time tSU_STA 0.6 — — µs (Repeated) START condition tHD_STA hold time 0.6 — — µs STOP condition set-up time tSU_STO 0.6 — — µs Bus free time between a STOP and START condition tBUF 1.3 — — µs Note: 1. For CLHR set to 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.2 | 70 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.23.3 I2C Fast-mode Plus (Fm+)1 Table 4.33. I2C Fast-mode Plus (Fm+)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 1000 kHz SCL clock low time tLOW 0.5 — — µs SCL clock high time tHIGH 0.26 — — µs SDA set-up time tSU_DAT 50 — — ns SDA hold time tHD_DAT 100 — — ns Repeated START condition set-up time tSU_STA 0.26 — — µs (Repeated) START condition tHD_STA hold time 0.26 — — µs STOP condition set-up time tSU_STO 0.26 — — µs Bus free time between a STOP and START condition tBUF 0.5 — — µs Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual. silabs.com | Building a more connected world. Rev. 1.2 | 71 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.24 USART SPI SPI Master Timing Table 4.34. SPI Master Timing Parameter Symbol Test Condition SCLK period 1 3 2 tSCLK CS to MOSI 1 3 SCLK to MOSI 1 3 MISO setup time 1 3 tCS_MO tSCLK_MO tSU_MI silabs.com | Building a more connected world. Min Typ Max Unit All USARTs except USART2 2* tHFPERCLK — — ns USART2 2* tHFPERBCLK — — ns USART2, location 4, IOVDD = 1.8 V -3.2 — 6.8 ns USART2, location 4, IOVDD = 3.0 V -2.3 — 6.0 ns USART2, location 5, IOVDD = 1.8 V -8.1 — 6.3 ns USART2, location 5, IOVDD = 3.0 V -7.3 — 4.4 ns All other USARTs and locations, IOVDD = 1.8 V -15 — 13 ns All other USARTs and locations, IOVDD = 3.0 V -13 — 11 ns USART2, location 4, IOVDD = 1.8 V -0.3 — 9.2 ns USART2, location 4, IOVDD = 3.0 V -0.3 — 8.6 ns USART2, location 5, IOVDD = 1.8 V -3.6 — 5.0 ns USART2, location 5, IOVDD = 3.0 V -3.4 — 3.2 ns All other USARTs and locations, IOVDD = 1.8 V -10 — 11 ns All other USARTs and locations, IOVDD = 3.0 V -9 — 11 ns USART2, location 4, IOVDD = 1.8 V 39.7 — — ns USART2, location 4, IOVDD = 3.0 V 22.4 — — ns USART2, location 5, IOVDD = 1.8 V 49.2 — — ns USART2, location 5, IOVDD = 3.0 V 30.0 — — ns All other USARTs and locations, IOVDD = 1.8 V 55 — — ns All other USARTs and locations, IOVDD = 3.0 V 36 — — ns Rev. 1.2 | 72 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit MISO hold time 1 3 tH_MI USART2, location 4, IOVDD = 1.8 V -11.6 — — ns USART2, location 4, IOVDD = 3.0 V -11.6 — — ns USART2, location 5, IOVDD = 1.8 V -9.1 — — ns USART2, location 5, IOVDD = 3.0 V -9.1 — — ns All other USARTs and locations, IOVDD = 1.8 V -8 — — ns All other USARTs and locations, IOVDD = 3.0 V -8 — — ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. tHFPERCLK is one period of the selected HFPERCLK. 3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). CS tCS_MO tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI MISO Figure 4.1. SPI Master Timing Diagram silabs.com | Building a more connected world. Rev. 1.2 | 73 EFM32GG11 Family Data Sheet Electrical Specifications SPI Slave Timing Table 4.35. SPI Slave Timing Parameter Symbol SCLK period 1 3 2 Test Condition Min Typ Max Unit tSCLK 6* tHFPERCLK — — ns SCLK high time1 3 2 tSCLK_HI 2.5 * tHFPERCLK — — ns SCLK low time1 3 2 tSCLK_LO 2.5 * tHFPERCLK — — ns CS active to MISO 1 3 tCS_ACT_MI 24 — 69 ns CS disable to MISO 1 3 tCS_DIS_MI 19 — 175 ns MOSI setup time 1 3 tSU_MO 7 — — ns MOSI hold time 1 3 2 tH_MO 6 — — ns SCLK to MISO 1 3 2 tSCLK_MI 16 + 1.5 * tHFPERCLK — 43 + 2.5 * tHFPERCLK ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. tHFPERCLK is one period of the selected HFPERCLK. 3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). CS tCS_ACT_MI tCS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 tSCLK_HI tSU_MO tSCLK_LO tSCLK tH_MO MOSI tSCLK_MI MISO Figure 4.2. SPI Slave Timing Diagram silabs.com | Building a more connected world. Rev. 1.2 | 74 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.25 External Bus Interface (EBI) EBI Write Enable Output Timing Timing applies to both EBI_WEn and EBI_NANDWEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.36. EBI Write Enable Timing Parameter Symbol Test Condition Min Typ Max Unit Output hold time, from trailing EBI_WEn / EBI_NANDWEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid tOH_WEn IOVDD ≥ 1.62 V -22 + (WRHOLD * t{}HFCORECLK{}) — — ns IOVDD ≥ 3.0 V -13 + (WRHOLD * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -12 + (WRSETUP * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -10 + (WRSETUP * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -6 + (MAX(1, WRSTRB) * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -5 + (MAX(1, WRSTRB) * tHFCORECLK) — — ns Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn / EBI_NANDWEn edge1 EBI_WEn / EBI_NANDWEn pulse width1 tOSU_WEn tWIDTH_WEn Note: 1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of tWIDTH_WEn and increases the length of tOSU_WEn by 1/2 * tHFCLKNODIV. silabs.com | Building a more connected world. Rev. 1.2 | 75 EFM32GG11 Family Data Sheet Electrical Specifications WRSETUP (0, 1, 2, ...) EBI_BL[N-1:0] WRSTRB (1, 2, 3, ...) Z EBI_BL tOSU_WEn EBI_A[N-1:0] tOH_WEn Z EBI_A tOSU_WEn EBI_AD[15:0] WRHOLD (0, 1, 2, ...) tOH_WEn Z DATA[15:0] tOSU_WEn tOH_WEn tOSU_WEn tOH_WEn EBI_CSn EBI_WEn tWIDTH_WEn Figure 4.3. EBI Write Enable Output Timing Diagram silabs.com | Building a more connected world. Rev. 1.2 | 76 EFM32GG11 Family Data Sheet Electrical Specifications EBI Address Latch Enable Output Timing Timing applies to multiplexed addressing modes D8A24ALE and D16A16ALE for both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.37. EBI Address Latch Enable Output Timing Parameter Symbol Test Condition Min Typ Max Unit Output hold time, from trailing EBI_ALE edge to EBI_AD invalid1 2 tOH_ALEn IOVDD ≥ 1.62 V -22 + (ADDRHOLD * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -11 + (ADDRHOLD * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -12 — — ns IOVDD ≥ 3.0 V -9 — — ns IOVDD ≥ 1.62 V -4 + ((ADDRSETUP + 1) * t{}HFCORECLK{}) — — ns IOVDD ≥ 3.0 V -3 + ((ADDRSETUP + 1) * t{}HFCORECLK{}) — — ns Output setup time, from EBI_AD valid to leading EBI_ALE edge tOSU_ALEn EBI_ALEn pulse width1 tWIDTH_ALEn Note: 1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALEn can be moved to the left by setting HALFALE=1. This decreases the length of tWIDTH_ALEn and increases the length of tOSU_ALEn by tHFCORECLK - 1/2 * tHFCLKNODIV. 2. The figure shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state. silabs.com | Building a more connected world. Rev. 1.2 | 77 EFM32GG11 Family Data Sheet Electrical Specifications ADDRSETUP (1, 2, 3, ...) EBI_AD[15:0] ADDRHOLD (0, 1, 2, ...) ADDR[16:1] WRSETUP (0, 1, 2, ...) WRSTRB (1, 2, 3, ...) DATA[15:0] WRHOLD (0, 1, 2, ...) Z tWIDTH_ALEn EBI_ALE tWIDTH_ALEn tOSU_ALEn EBI_CSn EBI_WEn Figure 4.4. EBI Address Latch Enable Output Timing Diagram silabs.com | Building a more connected world. Rev. 1.2 | 78 EFM32GG11 Family Data Sheet Electrical Specifications EBI Read Enable Output Timing Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. Output timing for EBI_AD applies only to multiplexed addressing modes D8A24ALE and D16A16ALE. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.38. EBI Read Enable Output Timing Parameter Symbol Test Condition Min Typ Max Unit Output hold time, from trailing EBI_REn / EBI_NANDREn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid tOH_REn IOVDD ≥ 1.62 V -23 + (RDHOLD * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -13 + (RDHOLD * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -12 + (RDSETUP * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -11 + (RDSETUP * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -6 + (MAX(1, RDSTRB) * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -4 + (MAX(1, RDSTRB) * tHFCORECLK) — — ns Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_REn / EBI_NANDREn edge 1 tOSU_REn EBI_REn pulse width1 2 tWIDTH_REn Note: 1. The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of tWIDTH_REn and increases the length of tOSU_REn by 1/2 * tHFCLKNODIV. 2. When page mode is used, RDSTRB is replaced by RDPA for page hits. silabs.com | Building a more connected world. Rev. 1.2 | 79 EFM32GG11 Family Data Sheet Electrical Specifications RDSETUP (0, 1, 2, ...) EBI_BL[1:0] RDSTRB (1, 2, 3, ...) EBI_BL Z tSU_REn EBI_A[27:0] tH_REn EBI_A Z tH_REn tSU_REn EBI_AD[15:8] RDHOLD (0, 1, 2, ...) ADDR[7:0] Z tSU_REn tH_REn tSU_REn tH_REn EBI_CSn EBI_AD[7:0] EBI_REn Z DATA[7:0] Z tWIDTH_REn Figure 4.5. EBI Read Enable Output Timing Diagram silabs.com | Building a more connected world. Rev. 1.2 | 80 EFM32GG11 Family Data Sheet Electrical Specifications EBI TFT Output Timing All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.39. EBI TFT Output Timing Parameter Symbol Output hold time, EBI_DCLK tOH_DCLK to EBI_AD invalid Output setup time, EBI_AD valid to EBI_DCLK tOSU_DCLK Test Condition Min Typ Max Unit IOVDD ≥ 1.62 V -23 + (TFTHOLD * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -12 + (TFTHOLD * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -11 + (TFTSETUP * tHFCORECLK) — — ns IOVDD ≥ 3.0 V -9 + (TFTSETUP * tHFCORECLK) — — ns EBI_DCLK tOSU_DCLK EBI_AD DATA[15:0] tOH_DCLK DATA[15:0] DATA[15:0] Figure 4.6. EBI TFT Output Timing silabs.com | Building a more connected world. Rev. 1.2 | 81 EFM32GG11 Family Data Sheet Electrical Specifications EBI Read Enable Timing Requirements Timing applies to both EBI_REn and EBI_NANDREn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.40. EBI Read Enable Timing Requirements Parameter Symbol Test Condition Min Typ Max Unit Setup time, from EBI_AD valid to trailing EBI_REn edge tSU_REn IOVDD ≥ 1.62 V 55 — — ns IOVDD ≥ 3.0 V 36 — — ns IOVDD ≥ 1.62 V -9 — — ns Hold time, from trailing tH_REn EBI_REn edge to EBI_AD invalid RDSETUP (0, 1, 2, ...) EBI_A[N-1:0] ADDR[N:1] EBI_AD[15:0] Z RDSTRB (1, 2, 3, ...) RDHOLD (0, 1, 2, ...) Z DATA[15:0] Z EBI_CSn EBI_REn tSU_REn tH_REn Figure 4.7. EBI Read Enable Timing Requirements silabs.com | Building a more connected world. Rev. 1.2 | 82 EFM32GG11 Family Data Sheet Electrical Specifications EBI Ready/Wait Timing Requirements Timing applies to both EBI_REn and EBI_WEn for all addressing modes and both polarities. All numbers are based on route locations 0,1,2 only (with all EBI alternate functions using the same location at the same time). Timing is specified at 10% and 90% of IOVDD, 25 pF external loading, and slew rate for all GPIO set to 6. Table 4.41. EBI Ready/Wait Timing Requirements Parameter Symbol Test Condition Min Typ Max Unit Setup time, from EBI_ARDY valid to trailing EBI_REn, EBI_WEn edge tSU_ARDY IOVDD ≥ 1.62 V 55 + (3 * tHFCORECLK) — — ns IOVDD ≥ 3.0 V 36 + (3 * tHFCORECLK) — — ns IOVDD ≥ 1.62 V -9 — — ns Hold time, from trailing EBI_REn, EBI_WEn edge to EBI_ARDY invalid tH_ARDY RDSETUP (0, 1, 2, ...) RDSTRB (1, 2, 3, ...) SYNC (3) RDHOLD (0, 1, 2, ...) EBI_RDY EBI_AD[15:0] Z DATA[15:0] EBI_CSn tSU_ARDY EBI_REn tH_ARDY Figure 4.8. EBI Ready/Wait Timing Requirements silabs.com | Building a more connected world. Rev. 1.2 | 83 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.26 Ethernet (ETH) MII Transmit Timing Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated. Table 4.42. Ethernet MII Transmit Timing Parameter Symbol Test Condition Min Typ Max Unit TX_CLK frequency FTX_CLK Output slew rate set to 7 — 25 — MHz TX_CLK duty cycle DCTX_CLK 35 — 65 % Output delay, TX_CLK to TXD[3:0], TX_EN, TX_ER tOUT 0 — 25 ns TX_CLK TXD[3:0], TX_EN, TX_ER tOUT Figure 4.9. Ethernet MII Transmit Timing silabs.com | Building a more connected world. Rev. 1.2 | 84 EFM32GG11 Family Data Sheet Electrical Specifications MII Receive Timing Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated. Table 4.43. Ethernet MII Receive Timing Parameter Symbol RX_CLK frequency Test Condition Min Typ Max Unit FRX_CLK — 25 — MHz RX_CLK duty cycle DCRX_CLK 35 — 65 % Setup time, RXD[3:0], RX_DV, RX_ER valid to RX_CLK tSU 6 — — ns Hold time, RX_CLK to RXD[3:0], RX_DV, RX_ER change tHD 5 — — ns RX_CLK RXD[3:0], RX_DV, RX_ER tSU tHD Figure 4.10. Ethernet MII Receive Timing RMII Transmit Timing Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated. Table 4.44. Ethernet RMII Transmit Timing Parameter Symbol Test Condition Min Typ Max Unit REF_CLK frequency FREF_CLK Output slew rate set to 7 — 50 — MHz REF_CLK duty cycle DCREF_CLK 35 — 65 % Output delay, REF_CLK to TXD[1:0], TX_EN tOUT 2.3 — 14.1 ns REF_CLK TXD[1:0], TX_EN tOUT Figure 4.11. Ethernet RMII Transmit Timing silabs.com | Building a more connected world. Rev. 1.2 | 85 EFM32GG11 Family Data Sheet Electrical Specifications RMII Receive Timing Timing is specified with 3.0 V ≤ IOVDD ≤ 3.8 V, 25 pF external loading, and slew rate for all GPIO set to 6 unless otherwise indicated. Table 4.45. Ethernet RMII Receive Timing Parameter Symbol Test Condition Min Typ Max Unit REF_CLK frequency FREF_CLK Output slew rate set to 7 — 50 — MHz REF_CLK duty cycle DCREF_CLK 35 — 65 % Setup time, RXD[1:0], CRS_DV, RX_ER valid to REF_CLK tSU 4 — — ns Hold time, REF_CLK to RXD[1:0], CRS_DV, RX_ER change tHD 2 — — ns REF_CLK RXD[1:0], CRS_DV, RX_ER tSU tHD Figure 4.12. Ethernet RMII Receive Timing silabs.com | Building a more connected world. Rev. 1.2 | 86 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.27 Serial Data I/O Host Controller (SDIO) SDIO DS Mode Timing Timing is specified at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 40 pF on all pins. Table 4.46. SDIO DS Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 23 MHz Using HFXO — — 20.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 19.6 — — ns Using HFXO 19.1 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 19.6 — — ns Using HFXO 19.1 — — ns Clock rise time tR 1.4 — 4.9 ns Clock fall time tF 1.2 — 4.0 ns Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 7 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 0 — — ns Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY — — 18.6 ns 5 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Table 4.47. SDIO DS Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 14 MHz Using HFXO — — 13.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 32.3 — — ns Using HFXO 29.2 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 32.3 — — ns Using HFXO 29.2 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 1.4 — 4.9 ns Clock fall time tF 1.2 — 4.0 ns silabs.com | Building a more connected world. Rev. 1.2 | 87 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Input setup time, CMD, DAT[0:3] valid to SD_CLK Test Condition Min Typ Max Unit tISU 11.6 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 0 — — ns Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY — — 29.5 ns 5 — — ns Output hold time, SD_CLK to tOH CMD, DAT[0:3] change tWH tWL SD_CLK tIH tISU CMD, DAT[0:3] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:3] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.13. SDIO DS Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 88 EFM32GG11 Family Data Sheet Electrical Specifications SDIO HS Mode Timing Timing is specified at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30 pF on all pins. Table 4.48. SDIO HS Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 46 MHz Using HFXO — — 46 MHz Using HFRCO, AUXHFRCO, or USHFRCO 9.8 — — ns Using HFXO 8.2 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 9.8 — — ns Using HFXO 8.2 — — ns Clock rise time tR 0.8 — 3.0 ns Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 3.4 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY — — 14.4 ns 2 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Table 4.49. SDIO HS Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 30 MHz Using HFXO — — 30 MHz Using HFRCO, AUXHFRCO, or USHFRCO 15 — — ns 12.9 — — ns 15 — — ns 12.9 — — ns Clock low time tWL Using HFXO Clock high time tWH Using HFRCO, AUXHFRCO, or USHFRCO Using HFXO Clock rise time tR 0.8 — 3.0 ns Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 3.3 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 2.5 — — ns silabs.com | Building a more connected world. Rev. 1.2 | 89 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY Test Condition Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Min Typ Max Unit — — 22.9 ns 2 — — ns tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.14. SDIO HS Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 90 EFM32GG11 Family Data Sheet Electrical Specifications SDIO SDR Mode Timing Timing is specified at 1.62 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 0. Loading between 5 and 10 pF on all pins or between 10 and 40 pF on all pins. Table 4.50. SDIO SDR Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 26 MHz Using HFXO — — 26 MHz Using HFRCO, AUXHFRCO, or USHFRCO 17.3 — — ns Using HFXO 14.9 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 17.3 — — ns Using HFXO 14.9 — — ns Clock rise time tR 0.8 — 7.6 ns Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 5.1 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 1.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY — — 19.5 ns 0.8 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Table 4.51. SDIO SDR Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 23 MHz Using HFXO — — 23 MHz Using HFRCO, AUXHFRCO, or USHFRCO 19.6 — — ns Using HFXO 16.9 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 19.6 — — ns Using HFXO 16.9 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 0.8 — 7.6 ns Input setup time, CMD, DAT[0:3] valid to SD_CLK tISU 5.0 — — ns Input hold time, SD_CLK to CMD, DAT[0:3] change tIH 1.5 — — ns silabs.com | Building a more connected world. Rev. 1.2 | 91 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Output delay time, SD_CLK to CMD, DAT[0:3] valid tODLY Test Condition Output hold time, SD_CLK to tOH CMD, DAT[0:3] change Min Typ Max Unit — — 27.0 ns 0.8 — — ns tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.15. SDIO SDR Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 92 EFM32GG11 Family Data Sheet Electrical Specifications SDIO DDR Mode Timing Timing is specified at 1.62 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 6, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 30 pF on all pins. Table 4.52. SDIO DDR Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 20 MHz Using HFXO — — 17.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 22.6 — — ns Using HFXO 22.4 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 22.6 — — ns Using HFXO 22.4 — — ns Clock rise time tR 1.4 — 8.7 ns Clock fall time tF 1.2 — 6.4 ns Input setup time, CMD valid to SD_CLK tISU 7.4 — — ns Input hold time, SD_CLK to CMD change tIH 1.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 22.0 ns Output hold time, SD_CLK to tOH CMD change 2.0 — — ns Input setup time, DAT[0:3] valid to SD_CLK tISU2X 9.5 — — ns Input hold time, SD_CLK to DAT[0:3] change tIH2X 1.5 — — ns Output delay time, SD_CLK to DAT[0:3] valid tODLY2X — — 24.4 ns 2.0 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH2X DAT[0:3] change Table 4.53. SDIO DDR Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 12.5 MHz Using HFXO — — 12.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 36.1 — — ns Using HFXO 31.6 — — ns Clock low time tWL silabs.com | Building a more connected world. Rev. 1.2 | 93 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Clock high time tWH Using HFRCO, AUXHFRCO, or USHFRCO 36.1 — — ns Using HFXO 31.6 — — ns Clock rise time tR 1.4 — 8.7 ns Clock fall time tF 1.2 — 6.4 ns Input setup time, CMD valid to SD_CLK tISU 11.9 — — ns Input hold time, SD_CLK to CMD change tIH 1.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 29.6 ns Output hold time, SD_CLK to tOH CMD change 2.0 — — ns Input setup time, DAT[0:3] valid to SD_CLK tISU2X 14.1 — — ns Input hold time, SD_CLK to DAT[0:3] change tIH2X 1.5 — — ns Output delay time, SD_CLK to DAT[0:3] valid tODLY2X — — 36.2 ns 2.0 — — ns Output hold time, SD_CLK to tOH2X DAT[0:3] change tWL tWH SD_CLK tISU2X tIH2X DAT[0:3] xxxx Valid tISU2X tIH2X xxxx Valid xxxx Valid xxxx Not Valid xxxx tIH tISU CMD Valid Valid Not Valid Input Timing tWL tWH SD_CLK DAT[0:3] xxxx tODLY2X (max) tODLY2X (max) tODLY2X (min) tODLY2X (min) Valid xxxx Valid xxxx Valid Not Valid Valid xxxx tOH (min) tODLY (max) CMD xxxx Valid Not Valid Output Timing Figure 4.16. SDIO DDR Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 94 EFM32GG11 Family Data Sheet Electrical Specifications SDIO MMC Legacy Mode Timing Timing is specified with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins. Table 4.54. SDIO MMC Legacy Mode Timing (Location 0) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 26 MHz Using HFXO — — 26 MHz Using HFRCO, AUXHFRCO, or USHFRCO 17.3 — — ns Using HFXO 14.9 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 17.3 — — ns Using HFXO 14.9 — — ns Clock rise time tR 0.8 — 6.6 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 5.1 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY — — 17.7 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:7] change Table 4.55. SDIO MMC Legacy Mode Timing (Location 1) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 23 MHz Using HFXO — — 23 MHz Using HFRCO, AUXHFRCO, or USHFRCO 19.6 — — ns Using HFXO 16.9 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 19.6 — — ns Using HFXO 16.9 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 0.8 — 6.6 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 6.1 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY — — 29.7 ns silabs.com | Building a more connected world. Rev. 1.2 | 95 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Output hold time, SD_CLK to tOH CMD, DAT[0:7] change Min Typ Max Unit 3 — — ns tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.17. SDIO MMC Legacy Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 96 EFM32GG11 Family Data Sheet Electrical Specifications SDIO MMC SDR Mode Timing at 1.8 V Timing is specified at 1.62 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF, between 10 and 20 pF, or between 20 and 30 pF on all pins. Table 4.56. SDIO MMC SDR Mode Timing (Location 0, 1.62 V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 26 MHz Using HFXO — — 26 MHz Using HFRCO, AUXHFRCO, or USHFRCO 17.3 — — ns Using HFXO 14.9 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 17.3 — — ns Using HFXO 14.9 — — ns Clock rise time tR 1.1 — 6.6 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 5.1 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY — — 17.7 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:7] change Table 4.57. SDIO MMC SDR Mode Timing (Location 1, 1.62 V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 23 MHz Using HFXO — — 23 MHz Using HFRCO, AUXHFRCO, or USHFRCO 19.6 — — ns Using HFXO 16.9 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 19.6 — — ns Using HFXO 16.9 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 1.1 — 6.6 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 6.1 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns silabs.com | Building a more connected world. Rev. 1.2 | 97 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY Test Condition Min Typ Max Unit — — 29.7 ns 3 — — ns Output hold time, SD_CLK to tOH CMD, DAT[0:7] change tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.18. SDIO MMC SDR Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 98 EFM32GG11 Family Data Sheet Electrical Specifications SDIO MMC SDR Mode Timing at 3.0 V Timing is specified at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 20 pF on all pins. Table 4.58. SDIO MMC SDR Mode Timing (Location 0, 3 V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time tWL Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 50 MHz Using HFXO — — 50 MHz Using HFRCO, AUXHFRCO, or USHFRCO 9 — — ns 7.6 — — ns 9 — — ns 7.6 — — ns Using HFXO Clock high time tWH Using HFRCO, AUXHFRCO, or USHFRCO Using HFXO Clock rise time tR 0.8 — 2.5 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 3.4 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY — — 14 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH CMD, DAT[0:7] change Table 4.59. SDIO MMC SDR Mode Timing (Location 1, 3 V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 32 MHz Using HFXO — — 32 MHz Using HFRCO, AUXHFRCO, or USHFRCO 14.1 — — ns Using HFXO 12.1 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 14.1 — — ns Using HFXO 12.1 — — ns Clock low time Clock high time tWL tWH Clock rise time tR 0.8 — 2.5 ns Input setup time, CMD, DAT[0:7] valid to SD_CLK tISU 5.2 — — ns Input hold time, SD_CLK to CMD, DAT[0:7] change tIH 2.5 — — ns silabs.com | Building a more connected world. Rev. 1.2 | 99 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Output delay time, SD_CLK to CMD, DAT[0:7] valid tODLY Test Condition Min Typ Max Unit — — 24.9 ns 3 — — ns Output hold time, SD_CLK to tOH CMD, DAT[0:7] change tWH tWL SD_CLK tIH tISU CMD, DAT[0:7] Not Valid Valid Not Valid Input Timing SD_CLK tODLY (max) CMD, DAT[0:7] Not Valid tOH (min) Valid Not Valid Output Timing Figure 4.19. SDIO MMC SDR Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 100 EFM32GG11 Family Data Sheet Electrical Specifications SDIO MMC DDR Mode Timing at 1.8 V Timing is specified at 1.62 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins. Table 4.60. SDIO MMC DDR Mode Timing (Location 0, 1.62 V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 18 MHz Using HFXO — — 15.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 25.1 — — ns Using HFXO 25.4 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 25.1 — — ns Using HFXO 25.4 — — ns Clock rise time tR 0.8 — 6.1 ns Clock fall time tF 0.7 — 4.7 ns Input setup time, CMD valid to SD_CLK tISU 3.8 — — ns Input hold time, SD_CLK to CMD change tIH 2.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 20.1 ns 3 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:7] valid to SD_CLK tISU2X 7.4 — — ns Input hold time, SD_CLK to DAT[0:7] change tIH2X 2.5 — — ns Output delay time, SD_CLK to DAT[0:7] valid tODLY2X — — 22.7 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH2X DAT[0:7] change Table 4.61. SDIO MMC DDR Mode Timing (Location 1, 1.62 V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 12.5 MHz Using HFXO — — 11 MHz Using HFRCO, AUXHFRCO, or USHFRCO 36.1 — — ns Using HFXO 35.9 — — ns Clock low time tWL silabs.com | Building a more connected world. Rev. 1.2 | 101 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Clock high time tWH Using HFRCO, AUXHFRCO, or USHFRCO 36.1 — — ns Using HFXO 35.9 — — ns Clock rise time tR 0.8 — 6.1 ns Clock fall time tF 0.7 — 4.7 ns Input setup time, CMD valid to SD_CLK tISU 13.7 — — ns Input hold time, SD_CLK to CMD change tIH 2.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 33.1 ns 3 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:7] valid to SD_CLK tISU2X 16.4 — — ns Input hold time, SD_CLK to DAT[0:7] change tIH2X 2.5 — — ns Output delay time, SD_CLK to DAT[0:7] valid tODLY2X — — 40.4 ns 3 — — ns Output hold time, SD_CLK to tOH2X DAT[0:7] change tWL tWH SD_CLK tISU2X tIH2X DAT[0:7] xxxx Valid tISU2X tIH2X xxxx Valid xxxx Valid xxxx Not Valid xxxx tIH tISU CMD Valid Valid Not Valid Input Timing tWL tWH SD_CLK DAT[0:7] xxxx tODLY2X (max) tODLY2X (max) tODLY2X (min) tODLY2X (min) Valid xxxx Valid xxxx Valid Not Valid Valid xxxx tOH (min) tODLY (max) CMD xxxx Valid Not Valid Output Timing Figure 4.20. SDIO MMC DDR Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 102 EFM32GG11 Family Data Sheet Electrical Specifications SDIO MMC DDR Mode Timing at 3.0 V Timing is specified at 3.0 V IOVDD with voltage scaling disabled. Slew rate for SD_CLK set to 7, all other GPIO set to 6, DRIVESTRENGTH = STRONG for all pins. SDIO_CTRL_TXDLYMUXSEL = 1. Loading between 5 and 10 pF on all pins or between 10 and 25 pF on all pins. Table 4.62. SDIO MMC DDR Mode Timing (Location 0, 3 V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Clock low time Clock high time tWL tWH Min Typ Max Unit Using HFRCO, AUXHFRCO, or USHFRCO — — 20 MHz Using HFXO — — 17.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 22.6 — — ns Using HFXO 22.4 — — ns Using HFRCO, AUXHFRCO, or USHFRCO 22.6 — — ns Using HFXO 22.4 — — ns Clock rise time tR 0.8 — 2.8 ns Clock fall time tF 0.7 — 2.4 ns Input setup time, CMD valid to SD_CLK tISU 7.1 — — ns Input hold time, SD_CLK to CMD change tIH 2.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 20.7 ns 3 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:7] valid to SD_CLK tISU2X 10.1 — — ns Input hold time, SD_CLK to DAT[0:7] change tIH2X 2.5 — — ns Output delay time, SD_CLK to DAT[0:7] valid tODLY2X — — 23.7 ns 3 — — ns Min Typ Max Unit Output hold time, SD_CLK to tOH2X DAT[0:7] change Table 4.63. SDIO MMC DDR Mode Timing (Location 1, 3 V I/O) Parameter Symbol Test Condition Clock frequency during data transfer FSD_CLK Using HFRCO, AUXHFRCO, or USHFRCO — — 12.5 MHz Using HFXO — — 11.5 MHz Using HFRCO, AUXHFRCO, or USHFRCO 36.1 — — ns Using HFXO 34.3 — — ns Clock low time tWL silabs.com | Building a more connected world. Rev. 1.2 | 103 EFM32GG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Clock high time tWH Using HFRCO, AUXHFRCO, or USHFRCO 36.1 — — ns Using HFXO 34.3 — — ns Clock rise time tR 0.8 — 2.8 ns Clock fall time tF 0.7 — 2.4 ns Input setup time, CMD valid to SD_CLK tISU 11.6 — — ns Input hold time, SD_CLK to CMD change tIH 2.5 — — ns Output delay time, SD_CLK to CMD valid tODLY — — 29.3 ns 3 — — ns Output hold time, SD_CLK to tOH CMD change Input setup time, DAT[0:7] valid to SD_CLK tISU2X 14.7 — — ns Input hold time, SD_CLK to DAT[0:7] change tIH2X 2.5 — — ns Output delay time, SD_CLK to DAT[0:7] valid tODLY2X — — 38.6 ns 3 — — ns Output hold time, SD_CLK to tOH2X DAT[0:7] change tWL tWH SD_CLK tISU2X tIH2X DAT[0:7] xxxx Valid tISU2X tIH2X xxxx Valid xxxx Valid xxxx Not Valid xxxx tIH tISU CMD Valid Valid Not Valid Input Timing tWL tWH SD_CLK DAT[0:7] xxxx tODLY2X (max) tODLY2X (max) tODLY2X (min) tODLY2X (min) Valid xxxx Valid xxxx Valid Not Valid Valid xxxx tOH (min) tODLY (max) CMD xxxx Valid Not Valid Output Timing Figure 4.21. SDIO MMC DDR Mode Timing silabs.com | Building a more connected world. Rev. 1.2 | 104 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.28 Quad SPI (QSPI) 4.1.28.1 QSPI SDR Mode QSPI SDR Mode Timing (Location 0) Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 25, RX DLL = 61, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.64. QSPI SDR Mode Timing (Location 0) Parameter Symbol Full SCLK period T Output valid Test Condition Min Typ Max Unit (1/FSCLK) * 0.95 — — ns tOV — — T/2 - 2.3 ns Output hold tOH T/2 - 34.1 — — ns Input setup tSU 29.8 - T/2 — — ns Input hold tH T/2 - 0.5 — — ns QSPI SDR Mode Timing (Optimal Conditions) Timing is specified at IOVDD ≥ 3.0V, using internal HFRCO oscillator and with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 25, RX DLL = 43, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.65. QSPI SDR Mode Timing (Optimized at 3.0V, Location 0) Parameter Symbol Full SCLK period T Output valid Min Typ Max Unit (1/FSCLK) * 0.95 — — ns tOV — — T/2 - 2.4 ns Output hold tOH T/2 - 24.7 — — ns Input setup tSU 21.9 - T/2 — — ns Input hold tH T/2 - 4.6 — — ns silabs.com | Building a more connected world. Test Condition Rev. 1.2 | 105 EFM32GG11 Family Data Sheet Electrical Specifications QSPI SDR Mode Timing (Locations 1, 2) Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 37, RX DLL = 79, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.66. QSPI SDR Mode Timing (Locations 1, 2) Parameter Symbol Full SCLK period T Output valid Test Condition Min Typ Max Unit (1/FSCLK) * 0.95 — — ns tOV — — T/2 - 2.0 ns Output hold tOH T/2 - 44.1 — — ns Input setup tSU 38.2 - T/2 — — ns Input hold tH T/2 - 0.8 — — ns DQx Output Timing tOV SCLK tOH DQx DQx Input Timing SCLK tSU tH DQx Figure 4.22. QSPI SDR Timing Diagrams QSPI SDR Flash Timing Example This example uses timing values from SDR Mode Timing (Optimal Conditions) to demonstrate the calculation of allowable flash timing using the QSPI in SDR mode. • Using a configured SCLK frequency (FSCLK) of 33 MHz: • The resulting minimum period, T(min) = (1/FSCLK) * 0.95 = 28.8 ns. • Flash will see a minimum setup time of T/2 – tOV = T/2 – (T/2 – 2.4) = 2.4 ns. • Flash will see a minimum hold time of T/2 + tOH = T/2 + (T/2 – 24.7) = T – 24.7 = 28.8 – 24.7 = 4.1 ns. • Flash can have a maximum output valid time of T/2 – tSU = T/2 – (21.9 – T/2) = T – 21.9 = 28.8 – 21.9 = 6.9 ns. • Flash can have a minimum output hold time of tH – T/2 = (T/2 – 4.6) – T/2 = - 4.6 ns. silabs.com | Building a more connected world. Rev. 1.2 | 106 EFM32GG11 Family Data Sheet Electrical Specifications 4.1.28.2 QSPI DDR Mode QSPI DDR Mode Timing (Location 0) Timing is specified with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 35, RX DLL = 69, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.67. QSPI DDR Mode Timing (Location 0) Parameter Symbol Test Condition Min Typ Max Unit Half SCLK period T/2 HFXO (1/FSCLK) * 0.4 - 0.4 — — ns HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) * 0.44 — — ns Output valid tOV — — T/2 - 4.5 ns Output hold tOH T/2 - 39.4 — — ns Input setup tSU 33.7 — — ns Input hold tH -0.8 — — ns QSPI DDR Mode Timing (Optimal Conditions) Timing is specified at IOVDD ≥ 3.0V, using internal HFRCO oscillator and with voltage scaling disabled, PHY-mode, route location 0 only, TX DLL = 26, RX DLL = 60, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.68. QSPI DDR Mode Timing (Optimized at 3.0V, Location 0) Parameter Symbol Test Condition Typ Max Unit Half SCLK period T/2 HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) * 0.44 — — ns Output valid tOV — — T/2 - 2.5 ns Output hold tOH T/2 - 24.3 — — ns Input setup tSU 14.4 — — ns Input hold tH -0.9 — — ns silabs.com | Building a more connected world. Min Rev. 1.2 | 107 EFM32GG11 Family Data Sheet Electrical Specifications QSPI DDR Mode Timing (Locations 1, 2) Timing is specified with voltage scaling disabled, PHY-mode, route locations other than 0, TX DLL = 39, RX DLL = 84, 5-25 pF loading per GPIO, and slew rate for all GPIO set to 6, DRIVESTRENGTH = STRONG. Table 4.69. QSPI DDR Mode Timing (Locations 1, 2) Parameter Symbol Test Condition Min Typ Max Unit Half SCLK period T/2 HFXO (1/FSCLK) * 0.4 - 0.4 — — ns HFRCO, AUXHFRCO, USHFRCO (1/FSCLK) * 0.44 — — ns Output valid tOV — — T/2 - 3.0 ns Output hold tOH T/2 - 43.5 — — ns Input setup tSU 38.4 — — ns Input hold tH 0.0 — — ns DQx Output Timing tOV tOV SCLK tOH tOH DQx DQx Input Timing SCLK tSU tH tSU tH DQx Figure 4.23. QSPI DDR Timing Diagrams QSPI DDR Flash Timing Example This example uses timing values for DDR Mode Timing (Optimal Conditions) to demonstrate the calculation of allowable flash timing using the QSPI in DDR mode. • Using a configured SCLK frequency (FSCLK) of 17 MHz from the HFXO clock source: • The resulting minimum half-period, T/2(min) = (1/FSCLK) * 0.44 = 25.9 ns. • Flash will see a minimum setup time of T/2 – tOV = T/2 – (T/2 – 2.5) = 2.5 ns. • Flash will see a minimum hold time of tOH = T/2 – 24.3 = 25.9 – 24.3 = 1.6 ns. • Flash can have a maximum output valid time of T/2 – tSU = T/2 – 14.4 = 25.9 – 14.4 = 11.5 ns. • Flash can have a minimum output hold time of tH = - 0.9 ns. silabs.com | Building a more connected world. Rev. 1.2 | 108 EFM32GG11 Family Data Sheet Electrical Specifications 4.2 Typical Performance Curves Typical performance curves indicate typical characterized performance under the stated conditions. silabs.com | Building a more connected world. Rev. 1.2 | 109 EFM32GG11 Family Data Sheet Electrical Specifications 4.2.1 Supply Current Figure 4.24. EM0 Full Speed Active Mode Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.2 | 110 EFM32GG11 Family Data Sheet Electrical Specifications Figure 4.25. EM0 Active Mode Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.2 | 111 EFM32GG11 Family Data Sheet Electrical Specifications Figure 4.26. EM1 Sleep Mode Typical Supply Current vs. Temperature Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.2 | 112 EFM32GG11 Family Data Sheet Electrical Specifications Figure 4.27. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.2 | 113 EFM32GG11 Family Data Sheet Electrical Specifications Figure 4.28. EM0 and EM1 Mode Typical Supply Current vs. Supply Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.2 | 114 EFM32GG11 Family Data Sheet Electrical Specifications Figure 4.29. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply silabs.com | Building a more connected world. Rev. 1.2 | 115 EFM32GG11 Family Data Sheet Electrical Specifications 4.2.2 DC-DC Converter Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz Figure 4.30. DC-DC Converter Typical Performance Characteristics silabs.com | Building a more connected world. Rev. 1.2 | 116 EFM32GG11 Family Data Sheet Electrical Specifications Load Step Response in LN (CCM) mode (Heavy Drive) LN (CCM) and LP mode transition (load: 5mA) DVDD DVDD 60mV/div offset:1.8V 20mV/div offset:1.8V 100mA VSW ILOAD 1mA 2V/div offset:1.8V 100μs/div 10μs/div Figure 4.31. DC-DC Converter Transition Waveforms silabs.com | Building a more connected world. Rev. 1.2 | 117 EFM32GG11 Family Data Sheet Pin Definitions 5. Pin Definitions 5.1 EFM32GG11B8xx in BGA192 Device Pinout Figure 5.1. EFM32GG11B8xx in BGA192 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.1. EFM32GG11B8xx in BGA192 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA15 A1 GPIO PE15 A2 GPIO PE14 A3 GPIO PE13 A4 GPIO PE12 A5 GPIO PE11 A6 GPIO PE10 A7 GPIO PE9 A8 GPIO PE8 A9 GPIO PI9 A10 GPIO (5V) PI6 A11 GPIO (5V) PF14 A12 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 118 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description VBUS A13 USB VBUS signal and auxiliary input to 5 V regulator. PF11 A14 GPIO (5V) PF10 A15 GPIO (5V) PF0 A16 GPIO (5V) PA0 B1 GPIO PD11 B2 GPIO PD10 B3 GPIO PD9 B4 GPIO PF9 B5 GPIO PF8 B6 GPIO PF7 B7 GPIO PF6 B8 GPIO PI11 B9 GPIO (5V) PI8 B10 GPIO (5V) PF5 B11 GPIO PF13 B12 GPIO (5V) PF3 B13 GPIO PF2 B14 GPIO PF1 B15 GPIO (5V) VREGO B16 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PA1 C1 GPIO PD12 C2 GPIO PD14 C3 GPIO (5V) PD13 C4 GPIO (5V) PI15 C5 GPIO (5V) PI14 C6 GPIO (5V) PI13 C7 GPIO (5V) PI12 C8 GPIO (5V) PI10 C9 GPIO (5V) PI7 C10 GPIO (5V) PF15 C11 GPIO (5V) PF12 C12 GPIO PF4 C13 GPIO PC15 C14 GPIO (5V) PC14 C15 GPIO (5V) VREGI C16 Input to 5 V regulator. PA2 D1 GPIO PG0 D2 GPIO (5V) PD15 D3 GPIO (5V) PC13 D14 GPIO (5V) PC12 D15 GPIO (5V) PC11 D16 GPIO (5V) PA3 E1 GPIO PG2 E2 GPIO (5V) PG1 E3 GPIO (5V) PC10 E14 GPIO (5V) PC9 E15 GPIO (5V) PC8 E16 GPIO (5V) PA4 F1 GPIO PG4 F2 GPIO (5V) PG3 F3 GPIO (5V) IOVDD2 F6 G6 Digital IO power supply 2. silabs.com | Building a more connected world. Rev. 1.2 | 119 EFM32GG11 Family Data Sheet Pin Definitions Pin Name IOVDD1 Pin(s) F7 G7 Description Digital IO power supply 1. Pin Name Pin(s) Description VSS F8 G8 G9 H6 H7 H8 H9 H10 H11 J6 J7 J8 J9 J10 J11 K8 K9 L8 L9 Ground IOVDD0 F10 F11 G10 G11 K6 K7 K10 K11 L6 L7 L10 L11 Digital IO power supply 0. NC F9 No Connect. PI5 F14 GPIO (5V) PI4 F15 GPIO (5V) PI3 F16 GPIO (5V) PA5 G1 GPIO PG6 G2 GPIO (5V) PG5 G3 GPIO (5V) PI2 G14 GPIO (5V) PI1 G15 GPIO (5V) PI0 G16 GPIO (5V) PA6 H1 GPIO PG8 H2 GPIO (5V) PG7 H3 GPIO (5V) PE5 H14 GPIO PE6 H15 GPIO PE7 H16 GPIO PG11 J1 GPIO (5V) PG10 J2 GPIO (5V) PG9 J3 GPIO (5V) PE3 J14 GPIO PE4 J15 GPIO DECOUPLE J16 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PG14 K1 GPIO PG13 K2 GPIO PG12 K3 GPIO PE1 K14 GPIO (5V) PE2 K15 GPIO DVDD K16 Digital power supply. PG15 L1 GPIO (5V) PB15 L2 GPIO (5V) PB0 L3 GPIO PE0 L14 GPIO (5V) PC7 L15 GPIO VREGVDD L16 Voltage regulator VDD input PB1 M1 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 120 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 M2 GPIO PB3 M3 GPIO PC6 M14 GPIO VREGVSS M15 N16 Voltage regulator VSS VREGSW M16 DCDC regulator switching node PB4 N1 GPIO PB5 N2 GPIO PB6 N3 GPIO PD5 N14 GPIO PD4 N15 GPIO PC0 P1 GPIO (5V) PC1 P2 GPIO (5V) PC2 P3 GPIO (5V) PA8 P4 GPIO PA11 P5 GPIO PA13 P6 GPIO (5V) PB9 P7 GPIO (5V) PB12 P8 GPIO PH2 P9 GPIO (5V) PH5 P10 GPIO PH8 P11 GPIO (5V) PH11 P12 GPIO (5V) PH13 P13 GPIO (5V) PD0 P14 GPIO (5V) PD3 P15 GPIO PD8 P16 GPIO PB7 R1 GPIO PC3 R2 GPIO (5V) PC5 R3 GPIO PA9 R4 GPIO BODEN R5 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. RESETn R6 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB10 R7 GPIO (5V) PH0 R8 GPIO (5V) PH3 R9 GPIO (5V) PH6 R10 GPIO PH9 R11 GPIO (5V) PH12 R12 GPIO (5V) PH14 R13 GPIO (5V) PH15 R14 GPIO (5V) PD2 R15 GPIO (5V) PD7 R16 GPIO PB8 T1 GPIO PC4 T2 GPIO PA7 T3 GPIO PA10 T4 GPIO PA12 T5 GPIO (5V) PA14 T6 GPIO PB11 T7 GPIO PH1 T8 GPIO (5V) PH4 T9 GPIO PH7 T10 GPIO (5V) PH10 T11 GPIO (5V) PB13 T12 GPIO PB14 T13 GPIO AVDD T14 Analog power supply. PD1 T15 GPIO PD6 T16 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 121 EFM32GG11 Family Data Sheet Pin Definitions 5.2 EFM32GG11B8xx in BGA152 Device Pinout Figure 5.2. EFM32GG11B8xx in BGA152 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.2. EFM32GG11B8xx in BGA152 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE13 A2 GPIO PE11 A3 GPIO PE9 A4 GPIO PD12 A5 GPIO PD10 A6 GPIO PF9 A7 GPIO PF7 A8 GPIO PF13 A9 GPIO (5V) VBUS A10 USB VBUS signal and auxiliary input to 5 V regulator. PF1 A11 GPIO (5V) PC15 A12 GPIO (5V) PF11 A13 GPIO (5V) PF10 A14 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 122 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PA15 B1 GPIO PE14 B2 GPIO PE12 B3 GPIO PE8 B4 GPIO PD11 B5 GPIO PD9 B6 GPIO PF8 B7 GPIO PF6 B8 GPIO PF14 B9 GPIO (5V) PF12 B10 GPIO PF2 B11 GPIO PF0 B12 GPIO (5V) PC14 B13 GPIO (5V) VREGO B14 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PA1 C1 GPIO PA0 C2 GPIO PD13 C3 GPIO (5V) PE10 C4 GPIO PI8 C5 GPIO (5V) PI7 C6 GPIO (5V) PI6 C7 GPIO (5V) PF5 C8 GPIO PF15 C9 GPIO (5V) PF4 C10 GPIO PF3 C11 GPIO PC13 C12 GPIO (5V) PC12 C13 GPIO (5V) VREGI C14 Input to 5 V regulator. PA3 D1 GPIO PA2 D2 GPIO PD14 D3 GPIO (5V) PC11 D12 GPIO (5V) PC10 D13 GPIO (5V) PC9 D14 GPIO (5V) PA5 E1 GPIO PA4 E2 GPIO PD15 E3 GPIO (5V) IOVDD1 E6 Digital IO power supply 1. VSS E7 E8 G5 G7 G8 G10 H5 H7 H8 H10 K7 K8 Ground IOVDD0 E9 F10 J5 J10 K6 K9 Digital IO power supply 0. PC8 E12 GPIO (5V) PI5 E13 GPIO (5V) PI4 E14 GPIO (5V) PG0 F1 GPIO (5V) PA6 F2 GPIO PG1 F3 GPIO (5V) IOVDD2 F5 Digital IO power supply 2. PI3 F12 GPIO (5V) PI2 F13 GPIO (5V) PI1 F14 GPIO (5V) PG3 G1 GPIO (5V) PG4 G2 GPIO (5V) PG2 G3 GPIO (5V) PE7 G12 GPIO PI0 G13 GPIO (5V) DECOUPLE G14 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. silabs.com | Building a more connected world. Rev. 1.2 | 123 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PG6 H1 GPIO (5V) PG7 H2 GPIO (5V) PG5 H3 GPIO (5V) PE6 H12 GPIO PE5 H13 GPIO DVDD H14 Digital power supply. PG9 J1 GPIO (5V) PG10 J2 GPIO (5V) PG8 J3 GPIO (5V) PE3 J12 GPIO PE4 J13 GPIO VREGVDD J14 Voltage regulator VDD input PG12 K1 GPIO PG13 K2 GPIO PG11 K3 GPIO (5V) PE2 K12 GPIO PE1 K13 GPIO (5V) VREGSW K14 DCDC regulator switching node PG15 L1 GPIO (5V) PB15 L2 GPIO (5V) PG14 L3 GPIO PC7 L12 GPIO PE0 L13 GPIO (5V) VREGVSS L14 Voltage regulator VSS PB0 M1 GPIO PB1 M2 GPIO PB4 M3 GPIO PC0 M4 GPIO (5V) PC3 M5 GPIO (5V) PA9 M6 GPIO BODEN M7 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. PA12 M8 GPIO (5V) RESETn M9 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB10 M10 GPIO (5V) PD1 M11 GPIO PC6 M12 GPIO PD5 M13 GPIO PD8 M14 GPIO PB7 N1 GPIO PB2 N2 GPIO PB5 N3 GPIO PC2 N4 GPIO (5V) PC5 N5 GPIO PA8 N6 GPIO PA11 N7 GPIO PA14 N8 GPIO PB11 N9 GPIO PB12 N10 GPIO PD0 N11 GPIO (5V) PD2 N12 GPIO (5V) PD4 N13 GPIO PD7 N14 GPIO PB8 P1 GPIO PB3 P2 GPIO PB6 P3 GPIO PC1 P4 GPIO (5V) PC4 P5 GPIO PA7 P6 GPIO PA10 P7 GPIO PA13 P8 GPIO (5V) PB9 P9 GPIO (5V) PB13 P10 GPIO PB14 P11 GPIO AVDD P12 Analog power supply. PD3 P13 GPIO PD6 P14 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 124 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 125 EFM32GG11 Family Data Sheet Pin Definitions 5.3 EFM32GG11B8xx in BGA120 Device Pinout Figure 5.3. EFM32GG11B8xx in BGA120 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.3. EFM32GG11B8xx in BGA120 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD11 A5 GPIO PD9 A6 GPIO PF7 A7 GPIO PF5 A8 GPIO PF14 A9 GPIO (5V) PF12 A10 GPIO VREGI A11 Input to 5 V regulator. VREGO A12 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs silabs.com | Building a more connected world. Rev. 1.2 | 126 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF11 A13 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO PE8 B4 GPIO PD12 B5 GPIO PD10 B6 GPIO PF8 B7 GPIO PF6 B8 GPIO PF13 B9 GPIO (5V) PF4 B10 GPIO PF3 B11 GPIO VBUS B12 USB VBUS signal and auxiliary input to 5 V regulator. PF10 B13 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) VSS C5 C8 H3 J3 K11 L5 L8 Ground IOVDD1 C6 Digital IO power supply 1. Digital IO power supply 0. PF9 C7 GPIO IOVDD0 C9 J11 K3 L4 L9 PF2 C10 GPIO PF1 C11 GPIO (5V) PC14 C12 GPIO (5V) PC15 C13 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) PF0 D11 GPIO (5V) PC12 D12 GPIO (5V) PC13 D13 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PC9 E11 GPIO (5V) PC10 E12 GPIO (5V) PC11 E13 GPIO (5V) PB0 F1 GPIO PB1 F2 GPIO PB2 F3 GPIO PE6 F11 GPIO PE7 F12 GPIO PC8 F13 GPIO (5V) PB3 G1 GPIO PB4 G2 GPIO IOVDD2 G3 Digital IO power supply 2. PE3 G11 GPIO PE4 G12 GPIO PE5 G13 GPIO PB5 H1 GPIO PB6 H2 GPIO DVDD H11 Digital power supply. PE2 H12 GPIO DECOUPLE H13 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PD14 J1 GPIO (5V) PD15 J2 PE1 J12 GPIO (5V) GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 127 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description VREGVDD J13 Voltage regulator VDD input PC0 K1 GPIO (5V) PC1 K2 GPIO (5V) PE0 K12 GPIO (5V) VREGSW K13 DCDC regulator switching node PC2 L1 GPIO (5V) PC3 L2 GPIO (5V) PA7 L3 GPIO PB9 L6 GPIO (5V) PB10 L7 GPIO (5V) PD1 L10 GPIO PC6 L11 GPIO PC7 L12 GPIO VREGVSS L13 Voltage regulator VSS PB7 M1 GPIO PC4 M2 GPIO PA8 M3 GPIO PA10 M4 GPIO PA13 M5 GPIO (5V) PA14 M6 GPIO RESETn M7 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB12 M8 GPIO PD0 M9 GPIO (5V) PD2 M10 GPIO (5V) PD3 M11 GPIO PD4 M12 GPIO PD8 M13 GPIO PB8 N1 GPIO PC5 N2 GPIO PA9 N3 GPIO PA11 N4 GPIO PA12 N5 GPIO (5V) PB11 N6 GPIO BODEN N7 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. PB13 N8 GPIO PB14 N9 GPIO AVDD N10 Analog power supply. PD5 N11 GPIO PD6 N12 GPIO PD7 N13 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 128 EFM32GG11 Family Data Sheet Pin Definitions 5.4 EFM32GG11B5xx in BGA120 Device Pinout Figure 5.4. EFM32GG11B5xx in BGA120 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.4. EFM32GG11B5xx in BGA120 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD11 A5 GPIO PD9 A6 GPIO PF7 A7 GPIO PF5 A8 GPIO PF14 A9 GPIO (5V) PF12 A10 GPIO VREGI A11 Input to 5 V regulator. VREGO A12 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs silabs.com | Building a more connected world. Rev. 1.2 | 129 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF11 A13 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO PE8 B4 GPIO PD12 B5 GPIO PD10 B6 GPIO PF8 B7 GPIO PF6 B8 GPIO PF13 B9 GPIO (5V) PF4 B10 GPIO PF3 B11 GPIO NC B12 No Connect. PF10 B13 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) VSS C5 C8 H3 J3 K11 L5 L8 Ground IOVDD1 C6 Digital IO power supply 1. Digital IO power supply 0. PF9 C7 GPIO IOVDD0 C9 J11 K3 L4 L9 PF2 C10 GPIO PF1 C11 GPIO (5V) PC14 C12 GPIO (5V) PC15 C13 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) PF0 D11 GPIO (5V) PC12 D12 GPIO (5V) PC13 D13 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PC9 E11 GPIO (5V) PC10 E12 GPIO (5V) PC11 E13 GPIO (5V) PB0 F1 GPIO PB1 F2 GPIO PB2 F3 GPIO PE6 F11 GPIO PE7 F12 GPIO PC8 F13 GPIO (5V) PB3 G1 GPIO PB4 G2 GPIO IOVDD2 G3 Digital IO power supply 2. PE3 G11 GPIO PE4 G12 GPIO PE5 G13 GPIO PB5 H1 GPIO PB6 H2 GPIO DVDD H11 Digital power supply. PE2 H12 GPIO DECOUPLE H13 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PD14 J1 GPIO (5V) PD15 J2 GPIO (5V) PE1 J12 GPIO (5V) VREGVDD J13 Voltage regulator VDD input PC0 K1 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 130 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC1 K2 GPIO (5V) PE0 K12 GPIO (5V) VREGSW K13 DCDC regulator switching node PC2 L1 GPIO (5V) PC3 L2 GPIO (5V) PA7 L3 GPIO PB9 L6 GPIO (5V) PB10 L7 GPIO (5V) PD1 L10 GPIO PC6 L11 GPIO PC7 L12 GPIO VREGVSS L13 Voltage regulator VSS PB7 M1 GPIO PC4 M2 GPIO PA8 M3 GPIO PA10 M4 GPIO PA13 M5 GPIO (5V) PA14 M6 GPIO RESETn M7 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB12 M8 GPIO PD0 M9 GPIO (5V) PD2 M10 GPIO (5V) PD3 M11 GPIO PD4 M12 GPIO PD8 M13 GPIO PB8 N1 GPIO PC5 N2 GPIO PA9 N3 GPIO PA11 N4 GPIO PA12 N5 GPIO (5V) PB11 N6 GPIO BODEN N7 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. PB13 N8 GPIO PB14 N9 GPIO AVDD N10 Analog power supply. PD5 N11 GPIO PD6 N12 GPIO PD7 N13 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 131 EFM32GG11 Family Data Sheet Pin Definitions 5.5 EFM32GG11B4xx in BGA120 Device Pinout Figure 5.5. EFM32GG11B4xx in BGA120 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.5. EFM32GG11B4xx in BGA120 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD11 A5 GPIO PD9 A6 GPIO PF7 A7 GPIO PF5 A8 GPIO PF4 A9 GPIO PF2 A10 GPIO VREGI A11 Input to 5 V regulator. VREGO A12 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs silabs.com | Building a more connected world. Rev. 1.2 | 132 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF11 A13 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO PE8 B4 GPIO PD12 B5 GPIO PD10 B6 GPIO PF8 B7 GPIO PF6 B8 GPIO PF3 B9 GPIO PF1 B10 GPIO (5V) PF12 B11 GPIO VBUS B12 USB VBUS signal and auxiliary input to 5 V regulator. PF10 B13 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) VSS C5 C8 H3 J3 K11 K12 L5 L6 M8 M11 N8 IOVDD1 C6 Digital IO power supply 1. IOVDD0 C9 J11 K3 L4 L7 Digital IO power supply 0. Ground PF9 C7 GPIO PF0 C10 GPIO (5V) PE4 C11 GPIO PC14 C12 GPIO (5V) PC15 C13 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) PE5 D11 GPIO PC12 D12 GPIO (5V) PC13 D13 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PE6 E11 GPIO PC10 E12 GPIO (5V) PC11 E13 GPIO (5V) PB0 F1 GPIO PB1 F2 GPIO PB2 F3 GPIO PE7 F11 GPIO PC8 F12 GPIO (5V) PC9 F13 GPIO (5V) PB3 G1 GPIO PB4 G2 GPIO IOVDD2 G3 Digital IO power supply 2. PE0 G11 GPIO (5V) PE1 G12 GPIO (5V) PE3 G13 GPIO PB5 H1 GPIO PB6 H2 GPIO DVDD H11 Digital power supply. PE2 H12 GPIO PC7 H13 GPIO PD14 J1 silabs.com | Building a more connected world. GPIO (5V) Rev. 1.2 | 133 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PD15 J2 GPIO (5V) PC6 J12 GPIO DECOUPLE J13 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PC0 K1 GPIO (5V) PC1 K2 GPIO (5V) PD8 K13 GPIO PC2 L1 GPIO (5V) PC3 L2 GPIO (5V) PA7 L3 GPIO PB9 L8 GPIO (5V) PB10 L9 GPIO (5V) PD0 L10 GPIO (5V) PD1 L11 GPIO PD4 L12 GPIO PD7 L13 GPIO PB7 M1 GPIO PC4 M2 GPIO PA8 M3 GPIO PA10 M4 GPIO PA13 M5 GPIO (5V) RESETn M7 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PA14 M6 GPIO AVDD M9 M10 N11 Analog power supply. PD3 M12 GPIO PD6 M13 GPIO PB8 N1 GPIO PC5 N2 GPIO PA9 N3 GPIO PA11 N4 GPIO PA12 N5 GPIO (5V) PB11 N6 GPIO PB12 N7 GPIO PB13 N9 GPIO PB14 N10 GPIO PD2 N12 GPIO (5V) PD5 N13 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 134 EFM32GG11 Family Data Sheet Pin Definitions 5.6 EFM32GG11B4xx in BGA112 Device Pinout Figure 5.6. EFM32GG11B4xx in BGA112 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.6. EFM32GG11B4xx in BGA112 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD10 A5 GPIO PF7 A6 GPIO PF5 A7 GPIO PF12 A8 GPIO PE4 A9 GPIO PF10 A10 GPIO (5V) PF11 A11 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 135 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PE8 B4 GPIO PD11 B5 GPIO PF8 B6 GPIO PF6 B7 GPIO VBUS B8 USB VBUS signal and auxiliary input to 5 V regulator. PE5 B9 GPIO VREGI B10 Input to 5 V regulator. VREGO B11 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) PD12 C5 GPIO PF9 C6 GPIO VSS C7 D4 F9 G3 G9 H6 K4 K7 K10 L7 Ground PF2 C8 GPIO PE6 C9 GPIO PC10 C10 GPIO (5V) PC11 C11 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) IOVDD1 D5 Digital IO power supply 1. PD9 D6 GPIO IOVDD0 D7 G8 H7 L4 Digital IO power supply 0. PF1 D8 GPIO (5V) PE7 D9 GPIO PC8 D10 GPIO (5V) PC9 D11 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PB0 E4 GPIO PF0 E8 GPIO (5V) PE0 E9 GPIO (5V) PE1 E10 GPIO (5V) PE3 E11 GPIO PB1 F1 GPIO PB2 F2 GPIO PB3 F3 GPIO PB4 F4 GPIO DVDD F8 Digital power supply. PE2 F10 GPIO DECOUPLE F11 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PB5 G1 GPIO PB6 G2 GPIO IOVDD2 G4 Digital IO power supply 2. PC6 G10 GPIO PC7 G11 GPIO PC0 H1 GPIO (5V) PC2 H2 GPIO (5V) PD14 H3 GPIO (5V) PA7 H4 GPIO PA8 H5 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 136 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PD8 H8 GPIO PD5 H9 GPIO PD6 H10 GPIO PD7 H11 GPIO PC1 J1 GPIO (5V) PC3 J2 GPIO (5V) PD15 J3 GPIO (5V) PA12 J4 GPIO (5V) PA9 J5 GPIO PA10 J6 GPIO PB9 J7 GPIO (5V) PB10 J8 GPIO (5V) PD2 J9 GPIO (5V) PD3 J10 GPIO PD4 J11 GPIO PB7 K1 GPIO PC4 K2 GPIO PA13 K3 GPIO (5V) RESETn K6 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PA11 K5 GPIO AVDD K8 K9 L10 Analog power supply. PD1 K11 GPIO PB8 L1 GPIO PC5 L2 GPIO PA14 L3 GPIO PB11 L5 GPIO PB12 L6 GPIO PB13 L8 GPIO PB14 L9 GPIO PD0 L11 GPIO (5V) Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 137 EFM32GG11 Family Data Sheet Pin Definitions 5.7 EFM32GG11B3xx in BGA112 Device Pinout Figure 5.7. EFM32GG11B3xx in BGA112 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.7. EFM32GG11B3xx in BGA112 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PE15 A1 GPIO PE14 A2 GPIO PE12 A3 GPIO PE9 A4 GPIO PD10 A5 GPIO PF7 A6 GPIO PF5 A7 GPIO PF4 A8 GPIO PE4 A9 GPIO PC14 A10 GPIO (5V) PC15 A11 GPIO (5V) PA15 B1 GPIO PE13 B2 GPIO PE11 B3 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 138 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PE8 B4 GPIO PD11 B5 GPIO PF8 B6 GPIO PF6 B7 GPIO PF3 B8 GPIO PE5 B9 GPIO PC12 B10 GPIO (5V) PC13 B11 GPIO (5V) PA1 C1 GPIO PA0 C2 GPIO PE10 C3 GPIO PD13 C4 GPIO (5V) PD12 C5 GPIO PF9 C6 GPIO VSS C7 D4 F9 G3 G9 H6 K4 K7 K10 L7 Ground PF2 C8 GPIO PE6 C9 GPIO PC10 C10 GPIO (5V) PC11 C11 GPIO (5V) PA3 D1 GPIO PA2 D2 GPIO PB15 D3 GPIO (5V) IOVDD1 D5 Digital IO power supply 1. PD9 D6 GPIO IOVDD0 D7 G8 H7 L4 Digital IO power supply 0. PF1 D8 GPIO (5V) PE7 D9 GPIO PC8 D10 GPIO (5V) PC9 D11 GPIO (5V) PA6 E1 GPIO PA5 E2 GPIO PA4 E3 GPIO PB0 E4 GPIO PF0 E8 GPIO (5V) PE0 E9 GPIO (5V) PE1 E10 GPIO (5V) PE3 E11 GPIO PB1 F1 GPIO PB2 F2 GPIO PB3 F3 GPIO PB4 F4 GPIO DVDD F8 Digital power supply. PE2 F10 GPIO DECOUPLE F11 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PB5 G1 GPIO PB6 G2 GPIO IOVDD2 G4 Digital IO power supply 2. PC6 G10 GPIO PC7 G11 GPIO PC0 H1 GPIO (5V) PC2 H2 GPIO (5V) PD14 H3 GPIO (5V) PA7 H4 GPIO PA8 H5 GPIO PD8 H8 GPIO PD5 H9 GPIO PD6 H10 GPIO PD7 H11 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 139 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC1 J1 GPIO (5V) PC3 J2 GPIO (5V) PD15 J3 GPIO (5V) PA12 J4 GPIO (5V) PA9 J5 GPIO PA10 J6 GPIO PB9 J7 GPIO (5V) PB10 J8 GPIO (5V) PD2 J9 GPIO (5V) PD3 J10 GPIO PD4 J11 GPIO PB7 K1 GPIO PC4 K2 GPIO PA13 K3 GPIO (5V) RESETn K6 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PA11 K5 GPIO AVDD K8 K9 L10 Analog power supply. PD1 K11 GPIO PB8 L1 GPIO PC5 L2 GPIO PA14 L3 GPIO PB11 L5 GPIO PB12 L6 GPIO PB13 L8 GPIO PB14 L9 GPIO PD0 L11 GPIO (5V) Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.2 | 140 EFM32GG11 Family Data Sheet Pin Definitions 5.8 EFM32GG11B8xx in QFP100 Device Pinout Figure 5.8. EFM32GG11B8xx in QFP100 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.8. EFM32GG11B8xx in QFP100 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO Digital IO power supply 0. GPIO PA6 7 GPIO IOVDD0 8 17 31 44 82 PB0 9 GPIO PB1 10 silabs.com | Building a more connected world. Rev. 1.2 | 141 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 11 GPIO PB3 12 GPIO PB4 13 GPIO PB5 14 GPIO Ground PB6 15 GPIO VSS 16 32 59 83 PC0 18 GPIO (5V) PC1 19 GPIO (5V) PC2 20 GPIO (5V) PC3 21 GPIO (5V) PC4 22 GPIO PC5 23 GPIO PB7 24 GPIO PB8 25 GPIO PA7 26 GPIO PA8 27 GPIO PA9 28 GPIO PA10 29 GPIO PA11 30 GPIO PA12 33 GPIO (5V) PA13 34 GPIO (5V) PA14 35 GPIO RESETn 36 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB9 37 GPIO (5V) PB10 38 GPIO (5V) PB11 39 GPIO PB12 40 GPIO AVDD 41 Analog power supply. PB13 42 GPIO PB14 43 GPIO PD0 45 GPIO (5V) PD1 46 GPIO PD2 47 GPIO (5V) PD3 48 GPIO PD4 49 GPIO PD5 50 GPIO PD6 51 GPIO PD7 52 GPIO PD8 53 GPIO PC7 54 GPIO VREGVSS 55 Voltage regulator VSS VREGSW 56 DCDC regulator switching node VREGVDD 57 Voltage regulator VDD input DVDD 58 Digital power supply. DECOUPLE 60 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE1 61 GPIO (5V) PE2 62 GPIO PE3 63 GPIO PE4 64 GPIO PE5 65 GPIO PE6 66 GPIO PE7 67 GPIO PC8 68 GPIO (5V) PC9 69 GPIO (5V) PC10 70 GPIO (5V) PC11 71 GPIO (5V) VREGI 72 Input to 5 V regulator. VREGO 73 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 74 GPIO (5V) PF11 75 GPIO (5V) PF0 76 GPIO (5V) PF1 77 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 142 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF2 78 GPIO VBUS 79 USB VBUS signal and auxiliary input to 5 V regulator. PF12 80 GPIO PF5 81 GPIO PF6 84 GPIO PF7 85 GPIO PF8 86 GPIO PF9 87 GPIO PD9 88 GPIO PD10 89 GPIO PD11 90 GPIO PD12 91 GPIO PE8 92 GPIO PE9 93 GPIO PE10 94 GPIO PE11 95 GPIO PE12 96 GPIO PE13 97 GPIO PE14 98 GPIO PE15 99 GPIO PA15 100 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 143 EFM32GG11 Family Data Sheet Pin Definitions 5.9 EFM32GG11B5xx in QFP100 Device Pinout Figure 5.9. EFM32GG11B5xx in QFP100 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.9. EFM32GG11B5xx in QFP100 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO Digital IO power supply 0. GPIO PA6 7 GPIO IOVDD0 8 17 31 44 82 PB0 9 GPIO PB1 10 silabs.com | Building a more connected world. Rev. 1.2 | 144 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 11 GPIO PB3 12 GPIO PB4 13 GPIO PB5 14 GPIO Ground PB6 15 GPIO VSS 16 32 59 83 PC0 18 GPIO (5V) PC1 19 GPIO (5V) PC2 20 GPIO (5V) PC3 21 GPIO (5V) PC4 22 GPIO PC5 23 GPIO PB7 24 GPIO PB8 25 GPIO PA7 26 GPIO PA8 27 GPIO PA9 28 GPIO PA10 29 GPIO PA11 30 GPIO PA12 33 GPIO (5V) PA13 34 GPIO (5V) PA14 35 GPIO RESETn 36 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB9 37 GPIO (5V) PB10 38 GPIO (5V) PB11 39 GPIO PB12 40 GPIO AVDD 41 Analog power supply. PB13 42 GPIO PB14 43 GPIO PD0 45 GPIO (5V) PD1 46 GPIO PD2 47 GPIO (5V) PD3 48 GPIO PD4 49 GPIO PD5 50 GPIO PD6 51 GPIO PD7 52 GPIO PD8 53 GPIO PC7 54 GPIO VREGVSS 55 Voltage regulator VSS VREGSW 56 DCDC regulator switching node VREGVDD 57 Voltage regulator VDD input DVDD 58 Digital power supply. DECOUPLE 60 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE1 61 GPIO (5V) PE2 62 GPIO PE3 63 GPIO PE4 64 GPIO PE5 65 GPIO PE6 66 GPIO PE7 67 GPIO PC8 68 GPIO (5V) PC9 69 GPIO (5V) PC10 70 GPIO (5V) PC11 71 GPIO (5V) VREGI 72 Input to 5 V regulator. VREGO 73 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 74 GPIO (5V) PF11 75 GPIO (5V) PF0 76 GPIO (5V) PF1 77 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 145 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF2 78 GPIO NC 79 No Connect. PF12 80 GPIO PF5 81 GPIO PF6 84 GPIO PF7 85 GPIO PF8 86 GPIO PF9 87 GPIO PD9 88 GPIO PD10 89 GPIO PD11 90 GPIO PD12 91 GPIO PE8 92 GPIO PE9 93 GPIO PE10 94 GPIO PE11 95 GPIO PE12 96 GPIO PE13 97 GPIO PE14 98 GPIO PE15 99 GPIO PA15 100 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 146 EFM32GG11 Family Data Sheet Pin Definitions 5.10 EFM32GG11B4xx in QFP100 Device Pinout Figure 5.10. EFM32GG11B4xx in QFP100 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.10. EFM32GG11B4xx in QFP100 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO Digital IO power supply 0. GPIO PA6 7 GPIO IOVDD0 8 17 31 44 82 PB0 9 GPIO PB1 10 silabs.com | Building a more connected world. Rev. 1.2 | 147 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 11 GPIO PB3 12 GPIO PB4 13 GPIO PB5 14 GPIO Ground PB6 15 GPIO VSS 16 32 58 83 PC0 18 GPIO (5V) PC1 19 GPIO (5V) PC2 20 GPIO (5V) PC3 21 GPIO (5V) PC4 22 GPIO PC5 23 GPIO PB7 24 GPIO PB8 25 GPIO PA7 26 GPIO PA8 27 GPIO PA9 28 GPIO PA10 29 GPIO PA11 30 GPIO PA12 33 GPIO (5V) PA13 34 GPIO (5V) PA14 35 GPIO RESETn 36 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB9 37 GPIO (5V) PB10 38 GPIO (5V) PB11 39 GPIO PB12 40 GPIO AVDD 41 45 Analog power supply. PB13 42 GPIO PB14 43 GPIO PD0 46 GPIO (5V) PD1 47 GPIO PD2 48 GPIO (5V) PD3 49 GPIO PD4 50 GPIO PD5 51 GPIO PD6 52 GPIO PD7 53 GPIO PD8 54 GPIO PC6 55 GPIO PC7 56 GPIO DVDD 57 Digital power supply. DECOUPLE 59 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE0 60 GPIO (5V) PE1 61 GPIO (5V) PE2 62 GPIO PE3 63 GPIO PE4 64 GPIO PE5 65 GPIO PE6 66 GPIO PE7 67 GPIO PC8 68 GPIO (5V) PC9 69 GPIO (5V) PC10 70 GPIO (5V) PC11 71 GPIO (5V) VREGI 72 Input to 5 V regulator. VREGO 73 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 74 GPIO (5V) PF11 75 GPIO (5V) PF0 76 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 148 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF1 77 GPIO (5V) PF2 78 GPIO VBUS 79 USB VBUS signal and auxiliary input to 5 V regulator. PF12 80 GPIO PF5 81 GPIO PF6 84 GPIO PF7 85 GPIO PF8 86 GPIO PF9 87 GPIO PD9 88 GPIO PD10 89 GPIO PD11 90 GPIO PD12 91 GPIO PE8 92 GPIO PE9 93 GPIO PE10 94 GPIO PE11 95 GPIO PE12 96 GPIO PE13 97 GPIO PE14 98 GPIO PE15 99 GPIO PA15 100 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 149 EFM32GG11 Family Data Sheet Pin Definitions 5.11 EFM32GG11B3xx in QFP100 Device Pinout Figure 5.11. EFM32GG11B3xx in QFP100 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.11. EFM32GG11B3xx in QFP100 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO Digital IO power supply 0. GPIO PA6 7 GPIO IOVDD0 8 17 31 44 82 PB0 9 GPIO PB1 10 silabs.com | Building a more connected world. Rev. 1.2 | 150 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB2 11 GPIO PB3 12 GPIO PB4 13 GPIO PB5 14 GPIO Ground PB6 15 GPIO VSS 16 32 58 83 PC0 18 GPIO (5V) PC1 19 GPIO (5V) PC2 20 GPIO (5V) PC3 21 GPIO (5V) PC4 22 GPIO PC5 23 GPIO PB7 24 GPIO PB8 25 GPIO PA7 26 GPIO PA8 27 GPIO PA9 28 GPIO PA10 29 GPIO PA11 30 GPIO PA12 33 GPIO (5V) PA13 34 GPIO (5V) PA14 35 GPIO RESETn 36 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB9 37 GPIO (5V) PB10 38 GPIO (5V) PB11 39 GPIO PB12 40 GPIO AVDD 41 45 Analog power supply. PB13 42 GPIO PB14 43 GPIO PD0 46 GPIO (5V) PD1 47 GPIO PD2 48 GPIO (5V) PD3 49 GPIO PD4 50 GPIO PD5 51 GPIO PD6 52 GPIO PD7 53 GPIO PD8 54 GPIO PC6 55 GPIO PC7 56 GPIO DVDD 57 Digital power supply. DECOUPLE 59 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE0 60 GPIO (5V) PE1 61 GPIO (5V) PE2 62 GPIO PE3 63 GPIO PE4 64 GPIO PE5 65 GPIO PE6 66 GPIO PE7 67 GPIO PC8 68 GPIO (5V) PC9 69 GPIO (5V) PC10 70 GPIO (5V) PC11 71 GPIO (5V) PC12 72 GPIO (5V) PC13 73 GPIO (5V) PC14 74 GPIO (5V) PC15 75 GPIO (5V) PF0 76 GPIO (5V) PF1 77 GPIO (5V) PF2 78 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 151 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PF3 79 GPIO PF4 80 GPIO PF5 81 GPIO PF6 84 GPIO PF7 85 GPIO PF8 86 GPIO PF9 87 GPIO PD9 88 GPIO PD10 89 GPIO PD11 90 GPIO PD12 91 GPIO PE8 92 GPIO PE9 93 GPIO PE10 94 GPIO PE11 95 GPIO PE12 96 GPIO PE13 97 GPIO PE14 98 GPIO PE15 99 GPIO PA15 100 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 152 EFM32GG11 Family Data Sheet Pin Definitions 5.12 EFM32GG11B8xx in QFP64 Device Pinout Figure 5.12. EFM32GG11B8xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.12. EFM32GG11B8xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 27 55 Digital IO power supply 0. VSS 8 23 56 Ground PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 153 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 24 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD8 35 GPIO VREGVSS 36 Voltage regulator VSS VREGSW 37 DCDC regulator switching node VREGVDD 38 Voltage regulator VDD input DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO VREGI 45 Input to 5 V regulator. VREGO 46 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 47 GPIO (5V) PF11 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to 5 V regulator. PF12 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 154 EFM32GG11 Family Data Sheet Pin Definitions 5.13 EFM32GG11B5xx in QFP64 Device Pinout Figure 5.13. EFM32GG11B5xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.13. EFM32GG11B5xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 27 55 Digital IO power supply 0. VSS 8 23 56 Ground PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 155 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 24 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC7 37 GPIO VREGVSS 38 Voltage regulator VSS VREGSW 39 DCDC regulator switching node VREGVDD 40 Voltage regulator VDD input DVDD 41 Digital power supply. DECOUPLE 42 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 43 GPIO PE5 44 GPIO PE6 45 GPIO PE7 46 GPIO PC12 47 GPIO (5V) PC13 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 156 EFM32GG11 Family Data Sheet Pin Definitions 5.14 EFM32GG11B4xx in QFP64 Device Pinout Figure 5.14. EFM32GG11B4xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.14. EFM32GG11B4xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 26 55 Digital IO power supply 0. VSS 8 22 56 Ground PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 157 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA12 17 GPIO (5V) PA13 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO VREGI 45 Input to 5 V regulator. VREGO 46 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 47 GPIO (5V) PF11 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to 5 V regulator. PF12 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 158 EFM32GG11 Family Data Sheet Pin Definitions 5.15 EFM32GG11B1xx in QFP64 Device Pinout Figure 5.15. EFM32GG11B1xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.15. EFM32GG11B1xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 26 55 Digital IO power supply 0. VSS 8 22 56 Ground PC0 9 GPIO (5V) PC1 10 GPIO (5V) PC2 11 GPIO (5V) PC3 12 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 159 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA9 18 GPIO PA10 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PC8 41 GPIO (5V) PC9 42 GPIO (5V) PC10 43 GPIO (5V) PC11 44 GPIO (5V) PC12 45 GPIO (5V) PC13 46 GPIO (5V) PC14 47 GPIO (5V) PC15 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 160 EFM32GG11 Family Data Sheet Pin Definitions 5.16 EFM32GG11B8xx in QFN64 Device Pinout Figure 5.16. EFM32GG11B8xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.16. EFM32GG11B8xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 27 55 Digital IO power supply 0. PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 161 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB6 12 GPIO PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO (5V) PA13 19 GPIO (5V) PA14 20 GPIO RESETn 21 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 22 GPIO PB12 23 GPIO AVDD 24 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD8 35 GPIO VREGVSS 36 Voltage regulator VSS VREGSW 37 DCDC regulator switching node VREGVDD 38 Voltage regulator VDD input DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO VREGI 45 Input to 5 V regulator. VREGO 46 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 47 GPIO (5V) PF11 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to 5 V regulator. PF12 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 162 EFM32GG11 Family Data Sheet Pin Definitions 5.17 EFM32GG11B5xx in QFN64 Device Pinout Figure 5.17. EFM32GG11B5xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.17. EFM32GG11B5xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 27 55 Digital IO power supply 0. PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 163 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB6 12 GPIO PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO (5V) PA13 19 GPIO (5V) PA14 20 GPIO RESETn 21 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 22 GPIO PB12 23 GPIO AVDD 24 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC7 37 GPIO VREGVSS 38 Voltage regulator VSS VREGSW 39 DCDC regulator switching node VREGVDD 40 Voltage regulator VDD input DVDD 41 Digital power supply. DECOUPLE 42 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 43 GPIO PE5 44 GPIO PE6 45 GPIO PE7 46 GPIO PC12 47 GPIO (5V) PC13 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 164 EFM32GG11 Family Data Sheet Pin Definitions 5.18 EFM32GG11B4xx in QFN64 Device Pinout Figure 5.18. EFM32GG11B4xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.18. EFM32GG11B4xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 26 55 Digital IO power supply 0. PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO silabs.com | Building a more connected world. Rev. 1.2 | 165 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB6 12 GPIO PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA12 17 GPIO (5V) PA13 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO VREGI 45 Input to 5 V regulator. VREGO 46 Decoupling for 5 V regulator and regulator output. Power for USB PHY in USB-enabled OPNs PF10 47 GPIO (5V) PF11 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO VBUS 52 USB VBUS signal and auxiliary input to 5 V regulator. PF12 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 166 EFM32GG11 Family Data Sheet Pin Definitions 5.19 EFM32GG11B1xx in QFN64 Device Pinout Figure 5.19. EFM32GG11B1xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.20 GPIO Functionality Table or 5.21 Alternate Functionality Overview. Table 5.19. EFM32GG11B1xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 26 55 Digital IO power supply 0. PC0 9 GPIO (5V) PC1 10 GPIO (5V) PC2 11 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.2 | 167 EFM32GG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC3 12 GPIO (5V) PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA9 18 GPIO PA10 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PC8 41 GPIO (5V) PC9 42 GPIO (5V) PC10 43 GPIO (5V) PC11 44 GPIO (5V) PC12 45 GPIO (5V) PC13 46 GPIO (5V) PC14 47 GPIO (5V) PC15 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.2 | 168 EFM32GG11 Family Data Sheet Pin Definitions 5.20 GPIO Functionality Table A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 5.21 Alternate Functionality Overview for a list of GPIO locations available for each function. Table 5.20. GPIO Functionality Table GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Other EBI_AD09 #0 EBI_CSTFT #3 TIM0_CC0 #0 TIM0_CC1 #7 TIM3_CC0 #4 PCNT0_S0IN #4 ETH_RMIITXEN #0 ETH_MIITXCLK #0 SDIO_DAT0 #1 US1_RX #5 US3_TX #0 QSPI0_CS0 #1 LEU0_RX #4 I2C0_SDA #0 CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0 EBI_AD10 #0 EBI_DCLK #3 TIM0_CC0 #7 TIM0_CC1 #0 TIM3_CC1 #4 PCNT0_S1IN #4 ETH_RMIIRXD1 #0 ETH_MIITXD3 #0 SDIO_DAT1 #1 US3_RX #0 QSPI0_CS1 #1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 TIM0_CC2 #0 TIM3_CC2 #4 ETH_RMIIRXD0 #0 ETH_MIITXD2 #0 SDIO_DAT2 #1 US1_RX #6 US3_CLK #0 QSPI0_DQ0 #1 CMU_CLK0 #0 PRS_CH8 #1 ETM_TD0 #3 TIM0_CDTI0 #0 TIM3_CC0 #5 ETH_RMIIREFCLK #0 ETH_MIITXD1 #0 SDIO_DAT3 #1 US3_CS #0 U0_TX #2 QSPI0_DQ1 #1 CMU_CLK2 #1 CMU_CLKI0 #1 CMU_CLK2 #4 LES_ALTEX2 PRS_CH9 #1 ETM_TD1 #3 TIM0_CDTI1 #0 TIM3_CC1 #5 ETH_RMIICRSDV #0 ETH_MIITXD0 #0 SDIO_DAT4 #1 US3_CTS #0 U0_RX #2 QSPI0_DQ2 #1 LES_ALTEX3 PRS_CH16 #0 ETM_TD2 #3 EBI_AD14 #0 TIM0_CDTI2 #0 TIM3_CC2 #5 PCNT1_S0IN #0 ETH_RMIIRXER #0 ETH_MIITXEN #0 SDIO_DAT5 #1 US3_RTS #0 U0_CTS #2 QSPI0_DQ3 #1 LEU1_TX #1 LES_ALTEX4 PRS_CH17 #0 ACMP1_O #7 ETM_TD3 #3 PA6 BUSBY BUSAX LCD_SEG19 EBI_AD15 #0 TIM3_CC0 #6 WTIM0_CC0 #1 LETIM1_OUT1 #0 PCNT1_S1IN #0 ETH_MIITXER #0 ETH_MDC #3 SDIO_CD #2 US5_TX #1 U0_RTS #2 LEU1_RX #1 PRS_CH6 #0 ACMP0_O #4 ETM_TCLK #3 GPIO_EM4WU1 PA7 BUSAY BUSBX LCD_SEG35 EBI_AD13 #1 EBI_A01 #3 EBI_CSTFT #0 TIM0_CC2 #5 LETIM1_OUT0 #0 PCNT1_S0IN #4 US2_TX #2 US4_CTS #0 US5_RX #1 PRS_CH7 #1 PA0 PA1 PA2 PA3 PA4 PA5 BUSBY BUSAX LCD_SEG13 BUSAY BUSBX LCD_SEG14 BUSBY BUSAX LCD_SEG15 BUSAY BUSBX LCD_SEG16 BUSBY BUSAX LCD_SEG17 BUSAY BUSBX LCD_SEG18 silabs.com | Building a more connected world. EBI EBI_AD11 #0 EBI_DTEN #3 EBI_AD12 #0 EBI_VSNC #3 EBI_AD13 #0 EBI_HSNC #3 Rev. 1.2 | 169 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other PA8 BUSBY BUSAX LCD_SEG36 EBI_AD14 #1 EBI_A02 #3 EBI_DCLK #0 TIM2_CC0 #0 TIM0_CC0 #6 LETIM0_OUT0 #6 PCNT1_S1IN #4 US2_RX #2 US4_RTS #0 PRS_CH8 #0 PA9 BUSAY BUSBX LCD_SEG37 EBI_AD15 #1 EBI_A03 #3 EBI_DTEN #0 TIM2_CC1 #0 TIM0_CC1 #6 WTIM2_CC0 #0 LETIM0_OUT1 #6 US2_CLK #2 PRS_CH9 #0 PA10 BUSBY BUSAX LCD_SEG38 EBI_CS0 #1 EBI_A04 #3 EBI_VSNC #0 TIM2_CC2 #0 TIM0_CC2 #6 WTIM2_CC1 #0 US2_CS #2 PRS_CH10 #0 PA11 BUSAY BUSBX LCD_SEG39 EBI_CS1 #1 EBI_A05 #3 EBI_HSNC #0 WTIM2_CC2 #0 LETIM1_OUT0 #1 US2_CTS #2 PRS_CH11 #0 BUSBY BUSAX EBI_CS2 #1 EBI_REn #2 EBI_A00 #0 EBI_A06 #3 TIM2_CC0 #1 WTIM0_CDTI0 #2 WTIM2_CC0 #1 LETIM1_OUT0 #2 PCNT1_S0IN #5 CAN1_RX #5 US0_CLK #5 US2_RTS #2 CMU_CLK0 #5 PRS_CH12 #0 ACMP1_O #3 PA13 BUSAY BUSBX EBI_WEn #1 EBI_NANDWEn #2 EBI_A01 #0 EBI_A07 #3 TIM0_CC2 #7 TIM2_CC1 #1 WTIM0_CDTI1 #2 WTIM2_CC1 #1 LETIM1_OUT1 #1 PCNT1_S1IN #5 CAN1_TX #5 US0_CS #5 US2_TX #3 PRS_CH13 #0 PA14 BUSBY BUSAX LCD_BEXT EBI_REn #1 EBI_A02 #0 EBI_A08 #3 TIM2_CC2 #1 WTIM0_CDTI2 #2 WTIM2_CC2 #1 LETIM1_OUT1 #2 US1_TX #6 US2_RX #3 US3_RTS #2 PRS_CH14 #0 ACMP1_O #4 PA15 BUSAY BUSBX LCD_SEG12 EBI_AD08 #0 TIM3_CC2 #0 ETH_MIIRXCLK #0 ETH_MDIO #3 US2_CLK #3 PRS_CH15 #0 BUSBY BUSAX LCD_SEG32 EBI_AD00 #1 EBI_CS0 #3 EBI_A16 #0 TIM2_CDTI0 #0 TIM1_CC0 #2 TIM3_CC2 #7 WTIM0_CC0 #5 PCNT0_S0IN #5 PCNT1_S1IN #2 LEU1_TX #3 PRS_CH4 #1 ACMP0_O #5 PB1 BUSAY BUSBX LCD_SEG33 EBI_AD01 #1 EBI_CS1 #3 EBI_A17 #0 TIM2_CDTI1 #0 TIM1_CC1 #2 WTIM0_CC1 #5 LETIM1_OUT1 #5 PCNT0_S1IN #5 ETH_MIICRS #0 US5_RX #2 LEU1_RX #3 PRS_CH5 #1 PB2 BUSBY BUSAX LCD_SEG34 EBI_AD02 #1 EBI_CS2 #3 EBI_A18 #0 TIM2_CDTI2 #0 TIM1_CC2 #2 WTIM0_CC2 #5 LETIM1_OUT0 #5 ETH_MIICOL #0 US1_CS #6 PRS_CH18 #0 ACMP0_O #6 PB3 BUSAY BUSBX LCD_SEG20 / LCD_COM4 EBI_AD03 #1 EBI_CS3 #3 EBI_A19 #0 TIM1_CC3 #2 WTIM0_CC0 #6 PCNT1_S0IN #1 ETH_MIICRS #2 ETH_MDIO #0 SDIO_DAT6 #1 US2_TX #1 US3_TX #2 QSPI0_DQ4 #1 PRS_CH19 #0 ACMP0_O #7 PA12 PB0 silabs.com | Building a more connected world. Rev. 1.2 | 170 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other PRS_CH20 #0 PB4 BUSBY BUSAX LCD_SEG21 / LCD_COM5 EBI_AD04 #1 EBI_ARDY #3 EBI_A20 #0 WTIM0_CC1 #6 PCNT1_S1IN #1 ETH_MIICOL #2 ETH_MDC #0 SDIO_DAT7 #1 US2_RX #1 QSPI0_DQ5 #1 LEU1_TX #4 PB5 BUSAY BUSBX LCD_SEG22 / LCD_COM6 EBI_AD05 #1 EBI_ALE #3 EBI_A21 #0 WTIM0_CC2 #6 LETIM1_OUT0 #4 PCNT0_S0IN #6 ETH_TSUEXTCLK #0 US0_RTS #4 US2_CLK #1 QSPI0_DQ6 #1 LEU1_RX #4 PRS_CH21 #0 PB6 BUSBY BUSAX LCD_SEG23 / LCD_COM7 EBI_AD06 #1 EBI_WEn #3 EBI_A22 #0 TIM0_CC0 #3 TIM2_CC0 #4 WTIM3_CC0 #6 LETIM1_OUT1 #4 PCNT0_S1IN #6 ETH_TSUTMRTOG #0 US0_CTS #4 US2_CS #1 QSPI0_DQ7 #1 PRS_CH12 #1 US0_TX #4 US1_CLK #0 US3_RX #2 US4_TX #0 U0_CTS #4 PRS_CH22 #0 PB7 LFXTAL_P TIM0_CDTI0 #4 TIM1_CC0 #3 PB8 LFXTAL_N TIM0_CDTI1 #4 TIM1_CC1 #3 US0_RX #4 US1_CS #0 US4_RX #0 U0_RTS #4 CMU_CLKI0 #2 PRS_CH23 #0 WTIM2_CC0 #2 LETIM0_OUT0 #7 SDIO_WP #3 CAN0_RX #3 US1_CTS #0 U1_TX #2 PRS_CH13 #1 ACMP1_O #5 PRS_CH9 #2 ACMP1_O #6 BUSAY BUSBX EBI_ALE #1 EBI_NANDREn #2 EBI_A00 #1 EBI_A03 #0 EBI_A09 #3 PB10 BUSBY BUSAX EBI_BL0 #2 EBI_A01 #1 EBI_A04 #0 EBI_A10 #3 WTIM2_CC1 #2 LETIM0_OUT1 #7 SDIO_CD #3 CAN0_TX #3 US1_RTS #0 US2_CTS #3 U1_RX #2 PB11 BUSAY BUSBX VDAC0_OUT0 / OPA0_OUT IDAC0_OUT EBI_BL1 #2 EBI_A02 #1 EBI_A11 #3 TIM0_CDTI2 #4 TIM1_CC2 #3 WTIM2_CC2 #2 LETIM0_OUT0 #1 PCNT0_S1IN #7 PCNT1_S0IN #6 US0_CTS #5 US1_CLK #5 US2_CS #3 US5_CLK #0 U1_CTS #2 I2C1_SDA #1 CMU_CLK1 #5 CMU_CLKI0 #7 PRS_CH21 #2 ACMP0_O #3 GPIO_EM4WU7 PB12 BUSBY BUSAX VDAC0_OUT1 / OPA1_OUT EBI_A03 #1 EBI_A12 #3 EBI_CSTFT #2 TIM1_CC3 #3 WTIM2_CC0 #3 LETIM0_OUT1 #1 PCNT0_S0IN #7 PCNT1_S1IN #6 US2_CTS #1 US5_RTS #0 U1_RTS #2 I2C1_SCL #1 PRS_CH16 #1 PB13 BUSAY BUSBX HFXTAL_P TIM6_CC0 #5 WTIM1_CC0 #0 PCNT2_S0IN #2 US0_CLK #4 US1_CTS #5 US5_CS #0 LEU0_TX #1 CMU_CLKI0 #3 PRS_CH7 #0 PB14 BUSBY BUSAX HFXTAL_N TIM6_CC1 #5 WTIM1_CC1 #0 PCNT2_S1IN #2 US0_CS #4 US1_RTS #5 US5_CTS #0 LEU0_RX #1 PRS_CH6 #1 PB9 silabs.com | Building a more connected world. Rev. 1.2 | 171 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name PB15 PC0 Pin Alternate Functionality / Description Analog EBI BUSAY BUSBX EBI_CS3 #1 EBI_ARDY #2 VDAC0_OUT0ALT / OPA0_OUTALT #0 BUSACMP0Y BUSACMP0X EBI_AD07 #1 EBI_CS0 #2 EBI_REn #3 EBI_A23 #0 Timers Communication Other TIM3_CC1 #7 ETH_TSUTMRTOG #1 SDIO_WP #2 US2_RTS #1 US5_RTS #1 PRS_CH17 #1 ETM_TD2 #1 TIM0_CC1 #3 TIM2_CC1 #4 PCNT0_S0IN #2 ETH_MDIO #2 CAN0_RX #0 US0_TX #5 US1_TX #0 US1_CS #4 US2_RTS #0 US3_CS #3 I2C0_SDA #4 LES_CH0 PRS_CH2 #0 LES_CH1 PRS_CH3 #0 PC1 VDAC0_OUT0ALT / OPA0_OUTALT #1 BUSACMP0Y BUSACMP0X EBI_AD08 #1 EBI_CS1 #2 EBI_BL0 #3 EBI_A24 #0 TIM0_CC2 #3 TIM2_CC2 #4 WTIM0_CC0 #7 PCNT0_S1IN #2 ETH_MDC #2 CAN0_TX #0 US0_RX #5 US1_TX #4 US1_RX #0 US2_CTS #0 US3_RTS #1 I2C0_SCL #4 PC2 VDAC0_OUT0ALT / OPA0_OUTALT #2 BUSACMP0Y BUSACMP0X EBI_AD09 #1 EBI_CS2 #2 EBI_NANDWEn #3 EBI_A25 #0 TIM0_CDTI0 #3 TIM2_CC0 #5 WTIM0_CC1 #7 LETIM1_OUT0 #3 ETH_TSUEXTCLK #2 CAN1_RX #0 US1_RX #4 US2_TX #0 LES_CH2 PRS_CH10 #1 PC3 VDAC0_OUT0ALT / OPA0_OUTALT #3 BUSACMP0Y BUSACMP0X EBI_AD10 #1 EBI_CS3 #2 EBI_BL1 #3 EBI_NANDREn #0 TIM0_CDTI1 #3 TIM2_CC1 #5 WTIM0_CC2 #7 LETIM1_OUT1 #3 ETH_TSUTMRTOG #2 CAN1_TX #0 US1_CLK #4 US2_RX #0 LES_CH3 PRS_CH11 #1 BUSACMP0Y BUSACMP0X OPA0_P EBI_AD11 #1 EBI_ALE #2 EBI_NANDREn #3 EBI_A26 #0 TIM0_CC0 #5 TIM0_CDTI2 #3 TIM2_CC2 #5 LETIM0_OUT0 #3 PCNT1_S0IN #3 SDIO_CD #1 US2_CLK #0 US4_CLK #0 U0_TX #4 U1_CTS #4 I2C1_SDA #0 LES_CH4 PRS_CH18 #2 GPIO_EM4WU6 PC5 BUSACMP0Y BUSACMP0X OPA0_N EBI_AD12 #1 EBI_WEn #2 EBI_NANDWEn #0 EBI_A00 #3 TIM0_CC1 #5 LETIM0_OUT1 #3 PCNT1_S1IN #3 SDIO_WP #1 US2_CS #0 US4_CS #0 U0_RX #4 U1_RTS #4 I2C1_SCL #0 LES_CH5 PRS_CH19 #2 PC6 BUSACMP0Y BUSACMP0X OPA3_P EBI_A05 #0 WTIM1_CC3 #2 US0_RTS #2 US1_CTS #3 LEU1_TX #0 I2C0_SDA #2 LES_CH6 PRS_CH14 #1 ETM_TCLK #2 PC7 BUSACMP0Y BUSACMP0X OPA3_N EBI_A06 #0 EBI_A13 #1 EBI_A21 #3 WTIM1_CC0 #3 US0_CTS #2 US1_RTS #3 LEU1_RX #0 I2C0_SCL #2 LES_CH7 PRS_CH15 #1 ETM_TD0 #2 PC8 BUSACMP1Y BUSACMP1X EBI_A08 #2 EBI_A15 #0 EBI_A20 #1 EBI_A26 #3 TIM2_CC0 #2 TIM5_CC0 #4 WTIM3_CC0 #1 US0_CS #2 LES_CH8 PRS_CH4 #0 PC9 BUSACMP1Y BUSACMP1X EBI_A09 #2 EBI_A21 #1 EBI_A27 #3 TIM2_CC1 #2 TIM5_CC1 #4 WTIM3_CC1 #1 CAN1_RX #3 US0_CLK #2 LES_CH9 PRS_CH5 #0 GPIO_EM4WU2 PC10 BUSACMP1Y BUSACMP1X EBI_A10 #2 EBI_A22 #1 TIM2_CC2 #2 TIM5_CC2 #4 WTIM3_CC2 #1 CAN1_TX #3 US0_RX #2 LES_CH10 PRS_CH18 #1 PC4 silabs.com | Building a more connected world. Rev. 1.2 | 172 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other PC11 BUSACMP1Y BUSACMP1X EBI_ALE #4 EBI_ALE #5 EBI_A23 #1 TIM5_CC0 #5 WTIM3_CC0 #2 CAN1_TX #4 US0_TX #2 I2C1_SDA #4 LES_CH11 PRS_CH19 #1 PC12 VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSACMP1Y BUSACMP1X TIM1_CC3 #0 TIM5_CC1 #5 WTIM3_CC1 #2 PCNT2_S0IN #4 CAN1_RX #4 US0_RTS #3 US1_CTS #4 US2_CTS #4 U0_RTS #3 U1_TX #0 I2C2_SDA #6 CMU_CLK0 #1 LES_CH12 PRS_CH20 #1 VDAC0_OUT1ALT / OPA1_OUTALT #1 BUSACMP1Y BUSACMP1X EBI_ARDY #4 TIM0_CDTI0 #1 TIM1_CC0 #0 TIM1_CC2 #4 TIM5_CC2 #5 WTIM3_CC2 #2 PCNT0_S0IN #0 PCNT2_S1IN #4 US0_CTS #3 US1_RTS #4 US2_RTS #4 U0_CTS #3 U1_RX #0 I2C2_SCL #6 LES_CH13 PRS_CH21 #1 ACMP3_O #3 EBI_NANDWEn #4 TIM0_CDTI1 #1 TIM1_CC1 #0 TIM1_CC3 #4 TIM5_CC0 #6 WTIM3_CC0 #3 LETIM0_OUT0 #5 PCNT0_S1IN #0 US0_CS #3 US1_CS #3 US2_RTS #3 US3_CS #2 U0_TX #3 U1_CTS #0 LEU0_TX #5 I2C2_SDA #1 LES_CH14 PRS_CH0 #2 ACMP3_O #2 EBI_NANDREn #4 TIM0_CDTI2 #1 TIM1_CC2 #0 WTIM0_CC0 #4 LETIM0_OUT1 #5 US0_CLK #3 US1_CLK #3 US3_RTS #3 U0_RX #3 U1_RTS #0 LEU0_RX #5 I2C2_SCL #1 LES_CH15 PRS_CH1 #2 ACMP3_O #1 DBG_SWO #1 PD0 VDAC0_OUT0ALT / OPA0_OUTALT #4 EBI_A04 #1 EBI_A13 OPA2_OUTALT BU#3 SADC0Y BUSADC0X TIM4_CDTI0 TIM6_CC2 #5 WTIM1_CC2 #0 PCNT2_S0IN #0 CAN0_RX #2 US1_TX #1 PD1 VDAC0_OUT1ALT / OPA1_OUTALT #4 EBI_A05 #1 EBI_A14 BUSADC0Y BU#3 SADC0X OPA3_OUT TIM4_CDTI1 TIM0_CC0 #2 TIM6_CC0 #6 WTIM1_CC3 #0 PCNT2_S1IN #0 CAN0_TX #2 US1_RX #1 DBG_SWO #2 EBI_A06 #1 EBI_A15 #3 EBI_A27 #0 TIM0_CC1 #2 TIM6_CC1 #6 WTIM1_CC0 #1 US1_CLK #1 LEU1_TX #2 DBG_SWO #3 EBI_A07 #1 EBI_A16 #3 TIM4_CDTI2 TIM0_CC2 #2 TIM6_CC2 #6 WTIM1_CC1 #1 WTIM2_CC0 #5 CAN1_RX #2 US1_CS #1 LEU1_RX #2 ETM_TD1 #0 ETM_TD1 #2 EBI_A08 #1 EBI_A17 #3 TIM6_CC0 #7 WTIM0_CDTI0 #4 WTIM1_CC2 #1 WTIM2_CC1 #5 CAN1_TX #2 US1_CTS #1 US3_CLK #2 LEU0_TX #0 I2C1_SDA #3 CMU_CLKI0 #0 PRS_CH10 #2 ETM_TD2 #0 ETM_TD2 #2 PC13 PC14 VDAC0_OUT1ALT / OPA1_OUTALT #2 BUSACMP1Y BUSACMP1X PC15 VDAC0_OUT1ALT / OPA1_OUTALT #3 BUSACMP1Y BUSACMP1X PD2 PD3 PD4 BUSADC0Y BUSADC0X BUSADC0Y BUSADC0X OPA2_N BUSADC0Y BUSADC0X OPA2_P silabs.com | Building a more connected world. Rev. 1.2 | 173 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PD5 EBI BUSADC0Y BUEBI_A09 #1 EBI_A18 SADC0X OPA2_OUT #3 Timers Communication Other TIM6_CC1 #7 WTIM0_CDTI1 #4 WTIM1_CC3 #1 WTIM2_CC2 #5 US1_RTS #1 U0_CTS #5 LEU0_RX #0 I2C1_SCL #3 PRS_CH11 #2 ETM_TD3 #0 ETM_TD3 #2 US0_RTS #5 US1_RX #2 US2_CTS #5 US3_CTS #2 U0_RTS #5 I2C0_SDA #1 CMU_CLK2 #2 LES_ALTEX0 PRS_CH5 #2 ACMP0_O #2 ETM_TD0 #0 PD6 BUSADC0Y BUSADC0X ADC0_EXTP VDAC0_EXT ADC1_EXTP OPA1_P EBI_A10 #1 EBI_A19 #3 TIM1_CC0 #4 TIM6_CC2 #7 WTIM0_CDTI2 #4 WTIM1_CC0 #2 LETIM0_OUT0 #0 PCNT0_S0IN #3 PD7 BUSADC0Y BUSADC0X ADC0_EXTN ADC1_EXTN OPA1_N EBI_A11 #1 EBI_A20 #3 TIM1_CC1 #4 WTIM1_CC1 #2 LETIM0_OUT1 #0 PCNT0_S1IN #3 US1_TX #2 US3_CLK #1 U0_TX #6 I2C0_SCL #1 CMU_CLK0 #2 LES_ALTEX1 ACMP1_O #2 ETM_TCLK #0 PD8 BU_VIN EBI_A12 #1 WTIM1_CC2 #2 US2_RTS #5 CMU_CLK1 #1 PRS_CH12 #2 ACMP2_O #0 TIM4_CC1 #5 WTIM3_CC0 #0 ETH_RMIIRXD0 #1 SDIO_DAT7 #0 QSPI0_DQ0 #0 ETH_MIIRXD1 #2 US4_TX #1 TIM4_CC2 #5 WTIM3_CC1 #0 ETH_RMIIREFCLK #1 SDIO_DAT6 #0 QSPI0_DQ1 #0 ETH_MIIRXD2 #2 US4_RX #1 TIM4_CC0 #6 WTIM3_CC2 #0 ETH_RMIICRSDV #1 SDIO_DAT5 #0 QSPI0_DQ2 #0 ETH_MIIRXD3 #2 US4_CLK #1 EBI_CS3 #0 TIM4_CC1 #6 ETH_RMIIRXER #1 SDIO_DAT4 #0 QSPI0_DQ3 #0 ETH_MIIRXCLK #2 US4_CS #1 EBI_ARDY #1 TIM2_CDTI0 #1 TIM3_CC1 #6 WTIM0_CC1 #1 ETH_MDIO #1 US4_CTS #1 US5_CLK #1 EBI_NANDWEn #1 TIM2_CDTI1 #1 TIM3_CC2 #6 WTIM0_CC2 #1 ETH_MDC #1 CAN0_RX #5 US4_RTS #1 US5_CS #1 I2C0_SDA #3 EBI_NANDREn #1 TIM2_CDTI2 #1 TIM3_CC0 #7 WTIM0_CDTI0 #1 PCNT1_S0IN #2 ETH_TSUEXTCLK #1 CAN0_TX #5 US5_CTS #1 I2C0_SCL #3 EBI_A00 #2 EBI_A07 #0 TIM3_CC0 #1 WTIM1_CC1 #3 PCNT0_S0IN #1 CAN0_RX #6 U0_TX #1 I2C1_SDA #2 PD9 PD10 PD11 PD12 LCD_SEG28 LCD_SEG29 LCD_SEG30 LCD_SEG31 PD13 PD14 PD15 PE0 BUSDY BUSCX silabs.com | Building a more connected world. EBI_CS0 #0 EBI_DTEN #1 EBI_CS1 #0 EBI_VSNC #1 EBI_CS2 #0 EBI_HSNC #1 CMU_CLK2 #5 CMU_CLKI0 #5 ETM_TD1 #1 PRS_CH22 #1 ACMP2_O #1 Rev. 1.2 | 174 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication Other PE1 BUSCY BUSDX EBI_A01 #2 EBI_A08 #0 TIM3_CC1 #1 WTIM1_CC2 #3 PCNT0_S1IN #1 CAN0_TX #6 U0_RX #1 I2C1_SCL #2 CMU_CLKI0 #4 PRS_CH23 #1 ACMP2_O #2 PE2 BU_VOUT EBI_A09 #0 EBI_A14 #1 TIM3_CC2 #1 WTIM1_CC3 #3 US0_RTS #1 U0_CTS #1 U1_TX #3 PRS_CH20 #2 ACMP0_O #1 PE3 BU_STAT EBI_A10 #0 EBI_A15 #1 TIM3_CC0 #2 WTIM1_CC0 #4 US0_CTS #1 U0_RTS #1 U1_RX #3 ACMP1_O #1 EBI_A11 #0 EBI_A16 #1 EBI_A22 #3 TIM3_CC1 #2 TIM5_CC0 #0 TIM6_CDTI0 #2 WTIM0_CC0 #0 WTIM1_CC1 #4 US0_CS #1 US1_CS #5 US3_CS #1 U0_RX #6 U1_CTS #3 I2C0_SDA #7 PRS_CH16 #2 EBI_A12 #0 EBI_A17 #1 EBI_A23 #3 TIM3_CC0 #3 TIM3_CC2 #2 TIM5_CC1 #0 TIM6_CDTI1 #2 WTIM0_CC1 #0 WTIM1_CC2 #4 US0_CLK #1 US1_CLK #6 US3_CTS #1 U1_RTS #3 I2C0_SCL #7 PRS_CH17 #2 US0_RX #1 US3_TX #1 PRS_CH6 #2 PE4 PE5 BUSDY BUSCX LCD_COM0 BUSCY BUSDX LCD_COM1 PE6 BUSDY BUSCX LCD_COM2 EBI_A13 #0 EBI_A18 #1 EBI_A24 #3 TIM3_CC1 #3 TIM5_CC2 #0 TIM6_CDTI2 #2 WTIM0_CC2 #0 WTIM1_CC3 #4 PE7 BUSCY BUSDX LCD_COM3 EBI_A14 #0 EBI_A19 #1 EBI_A25 #3 TIM3_CC2 #3 TIM5_CC0 #1 WTIM1_CC0 #5 US0_TX #1 US3_RX #1 PRS_CH7 #2 PE8 BUSDY BUSCX LCD_SEG4 EBI_AD00 #0 EBI_CS0 #4 TIM2_CDTI0 #2 TIM4_CC2 #6 PCNT2_S0IN #1 SDIO_DAT3 #0 QSPI0_DQ4 #0 US5_TX #0 I2C2_SDA #0 PRS_CH3 #1 PE9 BUSCY BUSDX LCD_SEG5 EBI_AD01 #0 EBI_CS1 #4 TIM4_CC0 #7 PCNT2_S1IN #1 SDIO_DAT2 #0 QSPI0_DQ5 #0 US5_RX #0 PRS_CH8 #2 PE10 BUSDY BUSCX LCD_SEG6 EBI_AD02 #0 EBI_CS2 #4 TIM1_CC0 #1 TIM4_CC1 #7 WTIM0_CDTI0 #0 SDIO_DAT1 #0 QSPI0_DQ6 #0 ETH_MIIRXER #0 US0_TX #0 PRS_CH2 #2 GPIO_EM4WU9 PE11 BUSCY BUSDX LCD_SEG7 EBI_AD03 #0 EBI_CS3 #4 TIM1_CC1 #1 TIM4_CC2 #7 WTIM0_CDTI1 #0 SDIO_DAT0 #0 QSPI0_DQ7 #0 ETH_MIIRXDV #0 US0_RX #0 LES_ALTEX5 PRS_CH3 #2 ETM_TCLK #4 EBI_AD04 #0 TIM1_CC2 #1 TIM2_CC1 #3 WTIM0_CDTI2 #0 LETIM0_OUT0 #4 SDIO_CMD #0 ETH_MIIRXD0 #0 US0_RX #3 US0_CLK #0 U1_TX #4 I2C0_SDA #6 CMU_CLK1 #2 CMU_CLKI0 #6 LES_ALTEX6 PRS_CH1 #3 ETM_TD0 #4 EBI_AD05 #0 TIM1_CC3 #1 TIM2_CC2 #3 LETIM0_OUT1 #4 SDIO_CLK #0 ETH_MIIRXD1 #0 US0_TX #3 US0_CS #0 U1_RX #4 I2C0_SCL #6 LES_ALTEX7 PRS_CH2 #3 ACMP0_O #0 ETM_TD1 #4 GPIO_EM4WU5 PE12 PE13 BUSDY BUSCX LCD_SEG8 BUSCY BUSDX LCD_SEG9 silabs.com | Building a more connected world. Rev. 1.2 | 175 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PE14 PE15 PF0 PF1 BUSDY BUSCX LCD_SEG10 BUSCY BUSDX LCD_SEG11 BUSDY BUSCX BUSCY BUSDX EBI Timers Communication Other TIM2_CDTI1 #2 TIM3_CC0 #0 ETH_RMIITXD1 #0 ETH_MIIRXD2 #0 SDIO_CLK #1 US0_CTS #0 QSPI0_SCLK #1 LEU0_TX #2 PRS_CH13 #2 ETM_TD2 #4 EBI_AD07 #0 TIM2_CDTI2 #2 TIM3_CC1 #0 ETH_RMIITXD0 #0 ETH_MIIRXD3 #0 SDIO_CMD #1 US0_RTS #0 QSPI0_DQS #1 LEU0_RX #2 PRS_CH14 #2 ETM_TD3 #4 EBI_A24 #1 TIM0_CC0 #4 WTIM0_CC1 #4 LETIM0_OUT0 #2 US2_TX #5 CAN0_RX #1 US1_CLK #2 LEU0_TX #3 I2C0_SDA #5 PRS_CH15 #2 ACMP3_O #0 DBG_SWCLKTCK BOOT_TX EBI_A25 #1 TIM0_CC1 #4 WTIM0_CC2 #4 LETIM0_OUT1 #2 US2_RX #5 CAN1_RX #1 US1_CS #2 U0_TX #5 LEU0_RX #3 I2C0_SCL #5 PRS_CH4 #2 DBG_SWDIOTMS GPIO_EM4WU3 BOOT_RX CMU_CLK0 #4 PRS_CH0 #3 ACMP1_O #0 DBG_TDO DBG_SWO #0 GPIO_EM4WU4 EBI_AD06 #0 PF2 BUSDY BUSCX LCD_SEG0 EBI_ARDY #0 EBI_A26 #1 TIM0_CC2 #4 TIM1_CC0 #5 TIM2_CC0 #3 US2_CLK #5 CAN0_TX #1 US1_TX #5 U0_RX #5 LEU0_TX #4 I2C1_SCL #4 PF3 BUSCY BUSDX LCD_SEG1 EBI_ALE #0 TIM4_CC0 #0 TIM0_CDTI0 #2 TIM1_CC1 #5 CAN1_TX #1 US1_CTS #2 I2C2_SCL #5 CMU_CLK1 #4 PRS_CH0 #1 ETM_TD3 #1 PF4 BUSDY BUSCX LCD_SEG2 EBI_WEn #0 EBI_WEn #5 TIM4_CC1 #0 TIM0_CDTI1 #2 TIM1_CC2 #5 WTIM3_CC1 #6 US1_RTS #2 I2C2_SDA #3 PRS_CH1 #1 PF5 BUSCY BUSDX LCD_SEG3 EBI_REn #0 EBI_REn #5 EBI_A27 #1 TIM0_CDTI2 #2 TIM1_CC3 #6 TIM4_CC0 #2 US2_CS #5 I2C2_SCL #0 USB_VBUSEN PRS_CH2 #1 DBG_TDI BUSDY BUSCX LCD_SEG24 EBI_BL0 #0 EBI_BL0 #4 EBI_BL0 #5 EBI_CSTFT #1 TIM0_CC0 #1 TIM4_CC0 #4 WTIM3_CC2 #5 ETH_RMIITXD1 #1 US2_TX #4 QSPI0_SCLK #0 US1_TX #3 U0_TX #0 PRS_CH22 #2 TIM0_CC1 #1 TIM4_CC1 #4 ETH_RMIITXD0 #1 US2_RX #4 QSPI0_CS0 #0 ETH_MIIRXER #2 US1_RX #3 U0_RX #0 PRS_CH23 #2 PF6 PF7 BUSCY BUSDX LCD_SEG25 silabs.com | Building a more connected world. EBI_BL1 #0 EBI_BL1 #4 EBI_BL1 #5 EBI_DCLK #1 Rev. 1.2 | 176 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog PF8 BUSDY BUSCX LCD_SEG26 EBI EBI_WEn #4 EBI_BL0 #1 Timers Communication Other TIM0_CC2 #1 TIM4_CC2 #4 ETH_RMIITXEN #1 US2_CLK #4 QSPI0_CS1 #0 ETH_MIIRXDV #2 ETH_TSUEXTCLK #3 SDIO_CD #0 U0_CTS #0 U1_RTS #1 ETM_TCLK #1 GPIO_EM4WU8 ETM_TD0 #1 PF9 BUSCY BUSDX LCD_SEG27 EBI_REn #4 EBI_BL1 #1 TIM4_CC0 #5 ETH_RMIIRXD1 #1 US2_CS #4 QSPI0_DQS #0 ETH_MIIRXD0 #2 ETH_TSUTMRTOG #3 SDIO_WP #0 U0_RTS #0 U1_CTS #1 PF10 BUSDY BUSCX EBI_ARDY #5 TIM5_CC1 #6 WTIM3_CC1 #3 PCNT2_S0IN #3 US5_RTS #2 U1_TX #1 I2C2_SDA #2 USB_DM PF11 BUSCY BUSDX EBI_NANDWEn #5 TIM5_CC2 #6 WTIM3_CC2 #3 PCNT2_S1IN #3 US5_CTS #2 U1_RX #1 I2C2_SCL #2 USB_DP EBI_NANDREn #5 TIM4_CC2 #0 TIM1_CC3 #5 TIM5_CC0 #7 WTIM3_CC2 #6 US5_CS #2 I2C2_SCL #3 USB_ID BUSCY BUSDX TIM1_CC0 #6 TIM4_CC0 #1 TIM5_CC1 #7 WTIM3_CC0 #7 US5_CLK #2 I2C2_SDA #4 PF14 BUSDY BUSCX TIM1_CC1 #6 TIM4_CC1 #1 TIM5_CC2 #7 WTIM3_CC1 #7 I2C2_SCL #4 PF15 BUSCY BUSDX TIM1_CC2 #6 TIM4_CC2 #1 WTIM3_CC2 #7 US5_TX #2 I2C2_SDA #5 PG0 BUSACMP2Y BUSACMP2X EBI_AD00 #2 TIM6_CC0 #0 TIM2_CDTI0 #3 WTIM0_CDTI1 #1 LETIM1_OUT0 #6 ETH_MIITXCLK #1 US3_TX #4 QSPI0_SCLK #2 CMU_CLK2 #3 PG1 BUSACMP2Y BUSACMP2X EBI_AD01 #2 TIM6_CC1 #0 TIM2_CDTI1 #3 WTIM0_CDTI2 #1 LETIM1_OUT1 #6 ETH_MIITXD3 #1 US3_RX #4 QSPI0_DQ0 #2 CMU_CLK1 #3 PG2 BUSACMP2Y BUSACMP2X EBI_AD02 #2 TIM6_CC2 #0 TIM2_CDTI2 #3 WTIM0_CC0 #2 LETIM1_OUT0 #7 ETH_MIITXD2 #1 US3_CLK #4 QSPI0_DQ1 #2 CMU_CLK0 #3 PG3 BUSACMP2Y BUSACMP2X EBI_AD03 #2 TIM6_CDTI0 #0 WTIM0_CC1 #2 LETIM1_OUT1 #7 ETH_MIITXD1 #1 US3_CS #4 QSPI0_DQ2 #2 PF12 PF13 BUSDY BUSCX silabs.com | Building a more connected world. Rev. 1.2 | 177 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication PG4 BUSACMP2Y BUSACMP2X EBI_AD04 #2 TIM6_CDTI1 #0 WTIM0_CC2 #2 ETH_MIITXD0 #1 US3_CTS #4 QSPI0_DQ3 #2 PG5 BUSACMP2Y BUSACMP2X EBI_AD05 #2 TIM6_CDTI2 #0 TIM2_CC0 #7 ETH_MIITXEN #1 US3_RTS #4 QSPI0_DQ4 #2 PG6 BUSACMP2Y BUSACMP2X EBI_AD06 #2 TIM2_CC1 #7 TIM6_CC0 #1 ETH_MIITXER #1 US3_TX #3 QSPI0_DQ5 #2 PG7 BUSACMP2Y BUSACMP2X EBI_AD07 #2 TIM2_CC2 #7 TIM6_CC1 #1 ETH_MIIRXCLK #1 US3_RX #3 QSPI0_DQ6 #2 EBI_AD08 #2 TIM2_CC0 #6 TIM6_CC2 #1 WTIM0_CC0 #3 ETH_MIIRXD3 #1 CAN0_RX #4 US3_CLK #3 QSPI0_DQ7 #2 EBI_AD09 #2 TIM2_CC1 #6 TIM6_CDTI0 #1 WTIM0_CC1 #3 ETH_MIIRXD2 #1 CAN0_TX #4 US3_CTS #5 QSPI0_CS0 #2 EBI_AD10 #2 TIM2_CC2 #6 TIM6_CDTI1 #1 WTIM0_CC2 #3 ETH_MIIRXD1 #1 CAN1_RX #6 US3_CTS #3 QSPI0_CS1 #2 PG11 EBI_AD11 #2 TIM6_CDTI2 #1 WTIM0_CDTI0 #3 ETH_MIIRXD0 #1 CAN1_TX #6 US3_RTS #5 QSPI0_DQS #2 ETM_TD3 #5 PG12 EBI_AD12 #2 TIM6_CC0 #2 WTIM0_CDTI1 #3 WTIM2_CC1 #3 ETH_MIIRXDV #1 US0_TX #6 ETM_TD2 #5 PG13 EBI_AD13 #2 TIM6_CC1 #2 WTIM0_CDTI2 #3 WTIM2_CC2 #3 ETH_MIIRXER #1 US0_RX #6 ETM_TD1 #5 PG14 EBI_AD14 #2 TIM6_CC2 #2 WTIM2_CC0 #4 PCNT1_S0IN #7 ETH_MIICRS #1 US0_CLK #6 ETM_TD0 #5 PG15 EBI_AD15 #2 WTIM2_CC1 #4 PCNT1_S1IN #7 ETH_MIICOL #1 US0_CS #6 ETM_TCLK #5 WTIM2_CC2 #4 US0_CTS #6 LEU1_TX #5 PG8 PG9 PG10 PH0 BUSADC1Y BUSADC1X EBI_DCLK #2 PH1 BUSADC1Y BUSADC1X EBI_DTEN #2 PH2 BUSADC1Y BUSADC1X EBI_VSNC #2 TIM6_CC0 #3 US1_CTS #6 PH3 BUSADC1Y BUSADC1X EBI_HSNC #2 TIM6_CC1 #3 US1_RTS #6 PH4 BUSADC1Y BUSADC1X EBI_A16 #2 TIM6_CC2 #3 WTIM2_CC0 #6 US4_TX #4 silabs.com | Building a more connected world. Other US0_RTS #6 LEU1_RX #5 Rev. 1.2 | 178 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication PH5 BUSADC1Y BUSADC1X EBI_A17 #2 TIM6_CDTI0 #3 WTIM2_CC1 #6 US4_RX #4 PH6 BUSADC1Y BUSADC1X EBI_A18 #2 TIM6_CDTI1 #3 WTIM2_CC2 #6 US4_CLK #4 PH7 BUSADC1Y BUSADC1X EBI_A19 #2 TIM6_CDTI2 #3 WTIM2_CC0 #7 US4_CS #4 PH8 BUSACMP3Y BUSACMP3X EBI_A20 #2 TIM6_CC0 #4 WTIM1_CC0 #6 WTIM2_CC1 #7 US4_CTS #4 PH9 BUSACMP3Y BUSACMP3X EBI_A21 #2 TIM6_CC1 #4 WTIM1_CC1 #6 WTIM2_CC2 #7 US4_RTS #4 PH10 BUSACMP3Y BUSACMP3X EBI_A22 #2 TIM6_CC2 #4 WTIM1_CC2 #6 US5_TX #3 PH11 BUSACMP3Y BUSACMP3X EBI_A23 #2 TIM5_CC1 #1 WTIM1_CC3 #6 US5_RX #3 U1_TX #5 I2C1_SDA #5 PH12 BUSACMP3Y BUSACMP3X EBI_A24 #2 TIM5_CC2 #1 WTIM1_CC0 #7 US5_CLK #3 U1_RX #5 I2C1_SCL #5 PH13 BUSACMP3Y BUSACMP3X EBI_A25 #2 TIM5_CC0 #2 WTIM1_CC1 #7 PCNT2_S1IN #7 US5_CS #3 U1_CTS #5 I2C1_SDA #6 PH14 BUSACMP3Y BUSACMP3X EBI_A26 #2 TIM5_CC1 #2 WTIM1_CC2 #7 PCNT2_S0IN #7 US5_CTS #3 U1_RTS #5 I2C1_SCL #6 PH15 BUSACMP3Y BUSACMP3X EBI_A27 #2 TIM5_CC2 #2 WTIM1_CC3 #7 PCNT2_S1IN #6 US5_RTS #3 PI0 EBI_A02 #2 TIM5_CC0 #3 WTIM1_CC1 #5 PCNT2_S0IN #6 US4_TX #2 ACMP2_O #3 PI1 EBI_A03 #2 TIM5_CC1 #3 WTIM1_CC2 #5 PCNT2_S1IN #5 US4_RX #2 ACMP2_O #4 PI2 EBI_A04 #2 TIM5_CC2 #3 WTIM1_CC3 #5 PCNT2_S0IN #5 US4_CLK #2 I2C1_SDA #7 ACMP2_O #5 PI3 EBI_A05 #2 WTIM3_CC0 #4 US4_CS #2 I2C1_SCL #7 PI4 EBI_A06 #2 WTIM3_CC1 #4 US4_CTS #2 I2C2_SDA #7 ACMP3_O #4 PI5 EBI_A07 #2 WTIM3_CC2 #4 US4_RTS #2 I2C2_SCL #7 ACMP3_O #5 PI6 EBI_A11 #2 TIM1_CC0 #7 TIM4_CC1 #2 WTIM3_CC0 #5 US4_TX #3 PI7 EBI_A12 #2 TIM1_CC1 #7 TIM4_CC2 #2 WTIM3_CC1 #5 US4_RX #3 silabs.com | Building a more connected world. Other Rev. 1.2 | 179 EFM32GG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog EBI Timers Communication PI8 EBI_A13 #2 TIM1_CC2 #7 TIM4_CC0 #3 US4_CLK #3 PI9 EBI_A14 #2 TIM1_CC3 #7 TIM4_CC1 #3 US4_CS #3 PI10 EBI_A15 #2 TIM4_CC2 #3 US4_CTS #3 PI11 US4_RTS #3 PI12 CAN0_RX #7 US3_TX #5 PI13 CAN0_TX #7 US3_RX #5 PI14 CAN1_RX #7 US3_CLK #5 PI15 CAN1_TX #7 US3_CS #5 silabs.com | Building a more connected world. Other Rev. 1.2 | 180 EFM32GG11 Family Data Sheet Pin Definitions 5.21 Alternate Functionality Overview A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 5.20 GPIO Functionality Table for a list of functions available on each GPIO pin. Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 5.21. Alternate Functionality Overview Alternate Functionality LOCATION 0-3 4-7 Description ACMP0_O 0: PE13 1: PE2 2: PD6 3: PB11 4: PA6 5: PB0 6: PB2 7: PB3 Analog comparator ACMP0, digital output. ACMP1_O 0: PF2 1: PE3 2: PD7 3: PA12 4: PA14 5: PB9 6: PB10 7: PA5 Analog comparator ACMP1, digital output. ACMP2_O 0: PD8 1: PE0 2: PE1 3: PI0 4: PI1 5: PI2 ACMP3_O 0: PF0 1: PC15 2: PC14 3: PC13 4: PI4 5: PI5 Analog comparator ACMP2, digital output. Analog comparator ACMP3, digital output. 0: PD7 ADC0_EXTN Analog to digital converter ADC0 external reference input negative pin. 0: PD6 ADC0_EXTP Analog to digital converter ADC0 external reference input positive pin. 0: PD7 ADC1_EXTN Analog to digital converter ADC1 external reference input negative pin. 0: PD6 ADC1_EXTP Analog to digital converter ADC1 external reference input positive pin. 0: PF1 BOOT_RX Bootloader RX. 0: PF0 BOOT_TX silabs.com | Building a more connected world. Bootloader TX. Rev. 1.2 | 181 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PE3 BU_STAT Backup Power Domain status, whether or not the system is in backup mode. 0: PD8 BU_VIN Battery input for Backup Power Domain. 0: PE2 BU_VOUT Power output for Backup Power Domain. CAN0_RX 0: PC0 1: PF0 2: PD0 3: PB9 4: PG8 5: PD14 6: PE0 7: PI12 CAN0 RX. CAN0_TX 0: PC1 1: PF2 2: PD1 3: PB10 4: PG9 5: PD15 6: PE1 7: PI13 CAN0 TX. CAN1_RX 0: PC2 1: PF1 2: PD3 3: PC9 4: PC12 5: PA12 6: PG10 7: PI14 CAN1 RX. CAN1_TX 0: PC3 1: PF3 2: PD4 3: PC10 4: PC11 5: PA13 6: PG11 7: PI15 CAN1 TX. CMU_CLK0 0: PA2 1: PC12 2: PD7 3: PG2 4: PF2 5: PA12 CMU_CLK1 0: PA1 1: PD8 2: PE12 3: PG1 4: PF3 5: PB11 CMU_CLK2 0: PA0 1: PA3 2: PD6 3: PG0 4: PA3 5: PD10 CMU_CLKI0 0: PD4 1: PA3 2: PB8 3: PB13 4: PE1 5: PD10 6: PE12 7: PB11 0: PF0 DBG_SWCLKTCK Clock Management Unit, clock output number 0. Clock Management Unit, clock output number 1. Clock Management Unit, clock output number 2. Clock Management Unit, clock input number 0. Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down. 0: PF1 DBG_SWDIOTMS silabs.com | Building a more connected world. Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up. Rev. 1.2 | 182 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality DBG_SWO LOCATION 0-3 4-7 Description 0: PF2 1: PC15 2: PD1 3: PD2 Debug-interface Serial Wire viewer Output. 0: PF5 Debug-interface JTAG Test Data In. DBG_TDI Note that this function is not enabled after reset, and must be enabled by software to be used. Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active. 0: PF2 DBG_TDO Debug-interface JTAG Test Data Out. Note that this function becomes available after the first valid JTAG command is received. EBI_A00 0: PA12 1: PB9 2: PE0 3: PC5 External Bus Interface (EBI) address output pin 00. EBI_A01 0: PA13 1: PB10 2: PE1 3: PA7 External Bus Interface (EBI) address output pin 01. EBI_A02 0: PA14 1: PB11 2: PI0 3: PA8 External Bus Interface (EBI) address output pin 02. EBI_A03 0: PB9 1: PB12 2: PI1 3: PA9 External Bus Interface (EBI) address output pin 03. EBI_A04 0: PB10 1: PD0 2: PI2 3: PA10 External Bus Interface (EBI) address output pin 04. EBI_A05 0: PC6 1: PD1 2: PI3 3: PA11 External Bus Interface (EBI) address output pin 05. EBI_A06 0: PC7 1: PD2 2: PI4 3: PA12 External Bus Interface (EBI) address output pin 06. EBI_A07 0: PE0 1: PD3 2: PI5 3: PA13 External Bus Interface (EBI) address output pin 07. EBI_A08 0: PE1 1: PD4 2: PC8 3: PA14 External Bus Interface (EBI) address output pin 08. EBI_A09 0: PE2 1: PD5 2: PC9 3: PB9 External Bus Interface (EBI) address output pin 09. silabs.com | Building a more connected world. Rev. 1.2 | 183 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description EBI_A10 0: PE3 1: PD6 2: PC10 3: PB10 External Bus Interface (EBI) address output pin 10. EBI_A11 0: PE4 1: PD7 2: PI6 3: PB11 External Bus Interface (EBI) address output pin 11. EBI_A12 0: PE5 1: PD8 2: PI7 3: PB12 External Bus Interface (EBI) address output pin 12. EBI_A13 0: PE6 1: PC7 2: PI8 3: PD0 External Bus Interface (EBI) address output pin 13. EBI_A14 0: PE7 1: PE2 2: PI9 3: PD1 External Bus Interface (EBI) address output pin 14. EBI_A15 0: PC8 1: PE3 2: PI10 3: PD2 External Bus Interface (EBI) address output pin 15. EBI_A16 0: PB0 1: PE4 2: PH4 3: PD3 External Bus Interface (EBI) address output pin 16. EBI_A17 0: PB1 1: PE5 2: PH5 3: PD4 External Bus Interface (EBI) address output pin 17. EBI_A18 0: PB2 1: PE6 2: PH6 3: PD5 External Bus Interface (EBI) address output pin 18. EBI_A19 0: PB3 1: PE7 2: PH7 3: PD6 External Bus Interface (EBI) address output pin 19. EBI_A20 0: PB4 1: PC8 2: PH8 3: PD7 External Bus Interface (EBI) address output pin 20. EBI_A21 0: PB5 1: PC9 2: PH9 3: PC7 External Bus Interface (EBI) address output pin 21. EBI_A22 0: PB6 1: PC10 2: PH10 3: PE4 External Bus Interface (EBI) address output pin 22. silabs.com | Building a more connected world. Rev. 1.2 | 184 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description EBI_A23 0: PC0 1: PC11 2: PH11 3: PE5 External Bus Interface (EBI) address output pin 23. EBI_A24 0: PC1 1: PF0 2: PH12 3: PE6 External Bus Interface (EBI) address output pin 24. EBI_A25 0: PC2 1: PF1 2: PH13 3: PE7 External Bus Interface (EBI) address output pin 25. EBI_A26 0: PC4 1: PF2 2: PH14 3: PC8 External Bus Interface (EBI) address output pin 26. EBI_A27 0: PD2 1: PF5 2: PH15 3: PC9 External Bus Interface (EBI) address output pin 27. EBI_AD00 EBI_AD01 EBI_AD02 EBI_AD03 EBI_AD04 EBI_AD05 EBI_AD06 EBI_AD07 0: PE8 1: PB0 2: PG0 0: PE9 1: PB1 2: PG1 0: PE10 1: PB2 2: PG2 0: PE11 1: PB3 2: PG3 0: PE12 1: PB4 2: PG4 0: PE13 1: PB5 2: PG5 0: PE14 1: PB6 2: PG6 0: PE15 1: PC0 2: PG7 silabs.com | Building a more connected world. External Bus Interface (EBI) address and data input / output pin 00. External Bus Interface (EBI) address and data input / output pin 01. External Bus Interface (EBI) address and data input / output pin 02. External Bus Interface (EBI) address and data input / output pin 03. External Bus Interface (EBI) address and data input / output pin 04. External Bus Interface (EBI) address and data input / output pin 05. External Bus Interface (EBI) address and data input / output pin 06. External Bus Interface (EBI) address and data input / output pin 07. Rev. 1.2 | 185 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality EBI_AD08 EBI_AD09 EBI_AD10 EBI_AD11 EBI_AD12 EBI_AD13 EBI_AD14 EBI_AD15 LOCATION 0-3 4-7 0: PA15 1: PC1 2: PG8 Description External Bus Interface (EBI) address and data input / output pin 08. 0: PA0 1: PC2 2: PG9 External Bus Interface (EBI) address and data input / output pin 09. 0: PA1 1: PC3 2: PG10 External Bus Interface (EBI) address and data input / output pin 10. 0: PA2 1: PC4 2: PG11 External Bus Interface (EBI) address and data input / output pin 11. 0: PA3 1: PC5 2: PG12 External Bus Interface (EBI) address and data input / output pin 12. 0: PA4 1: PA7 2: PG13 External Bus Interface (EBI) address and data input / output pin 13. 0: PA5 1: PA8 2: PG14 External Bus Interface (EBI) address and data input / output pin 14. 0: PA6 1: PA9 2: PG15 External Bus Interface (EBI) address and data input / output pin 15. EBI_ALE 0: PF3 1: PB9 2: PC4 3: PB5 4: PC11 5: PC11 EBI_ARDY 0: PF2 1: PD13 2: PB15 3: PB4 4: PC13 5: PF10 EBI_BL0 0: PF6 1: PF8 2: PB10 3: PC1 4: PF6 5: PF6 EBI_BL1 0: PF7 1: PF9 2: PB11 3: PC3 4: PF7 5: PF7 4: PE8 EBI_CS0 0: PD9 1: PA10 2: PC0 3: PB0 silabs.com | Building a more connected world. External Bus Interface (EBI) Address Latch Enable output. External Bus Interface (EBI) Hardware Ready Control input. External Bus Interface (EBI) Byte Lane/Enable pin 0. External Bus Interface (EBI) Byte Lane/Enable pin 1. External Bus Interface (EBI) Chip Select output 0. Rev. 1.2 | 186 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 4: PE9 EBI_CS1 0: PD10 1: PA11 2: PC1 3: PB1 4: PE10 EBI_CS2 0: PD11 1: PA12 2: PC2 3: PB2 4: PE11 EBI_CS3 0: PD12 1: PB15 2: PC3 3: PB3 EBI_CSTFT 0: PA7 1: PF6 2: PB12 3: PA0 External Bus Interface (EBI) Chip Select output TFT. EBI_DCLK 0: PA8 1: PF7 2: PH0 3: PA1 External Bus Interface (EBI) TFT Dot Clock pin. EBI_DTEN 0: PA9 1: PD9 2: PH1 3: PA2 External Bus Interface (EBI) TFT Data Enable pin. EBI_HSNC 0: PA11 1: PD11 2: PH3 3: PA4 External Bus Interface (EBI) TFT Horizontal Synchronization pin. EBI_NANDREn 0: PC3 1: PD15 2: PB9 3: PC4 4: PC15 5: PF12 EBI_NANDWEn 0: PC5 1: PD14 2: PA13 3: PC2 4: PC14 5: PF11 EBI_REn 0: PF5 1: PA14 2: PA12 3: PC0 4: PF9 5: PF5 EBI_VSNC 0: PA10 1: PD10 2: PH2 3: PA3 EBI_WEn 0: PF4 1: PA13 2: PC5 3: PB6 ETH_MDC 0: PB4 1: PD14 2: PC1 3: PA6 External Bus Interface (EBI) Chip Select output 1. External Bus Interface (EBI) Chip Select output 2. External Bus Interface (EBI) Chip Select output 3. External Bus Interface (EBI) NAND Read Enable output. External Bus Interface (EBI) NAND Write Enable output. External Bus Interface (EBI) Read Enable output. External Bus Interface (EBI) TFT Vertical Synchronization pin. 4: PF8 5: PF4 silabs.com | Building a more connected world. External Bus Interface (EBI) Write Enable output. Ethernet Management Data Clock. Rev. 1.2 | 187 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality ETH_MDIO ETH_MIICOL ETH_MIICRS ETH_MIIRXCLK ETH_MIIRXD0 ETH_MIIRXD1 ETH_MIIRXD2 ETH_MIIRXD3 ETH_MIIRXDV ETH_MIIRXER ETH_MIITXCLK ETH_MIITXD0 ETH_MIITXD1 LOCATION 0-3 4-7 0: PB3 1: PD13 2: PC0 3: PA15 0: PB2 1: PG15 2: PB4 0: PB1 1: PG14 2: PB3 0: PA15 1: PG7 2: PD12 0: PE12 1: PG11 2: PF9 0: PE13 1: PG10 2: PD9 0: PE14 1: PG9 2: PD10 0: PE15 1: PG8 2: PD11 0: PE11 1: PG12 2: PF8 0: PE10 1: PG13 2: PF7 0: PA0 1: PG0 0: PA4 1: PG4 0: PA3 1: PG3 silabs.com | Building a more connected world. Description Ethernet Management Data I/O. Ethernet MII Collision Detect. Ethernet MII Carrier Sense. Ethernet MII Receive Clock. Ethernet MII Receive Data Bit 0. Ethernet MII Receive Data Bit 1. Ethernet MII Receive Data Bit 2. Ethernet MII Receive Data Bit 3. Ethernet MII Receive Data Valid. Ethernet MII Receive Error. Ethernet MII Transmit Clock. Ethernet MII Transmit Data Bit 0. Ethernet MII Transmit Data Bit 1. Rev. 1.2 | 188 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality ETH_MIITXD2 ETH_MIITXD3 ETH_MIITXEN ETH_MIITXER ETH_RMIICRSDV ETH_RMIIREFCLK ETH_RMIIRXD0 ETH_RMIIRXD1 ETH_RMIIRXER ETH_RMIITXD0 ETH_RMIITXD1 ETH_RMIITXEN LOCATION 0-3 4-7 0: PA2 1: PG2 0: PA1 1: PG1 0: PA5 1: PG5 0: PA6 1: PG6 0: PA4 1: PD11 0: PA3 1: PD10 0: PA2 1: PD9 0: PA1 1: PF9 0: PA5 1: PD12 0: PE15 1: PF7 0: PE14 1: PF6 0: PA0 1: PF8 0: PB5 1: PD15 ETH_TSUEXTCLK 2: PC2 3: PF8 silabs.com | Building a more connected world. Description Ethernet MII Transmit Data Bit 2. Ethernet MII Transmit Data Bit 3. Ethernet MII Transmit Enable. Ethernet MII Transmit Error. Ethernet RMII Carrier Sense / Data Valid. Ethernet RMII Reference Clock. Ethernet RMII Receive Data Bit 0. Ethernet RMII Receive Data Bit 1. Ethernet RMII Receive Error. Ethernet RMII Transmit Data Bit 0. Ethernet RMII Transmit Data Bit 1. Ethernet RMII Transmit Enable. Ethernet IEEE1588 External Reference Clock. Rev. 1.2 | 189 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 ETH_TSUTMRTOG 0: PB6 1: PB15 2: PC3 3: PF9 ETM_TCLK 0: PD7 1: PF8 2: PC6 3: PA6 4: PE11 5: PG15 ETM_TD0 0: PD6 1: PF9 2: PC7 3: PA2 4: PE12 5: PG14 ETM_TD1 0: PD3 1: PD13 2: PD3 3: PA3 4: PE13 5: PG13 ETM_TD2 0: PD4 1: PB15 2: PD4 3: PA4 4: PE14 5: PG12 ETM_TD3 0: PD5 1: PF3 2: PD5 3: PA5 4: PE15 5: PG11 Description Ethernet IEEE1588 Timer Toggle. Embedded Trace Module ETM clock . Embedded Trace Module ETM data 0. Embedded Trace Module ETM data 1. Embedded Trace Module ETM data 2. Embedded Trace Module ETM data 3. 0: PA0 GPIO_EM4WU0 Pin can be used to wake the system up from EM4 0: PA6 GPIO_EM4WU1 Pin can be used to wake the system up from EM4 0: PC9 GPIO_EM4WU2 Pin can be used to wake the system up from EM4 0: PF1 GPIO_EM4WU3 Pin can be used to wake the system up from EM4 0: PF2 GPIO_EM4WU4 Pin can be used to wake the system up from EM4 0: PE13 GPIO_EM4WU5 Pin can be used to wake the system up from EM4 0: PC4 GPIO_EM4WU6 silabs.com | Building a more connected world. Pin can be used to wake the system up from EM4 Rev. 1.2 | 190 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PB11 GPIO_EM4WU7 Pin can be used to wake the system up from EM4 0: PF8 GPIO_EM4WU8 Pin can be used to wake the system up from EM4 0: PE10 GPIO_EM4WU9 Pin can be used to wake the system up from EM4 0: PB14 HFXTAL_N High Frequency Crystal negative pin. Also used as external optional clock input pin. 0: PB13 HFXTAL_P High Frequency Crystal positive pin. I2C0_SCL 0: PA1 1: PD7 2: PC7 3: PD15 4: PC1 5: PF1 6: PE13 7: PE5 I2C0 Serial Clock Line input / output. I2C0_SDA 0: PA0 1: PD6 2: PC6 3: PD14 4: PC0 5: PF0 6: PE12 7: PE4 I2C0 Serial Data input / output. I2C1_SCL 0: PC5 1: PB12 2: PE1 3: PD5 4: PF2 5: PH12 6: PH14 7: PI3 I2C1 Serial Clock Line input / output. I2C1_SDA 0: PC4 1: PB11 2: PE0 3: PD4 4: PC11 5: PH11 6: PH13 7: PI2 I2C1 Serial Data input / output. I2C2_SCL 0: PF5 1: PC15 2: PF11 3: PF12 4: PF14 5: PF3 6: PC13 7: PI5 I2C2 Serial Clock Line input / output. I2C2_SDA 0: PE8 1: PC14 2: PF10 3: PF4 4: PF13 5: PF15 6: PC12 7: PI4 I2C2 Serial Data input / output. 0: PB11 IDAC0_OUT silabs.com | Building a more connected world. IDAC0 output. Rev. 1.2 | 191 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 0: PA14 Description LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required. To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used. LCD_BEXT If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO. 0: PE4 LCD_COM0 LCD driver common line number 0. 0: PE5 LCD_COM1 LCD driver common line number 1. 0: PE6 LCD_COM2 LCD driver common line number 2. 0: PE7 LCD_COM3 LCD driver common line number 3. 0: PF2 LCD_SEG0 LCD segment line 0. 0: PF3 LCD_SEG1 LCD segment line 1. 0: PF4 LCD_SEG2 LCD segment line 2. 0: PF5 LCD_SEG3 LCD segment line 3. 0: PE8 LCD_SEG4 LCD segment line 4. 0: PE9 LCD_SEG5 LCD segment line 5. 0: PE10 LCD_SEG6 silabs.com | Building a more connected world. LCD segment line 6. Rev. 1.2 | 192 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PE11 LCD_SEG7 LCD segment line 7. 0: PE12 LCD_SEG8 LCD segment line 8. 0: PE13 LCD_SEG9 LCD segment line 9. 0: PE14 LCD_SEG10 LCD segment line 10. 0: PE15 LCD_SEG11 LCD segment line 11. 0: PA15 LCD_SEG12 LCD segment line 12. 0: PA0 LCD_SEG13 LCD segment line 13. 0: PA1 LCD_SEG14 LCD segment line 14. 0: PA2 LCD_SEG15 LCD segment line 15. 0: PA3 LCD_SEG16 LCD segment line 16. 0: PA4 LCD_SEG17 LCD segment line 17. 0: PA5 LCD_SEG18 LCD segment line 18. 0: PA6 LCD_SEG19 silabs.com | Building a more connected world. LCD segment line 19. Rev. 1.2 | 193 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PB3 LCD_SEG20 / LCD_COM4 LCD segment line 20. This pin may also be used as LCD COM line 4 0: PB4 LCD_SEG21 / LCD_COM5 LCD segment line 21. This pin may also be used as LCD COM line 5 0: PB5 LCD_SEG22 / LCD_COM6 LCD segment line 22. This pin may also be used as LCD COM line 6 0: PB6 LCD_SEG23 / LCD_COM7 LCD segment line 23. This pin may also be used as LCD COM line 7 0: PF6 LCD_SEG24 LCD segment line 24. 0: PF7 LCD_SEG25 LCD segment line 25. 0: PF8 LCD_SEG26 LCD segment line 26. 0: PF9 LCD_SEG27 LCD segment line 27. 0: PD9 LCD_SEG28 LCD segment line 28. 0: PD10 LCD_SEG29 LCD segment line 29. 0: PD11 LCD_SEG30 LCD segment line 30. 0: PD12 LCD_SEG31 LCD segment line 31. 0: PB0 LCD_SEG32 silabs.com | Building a more connected world. LCD segment line 32. Rev. 1.2 | 194 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PB1 LCD_SEG33 LCD segment line 33. 0: PB2 LCD_SEG34 LCD segment line 34. 0: PA7 LCD_SEG35 LCD segment line 35. 0: PA8 LCD_SEG36 LCD segment line 36. 0: PA9 LCD_SEG37 LCD segment line 37. 0: PA10 LCD_SEG38 LCD segment line 38. 0: PA11 LCD_SEG39 LCD segment line 39. 0: PD6 LES_ALTEX0 LESENSE alternate excite output 0. 0: PD7 LES_ALTEX1 LESENSE alternate excite output 1. 0: PA3 LES_ALTEX2 LESENSE alternate excite output 2. 0: PA4 LES_ALTEX3 LESENSE alternate excite output 3. 0: PA5 LES_ALTEX4 LESENSE alternate excite output 4. 0: PE11 LES_ALTEX5 silabs.com | Building a more connected world. LESENSE alternate excite output 5. Rev. 1.2 | 195 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PE12 LES_ALTEX6 LESENSE alternate excite output 6. 0: PE13 LES_ALTEX7 LESENSE alternate excite output 7. 0: PC0 LES_CH0 LESENSE channel 0. 0: PC1 LES_CH1 LESENSE channel 1. 0: PC2 LES_CH2 LESENSE channel 2. 0: PC3 LES_CH3 LESENSE channel 3. 0: PC4 LES_CH4 LESENSE channel 4. 0: PC5 LES_CH5 LESENSE channel 5. 0: PC6 LES_CH6 LESENSE channel 6. 0: PC7 LES_CH7 LESENSE channel 7. 0: PC8 LES_CH8 LESENSE channel 8. 0: PC9 LES_CH9 LESENSE channel 9. 0: PC10 LES_CH10 silabs.com | Building a more connected world. LESENSE channel 10. Rev. 1.2 | 196 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PC11 LES_CH11 LESENSE channel 11. 0: PC12 LES_CH12 LESENSE channel 12. 0: PC13 LES_CH13 LESENSE channel 13. 0: PC14 LES_CH14 LESENSE channel 14. 0: PC15 LES_CH15 LESENSE channel 15. LETIM0_OUT0 0: PD6 1: PB11 2: PF0 3: PC4 4: PE12 5: PC14 6: PA8 7: PB9 Low Energy Timer LETIM0, output channel 0. LETIM0_OUT1 0: PD7 1: PB12 2: PF1 3: PC5 4: PE13 5: PC15 6: PA9 7: PB10 Low Energy Timer LETIM0, output channel 1. LETIM1_OUT0 0: PA7 1: PA11 2: PA12 3: PC2 4: PB5 5: PB2 6: PG0 7: PG2 Low Energy Timer LETIM1, output channel 0. LETIM1_OUT1 0: PA6 1: PA13 2: PA14 3: PC3 4: PB6 5: PB1 6: PG1 7: PG3 Low Energy Timer LETIM1, output channel 1. LEU0_RX 0: PD5 1: PB14 2: PE15 3: PF1 4: PA0 5: PC15 LEU0_TX 0: PD4 1: PB13 2: PE14 3: PF0 4: PF2 5: PC14 LEU1_RX 0: PC7 1: PA6 2: PD3 3: PB1 4: PB5 5: PH1 LEU1_TX 0: PC6 1: PA5 2: PD2 3: PB0 4: PB4 5: PH0 silabs.com | Building a more connected world. LEUART0 Receive input. LEUART0 Transmit output. Also used as receive input in half duplex communication. LEUART1 Receive input. LEUART1 Transmit output. Also used as receive input in half duplex communication. Rev. 1.2 | 197 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_N 0: PB7 LFXTAL_P Low Frequency Crystal (typically 32.768 kHz) positive pin. 0: PC5 OPA0_N Operational Amplifier 0 external negative input. 0: PC4 OPA0_P Operational Amplifier 0 external positive input. 0: PD7 OPA1_N Operational Amplifier 1 external negative input. 0: PD6 OPA1_P Operational Amplifier 1 external positive input. 0: PD3 OPA2_N Operational Amplifier 2 external negative input. 0: PD5 OPA2_OUT Operational Amplifier 2 output. 0: PD0 OPA2_OUTALT Operational Amplifier 2 alternative output. 0: PD4 OPA2_P Operational Amplifier 2 external positive input. 0: PC7 OPA3_N Operational Amplifier 3 external negative input. 0: PD1 OPA3_OUT Operational Amplifier 3 output. 0: PC6 OPA3_P silabs.com | Building a more connected world. Operational Amplifier 3 external positive input. Rev. 1.2 | 198 EFM32GG11 Family Data Sheet Pin Definitions Alternate LOCATION Functionality 0-3 4-7 PCNT0_S0IN 0: PC13 1: PE0 2: PC0 3: PD6 4: PA0 5: PB0 6: PB5 7: PB12 Pulse Counter PCNT0 input number 0. PCNT0_S1IN 0: PC14 1: PE1 2: PC1 3: PD7 4: PA1 5: PB1 6: PB6 7: PB11 Pulse Counter PCNT0 input number 1. PCNT1_S0IN 0: PA5 1: PB3 2: PD15 3: PC4 4: PA7 5: PA12 6: PB11 7: PG14 Pulse Counter PCNT1 input number 0. PCNT1_S1IN 0: PA6 1: PB4 2: PB0 3: PC5 4: PA8 5: PA13 6: PB12 7: PG15 Pulse Counter PCNT1 input number 1. PCNT2_S0IN 0: PD0 1: PE8 2: PB13 3: PF10 4: PC12 5: PI2 6: PI0 7: PH14 Pulse Counter PCNT2 input number 0. PCNT2_S1IN 0: PD1 1: PE9 2: PB14 3: PF11 4: PC13 5: PI1 6: PH15 7: PH13 Pulse Counter PCNT2 input number 1. PRS_CH0 0: PA0 1: PF3 2: PC14 3: PF2 Peripheral Reflex System PRS, channel 0. PRS_CH1 0: PA1 1: PF4 2: PC15 3: PE12 Peripheral Reflex System PRS, channel 1. PRS_CH2 0: PC0 1: PF5 2: PE10 3: PE13 Peripheral Reflex System PRS, channel 2. PRS_CH3 0: PC1 1: PE8 2: PE11 3: PA0 Peripheral Reflex System PRS, channel 3. PRS_CH4 PRS_CH5 PRS_CH6 0: PC8 1: PB0 2: PF1 0: PC9 1: PB1 2: PD6 0: PA6 1: PB14 2: PE6 silabs.com | Building a more connected world. Description Peripheral Reflex System PRS, channel 4. Peripheral Reflex System PRS, channel 5. Peripheral Reflex System PRS, channel 6. Rev. 1.2 | 199 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality PRS_CH7 PRS_CH8 PRS_CH9 PRS_CH10 PRS_CH11 PRS_CH12 PRS_CH13 PRS_CH14 PRS_CH15 PRS_CH16 PRS_CH17 PRS_CH18 PRS_CH19 LOCATION 0-3 4-7 0: PB13 1: PA7 2: PE7 0: PA8 1: PA2 2: PE9 0: PA9 1: PA3 2: PB10 0: PA10 1: PC2 2: PD4 0: PA11 1: PC3 2: PD5 0: PA12 1: PB6 2: PD8 0: PA13 1: PB9 2: PE14 0: PA14 1: PC6 2: PE15 0: PA15 1: PC7 2: PF0 0: PA4 1: PB12 2: PE4 0: PA5 1: PB15 2: PE5 0: PB2 1: PC10 2: PC4 0: PB3 1: PC11 2: PC5 silabs.com | Building a more connected world. Description Peripheral Reflex System PRS, channel 7. Peripheral Reflex System PRS, channel 8. Peripheral Reflex System PRS, channel 9. Peripheral Reflex System PRS, channel 10. Peripheral Reflex System PRS, channel 11. Peripheral Reflex System PRS, channel 12. Peripheral Reflex System PRS, channel 13. Peripheral Reflex System PRS, channel 14. Peripheral Reflex System PRS, channel 15. Peripheral Reflex System PRS, channel 16. Peripheral Reflex System PRS, channel 17. Peripheral Reflex System PRS, channel 18. Peripheral Reflex System PRS, channel 19. Rev. 1.2 | 200 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality PRS_CH20 PRS_CH21 PRS_CH22 PRS_CH23 QSPI0_CS0 QSPI0_CS1 QSPI0_DQ0 QSPI0_DQ1 QSPI0_DQ2 QSPI0_DQ3 QSPI0_DQ4 QSPI0_DQ5 QSPI0_DQ6 LOCATION 0-3 4-7 0: PB4 1: PC12 2: PE2 0: PB5 1: PC13 2: PB11 0: PB7 1: PE0 2: PF6 0: PB8 1: PE1 2: PF7 0: PF7 1: PA0 2: PG9 0: PF8 1: PA1 2: PG10 0: PD9 1: PA2 2: PG1 0: PD10 1: PA3 2: PG2 0: PD11 1: PA4 2: PG3 0: PD12 1: PA5 2: PG4 0: PE8 1: PB3 2: PG5 0: PE9 1: PB4 2: PG6 0: PE10 1: PB5 2: PG7 silabs.com | Building a more connected world. Description Peripheral Reflex System PRS, channel 20. Peripheral Reflex System PRS, channel 21. Peripheral Reflex System PRS, channel 22. Peripheral Reflex System PRS, channel 23. Quad SPI 0 Chip Select 0. Quad SPI 0 Chip Select 1. Quad SPI 0 Data 0. Quad SPI 0 Data 1. Quad SPI 0 Data 2. Quad SPI 0 Data 3. Quad SPI 0 Data 4. Quad SPI 0 Data 5. Quad SPI 0 Data 6. Rev. 1.2 | 201 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality QSPI0_DQ7 QSPI0_DQS QSPI0_SCLK SDIO_CD SDIO_CLK SDIO_CMD SDIO_DAT0 SDIO_DAT1 SDIO_DAT2 SDIO_DAT3 SDIO_DAT4 SDIO_DAT5 SDIO_DAT6 LOCATION 0-3 4-7 0: PE11 1: PB6 2: PG8 0: PF9 1: PE15 2: PG11 0: PF6 1: PE14 2: PG0 0: PF8 1: PC4 2: PA6 3: PB10 0: PE13 1: PE14 0: PE12 1: PE15 0: PE11 1: PA0 0: PE10 1: PA1 0: PE9 1: PA2 0: PE8 1: PA3 0: PD12 1: PA4 0: PD11 1: PA5 0: PD10 1: PB3 silabs.com | Building a more connected world. Description Quad SPI 0 Data 7. Quad SPI 0 Data S. Quad SPI 0 Serial Clock. SDIO Card Detect. SDIO Serial Clock. SDIO Command. SDIO Data 0. SDIO Data 1. SDIO Data 2. SDIO Data 3. SDIO Data 4. SDIO Data 5. SDIO Data 6. Rev. 1.2 | 202 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality SDIO_DAT7 LOCATION 0-3 4-7 0: PD9 1: PB4 Description SDIO Data 7. SDIO_WP 0: PF9 1: PC5 2: PB15 3: PB9 TIM0_CC0 0: PA0 1: PF6 2: PD1 3: PB6 4: PF0 5: PC4 6: PA8 7: PA1 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 0: PA1 1: PF7 2: PD2 3: PC0 4: PF1 5: PC5 6: PA9 7: PA0 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 0: PA2 1: PF8 2: PD3 3: PC1 4: PF2 5: PA7 6: PA10 7: PA13 Timer 0 Capture Compare input / output channel 2. 4: PB7 TIM0_CDTI0 0: PA3 1: PC13 2: PF3 3: PC2 4: PB8 TIM0_CDTI1 0: PA4 1: PC14 2: PF4 3: PC3 4: PB11 TIM0_CDTI2 0: PA5 1: PC15 2: PF5 3: PC4 TIM1_CC0 0: PC13 1: PE10 2: PB0 3: PB7 4: PD6 5: PF2 6: PF13 7: PI6 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 0: PC14 1: PE11 2: PB1 3: PB8 4: PD7 5: PF3 6: PF14 7: PI7 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 0: PC15 1: PE12 2: PB2 3: PB11 4: PC13 5: PF4 6: PF15 7: PI8 Timer 1 Capture Compare input / output channel 2. TIM1_CC3 0: PC12 1: PE13 2: PB3 3: PB12 4: PC14 5: PF12 6: PF5 7: PI9 Timer 1 Capture Compare input / output channel 3. TIM2_CC0 0: PA8 1: PA12 2: PC8 3: PF2 4: PB6 5: PC2 6: PG8 7: PG5 Timer 2 Capture Compare input / output channel 0. SDIO Write Protect. Timer 0 Complimentary Dead Time Insertion channel 0. Timer 0 Complimentary Dead Time Insertion channel 1. Timer 0 Complimentary Dead Time Insertion channel 2. silabs.com | Building a more connected world. Rev. 1.2 | 203 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description TIM2_CC1 0: PA9 1: PA13 2: PC9 3: PE12 4: PC0 5: PC3 6: PG9 7: PG6 Timer 2 Capture Compare input / output channel 1. TIM2_CC2 0: PA10 1: PA14 2: PC10 3: PE13 4: PC1 5: PC4 6: PG10 7: PG7 Timer 2 Capture Compare input / output channel 2. TIM2_CDTI0 0: PB0 1: PD13 2: PE8 3: PG0 Timer 2 Complimentary Dead Time Insertion channel 0. TIM2_CDTI1 0: PB1 1: PD14 2: PE14 3: PG1 Timer 2 Complimentary Dead Time Insertion channel 1. TIM2_CDTI2 0: PB2 1: PD15 2: PE15 3: PG2 Timer 2 Complimentary Dead Time Insertion channel 2. TIM3_CC0 0: PE14 1: PE0 2: PE3 3: PE5 4: PA0 5: PA3 6: PA6 7: PD15 Timer 3 Capture Compare input / output channel 0. TIM3_CC1 0: PE15 1: PE1 2: PE4 3: PE6 4: PA1 5: PA4 6: PD13 7: PB15 Timer 3 Capture Compare input / output channel 1. TIM3_CC2 0: PA15 1: PE2 2: PE5 3: PE7 4: PA2 5: PA5 6: PD14 7: PB0 Timer 3 Capture Compare input / output channel 2. TIM4_CC0 0: PF3 1: PF13 2: PF5 3: PI8 4: PF6 5: PF9 6: PD11 7: PE9 Timer 4 Capture Compare input / output channel 0. TIM4_CC1 0: PF4 1: PF14 2: PI6 3: PI9 4: PF7 5: PD9 6: PD12 7: PE10 Timer 4 Capture Compare input / output channel 1. TIM4_CC2 0: PF12 1: PF15 2: PI7 3: PI10 4: PF8 5: PD10 6: PE8 7: PE11 Timer 4 Capture Compare input / output channel 2. 0: PD0 TIM4_CDTI0 Timer 4 Complimentary Dead Time Insertion channel 0. 0: PD1 TIM4_CDTI1 silabs.com | Building a more connected world. Timer 4 Complimentary Dead Time Insertion channel 1. Rev. 1.2 | 204 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PD3 TIM4_CDTI2 Timer 4 Complimentary Dead Time Insertion channel 2. TIM5_CC0 0: PE4 1: PE7 2: PH13 3: PI0 4: PC8 5: PC11 6: PC14 7: PF12 Timer 5 Capture Compare input / output channel 0. TIM5_CC1 0: PE5 1: PH11 2: PH14 3: PI1 4: PC9 5: PC12 6: PF10 7: PF13 Timer 5 Capture Compare input / output channel 1. TIM5_CC2 0: PE6 1: PH12 2: PH15 3: PI2 4: PC10 5: PC13 6: PF11 7: PF14 Timer 5 Capture Compare input / output channel 2. TIM6_CC0 0: PG0 1: PG6 2: PG12 3: PH2 4: PH8 5: PB13 6: PD1 7: PD4 Timer 6 Capture Compare input / output channel 0. TIM6_CC1 0: PG1 1: PG7 2: PG13 3: PH3 4: PH9 5: PB14 6: PD2 7: PD5 Timer 6 Capture Compare input / output channel 1. TIM6_CC2 0: PG2 1: PG8 2: PG14 3: PH4 4: PH10 5: PD0 6: PD3 7: PD6 Timer 6 Capture Compare input / output channel 2. TIM6_CDTI0 0: PG3 1: PG9 2: PE4 3: PH5 Timer 6 Complimentary Dead Time Insertion channel 0. TIM6_CDTI1 0: PG4 1: PG10 2: PE5 3: PH6 Timer 6 Complimentary Dead Time Insertion channel 1. TIM6_CDTI2 0: PG5 1: PG11 2: PE6 3: PH7 Timer 6 Complimentary Dead Time Insertion channel 2. U0_CTS 0: PF8 1: PE2 2: PA5 3: PC13 4: PB7 5: PD5 U0_RTS 0: PF9 1: PE3 2: PA6 3: PC12 4: PB8 5: PD6 U0_RX 0: PF7 1: PE1 2: PA4 3: PC15 4: PC5 5: PF2 6: PE4 silabs.com | Building a more connected world. UART0 Clear To Send hardware flow control input. UART0 Request To Send hardware flow control output. UART0 Receive input. Rev. 1.2 | 205 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description U0_TX 0: PF6 1: PE0 2: PA3 3: PC14 4: PC4 5: PF1 6: PD7 U1_CTS 0: PC14 1: PF9 2: PB11 3: PE4 4: PC4 5: PH13 U1_RTS 0: PC15 1: PF8 2: PB12 3: PE5 4: PC5 5: PH14 U1_RX 0: PC13 1: PF11 2: PB10 3: PE3 4: PE13 5: PH12 U1_TX 0: PC12 1: PF10 2: PB9 3: PE2 4: PE12 5: PH11 US0_CLK 0: PE12 1: PE5 2: PC9 3: PC15 4: PB13 5: PA12 6: PG14 US0_CS 0: PE13 1: PE4 2: PC8 3: PC14 4: PB14 5: PA13 6: PG15 US0_CTS 0: PE14 1: PE3 2: PC7 3: PC13 4: PB6 5: PB11 6: PH0 US0_RTS 0: PE15 1: PE2 2: PC6 3: PC12 4: PB5 5: PD6 6: PH1 US0_RX 0: PE11 1: PE6 2: PC10 3: PE12 4: PB8 5: PC1 6: PG13 USART0 Asynchronous Receive. US0_TX 0: PE10 1: PE7 2: PC11 3: PE13 4: PB7 5: PC0 6: PG12 USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. US1_CLK 0: PB7 1: PD2 2: PF0 3: PC15 4: PC3 5: PB11 6: PE5 US1_CS 0: PB8 1: PD3 2: PF1 3: PC14 4: PC0 5: PE4 6: PB2 silabs.com | Building a more connected world. UART0 Transmit output. Also used as receive input in half duplex communication. UART1 Clear To Send hardware flow control input. UART1 Request To Send hardware flow control output. UART1 Receive input. UART1 Transmit output. Also used as receive input in half duplex communication. USART0 clock input / output. USART0 chip select input / output. USART0 Clear To Send hardware flow control input. USART0 Request To Send hardware flow control output. USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Synchronous mode Master Output / Slave Input (MOSI). USART1 clock input / output. USART1 chip select input / output. Rev. 1.2 | 206 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description US1_CTS 0: PB9 1: PD4 2: PF3 3: PC6 4: PC12 5: PB13 6: PH2 US1_RTS 0: PB10 1: PD5 2: PF4 3: PC7 4: PC13 5: PB14 6: PH3 US1_RX 0: PC1 1: PD1 2: PD6 3: PF7 4: PC2 5: PA0 6: PA2 USART1 Asynchronous Receive. US1_TX 0: PC0 1: PD0 2: PD7 3: PF6 4: PC1 5: PF2 6: PA14 USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. US2_CLK 0: PC4 1: PB5 2: PA9 3: PA15 4: PF8 5: PF2 US2_CS 0: PC5 1: PB6 2: PA10 3: PB11 4: PF9 5: PF5 US2_CTS 0: PC1 1: PB12 2: PA11 3: PB10 4: PC12 5: PD6 US2_RTS 0: PC0 1: PB15 2: PA12 3: PC14 4: PC13 5: PD8 US2_RX 0: PC3 1: PB4 2: PA8 3: PA14 4: PF7 5: PF1 US2_TX 0: PC2 1: PB3 2: PA7 3: PA13 4: PF6 5: PF0 US3_CLK 0: PA2 1: PD7 2: PD4 3: PG8 4: PG2 5: PI14 US3_CS 0: PA3 1: PE4 2: PC14 3: PC0 4: PG3 5: PI15 US3_CTS 0: PA4 1: PE5 2: PD6 3: PG10 4: PG4 5: PG9 USART1 Clear To Send hardware flow control input. USART1 Request To Send hardware flow control output. USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Synchronous mode Master Output / Slave Input (MOSI). USART2 clock input / output. USART2 chip select input / output. USART2 Clear To Send hardware flow control input. USART2 Request To Send hardware flow control output. USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO). USART2 Asynchronous Transmit. Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI). silabs.com | Building a more connected world. USART3 clock input / output. USART3 chip select input / output. USART3 Clear To Send hardware flow control input. Rev. 1.2 | 207 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 US3_RTS 0: PA5 1: PC1 2: PA14 3: PC15 4: PG5 5: PG11 US3_RX 0: PA1 1: PE7 2: PB7 3: PG7 4: PG1 5: PI13 US3_TX 0: PA0 1: PE6 2: PB3 3: PG6 4: PG0 5: PI12 4: PH6 US4_CLK 0: PC4 1: PD11 2: PI2 3: PI8 4: PH7 US4_CS 0: PC5 1: PD12 2: PI3 3: PI9 4: PH8 US4_CTS 0: PA7 1: PD13 2: PI4 3: PI10 4: PH9 US4_RTS 0: PA8 1: PD14 2: PI5 3: PI11 4: PH5 US4_RX 0: PB8 1: PD10 2: PI1 3: PI7 4: PH4 US4_TX 0: PB7 1: PD9 2: PI0 3: PI6 Description USART3 Request To Send hardware flow control output. USART3 Asynchronous Receive. USART3 Synchronous mode Master Input / Slave Output (MISO). USART3 Asynchronous Transmit. Also used as receive input in half duplex communication. USART3 Synchronous mode Master Output / Slave Input (MOSI). USART4 clock input / output. USART4 chip select input / output. USART4 Clear To Send hardware flow control input. USART4 Request To Send hardware flow control output. USART4 Asynchronous Receive. USART4 Synchronous mode Master Input / Slave Output (MISO). USART4 Asynchronous Transmit. Also used as receive input in half duplex communication. USART4 Synchronous mode Master Output / Slave Input (MOSI). US5_CLK 0: PB11 1: PD13 2: PF13 3: PH12 USART5 clock input / output. US5_CS 0: PB13 1: PD14 2: PF12 3: PH13 USART5 chip select input / output. US5_CTS 0: PB14 1: PD15 2: PF11 3: PH14 USART5 Clear To Send hardware flow control input. US5_RTS 0: PB12 1: PB15 2: PF10 3: PH15 USART5 Request To Send hardware flow control output. silabs.com | Building a more connected world. Rev. 1.2 | 208 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 US5_RX 0: PE9 1: PA7 2: PB1 3: PH11 US5_TX 0: PE8 1: PA6 2: PF15 3: PH10 4-7 Description USART5 Asynchronous Receive. USART5 Synchronous mode Master Input / Slave Output (MISO). USART5 Asynchronous Transmit. Also used as receive input in half duplex communication. USART5 Synchronous mode Master Output / Slave Input (MOSI). 0: PF10 USB_DM USB D- pin. 0: PF11 USB_DP USB D+ pin. 0: PF12 USB_ID USB ID pin. 0: PF5 USB_VBUSEN USB 5 V VBUS enable. 0: PD6 VDAC0_EXT Digital to analog converter VDAC0 external reference input pin. 0: PB11 VDAC0_OUT0 / OPA0_OUT VDAC0_OUT0ALT / OPA0_OUTALT Digital to Analog Converter DAC0 output channel number 0. 0: PC0 1: PC1 2: PC2 3: PC3 4: PD0 Digital to Analog Converter DAC0 alternative output for channel 0. 0: PB12 VDAC0_OUT1 / OPA1_OUT Digital to Analog Converter DAC0 output channel number 1. 0: PC12 1: PC13 2: PC14 3: PC15 4: PD1 VDAC0_OUT1ALT / OPA1_OUTALT WTIM0_CC0 0: PE4 1: PA6 2: PG2 3: PG8 4: PC15 5: PB0 6: PB3 7: PC1 Wide timer 0 Capture Compare input / output channel 0. WTIM0_CC1 0: PE5 1: PD13 2: PG3 3: PG9 4: PF0 5: PB1 6: PB4 7: PC2 Wide timer 0 Capture Compare input / output channel 1. Digital to Analog Converter DAC0 alternative output for channel 1. silabs.com | Building a more connected world. Rev. 1.2 | 209 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description WTIM0_CC2 0: PE6 1: PD14 2: PG4 3: PG10 4: PF1 5: PB2 6: PB5 7: PC3 4: PD4 WTIM0_CDTI0 0: PE10 1: PD15 2: PA12 3: PG11 4: PD5 WTIM0_CDTI1 0: PE11 1: PG0 2: PA13 3: PG12 4: PD6 WTIM0_CDTI2 0: PE12 1: PG1 2: PA14 3: PG13 WTIM1_CC0 0: PB13 1: PD2 2: PD6 3: PC7 4: PE3 5: PE7 6: PH8 7: PH12 Wide timer 1 Capture Compare input / output channel 0. WTIM1_CC1 0: PB14 1: PD3 2: PD7 3: PE0 4: PE4 5: PI0 6: PH9 7: PH13 Wide timer 1 Capture Compare input / output channel 1. WTIM1_CC2 0: PD0 1: PD4 2: PD8 3: PE1 4: PE5 5: PI1 6: PH10 7: PH14 Wide timer 1 Capture Compare input / output channel 2. WTIM1_CC3 0: PD1 1: PD5 2: PC6 3: PE2 4: PE6 5: PI2 6: PH11 7: PH15 Wide timer 1 Capture Compare input / output channel 3. WTIM2_CC0 0: PA9 1: PA12 2: PB9 3: PB12 4: PG14 5: PD3 6: PH4 7: PH7 Wide timer 2 Capture Compare input / output channel 0. WTIM2_CC1 0: PA10 1: PA13 2: PB10 3: PG12 4: PG15 5: PD4 6: PH5 7: PH8 Wide timer 2 Capture Compare input / output channel 1. WTIM2_CC2 0: PA11 1: PA14 2: PB11 3: PG13 4: PH0 5: PD5 6: PH6 7: PH9 Wide timer 2 Capture Compare input / output channel 2. WTIM3_CC0 0: PD9 1: PC8 2: PC11 3: PC14 4: PI3 5: PI6 6: PB6 7: PF13 Wide timer 3 Capture Compare input / output channel 0. WTIM3_CC1 0: PD10 1: PC9 2: PC12 3: PF10 4: PI4 5: PI7 6: PF4 7: PF14 Wide timer 3 Capture Compare input / output channel 1. Wide timer 0 Capture Compare input / output channel 2. Wide timer 0 Complimentary Dead Time Insertion channel 0. Wide timer 0 Complimentary Dead Time Insertion channel 1. Wide timer 0 Complimentary Dead Time Insertion channel 2. silabs.com | Building a more connected world. Rev. 1.2 | 210 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality WTIM3_CC2 LOCATION 0-3 4-7 0: PD11 1: PC10 2: PC13 3: PF11 4: PI5 5: PF6 6: PF12 7: PF15 Description Wide timer 3 Capture Compare input / output channel 2. Certain alternate function locations may have non-interference priority. These locations will take precedence over any other functions selected on that pin (i.e. another alternate function enabled to the same pin inadvertently). Some alternate functions may also have high speed priority on certain locations. These locations ensure the fastest possible paths to the pins for timing-critical signals. The following table lists the alternate functions and locations with special priority. Table 5.22. Alternate Functionality Priority Alternate Functionality Location Priority CMU_CLK2 1: PA3 5: PD10 High Speed High Speed CMU_CLKI0 1: PA3 5: PD10 High Speed High Speed ETH_RMIICRSDV 0: PA4 1: PD11 High Speed High Speed ETH_RMIIREFCLK 0: PA3 1: PD10 High Speed High Speed ETH_RMIIRXD0 0: PA2 1: PD9 High Speed High Speed ETH_RMIIRXD1 0: PA1 1: PF9 High Speed High Speed ETH_RMIIRXER 0: PA5 1: PD12 High Speed High Speed ETH_RMIITXD0 0: PE15 1: PF7 High Speed High Speed ETH_RMIITXD1 0: PE14 1: PF6 High Speed High Speed ETH_RMIITXEN 0: PA0 1: PF8 High Speed High Speed QSPI0_CS0 0: PF7 High Speed QSPI0_CS1 0: PF8 High Speed QSPI0_DQ0 0: PD9 High Speed QSPI0_DQ1 0: PD10 High Speed QSPI0_DQ2 0: PD11 High Speed QSPI0_DQ3 0: PD12 High Speed QSPI0_DQ4 0: PE8 High Speed QSPI0_DQ5 0: PE9 High Speed QSPI0_DQ6 0: PE10 High Speed QSPI0_DQ7 0: PE11 High Speed silabs.com | Building a more connected world. Rev. 1.2 | 211 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality Location Priority QSPI0_DQS 0: PF9 High Speed QSPI0_SCLK 0: PF6 High Speed SDIO_CLK 0: PE13 High Speed SDIO_CMD 0: PE12 High Speed SDIO_DAT0 0: PE11 High Speed SDIO_DAT1 0: PE10 High Speed SDIO_DAT2 0: PE9 High Speed SDIO_DAT3 0: PE8 High Speed SDIO_DAT4 0: PD12 High Speed SDIO_DAT5 0: PD11 High Speed SDIO_DAT6 0: PD10 High Speed SDIO_DAT7 0: PD9 High Speed TIM0_CC0 3: PB6 Non-interference TIM0_CC1 3: PC0 Non-interference TIM0_CC2 3: PC1 Non-interference TIM0_CDTI0 1: PC13 Non-interference TIM0_CDTI1 1: PC14 Non-interference TIM0_CDTI2 1: PC15 Non-interference TIM2_CC0 0: PA8 Non-interference TIM2_CC1 0: PA9 Non-interference TIM2_CC2 0: PA10 Non-interference TIM2_CDTI0 0: PB0 Non-interference TIM2_CDTI1 0: PB1 Non-interference TIM2_CDTI2 0: PB2 Non-interference TIM4_CC0 0: PF3 Non-interference TIM4_CC1 0: PF4 Non-interference TIM4_CC2 0: PF12 Non-interference TIM4_CDTI0 0: PD0 Non-interference TIM4_CDTI1 0: PD1 Non-interference TIM4_CDTI2 0: PD3 Non-interference TIM6_CC0 0: PG0 Non-interference TIM6_CC1 0: PG1 Non-interference TIM6_CC2 0: PG2 Non-interference TIM6_CDTI0 0: PG3 Non-interference TIM6_CDTI1 0: PG4 Non-interference TIM6_CDTI2 0: PG5 Non-interference silabs.com | Building a more connected world. Rev. 1.2 | 212 EFM32GG11 Family Data Sheet Pin Definitions Alternate Functionality Location Priority US2_CLK 4: PF8 5: PF2 High Speed High Speed US2_CS 4: PF9 5: PF5 High Speed High Speed US2_RX 4: PF7 5: PF1 High Speed High Speed US2_TX 4: PF6 5: PF0 High Speed High Speed silabs.com | Building a more connected world. Rev. 1.2 | 213 EFM32GG11 Family Data Sheet Pin Definitions 5.22 Analog Port (APORT) Client Maps The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.20 APORT Connection Diagram on page 214 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual. AX AY BX BY CX CY DX DY ACMP0X ACMP0Y PA3 POS IDAC0_OUTPAD 1X 1Y IDAC0 ACMP2 NEG PA4 PA5 PA6 1X 1Y 3X 3Y PG0 2X 2Y PG1 4X 4Y POS CEXT CSEN ACMP0 CEXT_SENSE NEG PG2 ADC0X ADC0Y AX AY BX BY CX CY DX DY ADC1X ADC1Y PG3 PG4 PG5 PG6 PG7 POS PB1 PB2 PB3 ADC0 NEG PB4 PB5 OUT0 IDAC0_OUTPAD OUT0ALT VDAC0_OUT0ALT OUT0ALT PC1 VDAC0_OUT0ALT OUT0ALT VDAC0_OU0ALTT OUT0ALT PC3 OPA0_P PC4 OPA0_N OUT NEG ADC1 POS NEG OPA1_N 1Y 2Y 3Y 4Y OUT OUT1 OUT1ALT OUT1 OUT2 OUT3 OUT4 NEXT1 OUT1ALT POS VDAC0_OUT1ALT PC15 PF11 ACMP1 PF10 NEG OUT1ALT VDAC0_OUT1ALT PC14 POS OUT1ALT VDAC0_OUT1ALT OUT1ALT VDAC0_OUT1ALT PC13 PC12 ACMP3 PC11 NEG PC10 PC9 OPA2_P 1X 2X 3X 4X POS OPA2_N 1Y 2Y 3Y 4Y NEG OUT2 OUT2ALT OUT1 OUT2 OUT3 OUT4 NEXT2 OUT0 OUT0ALT OUT1 OUT2 OUT3 OUT4 NEXT0 OPA1_P 1X 2X 3X 4X OPA1 OUT1 VDAC0_OUT0ALT NEG OPA0_N 1Y 2Y 3Y 4Y EXTP EXTN EXTP EXTN PB6 POS POS 0Y 1Y 2Y 3Y 4Y NEXT3 NEXT1 0Y 1Y 2Y 3Y 4Y NEXT3 NEXT1 0X 1X 2X 3X 4X NEXT1 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 0X 1X 2X 3X 4X NEXT1 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 OPA0_P 1X 2X 3X 4X OPA0 0X 1X 2X 3X 4X NEXT2 NEXT0 0X 1X 2X 3X 4X NEXT2 NEXT0 PB0 0X 1X 2X 3X 4X NEXT1 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 0X 1X 2X 3X 4X NEXT1 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 PC8 PE7 PE6 OPA2 PE5 PE4 OUT PE1 PE0 OPA3_P 1X 2X 3X 4X POS OPA3_N 1Y 2Y 3Y 4Y NEG OUT3 OUT3ALT OUT1 OUT2 OUT3 OUT4 NEXT3 ADC0X ADC0Y BX BY ACMP2X ACMP2Y AX AY PA2 ACMP1X ACMP1Y PA1 IOVDD_0 PF0 PF1 PF2 PF3 PF4 PF12 PF13 PF14 DX DY PA0 PC2 PF5 CX CY PA15 PC0 PF15 PF7 PF6 PF8 PF9 PE9 IOVDD_2 IOVDD_0 PE8 PE11 PE10 PE12 PE13 PE14 PE15 IOVDD_1 OPA3 OPA3_P OPA3_N OUT ADC_EXTN OPA1_N ADC1X ADC1Y ACMP3X ACMP3Y ADC_EXTP OPA1_P PC5 PC7 PC6 PD7 PD6 PD5 OPA2_P OPA2_N OUT3 OUT1ALT PD4 PD3 PD2 VDAC0_OUT1ALT PD1 OUT0ALT VDAC0_OUT0ALT PD0 PB14 PB13 PH15 PH13 PH14 PH11 PH12 PH9 PH10 PH8 PH7 PH5 PH6 PH3 PH4 PH2 PH1 PH0 PB12 PB11 PB9 PB10 PA14 PA12 PA13 PA11 BUSACMP0X, BUSACMP3Y, ... PA9 BUSADC0X, BUSADC1Y, … ACMP0X, ACMP3Y, … PA10 BUSAX, BUSBY, ... ADC0X, ADC1Y, … PA7 APORTnX, APORTnY AX, BY, … PA8 nX, nY VDAC0_OUT2ALT OUT2ALT OUT2 Figure 5.20. APORT Connection Diagram Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. silabs.com | Building a more connected world. Rev. 1.2 | 214 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 PF15 PF13 BUSCY BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP0Y BUSACMP0X Bus APORT0Y EFM32GG11 Family Data Sheet Pin Definitions Table 5.23. ACMP0 Bus and Pin Mapping Rev. 1.2 | 215 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 PF15 PF13 BUSCY BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP1Y BUSACMP1X Bus APORT0Y EFM32GG11 Family Data Sheet Pin Definitions Table 5.24. ACMP1 Bus and Pin Mapping Rev. 1.2 | 216 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 PF15 PF13 BUSCY BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP2Y BUSACMP2X Bus APORT0Y EFM32GG11 Family Data Sheet Pin Definitions Table 5.25. ACMP2 Bus and Pin Mapping Rev. 1.2 | 217 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 PF15 PF13 BUSCY BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PH8 PH9 PH10 PH11 PH12 PH13 PH14 PH15 PH8 PH9 PH10 PH11 PH12 PH13 PH14 PH15 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP3Y BUSACMP3X Bus APORT0Y EFM32GG11 Family Data Sheet Pin Definitions Table 5.26. ACMP3 Bus and Pin Mapping Rev. 1.2 | 218 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 PF15 PF13 BUSCY BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSADC0Y BUSADC0X Bus APORT0Y EFM32GG11 Family Data Sheet Pin Definitions Table 5.27. ADC0 Bus and Pin Mapping Rev. 1.2 | 219 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 PF15 PF13 BUSCY BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PH0 PH1 PH2 PH3 PH4 PH5 PH6 PH7 PH0 PH1 PH2 PH3 PH4 PH5 PH6 PH7 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSADC1Y BUSADC1X Bus APORT0Y EFM32GG11 Family Data Sheet Pin Definitions Table 5.28. ADC1 Bus and Pin Mapping Rev. 1.2 | 220 silabs.com | Building a more connected world. PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT1Y APORT1X Port PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSDX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX APORT4Y APORT4X APORT2Y APORT2X PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT3Y APORT3X APORT1Y APORT1X CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG11 Family Data Sheet Pin Definitions Table 5.29. CSEN Bus and Pin Mapping CEXT CEXT_SENSE Table 5.30. IDAC0 Bus and Pin Mapping Rev. 1.2 | 221 silabs.com | Building a more connected world. PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG11 Family Data Sheet Pin Definitions Table 5.31. VDAC0 / OPA Bus and Pin Mapping OPA0_N OPA0_P Rev. 1.2 | 222 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG11 Family Data Sheet Pin Definitions OPA1_N OPA1_P OPA2_N Rev. 1.2 | 223 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG11 Family Data Sheet Pin Definitions OPA2_OUT OPA2_P OPA3_N Rev. 1.2 | 224 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSDX PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSCX PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSBX PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG11 Family Data Sheet Pin Definitions OPA3_OUT OPA3_P VDAC0_OUT0 / OPA0_OUT Rev. 1.2 | 225 silabs.com | Building a more connected world. PE0 PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 BUSDY PE1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 BUSCY PA0 PA2 PA4 PA6 PA8 PA10 PA12 PA14 PB0 PB2 PB4 PB6 PB10 PB12 PB14 BUSBY PA1 PA3 PA5 PA7 PA9 PA11 PA13 PA15 PB1 PB3 PB5 PB9 PB11 PB13 PB15 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32GG11 Family Data Sheet Pin Definitions VDAC0_OUT1 / OPA1_OUT Rev. 1.2 | 226 EFM32GG11 Family Data Sheet BGA192 Package Specifications 6. BGA192 Package Specifications 6.1 BGA192 Package Dimensions Figure 6.1. BGA192 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 227 EFM32GG11 Family Data Sheet BGA192 Package Specifications Table 6.1. BGA192 Package Dimensions Dimension Min Typ Max A 0.77 0.83 0.89 A1 0.13 0.18 0.23 A3 0.16 0.20 0.24 A2 0.45 REF D 7.00 BSC e 0.40 BSC E 7.00 BSC D1 6.00 BSC E1 6.00 BSC b 0.20 0.25 aaa 0.10 bbb 0.10 ddd 0.08 eee 0.15 fff 0.05 0.30 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 228 EFM32GG11 Family Data Sheet BGA192 Package Specifications 6.2 BGA192 PCB Land Pattern Figure 6.2. BGA192 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 229 EFM32GG11 Family Data Sheet BGA192 Package Specifications Table 6.2. BGA192 PCB Land Pattern Dimensions Dimension Min Nom X 0.20 C1 6.00 C2 6.00 E1 0.4 E2 0.4 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on the IPC-7351 guidelines. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 230 EFM32GG11 Family Data Sheet BGA192 Package Specifications 6.3 BGA192 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 6.3. BGA192 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 231 EFM32GG11 Family Data Sheet BGA152 Package Specifications 7. BGA152 Package Specifications 7.1 BGA152 Package Dimensions A1 BALL CORNER A aaa C B (2X) E A3 A aaa C A (2X) D TOP VIEW 14 13 12 11 10 9 8 7 6 5 DETAIL K SIDE VIEW B 4 3 2 A1 BALL CORNER 1 A 152X b B eee fff C D 2 C A B C E e/2 F G D1 H J (0.75) K L e M N P (0.75) e/2 e E1 BOTTOM VIEW 4 bbb C A1 ddd C? C SEATING PLANE 3 DETAIL K ROTATED 90¡Æ CW Figure 7.1. BGA152 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 232 EFM32GG11 Family Data Sheet BGA152 Package Specifications Table 7.1. BGA152 Package Dimensions Dimension Min Typ Max A 0.78 0.84 0.90 A1 0.13 0.18 0.23 A3 0.16 0.20 0.24 A2 0.45 REF D 8.00 BSC e 0.50 BSC E 8.00 BSC D1 6.50 BSC E1 6.50 BSC b 0.20 0.25 aaa 0.10 bbb 0.10 ddd 0.08 eee 0.15 fff 0.05 0.30 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 233 EFM32GG11 Family Data Sheet BGA152 Package Specifications 7.2 BGA152 PCB Land Pattern Figure 7.2. BGA152 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 234 EFM32GG11 Family Data Sheet BGA152 Package Specifications Table 7.2. BGA152 PCB Land Pattern Dimensions Dimension Min Nom X 0.20 C1 6.50 C2 6.50 E1 0.5 E2 0.5 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on the IPC-7351 guidelines. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 235 EFM32GG11 Family Data Sheet BGA152 Package Specifications 7.3 BGA152 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 7.3. BGA152 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 236 EFM32GG11 Family Data Sheet BGA120 Package Specifications 8. BGA120 Package Specifications 8.1 BGA120 Package Dimensions Figure 8.1. BGA120 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 237 EFM32GG11 Family Data Sheet BGA120 Package Specifications Table 8.1. BGA120 Package Dimensions Dimension Min Typ Max A 0.78 0.84 0.90 A1 0.13 0.18 0.23 A3 0.17 0.21 0.25 A2 0.45 REF D 7.00 BSC e 0.50 BSC E 7.00 BSC D1 6.00 BSC E1 6.00 BSC b 0.20 0.25 aaa 0.10 bbb 0.10 ddd 0.08 eee 0.15 fff 0.05 0.30 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 238 EFM32GG11 Family Data Sheet BGA120 Package Specifications 8.2 BGA120 PCB Land Pattern Figure 8.2. BGA120 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 239 EFM32GG11 Family Data Sheet BGA120 Package Specifications Table 8.2. BGA120 PCB Land Pattern Dimensions Dimension Min Nom X 0.20 C1 6.00 C2 6.00 E1 0.5 E2 0.5 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on the IPC-7351 guidelines. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 240 EFM32GG11 Family Data Sheet BGA120 Package Specifications 8.3 BGA120 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 8.3. BGA120 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 241 EFM32GG11 Family Data Sheet BGA112 Package Specifications 9. BGA112 Package Specifications 9.1 BGA112 Package Dimensions Figure 9.1. BGA112 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 242 EFM32GG11 Family Data Sheet BGA112 Package Specifications Table 9.1. BGA112 Package Dimensions Dimension Min Typ Max A - - 1.30 A1 0.55 0.60 0.65 A2 0.21 BSC A3 0.30 0.35 0.40 d 0.43 0.48 0.53 D 10.00 BSC D1 8.00 BSC E 10.00 BSC E1 8.00 BSC e1 0.80 BSC e2 0.80 BSC L1 1.00 REF L2 1.00 REF Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 243 EFM32GG11 Family Data Sheet BGA112 Package Specifications 9.2 BGA112 PCB Land Pattern Figure 9.2. BGA112 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 244 EFM32GG11 Family Data Sheet BGA112 Package Specifications Table 9.2. BGA112 PCB Land Pattern Dimensions Dimension Min Nom X 0.45 C1 8.00 C2 8.00 E1 0.8 E2 0.8 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on the IPC-7351 guidelines. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 245 EFM32GG11 Family Data Sheet BGA112 Package Specifications 9.3 BGA112 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 9.3. BGA112 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 246 EFM32GG11 Family Data Sheet TQFP100 Package Specifications 10. TQFP100 Package Specifications 10.1 TQFP100 Package Dimensions Figure 10.1. TQFP100 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 247 EFM32GG11 Family Data Sheet TQFP100 Package Specifications Table 10.1. TQFP100 Package Dimensions Dimension Min Typ Max A - - 1.20 A1 0.05 - 0.15 A2 0.95 1.00 1.05 b 0.17 0.22 0.27 b1 0.17 0.20 0.23 c 0.09 - 0.20 c1 0.09 - 0.16 D 16.0 BSC E 16.0 BSC D1 14.0 BSC E1 14.0 BSC e 0.50 BSC L1 1 REF L 0.45 0.60 0.75 ϴ 0 3.5 7 ϴ1 0 - - ϴ2 11 12 13 ϴ3 11 12 13 R1 0.08 - - R2 0.08 - 0.2 S 0.2 - - aaa 0.2 bbb 0.2 ccc 0.08 ddd 0.08 eee 0.05 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 248 EFM32GG11 Family Data Sheet TQFP100 Package Specifications 10.2 TQFP100 PCB Land Pattern Figure 10.2. TQFP100 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 249 EFM32GG11 Family Data Sheet TQFP100 Package Specifications Table 10.2. TQFP100 PCB Land Pattern Dimensions Dimension Min Nom C1 15.4 C2 15.4 E 0.50 BSC X 0.30 Y 1.50 Max Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. 7. A No-Clean, Type-3 solder paste is recommended. 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. 10.3 TQFP100 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 10.3. TQFP100 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 250 EFM32GG11 Family Data Sheet TQFP64 Package Specifications 11. TQFP64 Package Specifications 11.1 TQFP64 Package Dimensions Figure 11.1. TQFP64 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 251 EFM32GG11 Family Data Sheet TQFP64 Package Specifications Table 11.1. TQFP64 Package Dimensions Dimension Min Typ Max A — 1.15 1.20 A1 0.05 — 0.15 A2 0.95 1.00 1.05 b 0.17 0.22 0.27 b1 0.17 0.20 0.23 c 0.09 — 0.20 c1 0.09 — 0.16 D 12.00 BSC D1 10.00 BSC e 0.50 BSC E 12.00 BSC E1 10.00 BSC L 0.45 L1 0.60 0.75 1.00 REF R1 0.08 — — R2 0.08 — 0.20 S 0.20 — — θ 0 3.5 7 ϴ1 0 — 0.10 ϴ2 11 12 13 ϴ3 11 12 13 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 252 EFM32GG11 Family Data Sheet TQFP64 Package Specifications 11.2 TQFP64 PCB Land Pattern Figure 11.2. TQFP64 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 253 EFM32GG11 Family Data Sheet TQFP64 Package Specifications Table 11.2. TQFP64 PCB Land Pattern Dimensions Dimension Min Max C1 11.30 11.40 C2 11.30 11.40 E 0.50 BSC X 0.20 0.30 Y 1.40 1.50 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 7. A No-Clean, Type-3 solder paste is recommended. 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 11.3 TQFP64 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 11.3. TQFP64 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 254 EFM32GG11 Family Data Sheet QFN64 Package Specifications 12. QFN64 Package Specifications 12.1 QFN64 Package Dimensions Figure 12.1. QFN64 Package Drawing silabs.com | Building a more connected world. Rev. 1.2 | 255 EFM32GG11 Family Data Sheet QFN64 Package Specifications Table 12.1. QFN64 Package Dimensions Dimension Min Typ Max A 0.70 0.75 0.80 A1 0.00 — 0.05 b 0.20 0.25 0.30 A3 0.203 REF D 9.00 BSC e 0.50 BSC E 9.00 BSC D2 7.10 7.20 7.30 E2 7.10 7.20 7.30 L 0.40 0.45 0.50 L1 0.00 — 0.10 aaa 0.10 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 256 EFM32GG11 Family Data Sheet QFN64 Package Specifications 12.2 QFN64 PCB Land Pattern Figure 12.2. QFN64 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.2 | 257 EFM32GG11 Family Data Sheet QFN64 Package Specifications Table 12.2. QFN64 PCB Land Pattern Dimensions Dimension Typ C1 8.90 C2 8.90 E 0.50 X1 0.30 Y1 0.85 X2 7.30 Y2 7.30 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad. 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.2 | 258 EFM32GG11 Family Data Sheet QFN64 Package Specifications 12.3 QFN64 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 12.3. QFN64 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.2 | 259 EFM32GG11 Family Data Sheet Revision History 13. Revision History Revision 1.2 May, 2023 • Removed "Not Recommended for New Designs" note from 2. Ordering Information. Revision 1.1 October, 2022 • Front page block diagram and 3.5.4 Low Energy Timer (LETIMER) updated to reflect EM3 as the lowest LETIMER energy mode. • BGA152 variants noted as Not Recommended for New Designs (NRND) in 2. Ordering Information. • Updated 3.5.3 Real Time Counter and Calendar (RTCC) to specify that any of the low-frequency oscillators can be used as a clock source. • 3.12 Configuration Summary updated to reflect whether or not the temperature sensor is present on ADCn. • Clarified input threshold voltage and pull resistor specifications in 4.1.12 General-Purpose I/O (GPIO). Revision 0.6 March, 2018 • Removed "Confidential" watermark. • Updated 4.1 Electrical Characteristics and 4.2 Typical Performance Curves with latest characterization data. Revision 0.2 October, 2017 • Updated memory maps to latest formatting and to include all peripherals. • Updated all electrical specifications tables with latest characterization results. • Absolute Maximum Ratings Table: • Removed redundant IVSSMAX line. • Added footnote to clarify VDIGPIN specification for 5V tolerant GPIO. • General Operating Conditions Table: • Removed dVDD specification and redundant footnote about shorting VREGVDD and AVDD together. • • • • • Added footnote about IOVDD voltage restriction when CSEN peripheral is used with chopping enabled. Flash Memory Characteristics Table: Added timing measurement clarification for Device Erase and Mass Erase. Analog to Digital Converter (ADC) Table: • Added header text for general specification conditions. • Added footnote for clarification of input voltage limits. Minor typographical corrections, including capitalization, mis-spellings and punctuation marks, throughout document. Minor formatting and styling updates, including table formats, TOC location, and boilerplate information throughout document. Revision 0.1 April 27th, 2017 Initial release. silabs.com | Building a more connected world. Rev. 1.2 | 260 Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support & Community www.silabs.com/community Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these terms with inclusive language wherever possible. For more information, visit www.silabs.com/about-us/inclusive-lexicon-project Trademark Information Silicon Laboratories Inc. ® , Silicon Laboratories ® , Silicon Labs ® , SiLabs ® and the Silicon Labs logo ® , Bluegiga ® , Bluegiga Logo ® , EFM ® , EFM32 ® , EFR, Ember® , Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals ® , WiSeConnect , n-Link, ThreadArch ® , EZLink® , EZRadio ® , EZRadioPRO ® , Gecko ® , Gecko OS, Gecko OS Studio, Precision32 ® , Simplicity Studio ® , Telegesis, the Telegesis Logo ® , USBXpress ® , Zentri, the Zentri logo and Zentri DMS, Z-Wave ® , and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA www.silabs.com
EFM32GG11B420F2048IL120-B 价格&库存

很抱歉,暂时无法提供与“EFM32GG11B420F2048IL120-B”相匹配的价格&库存,您可以联系我们找货

免费人工找货